1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
5
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8
9 #include <asm/cpucaps.h>
10 #include <asm/cputype.h>
11 #include <asm/hwcap.h>
12 #include <asm/sysreg.h>
13
14 #define MAX_CPU_FEATURES 64
15 #define cpu_feature(x) KERNEL_HWCAP_ ## x
16
17 #ifndef __ASSEMBLY__
18
19 #include <linux/bug.h>
20 #include <linux/jump_label.h>
21 #include <linux/kernel.h>
22
23 /*
24 * CPU feature register tracking
25 *
26 * The safe value of a CPUID feature field is dependent on the implications
27 * of the values assigned to it by the architecture. Based on the relationship
28 * between the values, the features are classified into 3 types - LOWER_SAFE,
29 * HIGHER_SAFE and EXACT.
30 *
31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33 * a field when EXACT is specified, failing which, the safe value specified
34 * in the table is chosen.
35 */
36
37 enum ftr_type {
38 FTR_EXACT, /* Use a predefined safe value */
39 FTR_LOWER_SAFE, /* Smaller value is safe */
40 FTR_HIGHER_SAFE, /* Bigger value is safe */
41 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
42 };
43
44 #define FTR_STRICT true /* SANITY check strict matching required */
45 #define FTR_NONSTRICT false /* SANITY check ignored */
46
47 #define FTR_SIGNED true /* Value should be treated as signed */
48 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
49
50 #define FTR_VISIBLE true /* Feature visible to the user space */
51 #define FTR_HIDDEN false /* Feature is hidden from the user */
52
53 #define FTR_VISIBLE_IF_IS_ENABLED(config) \
54 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
55
56 struct arm64_ftr_bits {
57 bool sign; /* Value is signed ? */
58 bool visible;
59 bool strict; /* CPU Sanity check: strict matching required ? */
60 enum ftr_type type;
61 u8 shift;
62 u8 width;
63 s64 safe_val; /* safe value for FTR_EXACT features */
64 };
65
66 struct arm64_ftr_override {
67 u64 val;
68 u64 mask;
69 };
70
71 /*
72 * @arm64_ftr_reg - Feature register
73 * @strict_mask Bits which should match across all CPUs for sanity.
74 * @sys_val Safe value across the CPUs (system view)
75 */
76 struct arm64_ftr_reg {
77 const char *name;
78 u64 strict_mask;
79 u64 user_mask;
80 u64 sys_val;
81 u64 user_val;
82 struct arm64_ftr_override *override;
83 const struct arm64_ftr_bits *ftr_bits;
84 };
85
86 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
87
88 /*
89 * CPU capabilities:
90 *
91 * We use arm64_cpu_capabilities to represent system features, errata work
92 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
93 * ELF HWCAPs (which are exposed to user).
94 *
95 * To support systems with heterogeneous CPUs, we need to make sure that we
96 * detect the capabilities correctly on the system and take appropriate
97 * measures to ensure there are no incompatibilities.
98 *
99 * This comment tries to explain how we treat the capabilities.
100 * Each capability has the following list of attributes :
101 *
102 * 1) Scope of Detection : The system detects a given capability by
103 * performing some checks at runtime. This could be, e.g, checking the
104 * value of a field in CPU ID feature register or checking the cpu
105 * model. The capability provides a call back ( @matches() ) to
106 * perform the check. Scope defines how the checks should be performed.
107 * There are three cases:
108 *
109 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
110 * matches. This implies, we have to run the check on all the
111 * booting CPUs, until the system decides that state of the
112 * capability is finalised. (See section 2 below)
113 * Or
114 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
115 * matches. This implies, we run the check only once, when the
116 * system decides to finalise the state of the capability. If the
117 * capability relies on a field in one of the CPU ID feature
118 * registers, we use the sanitised value of the register from the
119 * CPU feature infrastructure to make the decision.
120 * Or
121 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
122 * feature. This category is for features that are "finalised"
123 * (or used) by the kernel very early even before the SMP cpus
124 * are brought up.
