• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2009, Intel Corporation.
4  *
5  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
6  */
7 
8 #include <linux/iova.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/smp.h>
12 #include <linux/bitops.h>
13 #include <linux/cpu.h>
14 
15 /* The anchor node sits above the top of the usable address space */
16 #define IOVA_ANCHOR	~0UL
17 
18 static bool iova_rcache_insert(struct iova_domain *iovad,
19 			       unsigned long pfn,
20 			       unsigned long size);
21 static unsigned long iova_rcache_get(struct iova_domain *iovad,
22 				     unsigned long size,
23 				     unsigned long limit_pfn);
24 static void init_iova_rcaches(struct iova_domain *iovad);
25 static void free_iova_rcaches(struct iova_domain *iovad);
26 static void fq_destroy_all_entries(struct iova_domain *iovad);
27 static void fq_flush_timeout(struct timer_list *t);
28 
29 void
init_iova_domain(struct iova_domain * iovad,unsigned long granule,unsigned long start_pfn)30 init_iova_domain(struct iova_domain *iovad, unsigned long granule,
31 	unsigned long start_pfn)
32 {
33 	/*
34 	 * IOVA granularity will normally be equal to the smallest
35 	 * supported IOMMU page size; both *must* be capable of
36 	 * representing individual CPU pages exactly.
37 	 */
38 	BUG_ON((granule > PAGE_SIZE) || !is_power_of_2(granule));
39 
40 	spin_lock_init(&iovad->iova_rbtree_lock);
41 	iovad->rbroot = RB_ROOT;
42 	iovad->cached_node = &iovad->anchor.node;
43 	iovad->cached32_node = &iovad->anchor.node;
44 	iovad->granule = granule;
45 	iovad->start_pfn = start_pfn;
46 	iovad->dma_32bit_pfn = 1UL << (32 - iova_shift(iovad));
47 	iovad->max32_alloc_size = iovad->dma_32bit_pfn;
48 	iovad->flush_cb = NULL;
49 	iovad->fq = NULL;
50 	iovad->anchor.pfn_lo = iovad->anchor.pfn_hi = IOVA_ANCHOR;
51 	rb_link_node(&iovad->anchor.node, NULL, &iovad->rbroot.rb_node);
52 	rb_insert_color(&iovad->anchor.node, &iovad->rbroot);
53 	iovad->best_fit = false;
54 	init_iova_rcaches(iovad);
55 }
56 EXPORT_SYMBOL_GPL(init_iova_domain);
57 
has_iova_flush_queue(struct iova_domain * iovad)58 bool has_iova_flush_queue(struct iova_domain *iovad)
59 {
60 	return !!iovad->fq;
61 }
62 
free_iova_flush_queue(struct iova_domain * iovad)63 static void free_iova_flush_queue(struct iova_domain *iovad)
64 {
65 	if (!has_iova_flush_queue(iovad))
66 		return;
67 
68 	del_timer_sync(&iovad->fq_timer);
69 
70 	fq_destroy_all_entries(iovad);
71 
72 	free_percpu(iovad->fq);
73 
74 	iovad->fq         = NULL;
75 	iovad->flush_cb   = NULL;
76 	iovad->entry_dtor = NULL;
77 }
78 
init_iova_flush_queue(struct iova_domain * iovad,iova_flush_cb flush_cb,iova_entry_dtor entry_dtor)79 int init_iova_flush_queue(struct iova_domain *iovad,
80 			  iova_flush_cb flush_cb, iova_entry_dtor entry_dtor)
81 {
82 	struct iova_fq __percpu *queue;
83 	int cpu;
84 
85 	atomic64_set(&iovad->fq_flush_start_cnt,  0);
86 	atomic64_set(&iovad->fq_flush_finish_cnt, 0);
87 
88 	queue = alloc_percpu(struct iova_fq);
89 	if (!queue)
90 		return -ENOMEM;
91 
92 	iovad->flush_cb   = flush_cb;
93 	iovad->entry_dtor = entry_dtor;
94 
95 	for_each_possible_cpu(cpu) {
96 		struct iova_fq *fq;
97 
98 		fq = per_cpu_ptr(queue, cpu);
99 		fq->head = 0;
100 		fq->tail = 0;
101 
102 		spin_lock_init(&fq->lock);
103 	}
104 
105 	smp_wmb();
106 
107 	iovad->fq = queue;
108 
109 	timer_setup(&iovad->fq_timer, fq_flush_timeout, 0);
110 	atomic_set(&iovad->fq_timer_on, 0);
111 
112 	return 0;
113 }
114 EXPORT_SYMBOL_GPL(init_iova_flush_queue);
115 
116 static struct rb_node *
__get_cached_rbnode(struct iova_domain * iovad,unsigned long limit_pfn)117 __get_cached_rbnode(struct iova_domain *iovad, unsigned long limit_pfn)
118 {
119 	if (limit_pfn <= iovad->dma_32bit_pfn)
120 		return iovad->cached32_node;
121 
122 	return iovad->cached_node;
123 }
124 
125 static void
__cached_rbnode_insert_update(struct iova_domain * iovad,struct iova * new)126 __cached_rbnode_insert_update(struct iova_domain *iovad, struct iova *new)
127 {
128 	if (new->pfn_hi < iovad->dma_32bit_pfn)
129 		iovad->cached32_node = &new->node;
130 	else
131 		iovad->cached_node = &new->node;
132 }
133 
134 static void
__cached_rbnode_delete_update(struct iova_domain * iovad,struct iova * free)135 __cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
136 {
137 	struct iova *cached_iova;
138 
139 	cached_iova = rb_entry(iovad->cached32_node, struct iova, node);
140 	if (free == cached_iova ||
141 	    (free->pfn_hi < iovad->dma_32bit_pfn &&
142 	     free->pfn_lo >= cached_iova->pfn_lo))
143 		iovad->cached32_node = rb_next(&free->node);
144 
145 	if (free->pfn_lo < iovad->dma_32bit_pfn)
146 		iovad->max32_alloc_size = iovad->dma_32bit_pfn;
147 
148 	cached_iova = rb_entry(iovad->cached_node, struct iova, node);
149 	if (free->pfn_lo >= cached_iova->pfn_lo)
150 		iovad->cached_node = rb_next(&free->node);
151 }
152 
