1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <uapi/linux/sched/types.h>
39
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43
44 #undef CREATE_TRACE_POINTS
45 #include <trace/hooks/sched.h>
46 #include <trace/hooks/cpu.h>
47
48 #include "sched/sched.h"
49 #include "smpboot.h"
50
51 /**
52 * cpuhp_cpu_state - Per cpu hotplug state storage
53 * @state: The current cpu state
54 * @target: The target state
55 * @thread: Pointer to the hotplug thread
56 * @should_run: Thread should execute
57 * @rollback: Perform a rollback
58 * @single: Single callback invocation
59 * @bringup: Single callback bringup or teardown selector
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @done_up: Signal completion to the issuer of the task for cpu-up
63 * @done_down: Signal completion to the issuer of the task for cpu-down
64 */
65 struct cpuhp_cpu_state {
66 enum cpuhp_state state;
67 enum cpuhp_state target;
68 enum cpuhp_state fail;
69 #ifdef CONFIG_SMP
70 struct task_struct *thread;
71 bool should_run;
72 bool rollback;
73 bool single;
74 bool bringup;
75 struct hlist_node *node;
76 struct hlist_node *last;
77 enum cpuhp_state cb_state;
78 int result;
79 struct completion done_up;
80 struct completion done_down;
81 #endif
82 };
83
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85 .fail = CPUHP_INVALID,
86 };
87
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97
98
cpuhp_lock_acquire(bool bringup)99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103
cpuhp_lock_release(bool bringup)104 static inline void cpuhp_lock_release(bool bringup)
105 {
106 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109
cpuhp_lock_acquire(bool bringup)110 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)111 static inline void cpuhp_lock_release(bool bringup) { }
112
113 #endif
114
115 /**
116 * cpuhp_step - Hotplug state machine step
117 * @name: Name of the step
118 * @startup: Startup function of the step
119 * @teardown: Teardown function of the step
120 * @cant_stop: Bringup/teardown can't be stopped at this step
121 */
122 struct cpuhp_step {
123 const char *name;
124 union {
125 int (*single)(unsigned int cpu);
126 int (*multi)(unsigned int cpu,
127 struct hlist_node *node);
128 } startup;
129 union {
130 int (*single)(unsigned int cpu);
131 int (*multi)(unsigned int cpu,
132 struct hlist_node *node);
133 } teardown;
134 struct hlist_head list;
135 bool cant_stop;
136 bool multi_instance;
137 };
138
139 static DEFINE_MUTEX(cpuhp_state_mutex);
140 static struct cpuhp_step cpuhp_hp_states[];
141
cpuhp_get_step(enum cpuhp_state state)142 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
143 {
144 return cpuhp_hp_states + state;
145 }
146
147 /**
148 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
149 * @cpu: The cpu for which the callback should be invoked
150 * @state: The state to do callbacks for
151 * @bringup: True if the bringup callback should be invoked
152 * @node: For multi-instance, do a single entry callback for install/remove
153 * @lastp: For multi-instance rollback, remember how far we got
154 *
155 * Called from cpu hotplug and from the state register machinery.
156 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
158 bool bringup, struct hlist_node *node,
159 struct hlist_node **lastp)
160 {
161 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
162 struct cpuhp_step *step = cpuhp_get_step(state);
163 int (*cbm)(unsigned int cpu, struct hlist_node *node);
164 int (*cb)(unsigned int cpu);
165 int ret, cnt;
166
167 if (st->fail == state) {
168 st->fail = CPUHP_INVALID;
169
170 if (!(bringup ? step->startup.single : step->teardown.single))
171 return 0;
172
173 return -EAGAIN;
174 }
175
176 if (!step->multi_instance) {
177 WARN_ON_ONCE(lastp && *lastp);
178 cb = bringup ? step->startup.single : step->teardown.single;
179 if (!cb)
180 return 0;
181 trace_cpuhp_enter(cpu, st->target, state, cb);
182 ret = cb(cpu);
183 trace_cpuhp_exit(cpu, st->state, state, ret);
184 return ret;
185 }
186 cbm = bringup ? step->startup.multi : step->teardown.multi;
187 if (!cbm)
188 return 0;
189
190 /* Single invocation for instance add/remove */
191 if (node) {
192 WARN_ON_ONCE(lastp && *lastp);
193 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194 ret = cbm(cpu, node);
195 trace_cpuhp_exit(cpu, st->state, state, ret);
196 return ret;
197 }
198
199 /* State transition. Invoke on all instances */
200 cnt = 0;
201 hlist_for_each(node, &step->list) {
202 if (lastp && node == *lastp)
203 break;
204
205 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
206 ret = cbm(cpu, node);
207 trace_cpuhp_exit(cpu, st->state, state, ret);
208 if (ret) {
209 if (!lastp)
210 goto err;
211
212 *lastp = node;
213 return ret;
214 }
215 cnt++;
216 }
217 if (lastp)
218 *lastp = NULL;
219 return 0;
220 err:
221 /* Rollback the instances if one failed */
222 cbm = !bringup ? step->startup.multi : step->teardown.multi;
223 if (!cbm)
224 return ret;
225
226 hlist_for_each(node, &step->list) {
227 if (!cnt--)
228 break;
229
230 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
231 ret = cbm(cpu, node);
232 trace_cpuhp_exit(cpu, st->state, state, ret);
233 /*
234 * Rollback must not fail,
235 */
236 WARN_ON_ONCE(ret);
237 }
238 return ret;
239 }
240
241 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)242 static bool cpuhp_is_ap_state(enum cpuhp_state state)
243 {
244 /*
245 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
246 * purposes as that state is handled explicitly in cpu_down.
247 */
248 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
249 }
250
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)251 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
252 {
253 struct completion *done = bringup ? &st->done_up : &st->done_down;
254 wait_for_completion(done);
255 }
256
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)257 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
258 {
259 struct completion *done = bringup ? &st->done_up : &st->done_down;
260 complete(done);
261 }
262
263 /*
264 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
265 */
cpuhp_is_atomic_state(enum cpuhp_state state)266 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
267 {
268 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
269 }
270
271 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
272 static DEFINE_MUTEX(cpu_add_remove_lock);
273 bool cpuhp_tasks_frozen;
274 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
275
276 /*
277 * The following two APIs (cpu_maps_update_begin/done) must be used when
278 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
279 */
cpu_maps_update_begin(void)280 void cpu_maps_update_begin(void)
281 {
282 mutex_lock(&cpu_add_remove_lock);
283 }
284 EXPORT_SYMBOL_GPL(cpu_maps_update_begin);
285
cpu_maps_update_done(void)286 void cpu_maps_update_done(void)
287 {
288 mutex_unlock(&cpu_add_remove_lock);
289 }
290 EXPORT_SYMBOL_GPL(cpu_maps_update_done);
291
292 /*
293 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
294 * Should always be manipulated under cpu_add_remove_lock
295 */
296 static int cpu_hotplug_disabled;
297
298 #ifdef CONFIG_HOTPLUG_CPU
299
300 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
301
cpus_read_lock(void)302 void cpus_read_lock(void)
303 {
304 percpu_down_read(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_lock);
307
cpus_read_trylock(void)308 int cpus_read_trylock(void)
309 {
310 return percpu_down_read_trylock(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_trylock);
313
cpus_read_unlock(void)314 void cpus_read_unlock(void)
315 {
316 percpu_up_read(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_unlock);
319
cpus_write_lock(void)320 void cpus_write_lock(void)
321 {
322 percpu_down_write(&cpu_hotplug_lock);
323 }
324
cpus_write_unlock(void)325 void cpus_write_unlock(void)
326 {
327 percpu_up_write(&cpu_hotplug_lock);
328 }
329
lockdep_assert_cpus_held(void)330 void lockdep_assert_cpus_held(void)
331 {
332 /*
333 * We can't have hotplug operations before userspace starts running,
334 * and some init codepaths will knowingly not take the hotplug lock.
335 * This is all valid, so mute lockdep until it makes sense to report
336 * unheld locks.
337 */
338 if (system_state < SYSTEM_RUNNING)
339 return;
340
341 percpu_rwsem_assert_held(&cpu_hotplug_lock);
342 }
343
lockdep_acquire_cpus_lock(void)344 static void lockdep_acquire_cpus_lock(void)
345 {
346 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
347 }
348
lockdep_release_cpus_lock(void)349 static void lockdep_release_cpus_lock(void)
350 {
351 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
352 }
353
354 /*
355 * Wait for currently running CPU hotplug operations to complete (if any) and
356 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
357 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
358 * hotplug path before performing hotplug operations. So acquiring that lock
359 * guarantees mutual exclusion from any currently running hotplug operations.
360 */
cpu_hotplug_disable(void)361 void cpu_hotplug_disable(void)
362 {
363 cpu_maps_update_begin();
364 cpu_hotplug_disabled++;
365 cpu_maps_update_done();
366 }
367 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
368
__cpu_hotplug_enable(void)369 static void __cpu_hotplug_enable(void)
370 {
371 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
372 return;
373 cpu_hotplug_disabled--;
374 }
375
cpu_hotplug_enable(void)376 void cpu_hotplug_enable(void)
377 {
378 cpu_maps_update_begin();
379 __cpu_hotplug_enable();
380 cpu_maps_update_done();
381 }
382 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
383
384 #else
385
lockdep_acquire_cpus_lock(void)386 static void lockdep_acquire_cpus_lock(void)
387 {
388 }
389
lockdep_release_cpus_lock(void)390 static void lockdep_release_cpus_lock(void)
391 {
392 }
393
394 #endif /* CONFIG_HOTPLUG_CPU */
395
396 /*
397 * Architectures that need SMT-specific errata handling during SMT hotplug
398 * should override this.
399 */
arch_smt_update(void)400 void __weak arch_smt_update(void) { }
401
402 #ifdef CONFIG_HOTPLUG_SMT
403 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
404
cpu_smt_disable(bool force)405 void __init cpu_smt_disable(bool force)
406 {
407 if (!cpu_smt_possible())
408 return;
409
410 if (force) {
411 pr_info("SMT: Force disabled\n");
412 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
413 } else {
414 pr_info("SMT: disabled\n");
415 cpu_smt_control = CPU_SMT_DISABLED;
416 }
417 }
418
419 /*
420 * The decision whether SMT is supported can only be done after the full
421 * CPU identification. Called from architecture code.