125 *
126 * The process of detection is usually denoted by "update" capability
127 * state in the code.
128 *
129 * 2) Finalise the state : The kernel should finalise the state of a
130 * capability at some point during its execution and take necessary
131 * actions if any. Usually, this is done, after all the boot-time
132 * enabled CPUs are brought up by the kernel, so that it can make
133 * better decision based on the available set of CPUs. However, there
134 * are some special cases, where the action is taken during the early
135 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with
136 * Virtualisation Host Extensions). The kernel usually disallows any
137 * changes to the state of a capability once it finalises the capability
138 * and takes any action, as it may be impossible to execute the actions
139 * safely. A CPU brought up after a capability is "finalised" is
140 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary
141 * CPUs are treated "late CPUs" for capabilities determined by the boot
142 * CPU.
143 *
144 * At the moment there are two passes of finalising the capabilities.
145 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via
146 * setup_boot_cpu_capabilities().
147 * b) Everything except (a) - Run via setup_system_capabilities().
148 *
149 * 3) Verification: When a CPU is brought online (e.g, by user or by the
150 * kernel), the kernel should make sure that it is safe to use the CPU,
151 * by verifying that the CPU is compliant with the state of the
152 * capabilities finalised already. This happens via :
153 *
154 * secondary_start_kernel()-> check_local_cpu_capabilities()
155 *
156 * As explained in (2) above, capabilities could be finalised at
157 * different points in the execution. Each newly booted CPU is verified
158 * against the capabilities that have been finalised by the time it
159 * boots.
160 *
161 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
162 * except for the primary boot CPU.
163 *
164 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
165 * user after the kernel boot are verified against the capability.
166 *
167 * If there is a conflict, the kernel takes an action, based on the
168 * severity (e.g, a CPU could be prevented from booting or cause a
169 * kernel panic). The CPU is allowed to "affect" the state of the
170 * capability, if it has not been finalised already. See section 5
171 * for more details on conflicts.
172 *
173 * 4) Action: As mentioned in (2), the kernel can take an action for each
174 * detected capability, on all CPUs on the system. Appropriate actions
175 * include, turning on an architectural feature, modifying the control
176 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via
177 * alternatives. The kernel patching is batched and performed at later
178 * point. The actions are always initiated only after the capability
179 * is finalised. This is usally denoted by "enabling" the capability.
180 * The actions are initiated as follows :
181 * a) Action is triggered on all online CPUs, after the capability is
182 * finalised, invoked within the stop_machine() context from
183 * enable_cpu_capabilitie().
184 *
185 * b) Any late CPU, brought up after (1), the action is triggered via:
186 *
187 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
188 *
189 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
190 * the system state, we could have the following combinations :
191 *
192 * x-----------------------------x
193 * | Type | System | Late CPU |
194 * |-----------------------------|
195 * | a | y | n |
196 * |-----------------------------|
197 * | b | n | y |
198 * x-----------------------------x
199 *
200 * Two separate flag bits are defined to indicate whether each kind of
201 * conflict can be allowed:
202 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
203 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
204 *
205 * Case (a) is not permitted for a capability that the system requires
206 * all CPUs to have in order for the capability to be enabled. This is
207 * typical for capabilities that represent enhanced functionality.
208 *
209 * Case (b) is not permitted for a capability that must be enabled
210 * during boot if any CPU in the system requires it in order to run
211 * safely. This is typical for erratum work arounds that cannot be
212 * enabled after the corresponding capability is finalised.
213 *
214 * In some non-typical cases either both (a) and (b), or neither,
215 * should be permitted. This can be described by including neither
216 * or both flags in the capability's type field.
217 *
218 * In case of a conflict, the CPU is prevented from booting. If the
219 * ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
220 * then a kernel panic is triggered.
221 */
222
223
224 /*
225 * Decide how the capability is detected.
