• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/mman.h>
14 #include <linux/module.h>
15 #include <linux/printk.h>
16 #include <linux/random.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/uaccess.h>
20 #include <linux/io.h>
21 #include <linux/vmalloc.h>
22 
23 #include <asm/page.h>
24 
25 #include <kunit/test.h>
26 
27 #include "../mm/kasan/kasan.h"
28 
29 #define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
30 
31 /*
32  * Some tests use these global variables to store return values from function
33  * calls that could otherwise be eliminated by the compiler as dead code.
34  */
35 void *kasan_ptr_result;
36 int kasan_int_result;
37 
38 static struct kunit_resource resource;
39 static struct kunit_kasan_expectation fail_data;
40 static bool multishot;
41 
42 /*
43  * Temporarily enable multi-shot mode. Otherwise, KASAN would only report the
44  * first detected bug and panic the kernel if panic_on_warn is enabled. For
45  * hardware tag-based KASAN also allow tag checking to be reenabled for each
46  * test, see the comment for KUNIT_EXPECT_KASAN_FAIL().
47  */
kasan_test_init(struct kunit * test)48 static int kasan_test_init(struct kunit *test)
49 {
50 	if (!kasan_enabled()) {
51 		kunit_err(test, "can't run KASAN tests with KASAN disabled");
52 		return -1;
53 	}
54 
55 	multishot = kasan_save_enable_multi_shot();
56 	kasan_set_tagging_report_once(false);
57 	return 0;
58 }
59 
kasan_test_exit(struct kunit * test)60 static void kasan_test_exit(struct kunit *test)
61 {
62 	kasan_set_tagging_report_once(true);
63 	kasan_restore_multi_shot(multishot);
64 }
65 
66 /**
67  * KUNIT_EXPECT_KASAN_FAIL() - check that the executed expression produces a
68  * KASAN report; causes a test failure otherwise. This relies on a KUnit
69  * resource named "kasan_data". Do not use this name for KUnit resources
70  * outside of KASAN tests.
71  *
72  * For hardware tag-based KASAN in sync mode, when a tag fault happens, tag
73  * checking is auto-disabled. When this happens, this test handler reenables
74  * tag checking. As tag checking can be only disabled or enabled per CPU,
75  * this handler disables migration (preemption).
76  *
77  * Since the compiler doesn't see that the expression can change the fail_data
78  * fields, it can reorder or optimize away the accesses to those fields.
79  * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
80  * expression to prevent that.
81  */
82 #define KUNIT_EXPECT_KASAN_FAIL(test, expression) do {		\
83 	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&			\
84 	    !kasan_async_mode_enabled())			\
85 		migrate_disable();				\
86 	WRITE_ONCE(fail_data.report_expected, true);		\
87 	WRITE_ONCE(fail_data.report_found, false);		\
88 	kunit_add_named_resource(test,				\
89 				NULL,				\
90 				NULL,				\
91 				&resource,			\
92 				"kasan_data", &fail_data);	\
93 	barrier();						\
94 	expression;						\
95 	barrier();						\
96 	if (kasan_async_mode_enabled())				\
97 		kasan_force_async_fault();			\
98 	barrier();						\
99 	KUNIT_EXPECT_EQ(test,					\
100 			READ_ONCE(fail_data.report_expected),	\
101 			READ_ONCE(fail_data.report_found));	\
102 	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&			\
103 	    !kasan_async_mode_enabled()) {			\
104 		if (READ_ONCE(fail_data.report_found))		\
105 			kasan_enable_tagging_sync();		\
106 		migrate_enable();				\
107 	}							\
108 } while (0)
109 
110 #define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do {			\
111 	if (!IS_ENABLED(config)) {					\
112 		kunit_info((test), "skipping, " #config " required");	\
113 		return;							\
114 	}								\
115 } while (0)
116 
117 #define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do {			\
118 	if (IS_ENABLED(config)) {					\
119 		kunit_info((test), "skipping, " #config " enabled");	\
120 		return;							\
121 	}								\
122 } while (0)
123 
kmalloc_oob_right(struct kunit * test)124 static void kmalloc_oob_right(struct kunit *test)
125 {
126 	char *ptr;
127 	size_t size = 123;
128 
129 	ptr = kmalloc(size, GFP_KERNEL);
130 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
131 
132 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 'x');
133 	kfree(ptr);
134 }
135 
kmalloc_oob_left(struct kunit * test)136 static void kmalloc_oob_left(struct kunit *test)
137 {
138 	char *ptr;
139 	size_t size = 15;
140 
141 	ptr = kmalloc(size, GFP_KERNEL);
142 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
143 
144 	KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
145 	kfree(ptr);
146 }
147 
kmalloc_node_oob_right(struct kunit * test)148 static void kmalloc_node_oob_right(struct kunit *test)
149 {
150 	char *ptr;
151 	size_t size = 4096;
152 
153 	ptr = kmalloc_node(size, GFP_KERNEL, 0);
154 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
155 
156 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
157 	kfree(ptr);
158 }
159 
160 /*
161  * These kmalloc_pagealloc_* tests try allocating a memory chunk that doesn't
162  * fit into a slab cache and therefore is allocated via the page allocator
163  * fallback. Since this kind of fallback is only implemented for SLUB, these
164  * tests are limited to that allocator.