422 */
cpu_smt_check_topology(void)423 void __init cpu_smt_check_topology(void)
424 {
425 if (!topology_smt_supported())
426 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
427 }
428
smt_cmdline_disable(char * str)429 static int __init smt_cmdline_disable(char *str)
430 {
431 cpu_smt_disable(str && !strcmp(str, "force"));
432 return 0;
433 }
434 early_param("nosmt", smt_cmdline_disable);
435
cpu_smt_allowed(unsigned int cpu)436 static inline bool cpu_smt_allowed(unsigned int cpu)
437 {
438 if (cpu_smt_control == CPU_SMT_ENABLED)
439 return true;
440
441 if (topology_is_primary_thread(cpu))
442 return true;
443
444 /*
445 * On x86 it's required to boot all logical CPUs at least once so
446 * that the init code can get a chance to set CR4.MCE on each
447 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
448 * core will shutdown the machine.
449 */
450 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
451 }
452
453 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)454 bool cpu_smt_possible(void)
455 {
456 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
457 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
458 }
459 EXPORT_SYMBOL_GPL(cpu_smt_possible);
460 #else
cpu_smt_allowed(unsigned int cpu)461 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
462 #endif
463
464 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)465 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
466 {
467 enum cpuhp_state prev_state = st->state;
468
469 st->rollback = false;
470 st->last = NULL;
471
472 st->target = target;
473 st->single = false;
474 st->bringup = st->state < target;
475
476 return prev_state;
477 }
478
479 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)480 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
481 {
482 st->rollback = true;
483
484 /*
485 * If we have st->last we need to undo partial multi_instance of this
486 * state first. Otherwise start undo at the previous state.
487 */
488 if (!st->last) {
489 if (st->bringup)
490 st->state--;
491 else
492 st->state++;
493 }
494
495 st->target = prev_state;
496 st->bringup = !st->bringup;
497 }
498
499 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)500 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
501 {
502 if (!st->single && st->state == st->target)
503 return;
504
505 st->result = 0;
506 /*
507 * Make sure the above stores are visible before should_run becomes
508 * true. Paired with the mb() above in cpuhp_thread_fun()
509 */
510 smp_mb();
511 st->should_run = true;
512 wake_up_process(st->thread);
513 wait_for_ap_thread(st, st->bringup);
514 }
515
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)516 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
517 {
518 enum cpuhp_state prev_state;
519 int ret;
520
521 prev_state = cpuhp_set_state(st, target);
522 __cpuhp_kick_ap(st);
523 if ((ret = st->result)) {
524 cpuhp_reset_state(st, prev_state);
525 __cpuhp_kick_ap(st);
526 }
527
528 return ret;
529 }
530
bringup_wait_for_ap(unsigned int cpu)531 static int bringup_wait_for_ap(unsigned int cpu)
532 {
533 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
534
535 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
536 wait_for_ap_thread(st, true);
537 if (WARN_ON_ONCE((!cpu_online(cpu))))
538 return -ECANCELED;
539
540 /* Unpark the hotplug thread of the target cpu */
541 kthread_unpark(st->thread);
542
543 /*
544 * SMT soft disabling on X86 requires to bring the CPU out of the
545 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
546 * CPU marked itself as booted_once in notify_cpu_starting() so the
547 * cpu_smt_allowed() check will now return false if this is not the
548 * primary sibling.
549 */
550 if (!cpu_smt_allowed(cpu))
551 return -ECANCELED;
552
553 if (st->target <= CPUHP_AP_ONLINE_IDLE)
554 return 0;
555
556 return cpuhp_kick_ap(st, st->target);
557 }
558
bringup_cpu(unsigned int cpu)559 static int bringup_cpu(unsigned int cpu)
560 {
561 struct task_struct *idle = idle_thread_get(cpu);
562 int ret;
563
564 /*
565 * Reset stale stack state from the last time this CPU was online.
566 */
567 scs_task_reset(idle);
568 kasan_unpoison_task_stack(idle);
569
570 /*
571 * Some architectures have to walk the irq descriptors to
572 * setup the vector space for the cpu which comes online.
573 * Prevent irq alloc/free across the bringup.
574 */
575 irq_lock_sparse();
576
577 /* Arch-specific enabling code. */
578 ret = __cpu_up(cpu, idle);
579 irq_unlock_sparse();
580 if (ret)
581 return ret;
582 return bringup_wait_for_ap(cpu);
583 }
584
finish_cpu(unsigned int cpu)585 static int finish_cpu(unsigned int cpu)
586 {
587 struct task_struct *idle = idle_thread_get(cpu);
588 struct mm_struct *mm = idle->active_mm;
589
590 /*
591 * idle_task_exit() will have switched to &init_mm, now
592 * clean up any remaining active_mm state.
593 */
594 if (mm != &init_mm)
595 idle->active_mm = &init_mm;
596 mmdrop(mm);
597 return 0;
598 }
599
600 /*
601 * Hotplug state machine related functions
602 */
603
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)604 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
605 {
606 for (st->state--; st->state > st->target; st->state--)
607 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
608 }
609
can_rollback_cpu(struct cpuhp_cpu_state * st)610 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
611 {
612 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
613 return true;
614 /*
615 * When CPU hotplug is disabled, then taking the CPU down is not
616 * possible because takedown_cpu() and the architecture and
617 * subsystem specific mechanisms are not available. So the CPU
618 * which would be completely unplugged again needs to stay around
619 * in the current state.
620 */
621 return st->state <= CPUHP_BRINGUP_CPU;
622 }
623
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)624 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
625 enum cpuhp_state target)
626 {
627 enum cpuhp_state prev_state = st->state;
628 int ret = 0;
629
630 while (st->state < target) {
631 st->state++;
632 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
633 if (ret) {
634 if (can_rollback_cpu(st)) {
635 st->target = prev_state;
636 undo_cpu_up(cpu, st);
637 }
638 break;
639 }
640 }
641 return ret;
642 }
643
644 /*
645 * The cpu hotplug threads manage the bringup and teardown of the cpus
646 */
cpuhp_create(unsigned int cpu)647 static void cpuhp_create(unsigned int cpu)
648 {
649 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
650
651 init_completion(&st->done_up);
652 init_completion(&st->done_down);
653 }
654
cpuhp_should_run(unsigned int cpu)655 static int cpuhp_should_run(unsigned int cpu)
656 {
657 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
658
659 return st->should_run;
660 }
661
662 /*
663 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
664 * callbacks when a state gets [un]installed at runtime.
665 *
666 * Each invocation of this function by the smpboot thread does a single AP
667 * state callback.
668 *
669 * It has 3 modes of operation:
670 * - single: runs st->cb_state
671 * - up: runs ++st->state, while st->state < st->target
672 * - down: runs st->state--, while st->state > st->target
673 *
674 * When complete or on error, should_run is cleared and the completion is fired.
675 */
cpuhp_thread_fun(unsigned int cpu)676 static void cpuhp_thread_fun(unsigned int cpu)
677 {
678 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
679 bool bringup = st->bringup;
680 enum cpuhp_state state;
681
682 if (WARN_ON_ONCE(!st->should_run))
683 return;
684
685 /*
686 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
687 * that if we see ->should_run we also see the rest of the state.
688 */
689 smp_mb();
690
691 /*
692 * The BP holds the hotplug lock, but we're now running on the AP,
693 * ensure that anybody asserting the lock is held, will actually find
694 * it so.
695 */
696 lockdep_acquire_cpus_lock();
697 cpuhp_lock_acquire(bringup);
698
699 if (st->single) {
700 state = st->cb_state;
701 st->should_run = false;
702 } else {
703 if (bringup) {
704 st->state++;
705 state = st->state;
706 st->should_run = (st->state < st->target);
707 WARN_ON_ONCE(st->state > st->target);
708 } else {
709 state = st->state;
710 st->state--;
711 st->should_run = (st->state > st->target);
712 WARN_ON_ONCE(st->state < st->target);
713 }
714 }
715
716 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
717
718 if (cpuhp_is_atomic_state(state)) {
719 local_irq_disable();
720 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
721 local_irq_enable();
722
723 /*
724 * STARTING/DYING must not fail!
725 */
726 WARN_ON_ONCE(st->result);
727 } else {
728 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
729 }
730
731 if (st->result) {
732 /*
733 * If we fail on a rollback, we're up a creek without no
734 * paddle, no way forward, no way back. We loose, thanks for
735 * playing.
736 */
737 WARN_ON_ONCE(st->rollback);
738 st->should_run = false;
739 }
740
741 cpuhp_lock_release(bringup);
742 lockdep_release_cpus_lock();
743
744 if (!st->should_run)
745 complete_ap_thread(st, bringup);
746 }
747
748 /* Invoke a single callback on a remote cpu */
749 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)750 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
751 struct hlist_node *node)
752 {
753 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
754 int ret;
755
756 if (!cpu_online(cpu))
757 return 0;
758
759 cpuhp_lock_acquire(false);
760 cpuhp_lock_release(false);
761
762 cpuhp_lock_acquire(true);
763 cpuhp_lock_release(true);
764
765 /*
766 * If we are up and running, use the hotplug thread. For early calls
767 * we invoke the thread function directly.
768 */
769 if (!st->thread)
770 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
771
772 st->rollback = false;
773 st->last = NULL;
774
775 st->node = node;
776 st->bringup = bringup;
777 st->cb_state = state;
778 st->single = true;
779
780 __cpuhp_kick_ap(st);
781
782 /*
783 * If we failed and did a partial, do a rollback.
784 */
785 if ((ret = st->result) && st->last) {
786 st->rollback = true;
787 st->bringup = !bringup;
788
789 __cpuhp_kick_ap(st);
790 }
791
792 /*
793 * Clean up the leftovers so the next hotplug operation wont use stale
794 * data.
795 */
796 st->node = st->last = NULL;
797 return ret;
798 }
799
cpuhp_kick_ap_work(unsigned int cpu)800 static int cpuhp_kick_ap_work(unsigned int cpu)
801 {
802 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
803 enum cpuhp_state prev_state = st->state;
804 int ret;
805
806 cpuhp_lock_acquire(false);
807 cpuhp_lock_release(false);
808
809 cpuhp_lock_acquire(true);
810 cpuhp_lock_release(true);
811
812 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
813 ret = cpuhp_kick_ap(st, st->target);
814 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
815
816 return ret;
817 }
818
819 static struct smp_hotplug_thread cpuhp_threads = {
820 .store = &cpuhp_state.thread,
821 .create = &cpuhp_create,
822 .thread_should_run = cpuhp_should_run,
823 .thread_fn = cpuhp_thread_fun,
824 .thread_comm = "cpuhp/%u",
825 .selfparking = true,
826 };
827
cpuhp_threads_init(void)828 void __init cpuhp_threads_init(void)
829 {
830 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
831 kthread_unpark(this_cpu_read(cpuhp_state.thread));
832 }
833
834 /*
835 *
836 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
837 * protected region.
838 *
839 * The operation is still serialized against concurrent CPU hotplug via
840 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
841 * serialized against other hotplug related activity like adding or
842 * removing of state callbacks and state instances, which invoke either the
843 * startup or the teardown callback of the affected state.