226 * On any local CPU vs System wide vs the primary boot CPU
227 */
228 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
229 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
230 /*
231 * The capabilitiy is detected on the Boot CPU and is used by kernel
232 * during early boot. i.e, the capability should be "detected" and
233 * "enabled" as early as possibly on all booting CPUs.
234 */
235 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
236 #define ARM64_CPUCAP_SCOPE_MASK \
237 (ARM64_CPUCAP_SCOPE_SYSTEM | \
238 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
239 ARM64_CPUCAP_SCOPE_BOOT_CPU)
240
241 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
242 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
243 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
244 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
245
246 /*
247 * Is it permitted for a late CPU to have this capability when system
248 * hasn't already enabled it ?
249 */
250 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
251 /* Is it safe for a late CPU to miss this capability when system has it */
252 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
253 /* Panic when a conflict is detected */
254 #define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6))
255
256 /*
257 * CPU errata workarounds that need to be enabled at boot time if one or
258 * more CPUs in the system requires it. When one of these capabilities
259 * has been enabled, it is safe to allow any CPU to boot that doesn't
260 * require the workaround. However, it is not safe if a "late" CPU
261 * requires a workaround and the system hasn't enabled it already.
262 */
263 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
264 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
265 /*
266 * CPU feature detected at boot time based on system-wide value of a
267 * feature. It is safe for a late CPU to have this feature even though
268 * the system hasn't enabled it, although the feature will not be used
269 * by Linux in this case. If the system has enabled this feature already,
270 * then every late CPU must have it.
271 */
272 #define ARM64_CPUCAP_SYSTEM_FEATURE \
273 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
274 /*
275 * CPU feature detected at boot time based on feature of one or more CPUs.
276 * All possible conflicts for a late CPU are ignored.
277 * NOTE: this means that a late CPU with the feature will *not* cause the
278 * capability to be advertised by cpus_have_*cap()!
279 */
280 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
281 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
282 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
283 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
284
285 /*
286 * CPU feature detected at boot time, on one or more CPUs. A late CPU
287 * is not allowed to have the capability when the system doesn't have it.
288 * It is Ok for a late CPU to miss the feature.
289 */
290 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
291 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
292 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
293
294 /*
295 * CPU feature used early in the boot based on the boot CPU. All secondary
296 * CPUs must match the state of the capability as detected by the boot CPU. In
297 * case of a conflict, a kernel panic is triggered.
298 */
299 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \
300 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
301
302 /*
303 * CPU feature used early in the boot based on the boot CPU. It is safe for a
304 * late CPU to have this feature even though the boot CPU hasn't enabled it,
305 * although the feature will not be used by Linux in this case. If the boot CPU
306 * has enabled this feature already, then every late CPU must have it.
307 */
308 #define ARM64_CPUCAP_BOOT_CPU_FEATURE \
309 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
310
311 struct arm64_cpu_capabilities {
312 const char *desc;
313 u16 capability;
314 u16 type;
315 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
316 /*
317 * Take the appropriate actions to configure this capability
318 * for this CPU. If the capability is detected by the kernel
319 * this will be called on all the CPUs in the system,
320 * including the hotplugged CPUs, regardless of whether the
321 * capability is available on that specific CPU. This is
322 * useful for some capabilities (e.g, working around CPU
323 * errata), where all the CPUs must take some action (e.g,
324 * changing system control/configuration). Thus, if an action
325 * is required only if the CPU has the capability, then the
326 * routine must check it before taking any action.
327 */
328 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
329 union {
330 struct { /* To be used for erratum handling only */
331 struct midr_range midr_range;
332 const struct arm64_midr_revidr {
333 u32 midr_rv; /* revision/variant */
334 u32 revidr_mask;
335 } * const fixed_revs;
336 };
337
338 const struct midr_range *midr_range_list;
339 struct { /* Feature register checking */
340 u32 sys_reg;
341 u8 field_pos;
342 u8 min_field_value;
343 u8 hwcap_type;
344 bool sign;
345 unsigned long hwcap;
346 };
347 };
348
349 /*
350 * An optional list of "matches/cpu_enable" pair for the same
351 * "capability" of the same "type" as described by the parent.
