• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt)	"powernv: " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/cpu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/gfp.h>
13 #include <linux/smp.h>
14 #include <linux/stop_machine.h>
15 
16 #include <asm/cputhreads.h>
17 #include <asm/cpuidle.h>
18 #include <asm/kvm_ppc.h>
19 #include <asm/machdep.h>
20 #include <asm/opal.h>
21 #include <asm/smp.h>
22 
23 #include "subcore.h"
24 #include "powernv.h"
25 
26 
27 /*
28  * Split/unsplit procedure:
29  *
30  * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
31  *
32  * The mapping to subcores_per_core is simple:
33  *
34  *  State       | subcores_per_core
35  *  ------------|------------------
36  *  Unsplit     |        1
37  *  2-way split |        2
38  *  4-way split |        4
39  *
40  * The core is split along thread boundaries, the mapping between subcores and
41  * threads is as follows:
42  *
43  *  Unsplit:
44  *          ----------------------------
45  *  Subcore |            0             |
46  *          ----------------------------
47  *  Thread  |  0  1  2  3  4  5  6  7  |
48  *          ----------------------------
49  *
50  *  2-way split:
51  *          -------------------------------------
52  *  Subcore |        0        |        1        |
53  *          -------------------------------------
54  *  Thread  |  0   1   2   3  |  4   5   6   7  |
55  *          -------------------------------------
56  *
57  *  4-way split:
58  *          -----------------------------------------
59  *  Subcore |    0    |    1    |    2    |    3    |
60  *          -----------------------------------------
61  *  Thread  |  0   1  |  2   3  |  4   5  |  6   7  |
62  *          -----------------------------------------
63  *
64  *
65  * Transitions
66  * -----------
67  *
68  * It is not possible to transition between either of the split states, the
69  * core must first be unsplit. The legal transitions are:
70  *
71  *  -----------          ---------------
72  *  |         |  <---->  | 2-way split |
73  *  |         |          ---------------
74  *  | Unsplit |
75  *  |         |          ---------------
76  *  |         |  <---->  | 4-way split |
77  *  -----------          ---------------
78  *
79  * Unsplitting
80  * -----------
81  *
82  * Unsplitting is the simpler procedure. It requires thread 0 to request the
83  * unsplit while all other threads NAP.
84  *
85  * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
86  * the hardware that if all threads except 0 are napping, the hardware should
87  * unsplit the core.
88  *
89  * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
90  * see the core unsplit.
91  *
92  * Core 0 spins waiting for the hardware to see all the other threads napping
93  * and perform the unsplit.
94  *
95  * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
96  * out of NAP. They will then see the core unsplit and exit the NAP loop.
97  *
98  * Splitting
99  * ---------
100  *
101  * The basic splitting procedure is fairly straight forward. However it is
102  * complicated by the fact that after the split occurs, the newly created
103  * subcores are not in a fully initialised state.
104  *
105  * Most notably the subcores do not have the correct value for SDR1, which
106  * means they must not be running in virtual mode when the split occurs. The
107  * subcores have separate timebases SPRs but these are pre-synchronised by
108  * opal.
109  *
110  * To begin with secondary threads are sent to an assembly routine. There they
111  * switch to real mode, so they are immune to the uninitialised SDR1 value.
112  * Once in real mode they indicate that they are in real mode, and spin waiting
113  * to see the core split.
114  *
115  * Thread 0 waits to see that all secondaries are in real mode, and then begins
116  * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
117  * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
118  * to request the split, and spins waiting to see that the split has happened.
119  *
120  * Concurrently the secondaries will notice the split. When they do they set up
121  * their SPRs, notably SDR1, and then they can return to virtual mode and exit
122  * the procedure.
123  */
124 
125 /* Initialised at boot by subcore_init() */
126 static int subcores_per_core;
127 
128 /*
129  * Used to communicate to offline cpus that we want them to pop out of the
130  * offline loop and do a split or unsplit.