844 *
845 * This is required for subsystems which are unfixable vs. CPU hotplug and
846 * evade lock inversion problems by scheduling work which has to be
847 * completed _before_ cpu_up()/_cpu_down() returns.
848 *
849 * Don't even think about adding anything to this for any new code or even
850 * drivers. It's only purpose is to keep existing lock order trainwrecks
851 * working.
852 *
853 * For cpu_down() there might be valid reasons to finish cleanups which are
854 * not required to be done under cpu_hotplug_lock, but that's a different
855 * story and would be not invoked via this.
856 */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)857 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
858 {
859 /*
860 * cpusets delegate hotplug operations to a worker to "solve" the
861 * lock order problems. Wait for the worker, but only if tasks are
862 * _not_ frozen (suspend, hibernate) as that would wait forever.
863 *
864 * The wait is required because otherwise the hotplug operation
865 * returns with inconsistent state, which could even be observed in
866 * user space when a new CPU is brought up. The CPU plug uevent
867 * would be delivered and user space reacting on it would fail to
868 * move tasks to the newly plugged CPU up to the point where the
869 * work has finished because up to that point the newly plugged CPU
870 * is not assignable in cpusets/cgroups. On unplug that's not
871 * necessarily a visible issue, but it is still inconsistent state,
872 * which is the real problem which needs to be "fixed". This can't
873 * prevent the transient state between scheduling the work and
874 * returning from waiting for it.
875 */
876 if (!tasks_frozen)
877 cpuset_wait_for_hotplug();
878 }
879
880 #ifdef CONFIG_HOTPLUG_CPU
881 #ifndef arch_clear_mm_cpumask_cpu
882 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
883 #endif
884
885 /**
886 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
887 * @cpu: a CPU id
888 *
889 * This function walks all processes, finds a valid mm struct for each one and
890 * then clears a corresponding bit in mm's cpumask. While this all sounds
891 * trivial, there are various non-obvious corner cases, which this function
892 * tries to solve in a safe manner.
893 *
894 * Also note that the function uses a somewhat relaxed locking scheme, so it may
895 * be called only for an already offlined CPU.
896 */
clear_tasks_mm_cpumask(int cpu)897 void clear_tasks_mm_cpumask(int cpu)
898 {
899 struct task_struct *p;
900
901 /*
902 * This function is called after the cpu is taken down and marked
903 * offline, so its not like new tasks will ever get this cpu set in
904 * their mm mask. -- Peter Zijlstra
905 * Thus, we may use rcu_read_lock() here, instead of grabbing
906 * full-fledged tasklist_lock.
907 */
908 WARN_ON(cpu_online(cpu));
909 rcu_read_lock();
910 for_each_process(p) {
911 struct task_struct *t;
912
913 /*
914 * Main thread might exit, but other threads may still have
915 * a valid mm. Find one.
916 */
917 t = find_lock_task_mm(p);
918 if (!t)
919 continue;
920 arch_clear_mm_cpumask_cpu(cpu, t->mm);
921 task_unlock(t);
922 }
923 rcu_read_unlock();
924 }
925
926 /* Take this CPU down. */
take_cpu_down(void * _param)927 static int take_cpu_down(void *_param)
928 {
929 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
930 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
931 int err, cpu = smp_processor_id();
932 int ret;
933
934 /* Ensure this CPU doesn't handle any more interrupts. */
935 err = __cpu_disable();
936 if (err < 0)
937 return err;
938
939 /*
940 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
941 * do this step again.
942 */
943 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
944 st->state--;
945 /* Invoke the former CPU_DYING callbacks */
946 for (; st->state > target; st->state--) {
947 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
948 /*
949 * DYING must not fail!
950 */
951 WARN_ON_ONCE(ret);
952 }
953
954 /* Give up timekeeping duties */
955 tick_handover_do_timer();
956 /* Remove CPU from timer broadcasting */
957 tick_offline_cpu(cpu);
958 /* Park the stopper thread */
959 stop_machine_park(cpu);
960 return 0;
961 }
962
takedown_cpu(unsigned int cpu)963 static int takedown_cpu(unsigned int cpu)
964 {
965 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
966 int err;
967
968 /* Park the smpboot threads */
969 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
970
971 /*
972 * Prevent irq alloc/free while the dying cpu reorganizes the
973 * interrupt affinities.
974 */
975 irq_lock_sparse();
976
977 /*
978 * So now all preempt/rcu users must observe !cpu_active().
979 */
980 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
981 if (err) {
982 /* CPU refused to die */
983 irq_unlock_sparse();
984 /* Unpark the hotplug thread so we can rollback there */
985 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
986 return err;
987 }
988 BUG_ON(cpu_online(cpu));
989
990 /*
991 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
992 * all runnable tasks from the CPU, there's only the idle task left now
993 * that the migration thread is done doing the stop_machine thing.
994 *
995 * Wait for the stop thread to go away.
996 */
997 wait_for_ap_thread(st, false);
998 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
999
1000 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1001 irq_unlock_sparse();
1002
1003 hotplug_cpu__broadcast_tick_pull(cpu);
1004 /* This actually kills the CPU. */
1005 __cpu_die(cpu);
1006
1007 tick_cleanup_dead_cpu(cpu);
1008 rcutree_migrate_callbacks(cpu);
1009 return 0;
1010 }
1011
cpuhp_complete_idle_dead(void * arg)1012 static void cpuhp_complete_idle_dead(void *arg)
1013 {
1014 struct cpuhp_cpu_state *st = arg;
1015
1016 complete_ap_thread(st, false);
1017 }
1018
cpuhp_report_idle_dead(void)1019 void cpuhp_report_idle_dead(void)
1020 {
1021 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1022
1023 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1024 rcu_report_dead(smp_processor_id());
1025 st->state = CPUHP_AP_IDLE_DEAD;
1026 /*
1027 * We cannot call complete after rcu_report_dead() so we delegate it
1028 * to an online cpu.
1029 */
1030 smp_call_function_single(cpumask_first(cpu_online_mask),
1031 cpuhp_complete_idle_dead, st, 0);
1032 }
1033
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)1034 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
1035 {
1036 for (st->state++; st->state < st->target; st->state++)
1037 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1038 }
1039
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1040 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1041 enum cpuhp_state target)
1042 {
1043 enum cpuhp_state prev_state = st->state;
1044 int ret = 0;
1045
1046 for (; st->state > target; st->state--) {
1047 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
1048 if (ret) {
1049 st->target = prev_state;
1050 if (st->state < prev_state)
1051 undo_cpu_down(cpu, st);
1052 break;
1053 }
1054 }
1055 return ret;
1056 }
1057
1058 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1059 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1060 enum cpuhp_state target)
1061 {
1062 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1063 int prev_state, ret = 0;
1064
1065 if (num_active_cpus() == 1 && cpu_active(cpu))
1066 return -EBUSY;
1067
1068 if (!cpu_present(cpu))
1069 return -EINVAL;
1070
1071 cpus_write_lock();
1072
1073 cpuhp_tasks_frozen = tasks_frozen;
1074
1075 prev_state = cpuhp_set_state(st, target);
1076 /*
1077 * If the current CPU state is in the range of the AP hotplug thread,
1078 * then we need to kick the thread.
1079 */
1080 if (st->state > CPUHP_TEARDOWN_CPU) {
1081 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1082 ret = cpuhp_kick_ap_work(cpu);
1083 /*
1084 * The AP side has done the error rollback already. Just
1085 * return the error code..
1086 */
1087 if (ret)
1088 goto out;
1089
1090 /*
1091 * We might have stopped still in the range of the AP hotplug
1092 * thread. Nothing to do anymore.
1093 */
1094 if (st->state > CPUHP_TEARDOWN_CPU)
1095 goto out;
1096
1097 st->target = target;
1098 }
1099 /*
1100 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1101 * to do the further cleanups.
1102 */
1103 ret = cpuhp_down_callbacks(cpu, st, target);
1104 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1105 cpuhp_reset_state(st, prev_state);
1106 __cpuhp_kick_ap(st);
1107 }
1108
1109 out:
1110 cpus_write_unlock();
1111 /*
1112 * Do post unplug cleanup. This is still protected against
1113 * concurrent CPU hotplug via cpu_add_remove_lock.
1114 */
1115 lockup_detector_cleanup();
1116 arch_smt_update();
1117 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1118 return ret;
1119 }
1120
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1121 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1122 {
1123 if (cpu_hotplug_disabled)
1124 return -EBUSY;
1125 return _cpu_down(cpu, 0, target);
1126 }
1127
cpu_down(unsigned int cpu,enum cpuhp_state target)1128 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1129 {
1130 int err;
1131
1132 cpu_maps_update_begin();
1133 err = cpu_down_maps_locked(cpu, target);
1134 cpu_maps_update_done();
1135 return err;
1136 }
1137
1138 /**
1139 * cpu_device_down - Bring down a cpu device
1140 * @dev: Pointer to the cpu device to offline
1141 *
1142 * This function is meant to be used by device core cpu subsystem only.
1143 *
1144 * Other subsystems should use remove_cpu() instead.
1145 */
cpu_device_down(struct device * dev)1146 int cpu_device_down(struct device *dev)
1147 {
1148 return cpu_down(dev->id, CPUHP_OFFLINE);
1149 }
1150
remove_cpu(unsigned int cpu)1151 int remove_cpu(unsigned int cpu)
1152 {
1153 int ret;
1154
1155 lock_device_hotplug();
1156 ret = device_offline(get_cpu_device(cpu));
1157 unlock_device_hotplug();
1158
1159 return ret;
1160 }
1161 EXPORT_SYMBOL_GPL(remove_cpu);
1162
__pause_drain_rq(struct cpumask * cpus)1163 int __pause_drain_rq(struct cpumask *cpus)
1164 {
1165 unsigned int cpu;
1166 int err = 0;
1167
1168 /*
1169 * Disabling preemption avoids that one of the stopper, started from
1170 * sched_cpu_drain_rq(), blocks firing draining for the whole cpumask.