352 * Only matches(), cpu_enable() and fields relevant to these
353 * methods are significant in the list. The cpu_enable is
354 * invoked only if the corresponding entry "matches()".
355 * However, if a cpu_enable() method is associated
356 * with multiple matches(), care should be taken that either
357 * the match criteria are mutually exclusive, or that the
358 * method is robust against being called multiple times.
359 */
360 const struct arm64_cpu_capabilities *match_list;
361 };
362
cpucap_default_scope(const struct arm64_cpu_capabilities * cap)363 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
364 {
365 return cap->type & ARM64_CPUCAP_SCOPE_MASK;
366 }
367
368 /*
369 * Generic helper for handling capabilities with multiple (match,enable) pairs
370 * of call backs, sharing the same capability bit.
371 * Iterate over each entry to see if at least one matches.
372 */
373 static inline bool
cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities * entry,int scope)374 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
375 int scope)
376 {
377 const struct arm64_cpu_capabilities *caps;
378
379 for (caps = entry->match_list; caps->matches; caps++)
380 if (caps->matches(caps, scope))
381 return true;
382
383 return false;
384 }
385
is_vhe_hyp_code(void)386 static __always_inline bool is_vhe_hyp_code(void)
387 {
388 /* Only defined for code run in VHE hyp context */
389 return __is_defined(__KVM_VHE_HYPERVISOR__);
390 }
391
is_nvhe_hyp_code(void)392 static __always_inline bool is_nvhe_hyp_code(void)
393 {
394 /* Only defined for code run in NVHE hyp context */
395 return __is_defined(__KVM_NVHE_HYPERVISOR__);
396 }
397
is_hyp_code(void)398 static __always_inline bool is_hyp_code(void)
399 {
400 return is_vhe_hyp_code() || is_nvhe_hyp_code();
401 }
402
403 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
404 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
405 extern struct static_key_false arm64_const_caps_ready;
406
407 /* ARM64 CAPS + alternative_cb */
408 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
409 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
410
411 #define for_each_available_cap(cap) \
412 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
413
414 bool this_cpu_has_cap(unsigned int cap);
415 void cpu_set_feature(unsigned int num);
416 bool cpu_have_feature(unsigned int num);
417 unsigned long cpu_get_elf_hwcap(void);
418 unsigned long cpu_get_elf_hwcap2(void);
419
420 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
421 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
422
system_capabilities_finalized(void)423 static __always_inline bool system_capabilities_finalized(void)
424 {
425 return static_branch_likely(&arm64_const_caps_ready);
426 }
427
428 /*
429 * Test for a capability with a runtime check.
430 *
431 * Before the capability is detected, this returns false.
432 */
cpus_have_cap(unsigned int num)433 static inline bool cpus_have_cap(unsigned int num)
434 {
435 if (num >= ARM64_NCAPS)
436 return false;
437 return test_bit(num, cpu_hwcaps);
438 }
439
440 /*
441 * Test for a capability without a runtime check.
442 *
443 * Before capabilities are finalized, this returns false.
444 * After capabilities are finalized, this is patched to avoid a runtime check.
445 *
446 * @num must be a compile-time constant.
447 */
__cpus_have_const_cap(int num)448 static __always_inline bool __cpus_have_const_cap(int num)
449 {
450 if (num >= ARM64_NCAPS)
451 return false;
452 return static_branch_unlikely(&cpu_hwcap_keys[num]);
453 }
454
455 /*
456 * Test for a capability without a runtime check.
457 *
458 * Before capabilities are finalized, this will BUG().
459 * After capabilities are finalized, this is patched to avoid a runtime check.
460 *
461 * @num must be a compile-time constant.
