1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69
70 #include <trace/hooks/sched.h>
71 #include <trace/hooks/cgroup.h>
72
73 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
74 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
75
76 /* See "Frequency meter" comments, below. */
77
78 struct fmeter {
79 int cnt; /* unprocessed events count */
80 int val; /* most recent output value */
81 time64_t time; /* clock (secs) when val computed */
82 spinlock_t lock; /* guards read or write of above */
83 };
84
85 struct cpuset {
86 struct cgroup_subsys_state css;
87
88 unsigned long flags; /* "unsigned long" so bitops work */
89
90 /*
91 * On default hierarchy:
92 *
93 * The user-configured masks can only be changed by writing to
94 * cpuset.cpus and cpuset.mems, and won't be limited by the
95 * parent masks.
96 *
97 * The effective masks is the real masks that apply to the tasks
98 * in the cpuset. They may be changed if the configured masks are
99 * changed or hotplug happens.
100 *
101 * effective_mask == configured_mask & parent's effective_mask,
102 * and if it ends up empty, it will inherit the parent's mask.
103 *
104 *
105 * On legacy hierachy:
106 *
107 * The user-configured masks are always the same with effective masks.
108 */
109
110 /* user-configured CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t cpus_allowed;
112 cpumask_var_t cpus_requested;
113 nodemask_t mems_allowed;
114
115 /* effective CPUs and Memory Nodes allow to tasks */
116 cpumask_var_t effective_cpus;
117 nodemask_t effective_mems;
118
119 /*
120 * CPUs allocated to child sub-partitions (default hierarchy only)
121 * - CPUs granted by the parent = effective_cpus U subparts_cpus
122 * - effective_cpus and subparts_cpus are mutually exclusive.
123 *
124 * effective_cpus contains only onlined CPUs, but subparts_cpus
125 * may have offlined ones.
126 */
127 cpumask_var_t subparts_cpus;
128
129 /*
130 * This is old Memory Nodes tasks took on.
131 *
132 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
133 * - A new cpuset's old_mems_allowed is initialized when some
134 * task is moved into it.
135 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
136 * cpuset.mems_allowed and have tasks' nodemask updated, and
137 * then old_mems_allowed is updated to mems_allowed.
138 */
139 nodemask_t old_mems_allowed;
140
141 struct fmeter fmeter; /* memory_pressure filter */
142
143 /*
144 * Tasks are being attached to this cpuset. Used to prevent
145 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
146 */
147 int attach_in_progress;
148
149 /* partition number for rebuild_sched_domains() */
150 int pn;
151
152 /* for custom sched domain */
153 int relax_domain_level;
154
155 /* number of CPUs in subparts_cpus */
156 int nr_subparts_cpus;
157
158 /* partition root state */
159 int partition_root_state;
160
161 /*
162 * Default hierarchy only:
163 * use_parent_ecpus - set if using parent's effective_cpus
164 * child_ecpus_count - # of children with use_parent_ecpus set
165 */
166 int use_parent_ecpus;
167 int child_ecpus_count;
168
169 /*
170 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
171 * know when to rebuild associated root domain bandwidth information.
172 */
173 int nr_deadline_tasks;
174 int nr_migrate_dl_tasks;
175 u64 sum_migrate_dl_bw;
176 };
177
178 /*
179 * Partition root states:
180 *
181 * 0 - not a partition root
182 *
183 * 1 - partition root
184 *
185 * -1 - invalid partition root
186 * None of the cpus in cpus_allowed can be put into the parent's
187 * subparts_cpus. In this case, the cpuset is not a real partition
188 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
189 * and the cpuset can be restored back to a partition root if the
190 * parent cpuset can give more CPUs back to this child cpuset.
191 */
192 #define PRS_DISABLED 0
193 #define PRS_ENABLED 1
194 #define PRS_ERROR -1
195
196 /*
197 * Temporary cpumasks for working with partitions that are passed among
198 * functions to avoid memory allocation in inner functions.
