1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
4 */
5
6 #define pr_fmt(fmt) "powernv: " fmt
7
8 #include <linux/kernel.h>
9 #include <linux/cpu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/gfp.h>
13 #include <linux/smp.h>
14 #include <linux/stop_machine.h>
15
16 #include <asm/cputhreads.h>
17 #include <asm/cpuidle.h>
18 #include <asm/kvm_ppc.h>
19 #include <asm/machdep.h>
20 #include <asm/opal.h>
21 #include <asm/smp.h>
22
23 #include "subcore.h"
24 #include "powernv.h"
25
26
27 /*
28 * Split/unsplit procedure:
29 *
30 * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
31 *
32 * The mapping to subcores_per_core is simple:
33 *
34 * State | subcores_per_core
35 * ------------|------------------
36 * Unsplit | 1
37 * 2-way split | 2
38 * 4-way split | 4
39 *
40 * The core is split along thread boundaries, the mapping between subcores and
41 * threads is as follows:
42 *
43 * Unsplit:
44 * ----------------------------
45 * Subcore | 0 |
46 * ----------------------------
47 * Thread | 0 1 2 3 4 5 6 7 |
48 * ----------------------------
49 *
50 * 2-way split:
51 * -------------------------------------
52 * Subcore | 0 | 1 |
53 * -------------------------------------
54 * Thread | 0 1 2 3 | 4 5 6 7 |
55 * -------------------------------------
56 *
57 * 4-way split:
58 * -----------------------------------------
59 * Subcore | 0 | 1 | 2 | 3 |
60 * -----------------------------------------
61 * Thread | 0 1 | 2 3 | 4 5 | 6 7 |
62 * -----------------------------------------
63 *
64 *
65 * Transitions
66 * -----------
67 *
68 * It is not possible to transition between either of the split states, the
69 * core must first be unsplit. The legal transitions are:
70 *
71 * ----------- ---------------
72 * | | <----> | 2-way split |
73 * | | ---------------
74 * | Unsplit |
75 * | | ---------------
76 * | | <----> | 4-way split |
77 * ----------- ---------------
78 *
79 * Unsplitting
80 * -----------
81 *
82 * Unsplitting is the simpler procedure. It requires thread 0 to request the
83 * unsplit while all other threads NAP.
84 *
85 * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
86 * the hardware that if all threads except 0 are napping, the hardware should
87 * unsplit the core.
88 *
89 * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
90 * see the core unsplit.
91 *
92 * Core 0 spins waiting for the hardware to see all the other threads napping
93 * and perform the unsplit.
94 *
95 * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
96 * out of NAP. They will then see the core unsplit and exit the NAP loop.
97 *
98 * Splitting
99 * ---------
100 *
101 * The basic splitting procedure is fairly straight forward. However it is
102 * complicated by the fact that after the split occurs, the newly created
103 * subcores are not in a fully initialised state.
104 *
105 * Most notably the subcores do not have the correct value for SDR1, which
106 * means they must not be running in virtual mode when the split occurs. The
107 * subcores have separate timebases SPRs but these are pre-synchronised by
108 * opal.
109 *
110 * To begin with secondary threads are sent to an assembly routine. There they
111 * switch to real mode, so they are immune to the uninitialised SDR1 value.
112 * Once in real mode they indicate that they are in real mode, and spin waiting
113 * to see the core split.
114 *
115 * Thread 0 waits to see that all secondaries are in real mode, and then begins
116 * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
117 * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
118 * to request the split, and spins waiting to see that the split has happened.
119 *
120 * Concurrently the secondaries will notice the split. When they do they set up
121 * their SPRs, notably SDR1, and then they can return to virtual mode and exit
122 * the procedure.
123 */
124
125 /* Initialised at boot by subcore_init() */
126 static int subcores_per_core;
127
128 /*
129 * Used to communicate to offline cpus that we want them to pop out of the
130 * offline loop and do a split or unsplit.