462 */
cpus_have_final_cap(int num)463 static __always_inline bool cpus_have_final_cap(int num)
464 {
465 if (system_capabilities_finalized())
466 return __cpus_have_const_cap(num);
467 else
468 BUG();
469 }
470
471 /*
472 * Test for a capability, possibly with a runtime check for non-hyp code.
473 *
474 * For hyp code, this behaves the same as cpus_have_final_cap().
475 *
476 * For non-hyp code:
477 * Before capabilities are finalized, this behaves as cpus_have_cap().
478 * After capabilities are finalized, this is patched to avoid a runtime check.
479 *
480 * @num must be a compile-time constant.
481 */
cpus_have_const_cap(int num)482 static __always_inline bool cpus_have_const_cap(int num)
483 {
484 if (is_hyp_code())
485 return cpus_have_final_cap(num);
486 else if (system_capabilities_finalized())
487 return __cpus_have_const_cap(num);
488 else
489 return cpus_have_cap(num);
490 }
491
cpus_set_cap(unsigned int num)492 static inline void cpus_set_cap(unsigned int num)
493 {
494 if (num >= ARM64_NCAPS) {
495 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
496 num, ARM64_NCAPS);
497 } else {
498 __set_bit(num, cpu_hwcaps);
499 }
500 }
501
502 static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features,int field,int width)503 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
504 {
505 return (s64)(features << (64 - width - field)) >> (64 - width);
506 }
507
508 static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features,int field)509 cpuid_feature_extract_signed_field(u64 features, int field)
510 {
511 return cpuid_feature_extract_signed_field_width(features, field, 4);
512 }
513
514 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features,int field,int width)515 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
516 {
517 return (u64)(features << (64 - width - field)) >> (64 - width);
518 }
519
520 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features,int field)521 cpuid_feature_extract_unsigned_field(u64 features, int field)
522 {
523 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
524 }
525
526 /*
527 * Fields that identify the version of the Performance Monitors Extension do
528 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
529 * "Alternative ID scheme used for the Performance Monitors Extension version".
530 */
531 static inline u64 __attribute_const__
cpuid_feature_cap_perfmon_field(u64 features,int field,u64 cap)532 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
533 {
534 u64 val = cpuid_feature_extract_unsigned_field(features, field);
535 u64 mask = GENMASK_ULL(field + 3, field);
536
537 /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
538 if (val == 0xf)
539 val = 0;
540
541 if (val > cap) {
542 features &= ~mask;
543 features |= (cap << field) & mask;
544 }
545
546 return features;
547 }
548
arm64_ftr_mask(const struct arm64_ftr_bits * ftrp)549 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
550 {
551 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
552 }
553
arm64_ftr_reg_user_value(const struct arm64_ftr_reg * reg)554 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
555 {
556 return (reg->user_val | (reg->sys_val & reg->user_mask));
557 }
558
559 static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features,int field,int width,bool sign)560 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
561 {
562 return (sign) ?