1171 */
1172 preempt_disable();
1173 for_each_cpu(cpu, cpus) {
1174 err = sched_cpu_drain_rq(cpu);
1175 if (err)
1176 break;
1177 }
1178 preempt_enable();
1179
1180 return err;
1181 }
1182
__wait_drain_rq(struct cpumask * cpus)1183 void __wait_drain_rq(struct cpumask *cpus)
1184 {
1185 unsigned int cpu;
1186
1187 for_each_cpu(cpu, cpus)
1188 sched_cpu_drain_rq_wait(cpu);
1189 }
1190
1191 /* if rt task, set to cfs and return previous prio */
pause_reduce_prio(void)1192 static int pause_reduce_prio(void)
1193 {
1194 int prev_prio = -1;
1195
1196 if (current->prio < MAX_RT_PRIO) {
1197 struct sched_param param = { .sched_priority = 0 };
1198
1199 prev_prio = current->prio;
1200 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m);
1201 }
1202
1203 return prev_prio;
1204 }
1205
1206 /* if previous prio was set, restore */
pause_restore_prio(int prev_prio)1207 static void pause_restore_prio(int prev_prio)
1208 {
1209 if (prev_prio >= 0 && prev_prio < MAX_RT_PRIO) {
1210 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1-prev_prio };
1211
1212 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
1213 }
1214 }
1215
pause_cpus(struct cpumask * cpus)1216 int pause_cpus(struct cpumask *cpus)
1217 {
1218 int err = 0;
1219 int cpu;
1220 u64 start_time = 0;
1221 int prev_prio;
1222
1223 start_time = sched_clock();
1224
1225 cpu_maps_update_begin();
1226
1227 if (cpu_hotplug_disabled) {
1228 err = -EBUSY;
1229 goto err_cpu_maps_update;
1230 }
1231
1232 /* Pausing an already inactive CPU isn't an error */
1233 cpumask_and(cpus, cpus, cpu_active_mask);
1234
1235 for_each_cpu(cpu, cpus) {
1236 if (!cpu_online(cpu) || dl_bw_check_overflow(cpu) ||
1237 get_cpu_device(cpu)->offline_disabled == true) {
1238 err = -EBUSY;
1239 goto err_cpu_maps_update;
1240 }
1241 }
1242
1243 if (cpumask_weight(cpus) >= num_active_cpus()) {
1244 err = -EBUSY;
1245 goto err_cpu_maps_update;
1246 }
1247
1248 if (cpumask_empty(cpus))
1249 goto err_cpu_maps_update;
1250
1251 /*
1252 * Lazy migration:
1253 *
1254 * We do care about how fast a CPU can go idle and stay this in this
1255 * state. If we try to take the cpus_write_lock() here, we would have
1256 * to wait for a few dozens of ms, as this function might schedule.
1257 * However, we can, as a first step, flip the active mask and migrate
1258 * anything currently on the run-queue, to give a chance to the paused
1259 * CPUs to reach quickly an idle state. There's a risk meanwhile for
1260 * another CPU to observe an out-of-date active_mask or to incompletely
1261 * update a cpuset. Both problems would be resolved later in the slow
1262 * path, which ensures active_mask synchronization, triggers a cpuset
1263 * rebuild and migrate any task that would have escaped the lazy
1264 * migration.
1265 */
1266 for_each_cpu(cpu, cpus)
1267 set_cpu_active(cpu, false);
1268 err = __pause_drain_rq(cpus);
1269 if (err) {
1270 __wait_drain_rq(cpus);
1271 for_each_cpu(cpu, cpus)
1272 set_cpu_active(cpu, true);
1273 goto err_cpu_maps_update;
1274 }
1275
1276 prev_prio = pause_reduce_prio();
1277
1278 /*
1279 * Slow path deactivation:
1280 *
1281 * Now that paused CPUs are most likely idle, we can go through a
1282 * complete scheduler deactivation.
1283 *
1284 * The cpu_active_mask being already set and cpus_write_lock calling
1285 * synchronize_rcu(), we know that all preempt-disabled and RCU users
1286 * will observe the updated value.
1287 */
1288 cpus_write_lock();
1289
1290 __wait_drain_rq(cpus);
1291
1292 cpuhp_tasks_frozen = 0;
1293
1294 if (sched_cpus_deactivate_nosync(cpus)) {
1295 err = -EBUSY;
1296 goto err_cpus_write_unlock;
1297 }
1298
1299 err = __pause_drain_rq(cpus);
1300 __wait_drain_rq(cpus);
1301 if (err) {
1302 for_each_cpu(cpu, cpus)
1303 sched_cpu_activate(cpu);
1304 goto err_cpus_write_unlock;
1305 }
1306
1307 /*
1308 * Even if living on the side of the regular HP path, pause is using
1309 * one of the HP step (CPUHP_AP_ACTIVE). This should be reflected on the
1310 * current state of the CPU.
1311 */
1312 for_each_cpu(cpu, cpus) {
1313 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1314
1315 st->state = CPUHP_AP_ACTIVE - 1;
1316 st->target = st->state;
1317 }
1318
1319 err_cpus_write_unlock:
1320 cpus_write_unlock();
1321 pause_restore_prio(prev_prio);
1322 err_cpu_maps_update:
1323 cpu_maps_update_done();
1324
1325 trace_cpuhp_pause(cpus, start_time, 1);
1326
1327 return err;
1328 }
1329 EXPORT_SYMBOL_GPL(pause_cpus);
1330
resume_cpus(struct cpumask * cpus)1331 int resume_cpus(struct cpumask *cpus)
1332 {
1333 unsigned int cpu;
1334 int err = 0;
1335 u64 start_time = 0;
1336 int prev_prio;
1337
1338 start_time = sched_clock();
1339
1340 cpu_maps_update_begin();
1341
1342 if (cpu_hotplug_disabled) {
1343 err = -EBUSY;
1344 goto err_cpu_maps_update;
1345 }
1346
1347 /* Resuming an already active CPU isn't an error */
1348 cpumask_andnot(cpus, cpus, cpu_active_mask);
1349
1350 for_each_cpu(cpu, cpus) {
1351 if (!cpu_online(cpu)) {
1352 err = -EBUSY;
1353 goto err_cpu_maps_update;
1354 }
1355 }
1356
1357 if (cpumask_empty(cpus))
1358 goto err_cpu_maps_update;
1359
1360 for_each_cpu(cpu, cpus)
1361 set_cpu_active(cpu, true);
1362
1363 trace_android_rvh_resume_cpus(cpus, &err);
1364 if (err)
1365 goto err_cpu_maps_update;
1366
1367 prev_prio = pause_reduce_prio();
1368
1369 /* Lazy Resume. Build domains through schedule a workqueue on
1370 * resuming cpu. This is so that the resuming cpu can work more
1371 * early, and cannot add additional load to other busy cpu.
1372 */
1373 cpuset_update_active_cpus_affine(cpumask_first(cpus));
1374
1375 cpus_write_lock();
1376
1377 cpuhp_tasks_frozen = 0;
1378
1379 if (sched_cpus_activate(cpus)) {
1380 err = -EBUSY;
1381 goto err_cpus_write_unlock;
1382 }
1383
1384 /*
1385 * see pause_cpus.
1386 */
1387 for_each_cpu(cpu, cpus) {
1388 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1389
1390 st->state = CPUHP_ONLINE;
1391 st->target = st->state;
1392 }
1393
1394 err_cpus_write_unlock:
1395 cpus_write_unlock();
1396 pause_restore_prio(prev_prio);
1397 err_cpu_maps_update:
1398 cpu_maps_update_done();
1399
1400 trace_cpuhp_pause(cpus, start_time, 0);
1401
1402 return err;
1403 }
1404 EXPORT_SYMBOL_GPL(resume_cpus);
1405
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1406 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1407 {
1408 unsigned int cpu;
1409 int error;
1410
1411 cpu_maps_update_begin();
1412
1413 /*
1414 * Make certain the cpu I'm about to reboot on is online.
1415 *
1416 * This is inline to what migrate_to_reboot_cpu() already do.
1417 */
1418 if (!cpu_online(primary_cpu))
1419 primary_cpu = cpumask_first(cpu_online_mask);
1420
1421 for_each_online_cpu(cpu) {
1422 if (cpu == primary_cpu)
1423 continue;
1424
1425 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1426 if (error) {
1427 pr_err("Failed to offline CPU%d - error=%d",
1428 cpu, error);
1429 break;
1430 }
1431 }
1432
1433 /*
1434 * Ensure all but the reboot CPU are offline.
1435 */
1436 BUG_ON(num_online_cpus() > 1);
1437
1438 /*
1439 * Make sure the CPUs won't be enabled by someone else after this
1440 * point. Kexec will reboot to a new kernel shortly resetting
1441 * everything along the way.
1442 */
1443 cpu_hotplug_disabled++;
1444
1445 cpu_maps_update_done();
1446 }
1447
1448 #else
1449 #define takedown_cpu NULL
1450 #endif /*CONFIG_HOTPLUG_CPU*/
1451
1452 /**
1453 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1454 * @cpu: cpu that just started
1455 *
1456 * It must be called by the arch code on the new cpu, before the new cpu
1457 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1458 */
notify_cpu_starting(unsigned int cpu)1459 void notify_cpu_starting(unsigned int cpu)
1460 {
1461 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1462 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1463 int ret;
1464
1465 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1466 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1467 while (st->state < target) {
1468 st->state++;
1469 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1470 /*
1471 * STARTING must not fail!
1472 */
1473 WARN_ON_ONCE(ret);
1474 }
1475 }
1476
1477 /*
1478 * Called from the idle task. Wake up the controlling task which brings the
1479 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1480 * online bringup to the hotplug thread.
1481 */
cpuhp_online_idle(enum cpuhp_state state)1482 void cpuhp_online_idle(enum cpuhp_state state)
1483 {
1484 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1485
1486 /* Happens for the boot cpu */
1487 if (state != CPUHP_AP_ONLINE_IDLE)
1488 return;
1489
1490 /*
1491 * Unpart the stopper thread before we start the idle loop (and start
1492 * scheduling); this ensures the stopper task is always available.
1493 */
1494 stop_machine_unpark(smp_processor_id());
1495
1496 st->state = CPUHP_AP_ONLINE_IDLE;
1497 complete_ap_thread(st, true);
1498 }
1499
switch_to_rt_policy(void)1500 static int switch_to_rt_policy(void)
1501 {
1502 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1503 unsigned int policy = current->policy;
1504
1505 if (policy == SCHED_NORMAL)
1506 /* Switch to SCHED_FIFO from SCHED_NORMAL. */
1507 return sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
1508 else
1509 return 1;
1510 }
1511
switch_to_fair_policy(void)1512 static int switch_to_fair_policy(void)
1513 {
1514 struct sched_param param = { .sched_priority = 0 };
1515
1516 return sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m);
1517 }
1518
1519 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1520 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1521 {
1522 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1523 struct task_struct *idle;
1524 int ret = 0;
1525
1526 cpus_write_lock();
1527
1528 if (!cpu_present(cpu)) {
1529 ret = -EINVAL;
1530 goto out;
1531 }
1532
1533 /*
1534 * The caller of cpu_up() might have raced with another
1535 * caller. Nothing to do.