199 */
200 struct tmpmasks {
201 cpumask_var_t addmask, delmask; /* For partition root */
202 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
203 };
204
css_cs(struct cgroup_subsys_state * css)205 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
206 {
207 return css ? container_of(css, struct cpuset, css) : NULL;
208 }
209
210 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)211 static inline struct cpuset *task_cs(struct task_struct *task)
212 {
213 return css_cs(task_css(task, cpuset_cgrp_id));
214 }
215
parent_cs(struct cpuset * cs)216 static inline struct cpuset *parent_cs(struct cpuset *cs)
217 {
218 return css_cs(cs->css.parent);
219 }
220
inc_dl_tasks_cs(struct task_struct * p)221 void inc_dl_tasks_cs(struct task_struct *p)
222 {
223 struct cpuset *cs = task_cs(p);
224
225 cs->nr_deadline_tasks++;
226 }
227
dec_dl_tasks_cs(struct task_struct * p)228 void dec_dl_tasks_cs(struct task_struct *p)
229 {
230 struct cpuset *cs = task_cs(p);
231
232 cs->nr_deadline_tasks--;
233 }
234
235 /* bits in struct cpuset flags field */
236 typedef enum {
237 CS_ONLINE,
238 CS_CPU_EXCLUSIVE,
239 CS_MEM_EXCLUSIVE,
240 CS_MEM_HARDWALL,
241 CS_MEMORY_MIGRATE,
242 CS_SCHED_LOAD_BALANCE,
243 CS_SPREAD_PAGE,
244 CS_SPREAD_SLAB,
245 } cpuset_flagbits_t;
246
247 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)248 static inline bool is_cpuset_online(struct cpuset *cs)
249 {
250 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
251 }
252
is_cpu_exclusive(const struct cpuset * cs)253 static inline int is_cpu_exclusive(const struct cpuset *cs)
254 {
255 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
256 }
257
is_mem_exclusive(const struct cpuset * cs)258 static inline int is_mem_exclusive(const struct cpuset *cs)
259 {
260 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
261 }
262
is_mem_hardwall(const struct cpuset * cs)263 static inline int is_mem_hardwall(const struct cpuset *cs)
264 {
265 return test_bit(CS_MEM_HARDWALL, &cs->flags);
266 }
267
is_sched_load_balance(const struct cpuset * cs)268 static inline int is_sched_load_balance(const struct cpuset *cs)
269 {
270 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
271 }
272
is_memory_migrate(const struct cpuset * cs)273 static inline int is_memory_migrate(const struct cpuset *cs)
274 {
275 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
276 }
277
is_spread_page(const struct cpuset * cs)278 static inline int is_spread_page(const struct cpuset *cs)
279 {
280 return test_bit(CS_SPREAD_PAGE, &cs->flags);
281 }
282
is_spread_slab(const struct cpuset * cs)283 static inline int is_spread_slab(const struct cpuset *cs)
284 {
285 return test_bit(CS_SPREAD_SLAB, &cs->flags);
286 }
287
is_partition_root(const struct cpuset * cs)288 static inline int is_partition_root(const struct cpuset *cs)
289 {
290 return cs->partition_root_state > 0;
291 }
292
293 static struct cpuset top_cpuset = {
294 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
295 (1 << CS_MEM_EXCLUSIVE)),
296 .partition_root_state = PRS_ENABLED,
297 };
298
299 /**
300 * cpuset_for_each_child - traverse online children of a cpuset
301 * @child_cs: loop cursor pointing to the current child
302 * @pos_css: used for iteration
303 * @parent_cs: target cpuset to walk children of
304 *
305 * Walk @child_cs through the online children of @parent_cs. Must be used
306 * with RCU read locked.
307 */
308 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
309 css_for_each_child((pos_css), &(parent_cs)->css) \
310 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
311
312 /**
313 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
314 * @des_cs: loop cursor pointing to the current descendant
315 * @pos_css: used for iteration
316 * @root_cs: target cpuset to walk ancestor of
317 *
318 * Walk @des_cs through the online descendants of @root_cs. Must be used
319 * with RCU read locked. The caller may modify @pos_css by calling
320 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
321 * iteration and the first node to be visited.
322 */
323 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
324 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
325 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
326
327 /*
328 * There are two global locks guarding cpuset structures - cpuset_mutex and
329 * callback_lock. We also require taking task_lock() when dereferencing a
330 * task's cpuset pointer. See "The task_lock() exception", at the end of this
331 * comment.
332 *
333 * A task must hold both locks to modify cpusets. If a task holds
334 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
335 * is the only task able to also acquire callback_lock and be able to
336 * modify cpusets. It can perform various checks on the cpuset structure
337 * first, knowing nothing will change. It can also allocate memory while
338 * just holding cpuset_mutex. While it is performing these checks, various
339 * callback routines can briefly acquire callback_lock to query cpusets.
340 * Once it is ready to make the changes, it takes callback_lock, blocking
341 * everyone else.
342 *
343 * Calls to the kernel memory allocator can not be made while holding
344 * callback_lock, as that would risk double tripping on callback_lock
345 * from one of the callbacks into the cpuset code from within
346 * __alloc_pages().
347 *
348 * If a task is only holding callback_lock, then it has read-only
349 * access to cpusets.
350 *
351 * Now, the task_struct fields mems_allowed and mempolicy may be changed
352 * by other task, we use alloc_lock in the task_struct fields to protect
353 * them.
354 *
355 * The cpuset_common_file_read() handlers only hold callback_lock across
356 * small pieces of code, such as when reading out possibly multi-word
357 * cpumasks and nodemasks.
358 *
359 * Accessing a task's cpuset should be done in accordance with the
360 * guidelines for accessing subsystem state in kernel/cgroup.c
361 */
362
363 static DEFINE_MUTEX(cpuset_mutex);
364
cpuset_lock(void)365 void cpuset_lock(void)
366 {
367 mutex_lock(&cpuset_mutex);
368 }
369
cpuset_unlock(void)370 void cpuset_unlock(void)
371 {
372 mutex_unlock(&cpuset_mutex);
373 }
374
375 static DEFINE_SPINLOCK(callback_lock);
376
377 static struct workqueue_struct *cpuset_migrate_mm_wq;
378
379 /*
380 * CPU / memory hotplug is handled asynchronously
381 * for hotplug, synchronously for resume_cpus
382 */
383 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
384
385 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
386
387 /*
388 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
389 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
390 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
391 * With v2 behavior, "cpus" and "mems" are always what the users have
392 * requested and won't be changed by hotplug events. Only the effective
393 * cpus or mems will be affected.
394 */
is_in_v2_mode(void)395 static inline bool is_in_v2_mode(void)
396 {
397 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
398 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
399 }
400
401 /*
402 * Return in pmask the portion of a task's cpusets's cpus_allowed that
403 * are online and are capable of running the task. If none are found,
404 * walk up the cpuset hierarchy until we find one that does have some
405 * appropriate cpus.