563 cpuid_feature_extract_signed_field_width(features, field, width) :
564 cpuid_feature_extract_unsigned_field_width(features, field, width);
565 }
566
567 static inline int __attribute_const__
cpuid_feature_extract_field(u64 features,int field,bool sign)568 cpuid_feature_extract_field(u64 features, int field, bool sign)
569 {
570 return cpuid_feature_extract_field_width(features, field, 4, sign);
571 }
572
arm64_ftr_value(const struct arm64_ftr_bits * ftrp,u64 val)573 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
574 {
575 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
576 }
577
id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)578 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
579 {
580 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
581 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
582 }
583
id_aa64pfr0_32bit_el1(u64 pfr0)584 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
585 {
586 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SHIFT);
587
588 return val == ID_AA64PFR0_EL1_32BIT_64BIT;
589 }
590
id_aa64pfr0_32bit_el0(u64 pfr0)591 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
592 {
593 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
594
595 return val == ID_AA64PFR0_EL0_32BIT_64BIT;
596 }
597
id_aa64pfr0_sve(u64 pfr0)598 static inline bool id_aa64pfr0_sve(u64 pfr0)
599 {
600 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
601
602 return val > 0;
603 }
604
605 void __init setup_cpu_features(void);
606 void check_local_cpu_capabilities(void);
607
608 u64 read_sanitised_ftr_reg(u32 id);
609 u64 __read_sysreg_by_encoding(u32 sys_id);
610
cpu_supports_mixed_endian_el0(void)611 static inline bool cpu_supports_mixed_endian_el0(void)
612 {
613 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
614 }
615
616
supports_csv2p3(int scope)617 static inline bool supports_csv2p3(int scope)
618 {
619 u64 pfr0;
620 u8 csv2_val;
621
622 if (scope == SCOPE_LOCAL_CPU)
623 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
624 else
625 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
626
627 csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
628 ID_AA64PFR0_CSV2_SHIFT);
629 return csv2_val == 3;
630 }
631
supports_clearbhb(int scope)632 static inline bool supports_clearbhb(int scope)
633 {
634 u64 isar2;
635
636 if (scope == SCOPE_LOCAL_CPU)
637 isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
638 else
639 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
640
641 return cpuid_feature_extract_unsigned_field(isar2,
642 ID_AA64ISAR2_CLEARBHB_SHIFT);
643 }
644
645 const struct cpumask *system_32bit_el0_cpumask(void);
646 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
647
system_supports_32bit_el0(void)648 static inline bool system_supports_32bit_el0(void)
649 {
650 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
651
652 return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
653 id_aa64pfr0_32bit_el0(pfr0);
654 }
655
system_supports_4kb_granule(void)656 static inline bool system_supports_4kb_granule(void)
657 {
658 u64 mmfr0;
659 u32 val;
660
661 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
662 val = cpuid_feature_extract_unsigned_field(mmfr0,
663 ID_AA64MMFR0_TGRAN4_SHIFT);
664
665 return (val >= ID_AA64MMFR0_TGRAN4_SUPPORTED_MIN) &&
666 (val <= ID_AA64MMFR0_TGRAN4_SUPPORTED_MAX);
667 }
668
system_supports_64kb_granule(void)669 static inline bool system_supports_64kb_granule(void)
670 {
671 u64 mmfr0;
672 u32 val;
673
674 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
675 val = cpuid_feature_extract_unsigned_field(mmfr0,
676 ID_AA64MMFR0_TGRAN64_SHIFT);
677
678 return (val >= ID_AA64MMFR0_TGRAN64_SUPPORTED_MIN) &&
679 (val <= ID_AA64MMFR0_TGRAN64_SUPPORTED_MAX);
680 }
681
system_supports_16kb_granule(void)682 static inline bool system_supports_16kb_granule(void)
683 {
684 u64 mmfr0;
685 u32 val;
686
687 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
688 val = cpuid_feature_extract_unsigned_field(mmfr0,
689 ID_AA64MMFR0_TGRAN16_SHIFT);
690
691 return (val >= ID_AA64MMFR0_TGRAN16_SUPPORTED_MIN) &&
692 (val <= ID_AA64MMFR0_TGRAN16_SUPPORTED_MAX);
693 }
694
system_supports_mixed_endian_el0(void)695 static inline bool system_supports_mixed_endian_el0(void)
696 {
697 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
698 }
699
system_supports_mixed_endian(void)700 static inline bool system_supports_mixed_endian(void)
701 {
702 u64 mmfr0;
703 u32 val;
704