131 *
132 * 0 - no split happening
133 * 1 - unsplit in progress
134 * 2 - split to 2 in progress
135 * 4 - split to 4 in progress
136 */
137 static int new_split_mode;
138
139 static cpumask_var_t cpu_offline_mask;
140
141 struct split_state {
142 u8 step;
143 u8 master;
144 };
145
146 static DEFINE_PER_CPU(struct split_state, split_state);
147
wait_for_sync_step(int step)148 static void wait_for_sync_step(int step)
149 {
150 int i, cpu = smp_processor_id();
151
152 for (i = cpu + 1; i < cpu + threads_per_core; i++)
153 while(per_cpu(split_state, i).step < step)
154 barrier();
155
156 /* Order the wait loop vs any subsequent loads/stores. */
157 mb();
158 }
159
update_hid_in_slw(u64 hid0)160 static void update_hid_in_slw(u64 hid0)
161 {
162 u64 idle_states = pnv_get_supported_cpuidle_states();
163
164 if (idle_states & OPAL_PM_WINKLE_ENABLED) {
165 /* OPAL call to patch slw with the new HID0 value */
166 u64 cpu_pir = hard_smp_processor_id();
167
168 opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
169 }
170 }
171
unsplit_core(void)172 static void unsplit_core(void)
173 {
174 u64 hid0, mask;
175 int i, cpu;
176
177 mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
178
179 cpu = smp_processor_id();
180 if (cpu_thread_in_core(cpu) != 0) {
181 while (mfspr(SPRN_HID0) & mask)
182 power7_idle_type(PNV_THREAD_NAP);
183
184 per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
185 return;
186 }
187
188 hid0 = mfspr(SPRN_HID0);
189 hid0 &= ~HID0_POWER8_DYNLPARDIS;
190 update_power8_hid0(hid0);
191 update_hid_in_slw(hid0);
192
193 while (mfspr(SPRN_HID0) & mask)
194 cpu_relax();
195
196 /* Wake secondaries out of NAP */
197 for (i = cpu + 1; i < cpu + threads_per_core; i++)
198 smp_send_reschedule(i);
199
200 wait_for_sync_step(SYNC_STEP_UNSPLIT);
201 }
202
split_core(int new_mode)203 static void split_core(int new_mode)
204 {
205 struct { u64 value; u64 mask; } split_parms[2] = {
206 { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
207 { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
208 };
209 int i, cpu;
210 u64 hid0;
211
212 /* Convert new_mode (2 or 4) into an index into our parms array */
213 i = (new_mode >> 1) - 1;
214 BUG_ON(i < 0 || i > 1);
215
216 cpu = smp_processor_id();
217 if (cpu_thread_in_core(cpu) != 0) {
218 split_core_secondary_loop(&per_cpu(split_state, cpu).step);
219 return;
220 }
221
222 wait_for_sync_step(SYNC_STEP_REAL_MODE);
223
224 /* Write new mode */
225 hid0 = mfspr(SPRN_HID0);
226 hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
227 update_power8_hid0(hid0);
228 update_hid_in_slw(hid0);
229
230 /* Wait for it to happen */
231 while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
232 cpu_relax();
233 }
234
cpu_do_split(int new_mode)235 static void cpu_do_split(int new_mode)
236 {
237 /*
238 * At boot subcores_per_core will be 0, so we will always unsplit at
239 * boot. In the usual case where the core is already unsplit it's a
240 * nop, and this just ensures the kernel's notion of the mode is
241 * consistent with the hardware.
242 */
243 if (subcores_per_core != 1)
244 unsplit_core();
245
246 if (new_mode != 1)
247 split_core(new_mode);
248
249 mb();
250 per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
251 }
252
cpu_core_split_required(void)253 bool cpu_core_split_required(void)
254 {
255 smp_rmb();
256
257 if (!new_split_mode)
258 return false;
259
260 cpu_do_split(new_split_mode);
261
262 return true;
263 }
264
update_subcore_sibling_mask(void)265 void update_subcore_sibling_mask(void)
266 {
267 int cpu;
268 /*
269 * sibling mask for the first cpu. Left shift this by required bits
270 * to get sibling mask for the rest of the cpus.