1536 */
1537 if (st->state >= target)
1538 goto out;
1539
1540 if (st->state == CPUHP_OFFLINE) {
1541 /* Let it fail before we try to bring the cpu up */
1542 idle = idle_thread_get(cpu);
1543 if (IS_ERR(idle)) {
1544 ret = PTR_ERR(idle);
1545 goto out;
1546 }
1547 }
1548
1549 cpuhp_tasks_frozen = tasks_frozen;
1550
1551 cpuhp_set_state(st, target);
1552 /*
1553 * If the current CPU state is in the range of the AP hotplug thread,
1554 * then we need to kick the thread once more.
1555 */
1556 if (st->state > CPUHP_BRINGUP_CPU) {
1557 ret = cpuhp_kick_ap_work(cpu);
1558 /*
1559 * The AP side has done the error rollback already. Just
1560 * return the error code..
1561 */
1562 if (ret)
1563 goto out;
1564 }
1565
1566 /*
1567 * Try to reach the target state. We max out on the BP at
1568 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1569 * responsible for bringing it up to the target state.
1570 */
1571 target = min((int)target, CPUHP_BRINGUP_CPU);
1572 ret = cpuhp_up_callbacks(cpu, st, target);
1573 out:
1574 cpus_write_unlock();
1575 arch_smt_update();
1576 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1577 return ret;
1578 }
1579
cpu_up(unsigned int cpu,enum cpuhp_state target)1580 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1581 {
1582 int err = 0;
1583 int switch_err;
1584
1585 if (!cpu_possible(cpu)) {
1586 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1587 cpu);
1588 #if defined(CONFIG_IA64)
1589 pr_err("please check additional_cpus= boot parameter\n");
1590 #endif
1591 return -EINVAL;
1592 }
1593
1594 trace_android_vh_cpu_up(cpu);
1595
1596 /*
1597 * CPU hotplug operations consists of many steps and each step
1598 * calls a callback of core kernel subsystem. CPU hotplug-in
1599 * operation may get preempted by other CFS tasks and whole
1600 * operation of cpu hotplug in CPU gets delayed. Switch the
1601 * current task to SCHED_FIFO from SCHED_NORMAL, so that
1602 * hotplug in operation may complete quickly in heavy loaded
1603 * conditions and new CPU will start handle the workload.
1604 */
1605
1606 switch_err = switch_to_rt_policy();
1607
1608 err = try_online_node(cpu_to_node(cpu));
1609 if (err)
1610 goto switch_out;
1611
1612 cpu_maps_update_begin();
1613
1614 if (cpu_hotplug_disabled) {
1615 err = -EBUSY;
1616 goto out;
1617 }
1618 if (!cpu_smt_allowed(cpu)) {
1619 err = -EPERM;
1620 goto out;
1621 }
1622
1623 err = _cpu_up(cpu, 0, target);
1624 out:
1625 cpu_maps_update_done();
1626 switch_out:
1627 if (!switch_err) {
1628 switch_err = switch_to_fair_policy();
1629 if (switch_err)
1630 pr_err("Hotplug policy switch err=%d Task %s pid=%d\n",
1631 switch_err, current->comm, current->pid);
1632 }
1633
1634 return err;
1635 }
1636
1637 /**
1638 * cpu_device_up - Bring up a cpu device
1639 * @dev: Pointer to the cpu device to online
1640 *
1641 * This function is meant to be used by device core cpu subsystem only.
1642 *
1643 * Other subsystems should use add_cpu() instead.
1644 */
cpu_device_up(struct device * dev)1645 int cpu_device_up(struct device *dev)
1646 {
1647 return cpu_up(dev->id, CPUHP_ONLINE);
1648 }
1649
add_cpu(unsigned int cpu)1650 int add_cpu(unsigned int cpu)
1651 {
1652 int ret;
1653
1654 lock_device_hotplug();
1655 ret = device_online(get_cpu_device(cpu));
1656 unlock_device_hotplug();
1657
1658 return ret;
1659 }
1660 EXPORT_SYMBOL_GPL(add_cpu);
1661
1662 /**
1663 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1664 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1665 *
1666 * On some architectures like arm64, we can hibernate on any CPU, but on
1667 * wake up the CPU we hibernated on might be offline as a side effect of
1668 * using maxcpus= for example.
1669 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1670 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1671 {
1672 int ret;
1673
1674 if (!cpu_online(sleep_cpu)) {
1675 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1676 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1677 if (ret) {
1678 pr_err("Failed to bring hibernate-CPU up!\n");
1679 return ret;
1680 }
1681 }
1682 return 0;
1683 }
1684
bringup_nonboot_cpus(unsigned int setup_max_cpus)1685 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1686 {
1687 unsigned int cpu;
1688
1689 for_each_present_cpu(cpu) {
1690 if (num_online_cpus() >= setup_max_cpus)
1691 break;
1692 if (!cpu_online(cpu))
1693 cpu_up(cpu, CPUHP_ONLINE);
1694 }
1695 }
1696
1697 #ifdef CONFIG_PM_SLEEP_SMP
1698 static cpumask_var_t frozen_cpus;
1699
freeze_secondary_cpus(int primary)1700 int freeze_secondary_cpus(int primary)
1701 {
1702 int cpu, error = 0;
1703
1704 cpu_maps_update_begin();
1705 if (primary == -1) {
1706 primary = cpumask_first(cpu_online_mask);
1707 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1708 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1709 } else {
1710 if (!cpu_online(primary))
1711 primary = cpumask_first(cpu_online_mask);
1712 }
1713
1714 /*
1715 * We take down all of the non-boot CPUs in one shot to avoid races
1716 * with the userspace trying to use the CPU hotplug at the same time
1717 */
1718 cpumask_clear(frozen_cpus);
1719
1720 pr_info("Disabling non-boot CPUs ...\n");
1721 for_each_online_cpu(cpu) {
1722 if (cpu == primary)
1723 continue;
1724
1725 if (pm_wakeup_pending()) {
1726 pr_info("Wakeup pending. Abort CPU freeze\n");
1727 error = -EBUSY;
1728 break;
1729 }
1730
1731 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1732 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1733 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1734 if (!error)
1735 cpumask_set_cpu(cpu, frozen_cpus);
1736 else {
1737 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1738 break;
1739 }
1740 }
1741
1742 if (!error)
1743 BUG_ON(num_online_cpus() > 1);
1744 else
1745 pr_err("Non-boot CPUs are not disabled\n");
1746
1747 /*
1748 * Make sure the CPUs won't be enabled by someone else. We need to do
1749 * this even in case of failure as all freeze_secondary_cpus() users are
1750 * supposed to do thaw_secondary_cpus() on the failure path.
1751 */
1752 cpu_hotplug_disabled++;
1753
1754 cpu_maps_update_done();
1755 return error;
1756 }
1757
arch_thaw_secondary_cpus_begin(void)1758 void __weak arch_thaw_secondary_cpus_begin(void)
1759 {
1760 }
1761
arch_thaw_secondary_cpus_end(void)1762 void __weak arch_thaw_secondary_cpus_end(void)
1763 {
1764 }
1765
thaw_secondary_cpus(void)1766 void thaw_secondary_cpus(void)
1767 {
1768 int cpu, error;
1769 struct device *cpu_device;
1770
1771 /* Allow everyone to use the CPU hotplug again */
1772 cpu_maps_update_begin();
1773 __cpu_hotplug_enable();
1774 if (cpumask_empty(frozen_cpus))
1775 goto out;
1776
1777 pr_info("Enabling non-boot CPUs ...\n");
1778
1779 arch_thaw_secondary_cpus_begin();
1780
1781 for_each_cpu(cpu, frozen_cpus) {
1782 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1783 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1784 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1785 if (!error) {
1786 pr_info("CPU%d is up\n", cpu);
1787 cpu_device = get_cpu_device(cpu);
1788 if (!cpu_device)
1789 pr_err("%s: failed to get cpu%d device\n",
1790 __func__, cpu);
1791 else
1792 kobject_uevent(&cpu_device->kobj, KOBJ_ONLINE);
1793 continue;
1794 }
1795 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1796 }
1797
1798 arch_thaw_secondary_cpus_end();
1799
1800 cpumask_clear(frozen_cpus);
1801 out:
1802 cpu_maps_update_done();
1803 }
1804
alloc_frozen_cpus(void)1805 static int __init alloc_frozen_cpus(void)
1806 {
1807 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1808 return -ENOMEM;
1809 return 0;
1810 }
1811 core_initcall(alloc_frozen_cpus);
1812
1813 /*
1814 * When callbacks for CPU hotplug notifications are being executed, we must
1815 * ensure that the state of the system with respect to the tasks being frozen
1816 * or not, as reported by the notification, remains unchanged *throughout the
1817 * duration* of the execution of the callbacks.
1818 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1819 *
1820 * This synchronization is implemented by mutually excluding regular CPU
1821 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1822 * Hibernate notifications.
1823 */
1824 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1825 cpu_hotplug_pm_callback(struct notifier_block *nb,
1826 unsigned long action, void *ptr)
1827 {
1828 switch (action) {
1829
1830 case PM_SUSPEND_PREPARE:
1831 case PM_HIBERNATION_PREPARE:
1832 cpu_hotplug_disable();
1833 break;
1834
1835 case PM_POST_SUSPEND:
1836 case PM_POST_HIBERNATION:
1837 cpu_hotplug_enable();
1838 break;
1839
1840 default:
1841 return NOTIFY_DONE;
1842 }
1843
1844 return NOTIFY_OK;
1845 }
1846
1847
cpu_hotplug_pm_sync_init(void)1848 static int __init cpu_hotplug_pm_sync_init(void)
1849 {
1850 /*
1851 * cpu_hotplug_pm_callback has higher priority than x86
1852 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1853 * to disable cpu hotplug to avoid cpu hotplug race.