153 /* Insert the iova into domain rbtree by holding writer lock */
154 static void
iova_insert_rbtree(struct rb_root * root,struct iova * iova,struct rb_node * start)155 iova_insert_rbtree(struct rb_root *root, struct iova *iova,
156 		   struct rb_node *start)
157 {
158 	struct rb_node **new, *parent = NULL;
159 
160 	new = (start) ? &start : &(root->rb_node);
161 	/* Figure out where to put new node */
162 	while (*new) {
163 		struct iova *this = rb_entry(*new, struct iova, node);
164 
165 		parent = *new;
166 
167 		if (iova->pfn_lo < this->pfn_lo)
168 			new = &((*new)->rb_left);
169 		else if (iova->pfn_lo > this->pfn_lo)
170 			new = &((*new)->rb_right);
171 		else {
172 			WARN_ON(1); /* this should not happen */
173 			return;
174 		}
175 	}
176 	/* Add new node and rebalance tree. */
177 	rb_link_node(&iova->node, parent, new);
178 	rb_insert_color(&iova->node, root);
179 }
180 
181 #ifdef CONFIG_IOMMU_LIMIT_IOVA_ALIGNMENT
limit_align_shift(struct iova_domain * iovad,unsigned long shift)182 static unsigned long limit_align_shift(struct iova_domain *iovad,
183 				       unsigned long shift)
184 {
185 	unsigned long max_align_shift;
186 
187 	max_align_shift = CONFIG_IOMMU_IOVA_ALIGNMENT + PAGE_SHIFT
188 		- iova_shift(iovad);
189 	return min_t(unsigned long, max_align_shift, shift);
190 }
191 #else
limit_align_shift(struct iova_domain * iovad,unsigned long shift)192 static unsigned long limit_align_shift(struct iova_domain *iovad,
193 				       unsigned long shift)
194 {
195 	return shift;
196 }
197 #endif
198 
__alloc_and_insert_iova_range(struct iova_domain * iovad,unsigned long size,unsigned long limit_pfn,struct iova * new,bool size_aligned)199 static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
200 		unsigned long size, unsigned long limit_pfn,
201 			struct iova *new, bool size_aligned)
202 {
203 	struct rb_node *curr, *prev;
204 	struct iova *curr_iova;
205 	unsigned long flags;
206 	unsigned long new_pfn, low_pfn_new;
207 	unsigned long align_mask = ~0UL;
208 	unsigned long high_pfn = limit_pfn, low_pfn = iovad->start_pfn;
209 
210 	if (size_aligned)
211 		align_mask <<= limit_align_shift(iovad, fls_long(size - 1));
212 
213 	/* Walk the tree backwards */
214 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
215 	if (limit_pfn <= iovad->dma_32bit_pfn &&
216 			size >= iovad->max32_alloc_size)
217 		goto iova32_full;
218 
219 	curr = __get_cached_rbnode(iovad, limit_pfn);
220 	curr_iova = rb_entry(curr, struct iova, node);
221 	low_pfn_new = curr_iova->pfn_hi;
222 
223 retry:
224 	do {
225 		high_pfn = min(high_pfn, curr_iova->pfn_lo);
226 		new_pfn = (high_pfn - size) & align_mask;
227 		prev = curr;
228 		curr = rb_prev(curr);
229 		curr_iova = rb_entry(curr, struct iova, node);
230 	} while (curr && new_pfn <= curr_iova->pfn_hi && new_pfn >= low_pfn);
231 
232 	if (high_pfn < size || new_pfn < low_pfn) {
233 		if (low_pfn == iovad->start_pfn && low_pfn_new < limit_pfn) {
234 			high_pfn = limit_pfn;
235 			low_pfn = low_pfn_new + 1;
236 			curr = &iovad->anchor.node;
237 			curr_iova = rb_entry(curr, struct iova, node);
238 			goto retry;
239 		}
240 		iovad->max32_alloc_size = size;
241 		goto iova32_full;
242 	}
243 
244 	/* pfn_lo will point to size aligned address if size_aligned is set */
245 	new->pfn_lo = new_pfn;
246 	new->pfn_hi = new->pfn_lo + size - 1;
247 
248 	/* If we have 'prev', it's a valid place to start the insertion. */
249 	iova_insert_rbtree(&iovad->rbroot, new, prev);
250 	__cached_rbnode_insert_update(iovad, new);
251 
252 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
253 	return 0;
254 
255 iova32_full:
256 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
257 	return -ENOMEM;
258 }
259 
__alloc_and_insert_iova_best_fit(struct iova_domain * iovad,unsigned long size,unsigned long limit_pfn,struct iova * new,bool size_aligned)260 static int __alloc_and_insert_iova_best_fit(struct iova_domain *iovad,
261 					    unsigned long size,
262 					    unsigned long limit_pfn,
263 					    struct iova *new, bool size_aligned)
264 {
265 	struct rb_node *curr, *prev;
266 	struct iova *curr_iova, *prev_iova;
267 	unsigned long flags;
268 	unsigned long align_mask = ~0UL;
269 	struct rb_node *candidate_rb_parent;
270 	unsigned long new_pfn, candidate_pfn = ~0UL;
271 	unsigned long gap, candidate_gap = ~0UL;
272 
273 	if (size_aligned)
274 		align_mask <<= limit_align_shift(iovad, fls_long(size - 1));
275 
276 	/* Walk the tree backwards */
277 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
278 	curr = &iovad->anchor.node;
279 	prev = rb_prev(curr);
280 	for (; prev; curr = prev, prev = rb_prev(curr)) {
281 		curr_iova = rb_entry(curr, struct iova, node);
282 		prev_iova = rb_entry(prev, struct iova, node);
283 
284 		limit_pfn = min(limit_pfn, curr_iova->pfn_lo);
285 		new_pfn = (limit_pfn - size) & align_mask;
286 		gap = curr_iova->pfn_lo - prev_iova->pfn_hi - 1;