406 *
407 * One way or another, we guarantee to return some non-empty subset
408 * of cpu_active_mask.
409 *
410 * Call with callback_lock or cpuset_mutex held.
411 */
guarantee_online_cpus(struct task_struct * tsk,struct cpumask * pmask)412 static void guarantee_online_cpus(struct task_struct *tsk,
413 struct cpumask *pmask)
414 {
415 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
416 struct cpuset *cs;
417
418 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
419 cpumask_copy(pmask, cpu_active_mask);
420
421 rcu_read_lock();
422 cs = task_cs(tsk);
423
424 while (!cpumask_intersects(cs->effective_cpus, pmask)) {
425 cs = parent_cs(cs);
426 if (unlikely(!cs)) {
427 /*
428 * The top cpuset doesn't have any online cpu as a
429 * consequence of a race between cpuset_hotplug_work
430 * and cpu hotplug notifier. But we know the top
431 * cpuset's effective_cpus is on its way to be
432 * identical to cpu_online_mask.
433 */
434 goto out_unlock;
435 }
436 }
437 cpumask_and(pmask, pmask, cs->effective_cpus);
438
439 out_unlock:
440 rcu_read_unlock();
441 }
442
443 /*
444 * Return in *pmask the portion of a cpusets's mems_allowed that
445 * are online, with memory. If none are online with memory, walk
446 * up the cpuset hierarchy until we find one that does have some
447 * online mems. The top cpuset always has some mems online.
448 *
449 * One way or another, we guarantee to return some non-empty subset
450 * of node_states[N_MEMORY].
451 *
452 * Call with callback_lock or cpuset_mutex held.
453 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)454 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
455 {
456 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
457 cs = parent_cs(cs);
458 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
459 }
460
461 /*
462 * update task's spread flag if cpuset's page/slab spread flag is set
463 *
464 * Call with callback_lock or cpuset_mutex held.
465 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)466 static void cpuset_update_task_spread_flag(struct cpuset *cs,
467 struct task_struct *tsk)
468 {
469 if (is_spread_page(cs))
470 task_set_spread_page(tsk);
471 else
472 task_clear_spread_page(tsk);
473
474 if (is_spread_slab(cs))
475 task_set_spread_slab(tsk);
476 else
477 task_clear_spread_slab(tsk);
478 }
479
480 /*
481 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
482 *
483 * One cpuset is a subset of another if all its allowed CPUs and
484 * Memory Nodes are a subset of the other, and its exclusive flags
485 * are only set if the other's are set. Call holding cpuset_mutex.
486 */
487
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)488 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
489 {
490 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
491 nodes_subset(p->mems_allowed, q->mems_allowed) &&
492 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
493 is_mem_exclusive(p) <= is_mem_exclusive(q);
494 }
495
496 /**
497 * alloc_cpumasks - allocate three cpumasks for cpuset
498 * @cs: the cpuset that have cpumasks to be allocated.
499 * @tmp: the tmpmasks structure pointer
500 * Return: 0 if successful, -ENOMEM otherwise.
501 *
502 * Only one of the two input arguments should be non-NULL.
503 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)504 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
505 {
506 cpumask_var_t *pmask1, *pmask2, *pmask3;
507
508 if (cs) {
509 pmask1 = &cs->cpus_allowed;
510 pmask2 = &cs->effective_cpus;
511 pmask3 = &cs->subparts_cpus;
512 } else {
513 pmask1 = &tmp->new_cpus;
514 pmask2 = &tmp->addmask;
515 pmask3 = &tmp->delmask;
516 }
517
518 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
519 return -ENOMEM;
520
521 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
522 goto free_one;
523
524 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
525 goto free_two;
526
527 if (cs && !zalloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
528 goto free_three;
529
530 return 0;
531
532 free_three:
533 free_cpumask_var(*pmask3);
534 free_two:
535 free_cpumask_var(*pmask2);
536 free_one:
537 free_cpumask_var(*pmask1);
538 return -ENOMEM;
539 }
540
541 /**
542 * free_cpumasks - free cpumasks in a tmpmasks structure
543 * @cs: the cpuset that have cpumasks to be free.
544 * @tmp: the tmpmasks structure pointer
545 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)546 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
547 {
548 if (cs) {
549 free_cpumask_var(cs->cpus_allowed);
550 free_cpumask_var(cs->cpus_requested);
551 free_cpumask_var(cs->effective_cpus);
552 free_cpumask_var(cs->subparts_cpus);
553 }
554 if (tmp) {
555 free_cpumask_var(tmp->new_cpus);
556 free_cpumask_var(tmp->addmask);
557 free_cpumask_var(tmp->delmask);
558 }
559 }
560
561 /**
562 * alloc_trial_cpuset - allocate a trial cpuset
563 * @cs: the cpuset that the trial cpuset duplicates
564 */
alloc_trial_cpuset(struct cpuset * cs)565 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
566 {
567 struct cpuset *trial;
568
569 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
570 if (!trial)
571 return NULL;
572
573 if (alloc_cpumasks(trial, NULL)) {
574 kfree(trial);
575 return NULL;
576 }
577
578 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
579 cpumask_copy(trial->cpus_requested, cs->cpus_requested);
580 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
581 return trial;
582 }
583
584 /**
585 * free_cpuset - free the cpuset
586 * @cs: the cpuset to be freed
587 */
free_cpuset(struct cpuset * cs)588 static inline void free_cpuset(struct cpuset *cs)
589 {
590 free_cpumasks(cs, NULL);
591 kfree(cs);
592 }
593
594 /*
595 * validate_change() - Used to validate that any proposed cpuset change
596 * follows the structural rules for cpusets.