165  */
kmalloc_pagealloc_oob_right(struct kunit * test)166 static void kmalloc_pagealloc_oob_right(struct kunit *test)
167 {
168 	char *ptr;
169 	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
170 
171 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
172 
173 	ptr = kmalloc(size, GFP_KERNEL);
174 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
175 
176 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
177 
178 	kfree(ptr);
179 }
180 
kmalloc_pagealloc_uaf(struct kunit * test)181 static void kmalloc_pagealloc_uaf(struct kunit *test)
182 {
183 	char *ptr;
184 	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
185 
186 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
187 
188 	ptr = kmalloc(size, GFP_KERNEL);
189 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
190 	kfree(ptr);
191 
192 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = 0);
193 }
194 
kmalloc_pagealloc_invalid_free(struct kunit * test)195 static void kmalloc_pagealloc_invalid_free(struct kunit *test)
196 {
197 	char *ptr;
198 	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
199 
200 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
201 
202 	ptr = kmalloc(size, GFP_KERNEL);
203 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
204 
205 	KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
206 }
207 
pagealloc_oob_right(struct kunit * test)208 static void pagealloc_oob_right(struct kunit *test)
209 {
210 	char *ptr;
211 	struct page *pages;
212 	size_t order = 4;
213 	size_t size = (1UL << (PAGE_SHIFT + order));
214 
215 	/*
216 	 * With generic KASAN page allocations have no redzones, thus
217 	 * out-of-bounds detection is not guaranteed.
218 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
219 	 */
220 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
221 
222 	pages = alloc_pages(GFP_KERNEL, order);
223 	ptr = page_address(pages);
224 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
225 
226 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
227 	free_pages((unsigned long)ptr, order);
228 }
229 
pagealloc_uaf(struct kunit * test)230 static void pagealloc_uaf(struct kunit *test)
231 {
232 	char *ptr;
233 	struct page *pages;
234 	size_t order = 4;
235 
236 	pages = alloc_pages(GFP_KERNEL, order);
237 	ptr = page_address(pages);
238 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
239 	free_pages((unsigned long)ptr, order);
240 
241 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = 0);
242 }
243 
kmalloc_large_oob_right(struct kunit * test)244 static void kmalloc_large_oob_right(struct kunit *test)
245 {
246 	char *ptr;
247 	size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
248 
249 	/*
250 	 * Allocate a chunk that is large enough, but still fits into a slab
251 	 * and does not trigger the page allocator fallback in SLUB.