287 		if ((limit_pfn >= size) && (new_pfn > prev_iova->pfn_hi)
288 				&& (gap < candidate_gap)) {
289 			candidate_gap = gap;
290 			candidate_pfn = new_pfn;
291 			candidate_rb_parent = curr;
292 			if (gap == size)
293 				goto insert;
294 		}
295 	}
296 
297 	curr_iova = rb_entry(curr, struct iova, node);
298 	limit_pfn = min(limit_pfn, curr_iova->pfn_lo);
299 	new_pfn = (limit_pfn - size) & align_mask;
300 	gap = curr_iova->pfn_lo - iovad->start_pfn;
301 	if (limit_pfn >= size && new_pfn >= iovad->start_pfn &&
302 			gap < candidate_gap) {
303 		candidate_gap = gap;
304 		candidate_pfn = new_pfn;
305 		candidate_rb_parent = curr;
306 	}
307 
308 insert:
309 	if (candidate_pfn == ~0UL) {
310 		spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
311 		return -ENOMEM;
312 	}
313 
314 	/* pfn_lo will point to size aligned address if size_aligned is set */
315 	new->pfn_lo = candidate_pfn;
316 	new->pfn_hi = new->pfn_lo + size - 1;
317 
318 	/* If we have 'prev', it's a valid place to start the insertion. */
319 	iova_insert_rbtree(&iovad->rbroot, new, candidate_rb_parent);
320 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
321 	return 0;
322 }
323 
324 static struct kmem_cache *iova_cache;
325 static unsigned int iova_cache_users;
326 static DEFINE_MUTEX(iova_cache_mutex);
327 
alloc_iova_mem(void)328 struct iova *alloc_iova_mem(void)
329 {
330 	return kmem_cache_zalloc(iova_cache, GFP_ATOMIC | __GFP_NOWARN);
331 }
332 EXPORT_SYMBOL(alloc_iova_mem);
333 
free_iova_mem(struct iova * iova)334 void free_iova_mem(struct iova *iova)
335 {
336 	if (iova->pfn_lo != IOVA_ANCHOR)
337 		kmem_cache_free(iova_cache, iova);
338 }
339 EXPORT_SYMBOL(free_iova_mem);
340 
iova_cache_get(void)341 int iova_cache_get(void)
342 {
343 	mutex_lock(&iova_cache_mutex);
344 	if (!iova_cache_users) {
345 		iova_cache = kmem_cache_create(
346 			"iommu_iova", sizeof(struct iova), 0,
347 			SLAB_HWCACHE_ALIGN, NULL);
348 		if (!iova_cache) {
349 			mutex_unlock(&iova_cache_mutex);
350 			pr_err("Couldn't create iova cache\n");
351 			return -ENOMEM;
352 		}
353 	}
354 
355 	iova_cache_users++;
356 	mutex_unlock(&iova_cache_mutex);
357 
358 	return 0;
359 }
360 EXPORT_SYMBOL_GPL(iova_cache_get);
361 
iova_cache_put(void)362 void iova_cache_put(void)
363 {
364 	mutex_lock(&iova_cache_mutex);
365 	if (WARN_ON(!iova_cache_users)) {
366 		mutex_unlock(&iova_cache_mutex);
367 		return;
368 	}
369 	iova_cache_users--;
370 	if (!iova_cache_users)
371 		kmem_cache_destroy(iova_cache);
372 	mutex_unlock(&iova_cache_mutex);
373 }
374 EXPORT_SYMBOL_GPL(iova_cache_put);
375 
376 /**
377  * alloc_iova - allocates an iova
378  * @iovad: - iova domain in question
379  * @size: - size of page frames to allocate
380  * @limit_pfn: - max limit address
381  * @size_aligned: - set if size_aligned address range is required
382  * This function allocates an iova in the range iovad->start_pfn to limit_pfn,
383  * searching top-down from limit_pfn to iovad->start_pfn. If the size_aligned
384  * flag is set then the allocated address iova->pfn_lo will be naturally
385  * aligned on roundup_power_of_two(size).
386  */
387 struct iova *
alloc_iova(struct iova_domain * iovad,unsigned long size,unsigned long limit_pfn,bool size_aligned)388 alloc_iova(struct iova_domain *iovad, unsigned long size,
389 	unsigned long limit_pfn,
390 	bool size_aligned)
391 {
392 	struct iova *new_iova;
393 	int ret;
394 
395 	new_iova = alloc_iova_mem();
396 	if (!new_iova)
397 		return NULL;
398 
399 	if (iovad->best_fit) {
400 		ret = __alloc_and_insert_iova_best_fit(iovad, size,
401 				limit_pfn + 1, new_iova, size_aligned);
402 	} else {
403 		ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn + 1,
404 				new_iova, size_aligned);
405 	}
406 
407 	if (ret) {
408 		free_iova_mem(new_iova);
409 		return NULL;
410 	}
411 
412 	return new_iova;
413 }
414 EXPORT_SYMBOL_GPL(alloc_iova);
415 
416 static struct iova *
private_find_iova(struct iova_domain * iovad,unsigned long pfn)417 private_find_iova(struct iova_domain *iovad, unsigned long pfn)
418 {
419 	struct rb_node *node = iovad->rbroot.rb_node;
420 
421 	assert_spin_locked(&iovad->iova_rbtree_lock);
422 
423 	while (node) {
424 		struct iova *iova = rb_entry(node, struct iova, node);
425 
426 		if (pfn < iova->pfn_lo)
427 			node = node->rb_left;
428 		else if (pfn > iova->pfn_hi)
429 			node = node->rb_right;
430 		else
431 			return iova;	/* pfn falls within iova's range */
432 	}
433 
434 	return NULL;
435 }
436 
private_free_iova(struct iova_domain * iovad,struct iova * iova)437 static void private_free_iova(struct iova_domain *iovad, struct iova *iova)
438 {
439 	assert_spin_locked(&iovad->iova_rbtree_lock);
440 	__cached_rbnode_delete_update(iovad, iova);
441 	rb_erase(&iova->node, &iovad->rbroot);
442 	free_iova_mem(iova);
443 }
444 
445 /**
446  * find_iova - finds an iova for a given pfn
447  * @iovad: - iova domain in question.