597 *
598 * If we replaced the flag and mask values of the current cpuset
599 * (cur) with those values in the trial cpuset (trial), would
600 * our various subset and exclusive rules still be valid? Presumes
601 * cpuset_mutex held.
602 *
603 * 'cur' is the address of an actual, in-use cpuset. Operations
604 * such as list traversal that depend on the actual address of the
605 * cpuset in the list must use cur below, not trial.
606 *
607 * 'trial' is the address of bulk structure copy of cur, with
608 * perhaps one or more of the fields cpus_allowed, mems_allowed,
609 * or flags changed to new, trial values.
610 *
611 * Return 0 if valid, -errno if not.
612 */
613
validate_change(struct cpuset * cur,struct cpuset * trial)614 static int validate_change(struct cpuset *cur, struct cpuset *trial)
615 {
616 struct cgroup_subsys_state *css;
617 struct cpuset *c, *par;
618 int ret;
619
620 rcu_read_lock();
621
622 /* Each of our child cpusets must be a subset of us */
623 ret = -EBUSY;
624 cpuset_for_each_child(c, css, cur)
625 if (!is_cpuset_subset(c, trial))
626 goto out;
627
628 /* Remaining checks don't apply to root cpuset */
629 ret = 0;
630 if (cur == &top_cpuset)
631 goto out;
632
633 par = parent_cs(cur);
634
635 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
636 ret = -EACCES;
637 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
638 goto out;
639
640 /*
641 * If either I or some sibling (!= me) is exclusive, we can't
642 * overlap
643 */
644 ret = -EINVAL;
645 cpuset_for_each_child(c, css, par) {
646 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
647 c != cur &&
648 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
649 goto out;
650 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
651 c != cur &&
652 nodes_intersects(trial->mems_allowed, c->mems_allowed))
653 goto out;
654 }
655
656 /*
657 * Cpusets with tasks - existing or newly being attached - can't
658 * be changed to have empty cpus_allowed or mems_allowed.
659 */
660 ret = -ENOSPC;
661 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
662 if (!cpumask_empty(cur->cpus_allowed) &&
663 cpumask_empty(trial->cpus_allowed))
664 goto out;
665 if (!nodes_empty(cur->mems_allowed) &&
666 nodes_empty(trial->mems_allowed))
667 goto out;
668 }
669
670 /*
671 * We can't shrink if we won't have enough room for SCHED_DEADLINE
672 * tasks.
673 */
674 ret = -EBUSY;
675 if (is_cpu_exclusive(cur) &&
676 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
677 trial->cpus_allowed))
678 goto out;
679
680 ret = 0;
681 out:
682 rcu_read_unlock();
683 return ret;
684 }
685
686 #ifdef CONFIG_SMP
687 /*
688 * Helper routine for generate_sched_domains().
689 * Do cpusets a, b have overlapping effective cpus_allowed masks?
690 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)691 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
692 {
693 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
694 }
695
696 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)697 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
698 {
699 if (dattr->relax_domain_level < c->relax_domain_level)
700 dattr->relax_domain_level = c->relax_domain_level;
701 return;
702 }
703
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)704 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
705 struct cpuset *root_cs)
706 {
707 struct cpuset *cp;
708 struct cgroup_subsys_state *pos_css;
709
710 rcu_read_lock();
711 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
712 /* skip the whole subtree if @cp doesn't have any CPU */
713 if (cpumask_empty(cp->cpus_allowed)) {
714 pos_css = css_rightmost_descendant(pos_css);
715 continue;
716 }
717
718 if (is_sched_load_balance(cp))
719 update_domain_attr(dattr, cp);
720 }
721 rcu_read_unlock();
722 }
723
724 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)725 static inline int nr_cpusets(void)
726 {
727 /* jump label reference count + the top-level cpuset */
728 return static_key_count(&cpusets_enabled_key.key) + 1;
729 }
730
731 /*
732 * generate_sched_domains()
733 *
734 * This function builds a partial partition of the systems CPUs
735 * A 'partial partition' is a set of non-overlapping subsets whose
736 * union is a subset of that set.
737 * The output of this function needs to be passed to kernel/sched/core.c
738 * partition_sched_domains() routine, which will rebuild the scheduler's
739 * load balancing domains (sched domains) as specified by that partial
740 * partition.
741 *
742 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
743 * for a background explanation of this.
744 *
745 * Does not return errors, on the theory that the callers of this
746 * routine would rather not worry about failures to rebuild sched
747 * domains when operating in the severe memory shortage situations
748 * that could cause allocation failures below.
749 *
750 * Must be called with cpuset_mutex held.
751 *
752 * The three key local variables below are:
753 * cp - cpuset pointer, used (together with pos_css) to perform a
754 * top-down scan of all cpusets. For our purposes, rebuilding
755 * the schedulers sched domains, we can ignore !is_sched_load_
756 * balance cpusets.