252 	 */
253 	ptr = kmalloc(size, GFP_KERNEL);
254 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
255 
256 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
257 	kfree(ptr);
258 }
259 
krealloc_more_oob_helper(struct kunit * test,size_t size1,size_t size2)260 static void krealloc_more_oob_helper(struct kunit *test,
261 					size_t size1, size_t size2)
262 {
263 	char *ptr1, *ptr2;
264 	size_t middle;
265 
266 	KUNIT_ASSERT_LT(test, size1, size2);
267 	middle = size1 + (size2 - size1) / 2;
268 
269 	ptr1 = kmalloc(size1, GFP_KERNEL);
270 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
271 
272 	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
273 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
274 
275 	/* All offsets up to size2 must be accessible. */
276 	ptr2[size1 - 1] = 'x';
277 	ptr2[size1] = 'x';
278 	ptr2[middle] = 'x';
279 	ptr2[size2 - 1] = 'x';
280 
281 	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
282 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
283 		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
284 
285 	/* For all modes first aligned offset after size2 must be inaccessible. */
286 	KUNIT_EXPECT_KASAN_FAIL(test,
287 		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
288 
289 	kfree(ptr2);
290 }
291 
krealloc_less_oob_helper(struct kunit * test,size_t size1,size_t size2)292 static void krealloc_less_oob_helper(struct kunit *test,
293 					size_t size1, size_t size2)
294 {
295 	char *ptr1, *ptr2;
296 	size_t middle;
297 
298 	KUNIT_ASSERT_LT(test, size2, size1);
299 	middle = size2 + (size1 - size2) / 2;
300 
301 	ptr1 = kmalloc(size1, GFP_KERNEL);
302 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
303 
304 	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
305 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
306 
307 	/* Must be accessible for all modes. */
308 	ptr2[size2 - 1] = 'x';
309 
310 	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
311 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
312 		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
313 
314 	/* For all modes first aligned offset after size2 must be inaccessible. */
315 	KUNIT_EXPECT_KASAN_FAIL(test,
316 		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
317 
318 	/*
319 	 * For all modes all size2, middle, and size1 should land in separate
320 	 * granules and thus the latter two offsets should be inaccessible.
321 	 */
322 	KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
323 				round_down(middle, KASAN_GRANULE_SIZE));
324 	KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
325 				round_down(size1, KASAN_GRANULE_SIZE));
326 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
327 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
328 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
329 
330 	kfree(ptr2);
331 }
332 
krealloc_more_oob(struct kunit * test)333 static void krealloc_more_oob(struct kunit *test)
334 {
335 	krealloc_more_oob_helper(test, 201, 235);
336 }
337 
krealloc_less_oob(struct kunit * test)338 static void krealloc_less_oob(struct kunit *test)
339 {
340 	krealloc_less_oob_helper(test, 235, 201);
341 }
342 
krealloc_pagealloc_more_oob(struct kunit * test)343 static void krealloc_pagealloc_more_oob(struct kunit *test)
344 {
345 	/* page_alloc fallback in only implemented for SLUB. */
346 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
347 
348 	krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
349 					KMALLOC_MAX_CACHE_SIZE + 235);
350 }
351 
krealloc_pagealloc_less_oob(struct kunit * test)352 static void krealloc_pagealloc_less_oob(struct kunit *test)
353 {
354 	/* page_alloc fallback in only implemented for SLUB. */
355 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
356 
357 	krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
358 					KMALLOC_MAX_CACHE_SIZE + 201);
359 }
360 
361 /*
362  * Check that krealloc() detects a use-after-free, returns NULL,
363  * and doesn't unpoison the freed object.
364  */
krealloc_uaf(struct kunit * test)365 static void krealloc_uaf(struct kunit *test)
366 {
367 	char *ptr1, *ptr2;
368 	int size1 = 201;
369 	int size2 = 235;
370 
371 	ptr1 = kmalloc(size1, GFP_KERNEL);
372 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
373 	kfree(ptr1);
374 
375 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
376 	KUNIT_ASSERT_PTR_EQ(test, (void *)ptr2, NULL);
377 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
378 }
379 
kmalloc_oob_16(struct kunit * test)380 static void kmalloc_oob_16(struct kunit *test)
381 {
382 	struct {
383 		u64 words[2];
384 	} *ptr1, *ptr2;
385 
386 	/* This test is specifically crafted for the generic mode. */
387 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
388 
389 	ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
390 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
391 
392 	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
393 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
394 
395 	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
396 	kfree(ptr1);
397 	kfree(ptr2);
398 }
399 
kmalloc_uaf_16(struct kunit * test)400 static void kmalloc_uaf_16(struct kunit *test)
401 {
402 	struct {
403 		u64 words[2];
404 	} *ptr1, *ptr2;
405 
406 	ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
407 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
408 
409 	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
410 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
411 	kfree(ptr2);
412 