448  * @pfn: - page frame number
449  * This function finds and returns an iova belonging to the
450  * given doamin which matches the given pfn.
451  */
find_iova(struct iova_domain * iovad,unsigned long pfn)452 struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
453 {
454 	unsigned long flags;
455 	struct iova *iova;
456 
457 	/* Take the lock so that no other thread is manipulating the rbtree */
458 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
459 	iova = private_find_iova(iovad, pfn);
460 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
461 	return iova;
462 }
463 EXPORT_SYMBOL_GPL(find_iova);
464 
465 /**
466  * __free_iova - frees the given iova
467  * @iovad: iova domain in question.
468  * @iova: iova in question.
469  * Frees the given iova belonging to the giving domain
470  */
471 void
__free_iova(struct iova_domain * iovad,struct iova * iova)472 __free_iova(struct iova_domain *iovad, struct iova *iova)
473 {
474 	unsigned long flags;
475 
476 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
477 	private_free_iova(iovad, iova);
478 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
479 }
480 EXPORT_SYMBOL_GPL(__free_iova);
481 
482 /**
483  * free_iova - finds and frees the iova for a given pfn
484  * @iovad: - iova domain in question.
485  * @pfn: - pfn that is allocated previously
486  * This functions finds an iova for a given pfn and then
487  * frees the iova from that domain.
488  */
489 void
free_iova(struct iova_domain * iovad,unsigned long pfn)490 free_iova(struct iova_domain *iovad, unsigned long pfn)
491 {
492 	struct iova *iova = find_iova(iovad, pfn);
493 
494 	if (iova)
495 		__free_iova(iovad, iova);
496 
497 }
498 EXPORT_SYMBOL_GPL(free_iova);
499 
500 /**
501  * alloc_iova_fast - allocates an iova from rcache
502  * @iovad: - iova domain in question
503  * @size: - size of page frames to allocate
504  * @limit_pfn: - max limit address
505  * @flush_rcache: - set to flush rcache on regular allocation failure
506  * This function tries to satisfy an iova allocation from the rcache,
507  * and falls back to regular allocation on failure. If regular allocation
508  * fails too and the flush_rcache flag is set then the rcache will be flushed.
509 */
510 unsigned long
alloc_iova_fast(struct iova_domain * iovad,unsigned long size,unsigned long limit_pfn,bool flush_rcache)511 alloc_iova_fast(struct iova_domain *iovad, unsigned long size,
512 		unsigned long limit_pfn, bool flush_rcache)
513 {
514 	unsigned long iova_pfn;
515 	struct iova *new_iova;
516 
517 	iova_pfn = iova_rcache_get(iovad, size, limit_pfn + 1);
518 	if (iova_pfn)
519 		return iova_pfn;
520 
521 retry:
522 	new_iova = alloc_iova(iovad, size, limit_pfn, true);
523 	if (!new_iova) {
524 		unsigned int cpu;
525 
526 		if (!flush_rcache)
527 			return 0;
528 
529 		/* Try replenishing IOVAs by flushing rcache. */
530 		flush_rcache = false;
531 		for_each_online_cpu(cpu)
532 			free_cpu_cached_iovas(cpu, iovad);
533 		free_global_cached_iovas(iovad);
534 		goto retry;
535 	}
536 
537 	return new_iova->pfn_lo;
538 }
539 EXPORT_SYMBOL_GPL(alloc_iova_fast);
540 
541 /**
542  * free_iova_fast - free iova pfn range into rcache
543  * @iovad: - iova domain in question.
544  * @pfn: - pfn that is allocated previously
545  * @size: - # of pages in range
546  * This functions frees an iova range by trying to put it into the rcache,
547  * falling back to regular iova deallocation via free_iova() if this fails.