757 * csa - (for CpuSet Array) Array of pointers to all the cpusets
758 * that need to be load balanced, for convenient iterative
759 * access by the subsequent code that finds the best partition,
760 * i.e the set of domains (subsets) of CPUs such that the
761 * cpus_allowed of every cpuset marked is_sched_load_balance
762 * is a subset of one of these domains, while there are as
763 * many such domains as possible, each as small as possible.
764 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
765 * the kernel/sched/core.c routine partition_sched_domains() in a
766 * convenient format, that can be easily compared to the prior
767 * value to determine what partition elements (sched domains)
768 * were changed (added or removed.)
769 *
770 * Finding the best partition (set of domains):
771 * The triple nested loops below over i, j, k scan over the
772 * load balanced cpusets (using the array of cpuset pointers in
773 * csa[]) looking for pairs of cpusets that have overlapping
774 * cpus_allowed, but which don't have the same 'pn' partition
775 * number and gives them in the same partition number. It keeps
776 * looping on the 'restart' label until it can no longer find
777 * any such pairs.
778 *
779 * The union of the cpus_allowed masks from the set of
780 * all cpusets having the same 'pn' value then form the one
781 * element of the partition (one sched domain) to be passed to
782 * partition_sched_domains().
783 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)784 static int generate_sched_domains(cpumask_var_t **domains,
785 struct sched_domain_attr **attributes)
786 {
787 struct cpuset *cp; /* top-down scan of cpusets */
788 struct cpuset **csa; /* array of all cpuset ptrs */
789 int csn; /* how many cpuset ptrs in csa so far */
790 int i, j, k; /* indices for partition finding loops */
791 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
792 struct sched_domain_attr *dattr; /* attributes for custom domains */
793 int ndoms = 0; /* number of sched domains in result */
794 int nslot; /* next empty doms[] struct cpumask slot */
795 struct cgroup_subsys_state *pos_css;
796 bool root_load_balance = is_sched_load_balance(&top_cpuset);
797
798 doms = NULL;
799 dattr = NULL;
800 csa = NULL;
801
802 /* Special case for the 99% of systems with one, full, sched domain */
803 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
804 ndoms = 1;
805 doms = alloc_sched_domains(ndoms);
806 if (!doms)
807 goto done;
808
809 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
810 if (dattr) {
811 *dattr = SD_ATTR_INIT;
812 update_domain_attr_tree(dattr, &top_cpuset);
813 }
814 cpumask_and(doms[0], top_cpuset.effective_cpus,
815 housekeeping_cpumask(HK_FLAG_DOMAIN));
816
817 goto done;
818 }
819
820 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
821 if (!csa)
822 goto done;
823 csn = 0;
824
825 rcu_read_lock();
826 if (root_load_balance)
827 csa[csn++] = &top_cpuset;
828 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
829 if (cp == &top_cpuset)
830 continue;
831 /*
832 * Continue traversing beyond @cp iff @cp has some CPUs and
833 * isn't load balancing. The former is obvious. The
834 * latter: All child cpusets contain a subset of the
835 * parent's cpus, so just skip them, and then we call
836 * update_domain_attr_tree() to calc relax_domain_level of
837 * the corresponding sched domain.
838 *
839 * If root is load-balancing, we can skip @cp if it
840 * is a subset of the root's effective_cpus.
841 */
842 if (!cpumask_empty(cp->cpus_allowed) &&
843 !(is_sched_load_balance(cp) &&
844 cpumask_intersects(cp->cpus_allowed,
845 housekeeping_cpumask(HK_FLAG_DOMAIN))))
846 continue;
847
848 if (root_load_balance &&
849 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
850 continue;
851
852 if (is_sched_load_balance(cp) &&
853 !cpumask_empty(cp->effective_cpus))
854 csa[csn++] = cp;
855
856 /* skip @cp's subtree if not a partition root */
857 if (!is_partition_root(cp))
858 pos_css = css_rightmost_descendant(pos_css);
859 }
860 rcu_read_unlock();
861
862 for (i = 0; i < csn; i++)
863 csa[i]->pn = i;
864 ndoms = csn;
865
866 restart:
867 /* Find the best partition (set of sched domains) */
868 for (i = 0; i < csn; i++) {
869 struct cpuset *a = csa[i];
870 int apn = a->pn;
871
872 for (j = 0; j < csn; j++) {
873 struct cpuset *b = csa[j];
874 int bpn = b->pn;
875
876 if (apn != bpn && cpusets_overlap(a, b)) {
877 for (k = 0; k < csn; k++) {
878 struct cpuset *c = csa[k];
879
880 if (c->pn == bpn)
881 c->pn = apn;
882 }
883 ndoms--; /* one less element */
884 goto restart;
885 }
886 }
887 }
888
889 /*
890 * Now we know how many domains to create.
891 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
892 */
893 doms = alloc_sched_domains(ndoms);
894 if (!doms)
895 goto done;
896
897 /*
898 * The rest of the code, including the scheduler, can deal with
899 * dattr==NULL case. No need to abort if alloc fails.