413 	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
414 	kfree(ptr1);
415 }
416 
kmalloc_oob_memset_2(struct kunit * test)417 static void kmalloc_oob_memset_2(struct kunit *test)
418 {
419 	char *ptr;
420 	size_t size = 8;
421 
422 	ptr = kmalloc(size, GFP_KERNEL);
423 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
424 
425 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 7 + OOB_TAG_OFF, 0, 2));
426 	kfree(ptr);
427 }
428 
kmalloc_oob_memset_4(struct kunit * test)429 static void kmalloc_oob_memset_4(struct kunit *test)
430 {
431 	char *ptr;
432 	size_t size = 8;
433 
434 	ptr = kmalloc(size, GFP_KERNEL);
435 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
436 
437 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 5 + OOB_TAG_OFF, 0, 4));
438 	kfree(ptr);
439 }
440 
441 
kmalloc_oob_memset_8(struct kunit * test)442 static void kmalloc_oob_memset_8(struct kunit *test)
443 {
444 	char *ptr;
445 	size_t size = 8;
446 
447 	ptr = kmalloc(size, GFP_KERNEL);
448 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
449 
450 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 1 + OOB_TAG_OFF, 0, 8));
451 	kfree(ptr);
452 }
453 
kmalloc_oob_memset_16(struct kunit * test)454 static void kmalloc_oob_memset_16(struct kunit *test)
455 {
456 	char *ptr;
457 	size_t size = 16;
458 
459 	ptr = kmalloc(size, GFP_KERNEL);
460 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
461 
462 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 1 + OOB_TAG_OFF, 0, 16));
463 	kfree(ptr);
464 }
465 
kmalloc_oob_in_memset(struct kunit * test)466 static void kmalloc_oob_in_memset(struct kunit *test)
467 {
468 	char *ptr;
469 	size_t size = 666;
470 
471 	ptr = kmalloc(size, GFP_KERNEL);
472 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
473 
474 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size + 5 + OOB_TAG_OFF));
475 	kfree(ptr);
476 }
477 
kmalloc_memmove_invalid_size(struct kunit * test)478 static void kmalloc_memmove_invalid_size(struct kunit *test)
479 {
480 	char *ptr;
481 	size_t size = 64;
482 	volatile size_t invalid_size = -2;
483 
484 	ptr = kmalloc(size, GFP_KERNEL);
485 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
486 
487 	memset((char *)ptr, 0, 64);
488 
489 	KUNIT_EXPECT_KASAN_FAIL(test,
490 		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
491 	kfree(ptr);
492 }
493 
kmalloc_uaf(struct kunit * test)494 static void kmalloc_uaf(struct kunit *test)
495 {
496 	char *ptr;
497 	size_t size = 10;
498 
499 	ptr = kmalloc(size, GFP_KERNEL);
500 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
501 
502 	kfree(ptr);
503 	KUNIT_EXPECT_KASAN_FAIL(test, *(ptr + 8) = 'x');
504 }
505 
kmalloc_uaf_memset(struct kunit * test)506 static void kmalloc_uaf_memset(struct kunit *test)
507 {
508 	char *ptr;
509 	size_t size = 33;
510 
511 	ptr = kmalloc(size, GFP_KERNEL);
512 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
513 
514 	kfree(ptr);
515 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
516 }
517 
kmalloc_uaf2(struct kunit * test)518 static void kmalloc_uaf2(struct kunit *test)
519 {
520 	char *ptr1, *ptr2;
521 	size_t size = 43;
522 	int counter = 0;
523 
524 again:
525 	ptr1 = kmalloc(size, GFP_KERNEL);
526 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
527 
528 	kfree(ptr1);
529 
530 	ptr2 = kmalloc(size, GFP_KERNEL);
531 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
532 
533 	/*
534 	 * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
535 	 * Allow up to 16 attempts at generating different tags.
536 	 */
537 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
538 		kfree(ptr2);
539 		goto again;
540 	}
541 
542 	KUNIT_EXPECT_KASAN_FAIL(test, ptr1[40] = 'x');
543 	KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
544 
545 	kfree(ptr2);
546 }
547 
kfree_via_page(struct kunit * test)548 static void kfree_via_page(struct kunit *test)
549 {
550 	char *ptr;
551 	size_t size = 8;
552 	struct page *page;
553 	unsigned long offset;
554 
555 	ptr = kmalloc(size, GFP_KERNEL);
556 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
557 
558 	page = virt_to_page(ptr);
559 	offset = offset_in_page(ptr);
560 	kfree(page_address(page) + offset);
561 }
562 
kfree_via_phys(struct kunit * test)563 static void kfree_via_phys(struct kunit *test)
564 {
565 	char *ptr;
566 	size_t size = 8;
567 	phys_addr_t phys;
568 
569 	ptr = kmalloc(size, GFP_KERNEL);
570 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
571 
572 	phys = virt_to_phys(ptr);
573 	kfree(phys_to_virt(phys));
574 }
575 
kmem_cache_oob(struct kunit * test)576 static void kmem_cache_oob(struct kunit *test)
577 {
578 	char *p;
579 	size_t size = 200;
580 	struct kmem_cache *cache;
581 
582 	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
583 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
584 
585 	p = kmem_cache_alloc(cache, GFP_KERNEL);
586 	if (!p) {
587 		kunit_err(test, "Allocation failed: %s\n", __func__);
588 		kmem_cache_destroy(cache);
589 		return;
590 	}
591 
592 	KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
593 
594 	kmem_cache_free(cache, p);
595 	kmem_cache_destroy(cache);
596 }
597 
kmem_cache_accounted(struct kunit * test)598 static void kmem_cache_accounted(struct kunit *test)
599 {
600 	int i;
601 	char *p;
602 	size_t size = 200;
603 	struct kmem_cache *cache;
604 
605 	cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
606 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
607 
608 	/*
609 	 * Several allocations with a delay to allow for lazy per memcg kmem
610 	 * cache creation.