548  */
549 void
free_iova_fast(struct iova_domain * iovad,unsigned long pfn,unsigned long size)550 free_iova_fast(struct iova_domain *iovad, unsigned long pfn, unsigned long size)
551 {
552 	if (iova_rcache_insert(iovad, pfn, size))
553 		return;
554 
555 	free_iova(iovad, pfn);
556 }
557 EXPORT_SYMBOL_GPL(free_iova_fast);
558 
559 #define fq_ring_for_each(i, fq) \
560 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
561 
fq_full(struct iova_fq * fq)562 static inline bool fq_full(struct iova_fq *fq)
563 {
564 	assert_spin_locked(&fq->lock);
565 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
566 }
567 
fq_ring_add(struct iova_fq * fq)568 static inline unsigned fq_ring_add(struct iova_fq *fq)
569 {
570 	unsigned idx = fq->tail;
571 
572 	assert_spin_locked(&fq->lock);
573 
574 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
575 
576 	return idx;
577 }
578 
fq_ring_free(struct iova_domain * iovad,struct iova_fq * fq)579 static void fq_ring_free(struct iova_domain *iovad, struct iova_fq *fq)
580 {
581 	u64 counter = atomic64_read(&iovad->fq_flush_finish_cnt);
582 	unsigned idx;
583 
584 	assert_spin_locked(&fq->lock);
585 
586 	fq_ring_for_each(idx, fq) {
587 
588 		if (fq->entries[idx].counter >= counter)
589 			break;
590 
591 		if (iovad->entry_dtor)
592 			iovad->entry_dtor(fq->entries[idx].data);
593 
594 		free_iova_fast(iovad,
595 			       fq->entries[idx].iova_pfn,
596 			       fq->entries[idx].pages);
597 
598 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
599 	}
600 }
601 
iova_domain_flush(struct iova_domain * iovad)602 static void iova_domain_flush(struct iova_domain *iovad)
603 {
604 	atomic64_inc(&iovad->fq_flush_start_cnt);
605 	iovad->flush_cb(iovad);
606 	atomic64_inc(&iovad->fq_flush_finish_cnt);
607 }
608 
fq_destroy_all_entries(struct iova_domain * iovad)609 static void fq_destroy_all_entries(struct iova_domain *iovad)
610 {
611 	int cpu;
612 
613 	/*
614 	 * This code runs when the iova_domain is being detroyed, so don't
615 	 * bother to free iovas, just call the entry_dtor on all remaining
616 	 * entries.
617 	 */
618 	if (!iovad->entry_dtor)
619 		return;
620 
621 	for_each_possible_cpu(cpu) {
622 		struct iova_fq *fq = per_cpu_ptr(iovad->fq, cpu);
623 		int idx;
624 
625 		fq_ring_for_each(idx, fq)
626 			iovad->entry_dtor(fq->entries[idx].data);
627 	}
628 }
629 
fq_flush_timeout(struct timer_list * t)630 static void fq_flush_timeout(struct timer_list *t)
631 {
632 	struct iova_domain *iovad = from_timer(iovad, t, fq_timer);
633 	int cpu;
634 
635 	atomic_set(&iovad->fq_timer_on, 0);
636 	iova_domain_flush(iovad);
637 
638 	for_each_possible_cpu(cpu) {
639 		unsigned long flags;
640 		struct iova_fq *fq;
641 
642 		fq = per_cpu_ptr(iovad->fq, cpu);
643 		spin_lock_irqsave(&fq->lock, flags);
644 		fq_ring_free(iovad, fq);
645 		spin_unlock_irqrestore(&fq->lock, flags);
646 	}
647 }
648 
queue_iova(struct iova_domain * iovad,unsigned long pfn,unsigned long pages,unsigned long data)649 void queue_iova(struct iova_domain *iovad,
650 		unsigned long pfn, unsigned long pages,
651 		unsigned long data)
652 {
653 	struct iova_fq *fq = raw_cpu_ptr(iovad->fq);
654 	unsigned long flags;
655 	unsigned idx;
656 
657 	spin_lock_irqsave(&fq->lock, flags);
658 
659 	/*
660 	 * First remove all entries from the flush queue that have already been
661 	 * flushed out on another CPU. This makes the fq_full() check below less
662 	 * likely to be true.
663 	 */
664 	fq_ring_free(iovad, fq);
665 
666 	if (fq_full(fq)) {
667 		iova_domain_flush(iovad);
668 		fq_ring_free(iovad, fq);
669 	}
670 
671 	idx = fq_ring_add(fq);
672 
673 	fq->entries[idx].iova_pfn = pfn;
674 	fq->entries[idx].pages    = pages;
675 	fq->entries[idx].data     = data;
676 	fq->entries[idx].counter  = atomic64_read(&iovad->fq_flush_start_cnt);
677 
678 	spin_unlock_irqrestore(&fq->lock, flags);
679 
680 	/* Avoid false sharing as much as possible. */
681 	if (!atomic_read(&iovad->fq_timer_on) &&
682 	    !atomic_xchg(&iovad->fq_timer_on, 1))
683 		mod_timer(&iovad->fq_timer,
684 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
685 }
686 EXPORT_SYMBOL_GPL(queue_iova);
687 
688 /**
689  * put_iova_domain - destroys the iova doamin
690  * @iovad: - iova domain in question.
691  * All the iova's in that domain are destroyed.
692  */
put_iova_domain(struct iova_domain * iovad)693 void put_iova_domain(struct iova_domain *iovad)
694 {
695 	struct iova *iova, *tmp;
696 
697 	free_iova_flush_queue(iovad);
698 	free_iova_rcaches(iovad);
699 	rbtree_postorder_for_each_entry_safe(iova, tmp, &iovad->rbroot, node)
700 		free_iova_mem(iova);
701 }
702 EXPORT_SYMBOL_GPL(put_iova_domain);
703 
704 static int
__is_range_overlap(struct rb_node * node,unsigned long pfn_lo,unsigned long pfn_hi)705 __is_range_overlap(struct rb_node *node,
706 	unsigned long pfn_lo, unsigned long pfn_hi)
707 {
708 	struct iova *iova = rb_entry(node, struct iova, node);
709 
710 	if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
711 		return 1;
712 	return 0;
713 }
714 
715 static inline struct iova *
alloc_and_init_iova(unsigned long pfn_lo,unsigned long pfn_hi)716 alloc_and_init_iova(unsigned long pfn_lo, unsigned long pfn_hi)
717 {
718 	struct iova *iova;
719 
720 	iova = alloc_iova_mem();
721 	if (iova) {
722 		iova->pfn_lo = pfn_lo;
723 		iova->pfn_hi = pfn_hi;
724 	}
725 
726 	return iova;
727 }
728 
729 static struct iova *
__insert_new_range(struct iova_domain * iovad,unsigned long pfn_lo,unsigned long pfn_hi)730 __insert_new_range(struct iova_domain *iovad,
731 	unsigned long pfn_lo, unsigned long pfn_hi)
732 {
733 	struct iova *iova;
734 
735 	iova = alloc_and_init_iova(pfn_lo, pfn_hi);
736 	if (iova)
737 		iova_insert_rbtree(&iovad->rbroot, iova, NULL);
738 
739 	return iova;
740 }
741 
742 static void
__adjust_overlap_range(struct iova * iova,unsigned long * pfn_lo,unsigned long * pfn_hi)743 __adjust_overlap_range(struct iova *iova,
744 	unsigned long *pfn_lo, unsigned long *pfn_hi)
745 {
746 	if (*pfn_lo < iova->pfn_lo)
747 		iova->pfn_lo = *pfn_lo;
748 	if (*pfn_hi > iova->pfn_hi)
749 		*pfn_lo = iova->pfn_hi + 1;
750 }
751 
752 /**
753  * reserve_iova - reserves an iova in the given range
754  * @iovad: - iova domain pointer
755  * @pfn_lo: - lower page frame address
756  * @pfn_hi:- higher pfn adderss
757  * This function allocates reserves the address range from pfn_lo to pfn_hi so
758  * that this address is not dished out as part of alloc_iova.