131  *
132  * 0 - no split happening
133  * 1 - unsplit in progress
134  * 2 - split to 2 in progress
135  * 4 - split to 4 in progress
136  */
137 static int new_split_mode;
138 
139 static cpumask_var_t cpu_offline_mask;
140 
141 struct split_state {
142 	u8 step;
143 	u8 master;
144 };
145 
146 static DEFINE_PER_CPU(struct split_state, split_state);
147 
wait_for_sync_step(int step)148 static void wait_for_sync_step(int step)
149 {
150 	int i, cpu = smp_processor_id();
151 
152 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
153 		while(per_cpu(split_state, i).step < step)
154 			barrier();
155 
156 	/* Order the wait loop vs any subsequent loads/stores. */
157 	mb();
158 }
159 
update_hid_in_slw(u64 hid0)160 static void update_hid_in_slw(u64 hid0)
161 {
162 	u64 idle_states = pnv_get_supported_cpuidle_states();
163 
164 	if (idle_states & OPAL_PM_WINKLE_ENABLED) {
165 		/* OPAL call to patch slw with the new HID0 value */
166 		u64 cpu_pir = hard_smp_processor_id();
167 
168 		opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
169 	}
170 }
171 
unsplit_core(void)172 static void unsplit_core(void)
173 {
174 	u64 hid0, mask;
175 	int i, cpu;
176 
177 	mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
178 
179 	cpu = smp_processor_id();
180 	if (cpu_thread_in_core(cpu) != 0) {
181 		while (mfspr(SPRN_HID0) & mask)
182 			power7_idle_type(PNV_THREAD_NAP);
183 
184 		per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
185 		return;
186 	}
187 
188 	hid0 = mfspr(SPRN_HID0);
189 	hid0 &= ~HID0_POWER8_DYNLPARDIS;
190 	update_power8_hid0(hid0);
191 	update_hid_in_slw(hid0);
192 
193 	while (mfspr(SPRN_HID0) & mask)
194 		cpu_relax();
195 
196 	/* Wake secondaries out of NAP */
197 	for (i = cpu + 1; i < cpu + threads_per_core; i++)
198 		smp_send_reschedule(i);
199 
200 	wait_for_sync_step(SYNC_STEP_UNSPLIT);
201 }
202 
split_core(int new_mode)203 static void split_core(int new_mode)
204 {
205 	struct {  u64 value; u64 mask; } split_parms[2] = {
206 		{ HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
207 		{ HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
208 	};
209 	int i, cpu;
210 	u64 hid0;
211 
212 	/* Convert new_mode (2 or 4) into an index into our parms array */
213 	i = (new_mode >> 1) - 1;
214 	BUG_ON(i < 0 || i > 1);
215 
216 	cpu = smp_processor_id();
217 	if (cpu_thread_in_core(cpu) != 0) {
218 		split_core_secondary_loop(&per_cpu(split_state, cpu).step);
219 		return;
220 	}
221 
222 	wait_for_sync_step(SYNC_STEP_REAL_MODE);
223 
224 	/* Write new mode */
225 	hid0  = mfspr(SPRN_HID0);
226 	hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
227 	update_power8_hid0(hid0);
228 	update_hid_in_slw(hid0);
229 
230 	/* Wait for it to happen */
231 	while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
232 		cpu_relax();
233 }
234 
cpu_do_split(int new_mode)235 static void cpu_do_split(int new_mode)
236 {
237 	/*
238 	 * At boot subcores_per_core will be 0, so we will always unsplit at
239 	 * boot. In the usual case where the core is already unsplit it's a
240 	 * nop, and this just ensures the kernel's notion of the mode is
241 	 * consistent with the hardware.
242 	 */
243 	if (subcores_per_core != 1)
244 		unsplit_core();
245 
246 	if (new_mode != 1)
247 		split_core(new_mode);
248 
249 	mb();
250 	per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
251 }
252 
cpu_core_split_required(void)253 bool cpu_core_split_required(void)
254 {
255 	smp_rmb();
256 
257 	if (!new_split_mode)
258 		return false;
259 
260 	cpu_do_split(new_split_mode);
261 
262 	return true;
263 }
264 
update_subcore_sibling_mask(void)265 void update_subcore_sibling_mask(void)
266 {
267 	int cpu;
268 	/*
269 	 * sibling mask for the first cpu. Left shift this by required bits
270 	 * to get sibling mask for the rest of the cpus.