611 	 */
612 	for (i = 0; i < 5; i++) {
613 		p = kmem_cache_alloc(cache, GFP_KERNEL);
614 		if (!p)
615 			goto free_cache;
616 
617 		kmem_cache_free(cache, p);
618 		msleep(100);
619 	}
620 
621 free_cache:
622 	kmem_cache_destroy(cache);
623 }
624 
kmem_cache_bulk(struct kunit * test)625 static void kmem_cache_bulk(struct kunit *test)
626 {
627 	struct kmem_cache *cache;
628 	size_t size = 200;
629 	char *p[10];
630 	bool ret;
631 	int i;
632 
633 	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
634 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
635 
636 	ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
637 	if (!ret) {
638 		kunit_err(test, "Allocation failed: %s\n", __func__);
639 		kmem_cache_destroy(cache);
640 		return;
641 	}
642 
643 	for (i = 0; i < ARRAY_SIZE(p); i++)
644 		p[i][0] = p[i][size - 1] = 42;
645 
646 	kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
647 	kmem_cache_destroy(cache);
648 }
649 
650 static char global_array[10];
651 
kasan_global_oob(struct kunit * test)652 static void kasan_global_oob(struct kunit *test)
653 {
654 	/*
655 	 * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
656 	 * from failing here and panicing the kernel, access the array via a
657 	 * volatile pointer, which will prevent the compiler from being able to
658 	 * determine the array bounds.
659 	 *
660 	 * This access uses a volatile pointer to char (char *volatile) rather
661 	 * than the more conventional pointer to volatile char (volatile char *)
662 	 * because we want to prevent the compiler from making inferences about
663 	 * the pointer itself (i.e. its array bounds), not the data that it
664 	 * refers to.
665 	 */
666 	char *volatile array = global_array;
667 	char *p = &array[ARRAY_SIZE(global_array) + 3];
668 
669 	/* Only generic mode instruments globals. */
670 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
671 
672 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
673 }
674 
675 /* Check that ksize() makes the whole object accessible. */
ksize_unpoisons_memory(struct kunit * test)676 static void ksize_unpoisons_memory(struct kunit *test)
677 {
678 	char *ptr;
679 	size_t size = 123, real_size;
680 
681 	ptr = kmalloc(size, GFP_KERNEL);
682 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
683 	real_size = ksize(ptr);
684 
685 	/* This access shouldn't trigger a KASAN report. */
686 	ptr[size] = 'x';
687 
688 	/* This one must. */
689 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[real_size] = 'y');
690 
691 	kfree(ptr);
692 }
693 
694 /*
695  * Check that a use-after-free is detected by ksize() and via normal accesses
696  * after it.