1854 */
1855 pm_notifier(cpu_hotplug_pm_callback, 0);
1856 return 0;
1857 }
1858 core_initcall(cpu_hotplug_pm_sync_init);
1859
1860 #endif /* CONFIG_PM_SLEEP_SMP */
1861
1862 int __boot_cpu_id;
1863
1864 /* Horrific hacks because we can't add more to cpuhp_hp_states. */
random_and_perf_prepare_fusion(unsigned int cpu)1865 static int random_and_perf_prepare_fusion(unsigned int cpu)
1866 {
1867 #ifdef CONFIG_PERF_EVENTS
1868 perf_event_init_cpu(cpu);
1869 #endif
1870 random_prepare_cpu(cpu);
1871 return 0;
1872 }
random_and_workqueue_online_fusion(unsigned int cpu)1873 static int random_and_workqueue_online_fusion(unsigned int cpu)
1874 {
1875 workqueue_online_cpu(cpu);
1876 random_online_cpu(cpu);
1877 return 0;
1878 }
1879
1880 #endif /* CONFIG_SMP */
1881
1882 /* Boot processor state steps */
1883 static struct cpuhp_step cpuhp_hp_states[] = {
1884 [CPUHP_OFFLINE] = {
1885 .name = "offline",
1886 .startup.single = NULL,
1887 .teardown.single = NULL,
1888 },
1889 #ifdef CONFIG_SMP
1890 [CPUHP_CREATE_THREADS]= {
1891 .name = "threads:prepare",
1892 .startup.single = smpboot_create_threads,
1893 .teardown.single = NULL,
1894 .cant_stop = true,
1895 },
1896 [CPUHP_PERF_PREPARE] = {
1897 .name = "perf:prepare",
1898 .startup.single = random_and_perf_prepare_fusion,
1899 .teardown.single = perf_event_exit_cpu,
1900 },
1901 [CPUHP_WORKQUEUE_PREP] = {
1902 .name = "workqueue:prepare",
1903 .startup.single = workqueue_prepare_cpu,
1904 .teardown.single = NULL,
1905 },
1906 [CPUHP_HRTIMERS_PREPARE] = {
1907 .name = "hrtimers:prepare",
1908 .startup.single = hrtimers_prepare_cpu,
1909 .teardown.single = hrtimers_dead_cpu,
1910 },
1911 [CPUHP_SMPCFD_PREPARE] = {
1912 .name = "smpcfd:prepare",
1913 .startup.single = smpcfd_prepare_cpu,
1914 .teardown.single = smpcfd_dead_cpu,
1915 },
1916 [CPUHP_RELAY_PREPARE] = {
1917 .name = "relay:prepare",
1918 .startup.single = relay_prepare_cpu,
1919 .teardown.single = NULL,
1920 },
1921 [CPUHP_SLAB_PREPARE] = {
1922 .name = "slab:prepare",
1923 .startup.single = slab_prepare_cpu,
1924 .teardown.single = slab_dead_cpu,
1925 },
1926 [CPUHP_RCUTREE_PREP] = {
1927 .name = "RCU/tree:prepare",
1928 .startup.single = rcutree_prepare_cpu,
1929 .teardown.single = rcutree_dead_cpu,
1930 },
1931 /*
1932 * On the tear-down path, timers_dead_cpu() must be invoked
1933 * before blk_mq_queue_reinit_notify() from notify_dead(),
1934 * otherwise a RCU stall occurs.
1935 */
1936 [CPUHP_TIMERS_PREPARE] = {
1937 .name = "timers:prepare",
1938 .startup.single = timers_prepare_cpu,
1939 .teardown.single = timers_dead_cpu,
1940 },
1941 /* Kicks the plugged cpu into life */
1942 [CPUHP_BRINGUP_CPU] = {
1943 .name = "cpu:bringup",
1944 .startup.single = bringup_cpu,
1945 .teardown.single = finish_cpu,
1946 .cant_stop = true,
1947 },
1948 /* Final state before CPU kills itself */
1949 [CPUHP_AP_IDLE_DEAD] = {
1950 .name = "idle:dead",
1951 },
1952 /*
1953 * Last state before CPU enters the idle loop to die. Transient state
1954 * for synchronization.
1955 */
1956 [CPUHP_AP_OFFLINE] = {
1957 .name = "ap:offline",
1958 .cant_stop = true,
1959 },
1960 /* First state is scheduler control. Interrupts are disabled */
1961 [CPUHP_AP_SCHED_STARTING] = {
1962 .name = "sched:starting",
1963 .startup.single = sched_cpu_starting,
1964 .teardown.single = sched_cpu_dying,
1965 },
1966 [CPUHP_AP_RCUTREE_DYING] = {
1967 .name = "RCU/tree:dying",
1968 .startup.single = NULL,
1969 .teardown.single = rcutree_dying_cpu,
1970 },
1971 [CPUHP_AP_SMPCFD_DYING] = {
1972 .name = "smpcfd:dying",
1973 .startup.single = NULL,
1974 .teardown.single = smpcfd_dying_cpu,
1975 },
1976 /* Entry state on starting. Interrupts enabled from here on. Transient
1977 * state for synchronsization */
1978 [CPUHP_AP_ONLINE] = {
1979 .name = "ap:online",
1980 },
1981 /*
1982 * Handled on controll processor until the plugged processor manages
1983 * this itself.
1984 */
1985 [CPUHP_TEARDOWN_CPU] = {
1986 .name = "cpu:teardown",
1987 .startup.single = NULL,
1988 .teardown.single = takedown_cpu,
1989 .cant_stop = true,
1990 },
1991 /* Handle smpboot threads park/unpark */
1992 [CPUHP_AP_SMPBOOT_THREADS] = {
1993 .name = "smpboot/threads:online",
1994 .startup.single = smpboot_unpark_threads,
1995 .teardown.single = smpboot_park_threads,
1996 },
1997 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1998 .name = "irq/affinity:online",
1999 .startup.single = irq_affinity_online_cpu,
2000 .teardown.single = NULL,
2001 },
2002 [CPUHP_AP_PERF_ONLINE] = {
2003 .name = "perf:online",
2004 .startup.single = perf_event_init_cpu,
2005 .teardown.single = perf_event_exit_cpu,
2006 },
2007 [CPUHP_AP_WATCHDOG_ONLINE] = {
2008 .name = "lockup_detector:online",
2009 .startup.single = lockup_detector_online_cpu,
2010 .teardown.single = lockup_detector_offline_cpu,
2011 },
2012 [CPUHP_AP_WORKQUEUE_ONLINE] = {
2013 .name = "workqueue:online",
2014 .startup.single = random_and_workqueue_online_fusion,
2015 .teardown.single = workqueue_offline_cpu,
2016 },
2017 [CPUHP_AP_RCUTREE_ONLINE] = {
2018 .name = "RCU/tree:online",
2019 .startup.single = rcutree_online_cpu,
2020 .teardown.single = rcutree_offline_cpu,
2021 },
2022 #endif
2023 /*
2024 * The dynamically registered state space is here
2025 */
2026
2027 #ifdef CONFIG_SMP
2028 /* Last state is scheduler control setting the cpu active */
2029 [CPUHP_AP_ACTIVE] = {
2030 .name = "sched:active",
2031 .startup.single = sched_cpu_activate,
2032 .teardown.single = sched_cpu_deactivate,
2033 },
2034 #endif
2035
2036 /* CPU is fully up and running. */
2037 [CPUHP_ONLINE] = {
2038 .name = "online",
2039 .startup.single = NULL,
2040 .teardown.single = NULL,
2041 },
2042 };
2043
2044 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)2045 static int cpuhp_cb_check(enum cpuhp_state state)
2046 {
2047 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2048 return -EINVAL;
2049 return 0;
2050 }
2051
2052 /*
2053 * Returns a free for dynamic slot assignment of the Online state. The states
2054 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2055 * by having no name assigned.
2056 */
cpuhp_reserve_state(enum cpuhp_state state)2057 static int cpuhp_reserve_state(enum cpuhp_state state)
2058 {
2059 enum cpuhp_state i, end;
2060 struct cpuhp_step *step;
2061
2062 switch (state) {
2063 case CPUHP_AP_ONLINE_DYN:
2064 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2065 end = CPUHP_AP_ONLINE_DYN_END;
2066 break;
2067 case CPUHP_BP_PREPARE_DYN:
2068 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2069 end = CPUHP_BP_PREPARE_DYN_END;
2070 break;
2071 default:
2072 return -EINVAL;
2073 }
2074
2075 for (i = state; i <= end; i++, step++) {
2076 if (!step->name)
2077 return i;
2078 }
2079 WARN(1, "No more dynamic states available for CPU hotplug\n");
2080 return -ENOSPC;
2081 }
2082
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2083 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2084 int (*startup)(unsigned int cpu),
2085 int (*teardown)(unsigned int cpu),
2086 bool multi_instance)
2087 {
2088 /* (Un)Install the callbacks for further cpu hotplug operations */
2089 struct cpuhp_step *sp;
2090 int ret = 0;
2091
2092 /*
2093 * If name is NULL, then the state gets removed.
2094 *
2095 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2096 * the first allocation from these dynamic ranges, so the removal
2097 * would trigger a new allocation and clear the wrong (already
2098 * empty) state, leaving the callbacks of the to be cleared state
2099 * dangling, which causes wreckage on the next hotplug operation.
2100 */
2101 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2102 state == CPUHP_BP_PREPARE_DYN)) {
2103 ret = cpuhp_reserve_state(state);
2104 if (ret < 0)
2105 return ret;
2106 state = ret;
2107 }
2108 sp = cpuhp_get_step(state);
2109 if (name && sp->name)
2110 return -EBUSY;
2111
2112 sp->startup.single = startup;
2113 sp->teardown.single = teardown;
2114 sp->name = name;
2115 sp->multi_instance = multi_instance;
2116 INIT_HLIST_HEAD(&sp->list);
2117 return ret;
2118 }
2119
cpuhp_get_teardown_cb(enum cpuhp_state state)2120 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2121 {
2122 return cpuhp_get_step(state)->teardown.single;
2123 }
2124
2125 /*
2126 * Call the startup/teardown function for a step either on the AP or
2127 * on the current CPU.
2128 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)2129 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2130 struct hlist_node *node)
2131 {
2132 struct cpuhp_step *sp = cpuhp_get_step(state);
2133 int ret;
2134
2135 /*
2136 * If there's nothing to do, we done.
2137 * Relies on the union for multi_instance.
2138 */
2139 if ((bringup && !sp->startup.single) ||
2140 (!bringup && !sp->teardown.single))
2141 return 0;
2142 /*
2143 * The non AP bound callbacks can fail on bringup. On teardown
2144 * e.g. module removal we crash for now.
2145 */
2146 #ifdef CONFIG_SMP
2147 if (cpuhp_is_ap_state(state))
2148 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2149 else
2150 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2151 #else
2152 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2153 #endif
2154 BUG_ON(ret && !bringup);
2155 return ret;
2156 }
2157
2158 /*
2159 * Called from __cpuhp_setup_state on a recoverable failure.
2160 *
2161 * Note: The teardown callbacks for rollback are not allowed to fail!
2162 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2163 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2164 struct hlist_node *node)
2165 {
2166 int cpu;
2167
2168 /* Roll back the already executed steps on the other cpus */
2169 for_each_present_cpu(cpu) {
2170 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2171 int cpustate = st->state;
2172
2173 if (cpu >= failedcpu)
2174 break;
2175
2176 /* Did we invoke the startup call on that cpu ? */
2177 if (cpustate >= state)
2178 cpuhp_issue_call(cpu, state, false, node);
2179 }
2180 }
2181
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2182 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2183 struct hlist_node *node,
2184 bool invoke)
2185 {
2186 struct cpuhp_step *sp;
2187 int cpu;
2188 int ret;
2189
2190 lockdep_assert_cpus_held();
2191
2192 sp = cpuhp_get_step(state);
2193 if (sp->multi_instance == false)
2194 return -EINVAL;
2195
2196 mutex_lock(&cpuhp_state_mutex);
2197
2198 if (!invoke || !sp->startup.multi)
2199 goto add_node;
2200
2201 /*
2202 * Try to call the startup callback for each present cpu
2203 * depending on the hotplug state of the cpu.