900 */
901 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
902 GFP_KERNEL);
903
904 for (nslot = 0, i = 0; i < csn; i++) {
905 struct cpuset *a = csa[i];
906 struct cpumask *dp;
907 int apn = a->pn;
908
909 if (apn < 0) {
910 /* Skip completed partitions */
911 continue;
912 }
913
914 dp = doms[nslot];
915
916 if (nslot == ndoms) {
917 static int warnings = 10;
918 if (warnings) {
919 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
920 nslot, ndoms, csn, i, apn);
921 warnings--;
922 }
923 continue;
924 }
925
926 cpumask_clear(dp);
927 if (dattr)
928 *(dattr + nslot) = SD_ATTR_INIT;
929 for (j = i; j < csn; j++) {
930 struct cpuset *b = csa[j];
931
932 if (apn == b->pn) {
933 cpumask_or(dp, dp, b->effective_cpus);
934 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
935 if (dattr)
936 update_domain_attr_tree(dattr + nslot, b);
937
938 /* Done with this partition */
939 b->pn = -1;
940 }
941 }
942 nslot++;
943 }
944 BUG_ON(nslot != ndoms);
945
946 done:
947 kfree(csa);
948
949 /*
950 * Fallback to the default domain if kmalloc() failed.
951 * See comments in partition_sched_domains().
952 */
953 if (doms == NULL)
954 ndoms = 1;
955
956 *domains = doms;
957 *attributes = dattr;
958 return ndoms;
959 }
960
dl_update_tasks_root_domain(struct cpuset * cs)961 static void dl_update_tasks_root_domain(struct cpuset *cs)
962 {
963 struct css_task_iter it;
964 struct task_struct *task;
965
966 if (cs->nr_deadline_tasks == 0)
967 return;
968
969 css_task_iter_start(&cs->css, 0, &it);
970
971 while ((task = css_task_iter_next(&it)))
972 dl_add_task_root_domain(task);
973
974 css_task_iter_end(&it);
975 }
976
dl_rebuild_rd_accounting(void)977 static void dl_rebuild_rd_accounting(void)
978 {
979 struct cpuset *cs = NULL;
980 struct cgroup_subsys_state *pos_css;
981
982 lockdep_assert_held(&cpuset_mutex);
983 lockdep_assert_cpus_held();
984 lockdep_assert_held(&sched_domains_mutex);
985
986 rcu_read_lock();
987
988 /*
989 * Clear default root domain DL accounting, it will be computed again
990 * if a task belongs to it.
991 */
992 dl_clear_root_domain(&def_root_domain);
993
994 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
995
996 if (cpumask_empty(cs->effective_cpus)) {
997 pos_css = css_rightmost_descendant(pos_css);
998 continue;
999 }
1000
1001 css_get(&cs->css);
1002
1003 rcu_read_unlock();
1004
1005 dl_update_tasks_root_domain(cs);
1006
1007 rcu_read_lock();
1008 css_put(&cs->css);
1009 }
1010 rcu_read_unlock();
1011 }
1012
1013 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1014 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1015 struct sched_domain_attr *dattr_new)
1016 {
1017 mutex_lock(&sched_domains_mutex);
1018 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1019 dl_rebuild_rd_accounting();
1020 mutex_unlock(&sched_domains_mutex);
1021 }
1022
1023 /*
1024 * Rebuild scheduler domains.
1025 *
1026 * If the flag 'sched_load_balance' of any cpuset with non-empty
1027 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1028 * which has that flag enabled, or if any cpuset with a non-empty
1029 * 'cpus' is removed, then call this routine to rebuild the
1030 * scheduler's dynamic sched domains.
1031 *
1032 * Call with cpuset_mutex held. Takes get_online_cpus().
1033 */
rebuild_sched_domains_locked(void)1034 static void rebuild_sched_domains_locked(void)
1035 {
1036 struct cgroup_subsys_state *pos_css;
1037 struct sched_domain_attr *attr;
1038 cpumask_var_t *doms;
1039 struct cpuset *cs;
1040 int ndoms;
1041
1042 lockdep_assert_held(&cpuset_mutex);
1043
1044 /*
1045 * If we have raced with CPU hotplug, return early to avoid
1046 * passing doms with offlined cpu to partition_sched_domains().
1047 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1048 *
1049 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1050 * should be the same as the active CPUs, so checking only top_cpuset
1051 * is enough to detect racing CPU offlines.
1052 */
1053 if (!top_cpuset.nr_subparts_cpus &&
1054 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1055 return;
1056
1057 /*
1058 * With subpartition CPUs, however, the effective CPUs of a partition
1059 * root should be only a subset of the active CPUs. Since a CPU in any
1060 * partition root could be offlined, all must be checked.
1061 */
1062 if (top_cpuset.nr_subparts_cpus) {
1063 rcu_read_lock();
1064 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1065 if (!is_partition_root(cs)) {
1066 pos_css = css_rightmost_descendant(pos_css);
1067 continue;
1068 }
1069 if (!cpumask_subset(cs->effective_cpus,
1070 cpu_active_mask)) {
1071 rcu_read_unlock();
1072 return;
1073 }
1074 }
1075 rcu_read_unlock();
1076 }
1077
1078 /* Generate domain masks and attrs */
1079 ndoms = generate_sched_domains(&doms, &attr);
1080
1081 /* Have scheduler rebuild the domains */
1082 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1083 }
1084 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1085 static void rebuild_sched_domains_locked(void)
1086 {
1087 }
1088 #endif /* CONFIG_SMP */
1089
rebuild_sched_domains(void)1090 void rebuild_sched_domains(void)
1091 {
1092 get_online_cpus();
1093 mutex_lock(&cpuset_mutex);
1094 rebuild_sched_domains_locked();
1095 mutex_unlock(&cpuset_mutex);
1096 put_online_cpus();
1097 }
1098
update_cpus_allowed(struct cpuset * cs,struct task_struct * p,const struct cpumask * new_mask)1099 static int update_cpus_allowed(struct cpuset *cs, struct task_struct *p,
1100 const struct cpumask *new_mask)
1101 {
1102 int ret = -EINVAL;
1103
1104 trace_android_rvh_update_cpus_allowed(p, cs->cpus_requested, new_mask, &ret);
1105 if (!ret)
1106 return ret;
1107
1108 return set_cpus_allowed_ptr(p, new_mask);
1109 }
1110
1111 /**
1112 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1113 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1114 *
1115 * Iterate through each task of @cs updating its cpus_allowed to the
1116 * effective cpuset's. As this function is called with cpuset_mutex held,
1117 * cpuset membership stays stable.