759  */
760 struct iova *
reserve_iova(struct iova_domain * iovad,unsigned long pfn_lo,unsigned long pfn_hi)761 reserve_iova(struct iova_domain *iovad,
762 	unsigned long pfn_lo, unsigned long pfn_hi)
763 {
764 	struct rb_node *node;
765 	unsigned long flags;
766 	struct iova *iova;
767 	unsigned int overlap = 0;
768 
769 	/* Don't allow nonsensical pfns */
770 	if (WARN_ON((pfn_hi | pfn_lo) > (ULLONG_MAX >> iova_shift(iovad))))
771 		return NULL;
772 
773 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
774 	for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
775 		if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
776 			iova = rb_entry(node, struct iova, node);
777 			__adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
778 			if ((pfn_lo >= iova->pfn_lo) &&
779 				(pfn_hi <= iova->pfn_hi))
780 				goto finish;
781 			overlap = 1;
782 
783 		} else if (overlap)
784 				break;
785 	}
786 
787 	/* We are here either because this is the first reserver node
788 	 * or need to insert remaining non overlap addr range
789 	 */
790 	iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
791 finish:
792 
793 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
794 	return iova;
795 }
796 EXPORT_SYMBOL_GPL(reserve_iova);
797 
798 /**
799  * copy_reserved_iova - copies the reserved between domains
800  * @from: - source doamin from where to copy
801  * @to: - destination domin where to copy
802  * This function copies reserved iova's from one doamin to
803  * other.
804  */
805 void
copy_reserved_iova(struct iova_domain * from,struct iova_domain * to)806 copy_reserved_iova(struct iova_domain *from, struct iova_domain *to)
807 {
808 	unsigned long flags;
809 	struct rb_node *node;
810 
811 	spin_lock_irqsave(&from->iova_rbtree_lock, flags);
812 	for (node = rb_first(&from->rbroot); node; node = rb_next(node)) {
813 		struct iova *iova = rb_entry(node, struct iova, node);
814 		struct iova *new_iova;
815 
816 		if (iova->pfn_lo == IOVA_ANCHOR)
817 			continue;
818 
819 		new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi);
820 		if (!new_iova)
821 			pr_err("Reserve iova range %lx@%lx failed\n",
822 			       iova->pfn_lo, iova->pfn_lo);
823 	}
824 	spin_unlock_irqrestore(&from->iova_rbtree_lock, flags);
825 }
826 EXPORT_SYMBOL_GPL(copy_reserved_iova);
827 
828 struct iova *
split_and_remove_iova(struct iova_domain * iovad,struct iova * iova,unsigned long pfn_lo,unsigned long pfn_hi)829 split_and_remove_iova(struct iova_domain *iovad, struct iova *iova,
830 		      unsigned long pfn_lo, unsigned long pfn_hi)
831 {
832 	unsigned long flags;
833 	struct iova *prev = NULL, *next = NULL;
834 
835 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
836 	if (iova->pfn_lo < pfn_lo) {
837 		prev = alloc_and_init_iova(iova->pfn_lo, pfn_lo - 1);
838 		if (prev == NULL)
839 			goto error;
840 	}
841 	if (iova->pfn_hi > pfn_hi) {
842 		next = alloc_and_init_iova(pfn_hi + 1, iova->pfn_hi);
843 		if (next == NULL)
844 			goto error;
845 	}
846 
847 	__cached_rbnode_delete_update(iovad, iova);
848 	rb_erase(&iova->node, &iovad->rbroot);
849 
850 	if (prev) {
851 		iova_insert_rbtree(&iovad->rbroot, prev, NULL);
852 		iova->pfn_lo = pfn_lo;
853 	}
854 	if (next) {
855 		iova_insert_rbtree(&iovad->rbroot, next, NULL);
856 		iova->pfn_hi = pfn_hi;
857 	}
858 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
859 
860 	return iova;
861 
862 error:
863 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
864 	if (prev)
865 		free_iova_mem(prev);
866 	return NULL;
867 }
868 
869 /*
870  * Magazine caches for IOVA ranges.  For an introduction to magazines,
871  * see the USENIX 2001 paper "Magazines and Vmem: Extending the Slab
872  * Allocator to Many CPUs and Arbitrary Resources" by Bonwick and Adams.
873  * For simplicity, we use a static magazine size and don't implement the
874  * dynamic size tuning described in the paper.