2204 */
2205 for_each_present_cpu(cpu) {
2206 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2207 int cpustate = st->state;
2208
2209 if (cpustate < state)
2210 continue;
2211
2212 ret = cpuhp_issue_call(cpu, state, true, node);
2213 if (ret) {
2214 if (sp->teardown.multi)
2215 cpuhp_rollback_install(cpu, state, node);
2216 goto unlock;
2217 }
2218 }
2219 add_node:
2220 ret = 0;
2221 hlist_add_head(node, &sp->list);
2222 unlock:
2223 mutex_unlock(&cpuhp_state_mutex);
2224 return ret;
2225 }
2226
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2227 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2228 bool invoke)
2229 {
2230 int ret;
2231
2232 cpus_read_lock();
2233 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2234 cpus_read_unlock();
2235 return ret;
2236 }
2237 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2238
2239 /**
2240 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2241 * @state: The state to setup
2242 * @invoke: If true, the startup function is invoked for cpus where
2243 * cpu state >= @state
2244 * @startup: startup callback function
2245 * @teardown: teardown callback function
2246 * @multi_instance: State is set up for multiple instances which get
2247 * added afterwards.
2248 *
2249 * The caller needs to hold cpus read locked while calling this function.
2250 * Returns:
2251 * On success:
2252 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
2253 * 0 for all other states
2254 * On failure: proper (negative) error code
2255 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2256 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2257 const char *name, bool invoke,
2258 int (*startup)(unsigned int cpu),
2259 int (*teardown)(unsigned int cpu),
2260 bool multi_instance)
2261 {
2262 int cpu, ret = 0;
2263 bool dynstate;
2264
2265 lockdep_assert_cpus_held();
2266
2267 if (cpuhp_cb_check(state) || !name)
2268 return -EINVAL;
2269
2270 mutex_lock(&cpuhp_state_mutex);
2271
2272 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2273 multi_instance);
2274
2275 dynstate = state == CPUHP_AP_ONLINE_DYN;
2276 if (ret > 0 && dynstate) {
2277 state = ret;
2278 ret = 0;
2279 }
2280
2281 if (ret || !invoke || !startup)
2282 goto out;
2283
2284 /*
2285 * Try to call the startup callback for each present cpu
2286 * depending on the hotplug state of the cpu.
2287 */
2288 for_each_present_cpu(cpu) {
2289 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2290 int cpustate = st->state;
2291
2292 if (cpustate < state)
2293 continue;
2294
2295 ret = cpuhp_issue_call(cpu, state, true, NULL);
2296 if (ret) {
2297 if (teardown)
2298 cpuhp_rollback_install(cpu, state, NULL);
2299 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2300 goto out;
2301 }
2302 }
2303 out:
2304 mutex_unlock(&cpuhp_state_mutex);
2305 /*
2306 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2307 * dynamically allocated state in case of success.
2308 */
2309 if (!ret && dynstate)
2310 return state;
2311 return ret;
2312 }
2313 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2314
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2315 int __cpuhp_setup_state(enum cpuhp_state state,
2316 const char *name, bool invoke,
2317 int (*startup)(unsigned int cpu),
2318 int (*teardown)(unsigned int cpu),
2319 bool multi_instance)
2320 {
2321 int ret;
2322
2323 cpus_read_lock();
2324 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2325 teardown, multi_instance);
2326 cpus_read_unlock();
2327 return ret;
2328 }
2329 EXPORT_SYMBOL(__cpuhp_setup_state);
2330
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2331 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2332 struct hlist_node *node, bool invoke)
2333 {
2334 struct cpuhp_step *sp = cpuhp_get_step(state);
2335 int cpu;
2336
2337 BUG_ON(cpuhp_cb_check(state));
2338
2339 if (!sp->multi_instance)
2340 return -EINVAL;
2341
2342 cpus_read_lock();
2343 mutex_lock(&cpuhp_state_mutex);
2344
2345 if (!invoke || !cpuhp_get_teardown_cb(state))
2346 goto remove;
2347 /*
2348 * Call the teardown callback for each present cpu depending
2349 * on the hotplug state of the cpu. This function is not
2350 * allowed to fail currently!
2351 */
2352 for_each_present_cpu(cpu) {
2353 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2354 int cpustate = st->state;
2355
2356 if (cpustate >= state)
2357 cpuhp_issue_call(cpu, state, false, node);
2358 }
2359
2360 remove:
2361 hlist_del(node);
2362 mutex_unlock(&cpuhp_state_mutex);
2363 cpus_read_unlock();
2364
2365 return 0;
2366 }
2367 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2368
2369 /**
2370 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2371 * @state: The state to remove
2372 * @invoke: If true, the teardown function is invoked for cpus where
2373 * cpu state >= @state
2374 *
2375 * The caller needs to hold cpus read locked while calling this function.
2376 * The teardown callback is currently not allowed to fail. Think
2377 * about module removal!
2378 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2379 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2380 {
2381 struct cpuhp_step *sp = cpuhp_get_step(state);
2382 int cpu;
2383
2384 BUG_ON(cpuhp_cb_check(state));
2385
2386 lockdep_assert_cpus_held();
2387
2388 mutex_lock(&cpuhp_state_mutex);
2389 if (sp->multi_instance) {
2390 WARN(!hlist_empty(&sp->list),
2391 "Error: Removing state %d which has instances left.\n",
2392 state);
2393 goto remove;
2394 }
2395
2396 if (!invoke || !cpuhp_get_teardown_cb(state))
2397 goto remove;
2398
2399 /*
2400 * Call the teardown callback for each present cpu depending
2401 * on the hotplug state of the cpu. This function is not
2402 * allowed to fail currently!
2403 */
2404 for_each_present_cpu(cpu) {
2405 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2406 int cpustate = st->state;
2407
2408 if (cpustate >= state)
2409 cpuhp_issue_call(cpu, state, false, NULL);
2410 }
2411 remove:
2412 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2413 mutex_unlock(&cpuhp_state_mutex);
2414 }
2415 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2416
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2417 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2418 {
2419 cpus_read_lock();
2420 __cpuhp_remove_state_cpuslocked(state, invoke);
2421 cpus_read_unlock();
2422 }
2423 EXPORT_SYMBOL(__cpuhp_remove_state);
2424
2425 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2426 static void cpuhp_offline_cpu_device(unsigned int cpu)
2427 {
2428 struct device *dev = get_cpu_device(cpu);
2429
2430 dev->offline = true;
2431 /* Tell user space about the state change */
2432 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2433 }
2434
cpuhp_online_cpu_device(unsigned int cpu)2435 static void cpuhp_online_cpu_device(unsigned int cpu)
2436 {
2437 struct device *dev = get_cpu_device(cpu);
2438
2439 dev->offline = false;
2440 /* Tell user space about the state change */
2441 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2442 }
2443
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2444 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2445 {
2446 int cpu, ret = 0;
2447
2448 cpu_maps_update_begin();
2449 for_each_online_cpu(cpu) {
2450 if (topology_is_primary_thread(cpu))
2451 continue;
2452 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2453 if (ret)
2454 break;
2455 /*
2456 * As this needs to hold the cpu maps lock it's impossible
2457 * to call device_offline() because that ends up calling
2458 * cpu_down() which takes cpu maps lock. cpu maps lock
2459 * needs to be held as this might race against in kernel
2460 * abusers of the hotplug machinery (thermal management).
2461 *
2462 * So nothing would update device:offline state. That would
2463 * leave the sysfs entry stale and prevent onlining after
2464 * smt control has been changed to 'off' again. This is
2465 * called under the sysfs hotplug lock, so it is properly
2466 * serialized against the regular offline usage.
2467 */
2468 cpuhp_offline_cpu_device(cpu);
2469 }
2470 if (!ret)
2471 cpu_smt_control = ctrlval;
2472 cpu_maps_update_done();
2473 return ret;
2474 }
2475
cpuhp_smt_enable(void)2476 int cpuhp_smt_enable(void)
2477 {
2478 int cpu, ret = 0;
2479
2480 cpu_maps_update_begin();
2481 cpu_smt_control = CPU_SMT_ENABLED;
2482 for_each_present_cpu(cpu) {
2483 /* Skip online CPUs and CPUs on offline nodes */
2484 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2485 continue;
2486 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2487 if (ret)
2488 break;
2489 /* See comment in cpuhp_smt_disable() */
2490 cpuhp_online_cpu_device(cpu);
2491 }
2492 cpu_maps_update_done();
2493 return ret;
2494 }
2495 #endif
2496
2497 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2498 static ssize_t show_cpuhp_state(struct device *dev,
2499 struct device_attribute *attr, char *buf)
2500 {
2501 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2502
2503 return sprintf(buf, "%d\n", st->state);
2504 }
2505 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2506
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2507 static ssize_t write_cpuhp_target(struct device *dev,
2508 struct device_attribute *attr,
2509 const char *buf, size_t count)
2510 {
2511 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2512 struct cpuhp_step *sp;
2513 int target, ret;
2514
2515 ret = kstrtoint(buf, 10, &target);
2516 if (ret)
2517 return ret;
2518
2519 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2520 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2521 return -EINVAL;
2522 #else
2523 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2524 return -EINVAL;
2525 #endif
2526
2527 ret = lock_device_hotplug_sysfs();
2528 if (ret)
2529 return ret;
2530
2531 mutex_lock(&cpuhp_state_mutex);
2532 sp = cpuhp_get_step(target);
2533 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2534 mutex_unlock(&cpuhp_state_mutex);
2535 if (ret)
2536 goto out;
2537
2538 if (st->state < target)
2539 ret = cpu_up(dev->id, target);
2540 else if (st->state > target)
2541 ret = cpu_down(dev->id, target);
2542 else if (WARN_ON(st->target != target))
2543 st->target = target;
2544 out:
2545 unlock_device_hotplug();
2546 return ret ? ret : count;
2547 }
2548
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2549 static ssize_t show_cpuhp_target(struct device *dev,
2550 struct device_attribute *attr, char *buf)
2551 {
2552 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2553
2554 return sprintf(buf, "%d\n", st->target);
2555 }
2556 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2557
2558
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2559 static ssize_t write_cpuhp_fail(struct device *dev,
2560 struct device_attribute *attr,
2561 const char *buf, size_t count)
2562 {
2563 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2564 struct cpuhp_step *sp;
2565 int fail, ret;
2566
2567 ret = kstrtoint(buf, 10, &fail);
2568 if (ret)
2569 return ret;
2570
2571 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2572 return -EINVAL;
2573
2574 /*
2575 * Cannot fail STARTING/DYING callbacks.