271 	 */
272 	int sibling_mask_first_cpu =  (1 << threads_per_subcore) - 1;
273 
274 	for_each_possible_cpu(cpu) {
275 		int tid = cpu_thread_in_core(cpu);
276 		int offset = (tid / threads_per_subcore) * threads_per_subcore;
277 		int mask = sibling_mask_first_cpu << offset;
278 
279 		paca_ptrs[cpu]->subcore_sibling_mask = mask;
280 
281 	}
282 }
283 
cpu_update_split_mode(void * data)284 static int cpu_update_split_mode(void *data)
285 {
286 	int cpu, new_mode = *(int *)data;
287 
288 	if (this_cpu_ptr(&split_state)->master) {
289 		new_split_mode = new_mode;
290 		smp_wmb();
291 
292 		cpumask_andnot(cpu_offline_mask, cpu_present_mask,
293 			       cpu_online_mask);
294 
295 		/* This should work even though the cpu is offline */
296 		for_each_cpu(cpu, cpu_offline_mask)
297 			smp_send_reschedule(cpu);
298 	}
299 
300 	cpu_do_split(new_mode);
301 
302 	if (this_cpu_ptr(&split_state)->master) {
303 		/* Wait for all cpus to finish before we touch subcores_per_core */
304 		for_each_present_cpu(cpu) {
305 			if (cpu >= setup_max_cpus)
306 				break;
307 
308 			while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
309 				barrier();
310 		}
311 
312 		new_split_mode = 0;
313 
314 		/* Make the new mode public */
315 		subcores_per_core = new_mode;
316 		threads_per_subcore = threads_per_core / subcores_per_core;
317 		update_subcore_sibling_mask();
318 
319 		/* Make sure the new mode is written before we exit */
320 		mb();
321 	}
322 
323 	return 0;
324 }
325 
set_subcores_per_core(int new_mode)326 static int set_subcores_per_core(int new_mode)
327 {
328 	struct split_state *state;
329 	int cpu;
330 
331 	if (kvm_hv_mode_active()) {
332 		pr_err("Unable to change split core mode while KVM active.\n");
333 		return -EBUSY;
334 	}
335 
336 	/*
337 	 * We are only called at boot, or from the sysfs write. If that ever
338 	 * changes we'll need a lock here.
339 	 */
340 	BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
341 
342 	for_each_present_cpu(cpu) {
343 		state = &per_cpu(split_state, cpu);
344 		state->step = SYNC_STEP_INITIAL;
345 		state->master = 0;
346 	}
347 
348 	cpus_read_lock();
349 
350 	/* This cpu will update the globals before exiting stop machine */
351 	this_cpu_ptr(&split_state)->master = 1;
352 
353 	/* Ensure state is consistent before we call the other cpus */
354 	mb();
355 
356 	stop_machine_cpuslocked(cpu_update_split_mode, &new_mode,
357 				cpu_online_mask);
358 
359 	cpus_read_unlock();
360 
361 	return 0;
362 }
363 
store_subcores_per_core(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)364 static ssize_t __used store_subcores_per_core(struct device *dev,
365 		struct device_attribute *attr, const char *buf,
366 		size_t count)
367 {
368 	unsigned long val;
369 	int rc;
370 
371 	/* We are serialised by the attribute lock */
372 
373 	rc = sscanf(buf, "%lx", &val);
374 	if (rc != 1)
375 		return -EINVAL;
376 
377 	switch (val) {
378 	case 1:
379 	case 2:
380 	case 4:
381 		if (subcores_per_core == val)
382 			/* Nothing to do */
383 			goto out;
384 		break;
385 	default:
386 		return -EINVAL;
387 	}
388 
389 	rc = set_subcores_per_core(val);
390 	if (rc)
391 		return rc;
392 
393 out:
394 	return count;
395 }
396 
show_subcores_per_core(struct device * dev,struct device_attribute * attr,char * buf)397 static ssize_t show_subcores_per_core(struct device *dev,
398 		struct device_attribute *attr, char *buf)
399 {
400 	return sprintf(buf, "%x\n", subcores_per_core);
401 }
402 
403 static DEVICE_ATTR(subcores_per_core, 0644,
404 		show_subcores_per_core, store_subcores_per_core);
405 
subcore_init(void)406 static int subcore_init(void)
407 {
408 	unsigned pvr_ver;
409 
410 	pvr_ver = PVR_VER(mfspr(SPRN_PVR));
411 
412 	if (pvr_ver != PVR_POWER8 &&
413 	    pvr_ver != PVR_POWER8E &&
414 	    pvr_ver != PVR_POWER8NVL)
415 		return 0;
416 
417 	/*
418 	 * We need all threads in a core to be present to split/unsplit so
419          * continue only if max_cpus are aligned to threads_per_core.
420 	 */
421 	if (setup_max_cpus % threads_per_core)
422 		return 0;
423 
424 	BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
425 
426 	set_subcores_per_core(1);
427 
428 	return device_create_file(cpu_subsys.dev_root,
429 				  &dev_attr_subcores_per_core);
430 }
431 machine_device_initcall(powernv, subcore_init);
432