875  */
876 
877 #define IOVA_MAG_SIZE 128
878 
879 struct iova_magazine {
880 	unsigned long size;
881 	unsigned long pfns[IOVA_MAG_SIZE];
882 };
883 
884 struct iova_cpu_rcache {
885 	spinlock_t lock;
886 	struct iova_magazine *loaded;
887 	struct iova_magazine *prev;
888 };
889 
iova_magazine_alloc(gfp_t flags)890 static struct iova_magazine *iova_magazine_alloc(gfp_t flags)
891 {
892 	return kzalloc(sizeof(struct iova_magazine), flags);
893 }
894 
iova_magazine_free(struct iova_magazine * mag)895 static void iova_magazine_free(struct iova_magazine *mag)
896 {
897 	kfree(mag);
898 }
899 
900 static void
iova_magazine_free_pfns(struct iova_magazine * mag,struct iova_domain * iovad)901 iova_magazine_free_pfns(struct iova_magazine *mag, struct iova_domain *iovad)
902 {
903 	unsigned long flags;
904 	int i;
905 
906 	if (!mag)
907 		return;
908 
909 	spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
910 
911 	for (i = 0 ; i < mag->size; ++i) {
912 		struct iova *iova = private_find_iova(iovad, mag->pfns[i]);
913 
914 		if (WARN_ON(!iova))
915 			continue;
916 
917 		private_free_iova(iovad, iova);
918 	}
919 
920 	spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
921 
922 	mag->size = 0;
923 }
924 
iova_magazine_full(struct iova_magazine * mag)925 static bool iova_magazine_full(struct iova_magazine *mag)
926 {
927 	return (mag && mag->size == IOVA_MAG_SIZE);
928 }
929 
iova_magazine_empty(struct iova_magazine * mag)930 static bool iova_magazine_empty(struct iova_magazine *mag)
931 {
932 	return (!mag || mag->size == 0);
933 }
934 
iova_magazine_pop(struct iova_magazine * mag,unsigned long limit_pfn)935 static unsigned long iova_magazine_pop(struct iova_magazine *mag,
936 				       unsigned long limit_pfn)
937 {
938 	int i;
939 	unsigned long pfn;
940 
941 	BUG_ON(iova_magazine_empty(mag));
942 
943 	/* Only fall back to the rbtree if we have no suitable pfns at all */
944 	for (i = mag->size - 1; mag->pfns[i] > limit_pfn; i--)
945 		if (i == 0)
946 			return 0;
947 
948 	/* Swap it to pop it */
949 	pfn = mag->pfns[i];
950 	mag->pfns[i] = mag->pfns[--mag->size];
951 
952 	return pfn;
953 }
954 
iova_magazine_push(struct iova_magazine * mag,unsigned long pfn)955 static void iova_magazine_push(struct iova_magazine *mag, unsigned long pfn)
956 {
957 	BUG_ON(iova_magazine_full(mag));
958 
959 	mag->pfns[mag->size++] = pfn;
960 }
961 
init_iova_rcaches(struct iova_domain * iovad)962 static void init_iova_rcaches(struct iova_domain *iovad)
963 {
964 	struct iova_cpu_rcache *cpu_rcache;
965 	struct iova_rcache *rcache;
966 	unsigned int cpu;
967 	int i;
968 
969 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
970 		rcache = &iovad->rcaches[i];
971 		spin_lock_init(&rcache->lock);
972 		rcache->depot_size = 0;
973 		rcache->cpu_rcaches = __alloc_percpu(sizeof(*cpu_rcache), cache_line_size());
974 		if (WARN_ON(!rcache->cpu_rcaches))
975 			continue;
976 		for_each_possible_cpu(cpu) {
977 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
978 			spin_lock_init(&cpu_rcache->lock);
979 			cpu_rcache->loaded = iova_magazine_alloc(GFP_KERNEL);
980 			cpu_rcache->prev = iova_magazine_alloc(GFP_KERNEL);
981 		}
982 	}
983 }
984 
985 /*
986  * Try inserting IOVA range starting with 'iova_pfn' into 'rcache', and
987  * return true on success.  Can fail if rcache is full and we can't free
988  * space, and free_iova() (our only caller) will then return the IOVA
989  * range to the rbtree instead.
990  */
__iova_rcache_insert(struct iova_domain * iovad,struct iova_rcache * rcache,unsigned long iova_pfn)991 static bool __iova_rcache_insert(struct iova_domain *iovad,
992 				 struct iova_rcache *rcache,
993 				 unsigned long iova_pfn)
994 {
995 	struct iova_magazine *mag_to_free = NULL;
996 	struct iova_cpu_rcache *cpu_rcache;
997 	bool can_insert = false;
998 	unsigned long flags;
999 
1000 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
1001 	spin_lock_irqsave(&cpu_rcache->lock, flags);
1002 
1003 	if (!iova_magazine_full(cpu_rcache->loaded)) {
1004 		can_insert = true;
1005 	} else if (!iova_magazine_full(cpu_rcache->prev)) {
1006 		swap(cpu_rcache->prev, cpu_rcache->loaded);
1007 		can_insert = true;
1008 	} else {
1009 		struct iova_magazine *new_mag = iova_magazine_alloc(GFP_ATOMIC);
1010 
1011 		if (new_mag) {
1012 			spin_lock(&rcache->lock);
1013 			if (rcache->depot_size < MAX_GLOBAL_MAGS) {
1014 				rcache->depot[rcache->depot_size++] =
1015 						cpu_rcache->loaded;
1016 			} else {
1017 				mag_to_free = cpu_rcache->loaded;
1018 			}
1019 			spin_unlock(&rcache->lock);
1020 
1021 			cpu_rcache->loaded = new_mag;
1022 			can_insert = true;
1023 		}
1024 	}
1025 
1026 	if (can_insert)
1027 		iova_magazine_push(cpu_rcache->loaded, iova_pfn);
1028 
1029 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1030 
1031 	if (mag_to_free) {
1032 		iova_magazine_free_pfns(mag_to_free, iovad);
1033 		iova_magazine_free(mag_to_free);
1034 	}
1035 
1036 	return can_insert;
1037 }
1038 
iova_rcache_insert(struct iova_domain * iovad,unsigned long pfn,unsigned long size)1039 static bool iova_rcache_insert(struct iova_domain *iovad, unsigned long pfn,
1040 			       unsigned long size)
1041 {
1042 	unsigned int log_size = order_base_2(size);
1043 
1044 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
1045 		return false;
1046 
1047 	return __iova_rcache_insert(iovad, &iovad->rcaches[log_size], pfn);
1048 }
1049 
1050 /*
1051  * Caller wants to allocate a new IOVA range from 'rcache'.  If we can
1052  * satisfy the request, return a matching non-NULL range and remove
1053  * it from the 'rcache'.