705 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
706 val = cpuid_feature_extract_unsigned_field(mmfr0,
707 ID_AA64MMFR0_BIGENDEL_SHIFT);
708
709 return val == 0x1;
710 }
711
system_supports_fpsimd(void)712 static __always_inline bool system_supports_fpsimd(void)
713 {
714 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
715 }
716
system_uses_ttbr0_pan(void)717 static inline bool system_uses_ttbr0_pan(void)
718 {
719 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
720 !cpus_have_const_cap(ARM64_HAS_PAN);
721 }
722
system_supports_sve(void)723 static __always_inline bool system_supports_sve(void)
724 {
725 return IS_ENABLED(CONFIG_ARM64_SVE) &&
726 cpus_have_const_cap(ARM64_SVE);
727 }
728
system_supports_cnp(void)729 static __always_inline bool system_supports_cnp(void)
730 {
731 return IS_ENABLED(CONFIG_ARM64_CNP) &&
732 cpus_have_const_cap(ARM64_HAS_CNP);
733 }
734
system_supports_address_auth(void)735 static inline bool system_supports_address_auth(void)
736 {
737 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
738 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
739 }
740
system_supports_generic_auth(void)741 static inline bool system_supports_generic_auth(void)
742 {
743 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
744 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
745 }
746
system_has_full_ptr_auth(void)747 static inline bool system_has_full_ptr_auth(void)
748 {
749 return system_supports_address_auth() && system_supports_generic_auth();
750 }
751
system_uses_irq_prio_masking(void)752 static __always_inline bool system_uses_irq_prio_masking(void)
753 {
754 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
755 cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
756 }
757
system_supports_mte(void)758 static inline bool system_supports_mte(void)
759 {
760 return IS_ENABLED(CONFIG_ARM64_MTE) &&
761 cpus_have_const_cap(ARM64_MTE);
762 }
763
system_has_prio_mask_debugging(void)764 static inline bool system_has_prio_mask_debugging(void)
765 {
766 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
767 system_uses_irq_prio_masking();
768 }
769
system_supports_bti(void)770 static inline bool system_supports_bti(void)
771 {
772 return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI);
773 }
774
system_supports_tlb_range(void)775 static inline bool system_supports_tlb_range(void)
776 {
777 return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) &&
778 cpus_have_const_cap(ARM64_HAS_TLB_RANGE);
779 }
780
781 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
782
id_aa64mmfr0_parange_to_phys_shift(int parange)783 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
784 {
785 switch (parange) {
786 case 0: return 32;
787 case 1: return 36;
788 case 2: return 40;
789 case 3: return 42;
790 case 4: return 44;
791 case 5: return 48;
792 case 6: return 52;
793 /*
794 * A future PE could use a value unknown to the kernel.
795 * However, by the "D10.1.4 Principles of the ID scheme
796 * for fields in ID registers", ARM DDI 0487C.a, any new
797 * value is guaranteed to be higher than what we know already.
798 * As a safe limit, we return the limit supported by the kernel.
799 */
800 default: return CONFIG_ARM64_PA_BITS;
801 }
802 }
803
804 /* Check whether hardware update of the Access flag is supported */
cpu_has_hw_af(void)805 static inline bool cpu_has_hw_af(void)
806 {
807 u64 mmfr1;
808
809 if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
810 return false;
811
812 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
813 return cpuid_feature_extract_unsigned_field(mmfr1,
814 ID_AA64MMFR1_HADBS_SHIFT);
815 }
816
817 #ifdef CONFIG_ARM64_AMU_EXTN
818 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
819 extern bool cpu_has_amu_feat(int cpu);
820 #endif
821
get_vmid_bits(u64 mmfr1)822 static inline unsigned int get_vmid_bits(u64 mmfr1)
823 {
824 int vmid_bits;
825
826 vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
827 ID_AA64MMFR1_VMIDBITS_SHIFT);
828 if (vmid_bits == ID_AA64MMFR1_VMIDBITS_16)
829 return 16;
830
831 /*
832 * Return the default here even if any reserved
833 * value is fetched from the system register.
834 */
835 return 8;
836 }
837
838 extern struct arm64_ftr_override id_aa64mmfr1_override;
839 extern struct arm64_ftr_override id_aa64pfr1_override;
840 extern struct arm64_ftr_override id_aa64isar1_override;
841
842 u32 get_kvm_ipa_limit(void);
843 void dump_cpu_features(void);
844
845 #endif /* __ASSEMBLY__ */
846
847 #endif
848