697  */
ksize_uaf(struct kunit * test)698 static void ksize_uaf(struct kunit *test)
699 {
700 	char *ptr;
701 	int size = 128 - KASAN_GRANULE_SIZE;
702 
703 	ptr = kmalloc(size, GFP_KERNEL);
704 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
705 	kfree(ptr);
706 
707 	KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
708 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = *ptr);
709 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = *(ptr + size));
710 }
711 
kasan_stack_oob(struct kunit * test)712 static void kasan_stack_oob(struct kunit *test)
713 {
714 	char stack_array[10];
715 	/* See comment in kasan_global_oob. */
716 	char *volatile array = stack_array;
717 	char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
718 
719 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
720 
721 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
722 }
723 
kasan_alloca_oob_left(struct kunit * test)724 static void kasan_alloca_oob_left(struct kunit *test)
725 {
726 	volatile int i = 10;
727 	char alloca_array[i];
728 	/* See comment in kasan_global_oob. */
729 	char *volatile array = alloca_array;
730 	char *p = array - 1;
731 
732 	/* Only generic mode instruments dynamic allocas. */
733 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
734 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
735 
736 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
737 }
738 
kasan_alloca_oob_right(struct kunit * test)739 static void kasan_alloca_oob_right(struct kunit *test)
740 {
741 	volatile int i = 10;
742 	char alloca_array[i];
743 	/* See comment in kasan_global_oob. */
744 	char *volatile array = alloca_array;
745 	char *p = array + i;
746 
747 	/* Only generic mode instruments dynamic allocas. */
748 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
749 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
750 
751 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
752 }
753 
kmem_cache_double_free(struct kunit * test)754 static void kmem_cache_double_free(struct kunit *test)
755 {
756 	char *p;
757 	size_t size = 200;
758 	struct kmem_cache *cache;
759 
760 	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
761 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
762 
763 	p = kmem_cache_alloc(cache, GFP_KERNEL);
764 	if (!p) {
765 		kunit_err(test, "Allocation failed: %s\n", __func__);
766 		kmem_cache_destroy(cache);
767 		return;
768 	}
769 
770 	kmem_cache_free(cache, p);
771 	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
772 	kmem_cache_destroy(cache);
773 }
774 
kmem_cache_invalid_free(struct kunit * test)775 static void kmem_cache_invalid_free(struct kunit *test)
776 {
777 	char *p;
778 	size_t size = 200;
779 	struct kmem_cache *cache;
780 
781 	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
782 				  NULL);
783 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
784 
785 	p = kmem_cache_alloc(cache, GFP_KERNEL);
786 	if (!p) {
787 		kunit_err(test, "Allocation failed: %s\n", __func__);
788 		kmem_cache_destroy(cache);
789 		return;
790 	}
791 
792 	/* Trigger invalid free, the object doesn't get freed. */
793 	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
794 
795 	/*
796 	 * Properly free the object to prevent the "Objects remaining in
797 	 * test_cache on __kmem_cache_shutdown" BUG failure.
798 	 */
799 	kmem_cache_free(cache, p);
800 
801 	kmem_cache_destroy(cache);
802 }
803 
kasan_memchr(struct kunit * test)804 static void kasan_memchr(struct kunit *test)
805 {
806 	char *ptr;
807 	size_t size = 24;
808 
809 	/*
810 	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
811 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
812 	 */
813 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
814 
815 	if (OOB_TAG_OFF)
816 		size = round_up(size, OOB_TAG_OFF);
817 
818 	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
819 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
820 
821 	KUNIT_EXPECT_KASAN_FAIL(test,
822 		kasan_ptr_result = memchr(ptr, '1', size + 1));
823 
824 	kfree(ptr);
825 }
826 
kasan_memcmp(struct kunit * test)827 static void kasan_memcmp(struct kunit *test)
828 {
829 	char *ptr;
830 	size_t size = 24;
831 	int arr[9];
832 
833 	/*
834 	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
835 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
836 	 */
837 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
838 
839 	if (OOB_TAG_OFF)
840 		size = round_up(size, OOB_TAG_OFF);
841 
842 	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
843 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
844 	memset(arr, 0, sizeof(arr));
845 
846 	KUNIT_EXPECT_KASAN_FAIL(test,
847 		kasan_int_result = memcmp(ptr, arr, size+1));
848 	kfree(ptr);
849 }
850 
kasan_strings(struct kunit * test)851 static void kasan_strings(struct kunit *test)
852 {
853 	char *ptr;
854 	size_t size = 24;
855 
856 	/*
857 	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
858 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
859 	 */
860 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
861 
862 	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
863 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
864 
865 	kfree(ptr);
866 
867 	/*
868 	 * Try to cause only 1 invalid access (less spam in dmesg).
869 	 * For that we need ptr to point to zeroed byte.
870 	 * Skip metadata that could be stored in freed object so ptr
871 	 * will likely point to zeroed byte.