271 */
272 int sibling_mask_first_cpu = (1 << threads_per_subcore) - 1;
273
274 for_each_possible_cpu(cpu) {
275 int tid = cpu_thread_in_core(cpu);
276 int offset = (tid / threads_per_subcore) * threads_per_subcore;
277 int mask = sibling_mask_first_cpu << offset;
278
279 paca_ptrs[cpu]->subcore_sibling_mask = mask;
280
281 }
282 }
283
cpu_update_split_mode(void * data)284 static int cpu_update_split_mode(void *data)
285 {
286 int cpu, new_mode = *(int *)data;
287
288 if (this_cpu_ptr(&split_state)->master) {
289 new_split_mode = new_mode;
290 smp_wmb();
291
292 cpumask_andnot(cpu_offline_mask, cpu_present_mask,
293 cpu_online_mask);
294
295 /* This should work even though the cpu is offline */
296 for_each_cpu(cpu, cpu_offline_mask)
297 smp_send_reschedule(cpu);
298 }
299
300 cpu_do_split(new_mode);
301
302 if (this_cpu_ptr(&split_state)->master) {
303 /* Wait for all cpus to finish before we touch subcores_per_core */
304 for_each_present_cpu(cpu) {
305 if (cpu >= setup_max_cpus)
306 break;
307
308 while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
309 barrier();
310 }
311
312 new_split_mode = 0;
313
314 /* Make the new mode public */
315 subcores_per_core = new_mode;
316 threads_per_subcore = threads_per_core / subcores_per_core;
317 update_subcore_sibling_mask();
318
319 /* Make sure the new mode is written before we exit */
320 mb();
321 }
322
323 return 0;
324 }
325
set_subcores_per_core(int new_mode)326 static int set_subcores_per_core(int new_mode)
327 {
328 struct split_state *state;
329 int cpu;
330
331 if (kvm_hv_mode_active()) {
332 pr_err("Unable to change split core mode while KVM active.\n");
333 return -EBUSY;
334 }
335
336 /*
337 * We are only called at boot, or from the sysfs write. If that ever
338 * changes we'll need a lock here.
339 */
340 BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
341
342 for_each_present_cpu(cpu) {
343 state = &per_cpu(split_state, cpu);
344 state->step = SYNC_STEP_INITIAL;
345 state->master = 0;
346 }
347
348 cpus_read_lock();
349
350 /* This cpu will update the globals before exiting stop machine */
351 this_cpu_ptr(&split_state)->master = 1;
352
353 /* Ensure state is consistent before we call the other cpus */
354 mb();
355
356 stop_machine_cpuslocked(cpu_update_split_mode, &new_mode,
357 cpu_online_mask);
358
359 cpus_read_unlock();
360
361 return 0;
362 }
363
store_subcores_per_core(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)364 static ssize_t __used store_subcores_per_core(struct device *dev,
365 struct device_attribute *attr, const char *buf,
366 size_t count)
367 {
368 unsigned long val;
369 int rc;
370
371 /* We are serialised by the attribute lock */
372
373 rc = sscanf(buf, "%lx", &val);
374 if (rc != 1)
375 return -EINVAL;
376
377 switch (val) {
378 case 1:
379 case 2:
380 case 4:
381 if (subcores_per_core == val)
382 /* Nothing to do */
383 goto out;
384 break;
385 default:
386 return -EINVAL;
387 }
388
389 rc = set_subcores_per_core(val);
390 if (rc)
391 return rc;
392
393 out:
394 return count;
395 }
396
show_subcores_per_core(struct device * dev,struct device_attribute * attr,char * buf)397 static ssize_t show_subcores_per_core(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 return sprintf(buf, "%x\n", subcores_per_core);
401 }
402
403 static DEVICE_ATTR(subcores_per_core, 0644,
404 show_subcores_per_core, store_subcores_per_core);
405
subcore_init(void)406 static int subcore_init(void)
407 {
408 unsigned pvr_ver;
409
410 pvr_ver = PVR_VER(mfspr(SPRN_PVR));
411
412 if (pvr_ver != PVR_POWER8 &&
413 pvr_ver != PVR_POWER8E &&
414 pvr_ver != PVR_POWER8NVL)
415 return 0;
416
417 /*
418 * We need all threads in a core to be present to split/unsplit so
419 * continue only if max_cpus are aligned to threads_per_core.
420 */
421 if (setup_max_cpus % threads_per_core)
422 return 0;
423
424 BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
425
426 set_subcores_per_core(1);
427
428 return device_create_file(cpu_subsys.dev_root,
429 &dev_attr_subcores_per_core);
430 }
431 machine_device_initcall(powernv, subcore_init);
432