2576 */
2577 if (cpuhp_is_atomic_state(fail))
2578 return -EINVAL;
2579
2580 /*
2581 * Cannot fail anything that doesn't have callbacks.
2582 */
2583 mutex_lock(&cpuhp_state_mutex);
2584 sp = cpuhp_get_step(fail);
2585 if (!sp->startup.single && !sp->teardown.single)
2586 ret = -EINVAL;
2587 mutex_unlock(&cpuhp_state_mutex);
2588 if (ret)
2589 return ret;
2590
2591 st->fail = fail;
2592
2593 return count;
2594 }
2595
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2596 static ssize_t show_cpuhp_fail(struct device *dev,
2597 struct device_attribute *attr, char *buf)
2598 {
2599 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2600
2601 return sprintf(buf, "%d\n", st->fail);
2602 }
2603
2604 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2605
2606 static struct attribute *cpuhp_cpu_attrs[] = {
2607 &dev_attr_state.attr,
2608 &dev_attr_target.attr,
2609 &dev_attr_fail.attr,
2610 NULL
2611 };
2612
2613 static const struct attribute_group cpuhp_cpu_attr_group = {
2614 .attrs = cpuhp_cpu_attrs,
2615 .name = "hotplug",
2616 NULL
2617 };
2618
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2619 static ssize_t show_cpuhp_states(struct device *dev,
2620 struct device_attribute *attr, char *buf)
2621 {
2622 ssize_t cur, res = 0;
2623 int i;
2624
2625 mutex_lock(&cpuhp_state_mutex);
2626 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2627 struct cpuhp_step *sp = cpuhp_get_step(i);
2628
2629 if (sp->name) {
2630 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2631 buf += cur;
2632 res += cur;
2633 }
2634 }
2635 mutex_unlock(&cpuhp_state_mutex);
2636 return res;
2637 }
2638 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2639
2640 static struct attribute *cpuhp_cpu_root_attrs[] = {
2641 &dev_attr_states.attr,
2642 NULL
2643 };
2644
2645 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2646 .attrs = cpuhp_cpu_root_attrs,
2647 .name = "hotplug",
2648 NULL
2649 };
2650
2651 #ifdef CONFIG_HOTPLUG_SMT
2652
2653 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2654 __store_smt_control(struct device *dev, struct device_attribute *attr,
2655 const char *buf, size_t count)
2656 {
2657 int ctrlval, ret;
2658
2659 if (sysfs_streq(buf, "on"))
2660 ctrlval = CPU_SMT_ENABLED;
2661 else if (sysfs_streq(buf, "off"))
2662 ctrlval = CPU_SMT_DISABLED;
2663 else if (sysfs_streq(buf, "forceoff"))
2664 ctrlval = CPU_SMT_FORCE_DISABLED;
2665 else
2666 return -EINVAL;
2667
2668 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2669 return -EPERM;
2670
2671 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2672 return -ENODEV;
2673
2674 ret = lock_device_hotplug_sysfs();
2675 if (ret)
2676 return ret;
2677
2678 if (ctrlval != cpu_smt_control) {
2679 switch (ctrlval) {
2680 case CPU_SMT_ENABLED:
2681 ret = cpuhp_smt_enable();
2682 break;
2683 case CPU_SMT_DISABLED:
2684 case CPU_SMT_FORCE_DISABLED:
2685 ret = cpuhp_smt_disable(ctrlval);
2686 break;
2687 }
2688 }
2689
2690 unlock_device_hotplug();
2691 return ret ? ret : count;
2692 }
2693
2694 #else /* !CONFIG_HOTPLUG_SMT */
2695 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2696 __store_smt_control(struct device *dev, struct device_attribute *attr,
2697 const char *buf, size_t count)
2698 {
2699 return -ENODEV;
2700 }
2701 #endif /* CONFIG_HOTPLUG_SMT */
2702
2703 static const char *smt_states[] = {
2704 [CPU_SMT_ENABLED] = "on",
2705 [CPU_SMT_DISABLED] = "off",
2706 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2707 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2708 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2709 };
2710
2711 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2712 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2713 {
2714 const char *state = smt_states[cpu_smt_control];
2715
2716 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2717 }
2718
2719 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2720 store_smt_control(struct device *dev, struct device_attribute *attr,
2721 const char *buf, size_t count)
2722 {
2723 return __store_smt_control(dev, attr, buf, count);
2724 }
2725 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2726
2727 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2728 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2729 {
2730 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2731 }
2732 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2733
2734 static struct attribute *cpuhp_smt_attrs[] = {
2735 &dev_attr_control.attr,
2736 &dev_attr_active.attr,
2737 NULL
2738 };
2739
2740 static const struct attribute_group cpuhp_smt_attr_group = {
2741 .attrs = cpuhp_smt_attrs,
2742 .name = "smt",
2743 NULL
2744 };
2745
cpu_smt_sysfs_init(void)2746 static int __init cpu_smt_sysfs_init(void)
2747 {
2748 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2749 &cpuhp_smt_attr_group);
2750 }
2751
cpuhp_sysfs_init(void)2752 static int __init cpuhp_sysfs_init(void)
2753 {
2754 int cpu, ret;
2755
2756 ret = cpu_smt_sysfs_init();
2757 if (ret)
2758 return ret;
2759
2760 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2761 &cpuhp_cpu_root_attr_group);
2762 if (ret)
2763 return ret;
2764
2765 for_each_possible_cpu(cpu) {
2766 struct device *dev = get_cpu_device(cpu);
2767
2768 if (!dev)
2769 continue;
2770 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2771 if (ret)
2772 return ret;
2773 }
2774 return 0;
2775 }
2776 device_initcall(cpuhp_sysfs_init);
2777 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2778
2779 /*
2780 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2781 * represents all NR_CPUS bits binary values of 1<<nr.
2782 *
2783 * It is used by cpumask_of() to get a constant address to a CPU
2784 * mask value that has a single bit set only.
2785 */
2786
2787 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2788 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2789 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2790 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2791 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2792
2793 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2794
2795 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2796 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2797 #if BITS_PER_LONG > 32
2798 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2799 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2800 #endif
2801 };
2802 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2803
2804 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2805 EXPORT_SYMBOL(cpu_all_bits);
2806
2807 #ifdef CONFIG_INIT_ALL_POSSIBLE
2808 struct cpumask __cpu_possible_mask __read_mostly
2809 = {CPU_BITS_ALL};
2810 #else
2811 struct cpumask __cpu_possible_mask __read_mostly;
2812 #endif
2813 EXPORT_SYMBOL(__cpu_possible_mask);
2814
2815 struct cpumask __cpu_online_mask __read_mostly;
2816 EXPORT_SYMBOL(__cpu_online_mask);
2817
2818 struct cpumask __cpu_present_mask __read_mostly;
2819 EXPORT_SYMBOL(__cpu_present_mask);
2820
2821 struct cpumask __cpu_active_mask __read_mostly;
2822 EXPORT_SYMBOL(__cpu_active_mask);
2823
2824 atomic_t __num_online_cpus __read_mostly;
2825 EXPORT_SYMBOL(__num_online_cpus);
2826
init_cpu_present(const struct cpumask * src)2827 void init_cpu_present(const struct cpumask *src)
2828 {
2829 cpumask_copy(&__cpu_present_mask, src);
2830 }
2831
init_cpu_possible(const struct cpumask * src)2832 void init_cpu_possible(const struct cpumask *src)
2833 {
2834 cpumask_copy(&__cpu_possible_mask, src);
2835 }
2836
init_cpu_online(const struct cpumask * src)2837 void init_cpu_online(const struct cpumask *src)
2838 {
2839 cpumask_copy(&__cpu_online_mask, src);
2840 }
2841
set_cpu_online(unsigned int cpu,bool online)2842 void set_cpu_online(unsigned int cpu, bool online)
2843 {
2844 /*
2845 * atomic_inc/dec() is required to handle the horrid abuse of this
2846 * function by the reboot and kexec code which invoke it from
2847 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2848 * regular CPU hotplug is properly serialized.
2849 *
2850 * Note, that the fact that __num_online_cpus is of type atomic_t
2851 * does not protect readers which are not serialized against
2852 * concurrent hotplug operations.
2853 */
2854 if (online) {
2855 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2856 atomic_inc(&__num_online_cpus);
2857 } else {
2858 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2859 atomic_dec(&__num_online_cpus);
2860 }
2861 }
2862
2863 /*
2864 * Activate the first processor.
2865 */
boot_cpu_init(void)2866 void __init boot_cpu_init(void)
2867 {
2868 int cpu = smp_processor_id();
2869
2870 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2871 set_cpu_online(cpu, true);
2872 set_cpu_active(cpu, true);
2873 set_cpu_present(cpu, true);
2874 set_cpu_possible(cpu, true);
2875
2876 #ifdef CONFIG_SMP
2877 __boot_cpu_id = cpu;
2878 #endif
2879 }
2880
2881 /*
2882 * Must be called _AFTER_ setting up the per_cpu areas
2883 */
boot_cpu_hotplug_init(void)2884 void __init boot_cpu_hotplug_init(void)
2885 {
2886 #ifdef CONFIG_SMP
2887 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2888 #endif
2889 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2890 }
2891
2892 /*
2893 * These are used for a global "mitigations=" cmdline option for toggling
2894 * optional CPU mitigations.
2895 */
2896 enum cpu_mitigations {
2897 CPU_MITIGATIONS_OFF,
2898 CPU_MITIGATIONS_AUTO,
2899 CPU_MITIGATIONS_AUTO_NOSMT,
2900 };
2901
2902 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2903 CPU_MITIGATIONS_AUTO;
2904
mitigations_parse_cmdline(char * arg)2905 static int __init mitigations_parse_cmdline(char *arg)
2906 {
2907 if (!strcmp(arg, "off"))
2908 cpu_mitigations = CPU_MITIGATIONS_OFF;
2909 else if (!strcmp(arg, "auto"))
2910 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2911 else if (!strcmp(arg, "auto,nosmt"))
2912 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2913 else
2914 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2915 arg);
2916
2917 return 0;
2918 }
2919 early_param("mitigations", mitigations_parse_cmdline);
2920
2921 /* mitigations=off */
cpu_mitigations_off(void)2922 bool cpu_mitigations_off(void)
2923 {
2924 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2925 }
2926 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2927
2928 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2929 bool cpu_mitigations_auto_nosmt(void)
2930 {
2931 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2932 }
2933 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2934