872 	 */
873 	ptr += 16;
874 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
875 
876 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
877 
878 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
879 
880 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
881 
882 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
883 
884 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
885 }
886 
kasan_bitops_modify(struct kunit * test,int nr,void * addr)887 static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
888 {
889 	KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
890 	KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
891 	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
892 	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
893 	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
894 	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
895 	KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
896 	KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
897 }
898 
kasan_bitops_test_and_modify(struct kunit * test,int nr,void * addr)899 static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
900 {
901 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
902 	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
903 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
904 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
905 	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
906 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
907 	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
908 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
909 
910 #if defined(clear_bit_unlock_is_negative_byte)
911 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
912 				clear_bit_unlock_is_negative_byte(nr, addr));
913 #endif
914 }
915 
kasan_bitops_generic(struct kunit * test)916 static void kasan_bitops_generic(struct kunit *test)
917 {
918 	long *bits;
919 
920 	/* This test is specifically crafted for the generic mode. */
921 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
922 
923 	/*
924 	 * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
925 	 * this way we do not actually corrupt other memory.
926 	 */
927 	bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
928 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
929 
930 	/*
931 	 * Below calls try to access bit within allocated memory; however, the
932 	 * below accesses are still out-of-bounds, since bitops are defined to
933 	 * operate on the whole long the bit is in.
934 	 */
935 	kasan_bitops_modify(test, BITS_PER_LONG, bits);
936 
937 	/*
938 	 * Below calls try to access bit beyond allocated memory.
939 	 */
940 	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
941 
942 	kfree(bits);
943 }
944 
kasan_bitops_tags(struct kunit * test)945 static void kasan_bitops_tags(struct kunit *test)
946 {
947 	long *bits;
948 
949 	/* This test is specifically crafted for tag-based modes. */
950 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
951 
952 	/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
953 	bits = kzalloc(48, GFP_KERNEL);
954 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
955 
956 	/* Do the accesses past the 48 allocated bytes, but within the redone. */
957 	kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
958 	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
959 
960 	kfree(bits);
961 }
962 
kmalloc_double_kzfree(struct kunit * test)963 static void kmalloc_double_kzfree(struct kunit *test)
964 {
965 	char *ptr;
966 	size_t size = 16;
967 
968 	ptr = kmalloc(size, GFP_KERNEL);
969 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
970 
971 	kfree_sensitive(ptr);
972 	KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
973 }
974 
vmalloc_oob(struct kunit * test)975 static void vmalloc_oob(struct kunit *test)
976 {
977 	void *area;
978 
979 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
980 
981 	/*
982 	 * We have to be careful not to hit the guard page.
983 	 * The MMU will catch that and crash us.
984 	 */
985 	area = vmalloc(3000);
986 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, area);
987 
988 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)area)[3100]);
989 	vfree(area);
990 }
991 
992 /*
993  * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
994  * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
995  * modes.
996  */
match_all_not_assigned(struct kunit * test)997 static void match_all_not_assigned(struct kunit *test)
998 {
999 	char *ptr;
1000 	struct page *pages;
1001 	int i, size, order;
1002 
1003 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1004 
1005 	for (i = 0; i < 256; i++) {