1118 */
update_tasks_cpumask(struct cpuset * cs)1119 static void update_tasks_cpumask(struct cpuset *cs)
1120 {
1121 struct css_task_iter it;
1122 struct task_struct *task;
1123 bool top_cs = cs == &top_cpuset;
1124
1125 css_task_iter_start(&cs->css, 0, &it);
1126 while ((task = css_task_iter_next(&it))) {
1127 /*
1128 * Percpu kthreads in top_cpuset are ignored
1129 */
1130 if (top_cs && (task->flags & PF_KTHREAD) &&
1131 kthread_is_per_cpu(task))
1132 continue;
1133 update_cpus_allowed(cs, task, cs->effective_cpus);
1134 }
1135 css_task_iter_end(&it);
1136 }
1137
1138 /**
1139 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1140 * @new_cpus: the temp variable for the new effective_cpus mask
1141 * @cs: the cpuset the need to recompute the new effective_cpus mask
1142 * @parent: the parent cpuset
1143 *
1144 * If the parent has subpartition CPUs, include them in the list of
1145 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1146 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1147 * to mask those out.
1148 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1149 static void compute_effective_cpumask(struct cpumask *new_cpus,
1150 struct cpuset *cs, struct cpuset *parent)
1151 {
1152 if (parent->nr_subparts_cpus) {
1153 cpumask_or(new_cpus, parent->effective_cpus,
1154 parent->subparts_cpus);
1155 cpumask_and(new_cpus, new_cpus, cs->cpus_requested);
1156 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1157 } else {
1158 cpumask_and(new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
1159 }
1160 }
1161
1162 /*
1163 * Commands for update_parent_subparts_cpumask
1164 */
1165 enum subparts_cmd {
1166 partcmd_enable, /* Enable partition root */
1167 partcmd_disable, /* Disable partition root */
1168 partcmd_update, /* Update parent's subparts_cpus */
1169 };
1170
1171 /**
1172 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1173 * @cpuset: The cpuset that requests change in partition root state
1174 * @cmd: Partition root state change command
1175 * @newmask: Optional new cpumask for partcmd_update
1176 * @tmp: Temporary addmask and delmask
1177 * Return: 0, 1 or an error code
1178 *
1179 * For partcmd_enable, the cpuset is being transformed from a non-partition
1180 * root to a partition root. The cpus_allowed mask of the given cpuset will
1181 * be put into parent's subparts_cpus and taken away from parent's
1182 * effective_cpus. The function will return 0 if all the CPUs listed in
1183 * cpus_allowed can be granted or an error code will be returned.
1184 *
1185 * For partcmd_disable, the cpuset is being transofrmed from a partition
1186 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1187 * parent's subparts_cpus will be taken away from that cpumask and put back
1188 * into parent's effective_cpus. 0 should always be returned.
1189 *
1190 * For partcmd_update, if the optional newmask is specified, the cpu
1191 * list is to be changed from cpus_allowed to newmask. Otherwise,
1192 * cpus_allowed is assumed to remain the same. The cpuset should either
1193 * be a partition root or an invalid partition root. The partition root
1194 * state may change if newmask is NULL and none of the requested CPUs can
1195 * be granted by the parent. The function will return 1 if changes to
1196 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1197 * Error code should only be returned when newmask is non-NULL.
1198 *
1199 * The partcmd_enable and partcmd_disable commands are used by
1200 * update_prstate(). The partcmd_update command is used by
1201 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1202 * newmask set.
1203 *
1204 * The checking is more strict when enabling partition root than the
1205 * other two commands.
1206 *
1207 * Because of the implicit cpu exclusive nature of a partition root,
1208 * cpumask changes that violates the cpu exclusivity rule will not be
1209 * permitted when checked by validate_change(). The validate_change()
1210 * function will also prevent any changes to the cpu list if it is not
1211 * a superset of children's cpu lists.
1212 */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1213 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1214 struct cpumask *newmask,
1215 struct tmpmasks *tmp)
1216 {
1217 struct cpuset *parent = parent_cs(cpuset);
1218 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1219 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1220 int new_prs;
1221 bool part_error = false; /* Partition error? */
1222
1223 lockdep_assert_held(&cpuset_mutex);
1224
1225 /*
1226 * The parent must be a partition root.
1227 * The new cpumask, if present, or the current cpus_allowed must
1228 * not be empty.
1229 */
1230 if (!is_partition_root(parent) ||
1231 (newmask && cpumask_empty(newmask)) ||
1232 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1233 return -EINVAL;
1234
1235 /*
1236 * Enabling/disabling partition root is not allowed if there are
1237 * online children.
1238 */
1239 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1240 return -EBUSY;
1241
1242 /*
1243 * Enabling partition root is not allowed if not all the CPUs
1244 * can be granted from parent's effective_cpus or at least one
1245 * CPU will be left after that.