1054  */
__iova_rcache_get(struct iova_rcache * rcache,unsigned long limit_pfn)1055 static unsigned long __iova_rcache_get(struct iova_rcache *rcache,
1056 				       unsigned long limit_pfn)
1057 {
1058 	struct iova_cpu_rcache *cpu_rcache;
1059 	unsigned long iova_pfn = 0;
1060 	bool has_pfn = false;
1061 	unsigned long flags;
1062 
1063 	cpu_rcache = raw_cpu_ptr(rcache->cpu_rcaches);
1064 	spin_lock_irqsave(&cpu_rcache->lock, flags);
1065 
1066 	if (!iova_magazine_empty(cpu_rcache->loaded)) {
1067 		has_pfn = true;
1068 	} else if (!iova_magazine_empty(cpu_rcache->prev)) {
1069 		swap(cpu_rcache->prev, cpu_rcache->loaded);
1070 		has_pfn = true;
1071 	} else {
1072 		spin_lock(&rcache->lock);
1073 		if (rcache->depot_size > 0) {
1074 			iova_magazine_free(cpu_rcache->loaded);
1075 			cpu_rcache->loaded = rcache->depot[--rcache->depot_size];
1076 			has_pfn = true;
1077 		}
1078 		spin_unlock(&rcache->lock);
1079 	}
1080 
1081 	if (has_pfn)
1082 		iova_pfn = iova_magazine_pop(cpu_rcache->loaded, limit_pfn);
1083 
1084 	spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1085 
1086 	return iova_pfn;
1087 }
1088 
1089 /*
1090  * Try to satisfy IOVA allocation range from rcache.  Fail if requested
1091  * size is too big or the DMA limit we are given isn't satisfied by the
1092  * top element in the magazine.
1093  */
iova_rcache_get(struct iova_domain * iovad,unsigned long size,unsigned long limit_pfn)1094 static unsigned long iova_rcache_get(struct iova_domain *iovad,
1095 				     unsigned long size,
1096 				     unsigned long limit_pfn)
1097 {
1098 	unsigned int log_size = order_base_2(size);
1099 
1100 	if (log_size >= IOVA_RANGE_CACHE_MAX_SIZE)
1101 		return 0;
1102 
1103 	return __iova_rcache_get(&iovad->rcaches[log_size], limit_pfn - size);
1104 }
1105 
1106 /*
1107  * free rcache data structures.
1108  */
free_iova_rcaches(struct iova_domain * iovad)1109 static void free_iova_rcaches(struct iova_domain *iovad)
1110 {
1111 	struct iova_rcache *rcache;
1112 	struct iova_cpu_rcache *cpu_rcache;
1113 	unsigned int cpu;
1114 	int i, j;
1115 
1116 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1117 		rcache = &iovad->rcaches[i];
1118 		for_each_possible_cpu(cpu) {
1119 			cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1120 			iova_magazine_free(cpu_rcache->loaded);
1121 			iova_magazine_free(cpu_rcache->prev);
1122 		}
1123 		free_percpu(rcache->cpu_rcaches);
1124 		for (j = 0; j < rcache->depot_size; ++j)
1125 			iova_magazine_free(rcache->depot[j]);
1126 	}
1127 }
1128 
1129 /*
1130  * free all the IOVA ranges cached by a cpu (used when cpu is unplugged)
1131  */
free_cpu_cached_iovas(unsigned int cpu,struct iova_domain * iovad)1132 void free_cpu_cached_iovas(unsigned int cpu, struct iova_domain *iovad)
1133 {
1134 	struct iova_cpu_rcache *cpu_rcache;
1135 	struct iova_rcache *rcache;
1136 	unsigned long flags;
1137 	int i;
1138 
1139 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1140 		rcache = &iovad->rcaches[i];
1141 		cpu_rcache = per_cpu_ptr(rcache->cpu_rcaches, cpu);
1142 		spin_lock_irqsave(&cpu_rcache->lock, flags);
1143 		iova_magazine_free_pfns(cpu_rcache->loaded, iovad);
1144 		iova_magazine_free_pfns(cpu_rcache->prev, iovad);
1145 		spin_unlock_irqrestore(&cpu_rcache->lock, flags);
1146 	}
1147 }
1148 
1149 /*
1150  * free all the IOVA ranges of global cache
1151  */
free_global_cached_iovas(struct iova_domain * iovad)1152 void free_global_cached_iovas(struct iova_domain *iovad)
1153 {
1154 	struct iova_rcache *rcache;
1155 	unsigned long flags;
1156 	int i, j;
1157 
1158 	for (i = 0; i < IOVA_RANGE_CACHE_MAX_SIZE; ++i) {
1159 		rcache = &iovad->rcaches[i];
1160 		spin_lock_irqsave(&rcache->lock, flags);
1161 		for (j = 0; j < rcache->depot_size; ++j) {
1162 			iova_magazine_free_pfns(rcache->depot[j], iovad);
1163 			iova_magazine_free(rcache->depot[j]);
1164 			rcache->depot[j] = NULL;
1165 		}
1166 		rcache->depot_size = 0;
1167 		spin_unlock_irqrestore(&rcache->lock, flags);
1168 	}
1169 }
1170 
1171 MODULE_AUTHOR("Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>");
1172 MODULE_LICENSE("GPL");
1173