1006 		size = (get_random_int() % 1024) + 1;
1007 		ptr = kmalloc(size, GFP_KERNEL);
1008 		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1009 		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1010 		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1011 		kfree(ptr);
1012 	}
1013 
1014 	for (i = 0; i < 256; i++) {
1015 		order = (get_random_int() % 4) + 1;
1016 		pages = alloc_pages(GFP_KERNEL, order);
1017 		ptr = page_address(pages);
1018 		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1019 		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1020 		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1021 		free_pages((unsigned long)ptr, order);
1022 	}
1023 }
1024 
1025 /* Check that 0xff works as a match-all pointer tag for tag-based modes. */
match_all_ptr_tag(struct kunit * test)1026 static void match_all_ptr_tag(struct kunit *test)
1027 {
1028 	char *ptr;
1029 	u8 tag;
1030 
1031 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1032 
1033 	ptr = kmalloc(128, GFP_KERNEL);
1034 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1035 
1036 	/* Backup the assigned tag. */
1037 	tag = get_tag(ptr);
1038 	KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
1039 
1040 	/* Reset the tag to 0xff.*/
1041 	ptr = set_tag(ptr, KASAN_TAG_KERNEL);
1042 
1043 	/* This access shouldn't trigger a KASAN report. */
1044 	*ptr = 0;
1045 
1046 	/* Recover the pointer tag and free. */
1047 	ptr = set_tag(ptr, tag);
1048 	kfree(ptr);
1049 }
1050 
1051 /* Check that there are no match-all memory tags for tag-based modes. */
match_all_mem_tag(struct kunit * test)1052 static void match_all_mem_tag(struct kunit *test)
1053 {
1054 	char *ptr;
1055 	int tag;
1056 
1057 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1058 
1059 	ptr = kmalloc(128, GFP_KERNEL);
1060 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1061 	KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1062 
1063 	/* For each possible tag value not matching the pointer tag. */
1064 	for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
1065 		if (tag == get_tag(ptr))
1066 			continue;
1067 
1068 		/* Mark the first memory granule with the chosen memory tag. */
1069 		kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
1070 
1071 		/* This access must cause a KASAN report. */
1072 		KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
1073 	}
1074 
1075 	/* Recover the memory tag and free. */
1076 	kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
1077 	kfree(ptr);
1078 }
1079 
1080 static struct kunit_case kasan_kunit_test_cases[] = {
1081 	KUNIT_CASE(kmalloc_oob_right),
1082 	KUNIT_CASE(kmalloc_oob_left),
1083 	KUNIT_CASE(kmalloc_node_oob_right),
1084 	KUNIT_CASE(kmalloc_pagealloc_oob_right),
1085 	KUNIT_CASE(kmalloc_pagealloc_uaf),
1086 	KUNIT_CASE(kmalloc_pagealloc_invalid_free),
1087 	KUNIT_CASE(pagealloc_oob_right),
1088 	KUNIT_CASE(pagealloc_uaf),
1089 	KUNIT_CASE(kmalloc_large_oob_right),
1090 	KUNIT_CASE(krealloc_more_oob),
1091 	KUNIT_CASE(krealloc_less_oob),
1092 	KUNIT_CASE(krealloc_pagealloc_more_oob),
1093 	KUNIT_CASE(krealloc_pagealloc_less_oob),
1094 	KUNIT_CASE(krealloc_uaf),
1095 	KUNIT_CASE(kmalloc_oob_16),
1096 	KUNIT_CASE(kmalloc_uaf_16),
1097 	KUNIT_CASE(kmalloc_oob_in_memset),
1098 	KUNIT_CASE(kmalloc_oob_memset_2),
1099 	KUNIT_CASE(kmalloc_oob_memset_4),
1100 	KUNIT_CASE(kmalloc_oob_memset_8),
1101 	KUNIT_CASE(kmalloc_oob_memset_16),
1102 	KUNIT_CASE(kmalloc_memmove_invalid_size),
1103 	KUNIT_CASE(kmalloc_uaf),
1104 	KUNIT_CASE(kmalloc_uaf_memset),
1105 	KUNIT_CASE(kmalloc_uaf2),
1106 	KUNIT_CASE(kfree_via_page),
1107 	KUNIT_CASE(kfree_via_phys),
1108 	KUNIT_CASE(kmem_cache_oob),
1109 	KUNIT_CASE(kmem_cache_accounted),
1110 	KUNIT_CASE(kmem_cache_bulk),
1111 	KUNIT_CASE(kasan_global_oob),
1112 	KUNIT_CASE(kasan_stack_oob),
1113 	KUNIT_CASE(kasan_alloca_oob_left),
1114 	KUNIT_CASE(kasan_alloca_oob_right),
1115 	KUNIT_CASE(ksize_unpoisons_memory),
1116 	KUNIT_CASE(ksize_uaf),
1117 	KUNIT_CASE(kmem_cache_double_free),
1118 	KUNIT_CASE(kmem_cache_invalid_free),
1119 	KUNIT_CASE(kasan_memchr),
1120 	KUNIT_CASE(kasan_memcmp),
1121 	KUNIT_CASE(kasan_strings),
1122 	KUNIT_CASE(kasan_bitops_generic),
1123 	KUNIT_CASE(kasan_bitops_tags),
1124 	KUNIT_CASE(kmalloc_double_kzfree),
1125 	KUNIT_CASE(vmalloc_oob),
1126 	KUNIT_CASE(match_all_not_assigned),
1127 	KUNIT_CASE(match_all_ptr_tag),
1128 	KUNIT_CASE(match_all_mem_tag),
1129 	{}
1130 };
1131 
1132 static struct kunit_suite kasan_kunit_test_suite = {
1133 	.name = "kasan",
1134 	.init = kasan_test_init,
1135 	.test_cases = kasan_kunit_test_cases,
1136 	.exit = kasan_test_exit,
1137 };
1138 
1139 kunit_test_suite(kasan_kunit_test_suite);
1140 
1141 MODULE_LICENSE("GPL");
1142