1246 */
1247 if ((cmd == partcmd_enable) &&
1248 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1249 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1250 return -EINVAL;
1251
1252 /*
1253 * A cpumask update cannot make parent's effective_cpus become empty.
1254 */
1255 adding = deleting = false;
1256 new_prs = cpuset->partition_root_state;
1257 if (cmd == partcmd_enable) {
1258 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1259 adding = true;
1260 } else if (cmd == partcmd_disable) {
1261 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1262 parent->subparts_cpus);
1263 } else if (newmask) {
1264 /*
1265 * partcmd_update with newmask:
1266 *
1267 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1268 * addmask = newmask & parent->effective_cpus
1269 * & ~parent->subparts_cpus
1270 */
1271 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1272 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1273 parent->subparts_cpus);
1274
1275 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1276 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1277 parent->subparts_cpus);
1278 /*
1279 * Return error if the new effective_cpus could become empty.
1280 */
1281 if (adding &&
1282 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1283 if (!deleting)
1284 return -EINVAL;
1285 /*
1286 * As some of the CPUs in subparts_cpus might have
1287 * been offlined, we need to compute the real delmask
1288 * to confirm that.
1289 */
1290 if (!cpumask_and(tmp->addmask, tmp->delmask,
1291 cpu_active_mask))
1292 return -EINVAL;
1293 cpumask_copy(tmp->addmask, parent->effective_cpus);
1294 }
1295 } else {
1296 /*
1297 * partcmd_update w/o newmask:
1298 *
1299 * addmask = cpus_allowed & parent->effective_cpus
1300 *
1301 * Note that parent's subparts_cpus may have been
1302 * pre-shrunk in case there is a change in the cpu list.
1303 * So no deletion is needed.
1304 */
1305 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1306 parent->effective_cpus);
1307 part_error = cpumask_equal(tmp->addmask,
1308 parent->effective_cpus);
1309 }
1310
1311 if (cmd == partcmd_update) {
1312 int prev_prs = cpuset->partition_root_state;
1313
1314 /*
1315 * Check for possible transition between PRS_ENABLED
1316 * and PRS_ERROR.
1317 */
1318 switch (cpuset->partition_root_state) {
1319 case PRS_ENABLED:
1320 if (part_error)
1321 new_prs = PRS_ERROR;
1322 break;
1323 case PRS_ERROR:
1324 if (!part_error)
1325 new_prs = PRS_ENABLED;
1326 break;
1327 }
1328 /*
1329 * Set part_error if previously in invalid state.
1330 */
1331 part_error = (prev_prs == PRS_ERROR);
1332 }
1333
1334 if (!part_error && (new_prs == PRS_ERROR))
1335 return 0; /* Nothing need to be done */
1336
1337 if (new_prs == PRS_ERROR) {
1338 /*
1339 * Remove all its cpus from parent's subparts_cpus.
1340 */
1341 adding = false;
1342 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1343 parent->subparts_cpus);
1344 }
1345
1346 if (!adding && !deleting && (new_prs == cpuset->partition_root_state))
1347 return 0;
1348
1349 /*
1350 * Change the parent's subparts_cpus.
1351 * Newly added CPUs will be removed from effective_cpus and
1352 * newly deleted ones will be added back to effective_cpus.
1353 */
1354 spin_lock_irq(&callback_lock);
1355 if (adding) {
1356 cpumask_or(parent->subparts_cpus,
1357 parent->subparts_cpus, tmp->addmask);
1358 cpumask_andnot(parent->effective_cpus,
1359 parent->effective_cpus, tmp->addmask);
1360 }
1361 if (deleting) {
1362 cpumask_andnot(parent->subparts_cpus,
1363 parent->subparts_cpus, tmp->delmask);
1364 /*
1365 * Some of the CPUs in subparts_cpus might have been offlined.
1366 */
1367 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1368 cpumask_or(parent->effective_cpus,
1369 parent->effective_cpus, tmp->delmask);
1370 }
1371
1372 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1373
1374 if (cpuset->partition_root_state != new_prs)
1375 cpuset->partition_root_state = new_prs;
1376 spin_unlock_irq(&callback_lock);
1377
1378 return cmd == partcmd_update;
1379 }
1380
1381 /*
1382 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1383 * @cs: the cpuset to consider
1384 * @tmp: temp variables for calculating effective_cpus & partition setup
1385 *
1386 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1387 * and all its descendants need to be updated.
1388 *
1389 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1390 *
1391 * Called with cpuset_mutex held
1392 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1393 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1394 {
1395 struct cpuset *cp;
1396 struct cgroup_subsys_state *pos_css;
1397 bool need_rebuild_sched_domains = false;
1398 int new_prs;
1399
1400 rcu_read_lock();
1401 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1402 struct cpuset *parent = parent_cs(cp);
1403
1404 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1405
1406 /*
1407 * If it becomes empty, inherit the effective mask of the
1408 * parent, which is guaranteed to have some CPUs.
1409 */
1410 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1411 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1412 if (!cp->use_parent_ecpus) {
1413 cp->use_parent_ecpus = true;
1414 parent->child_ecpus_count++;
1415 }
1416 } else if (cp->use_parent_ecpus) {
1417 cp->use_parent_ecpus = false;
1418 WARN_ON_ONCE(!parent->child_ecpus_count);
1419 parent->child_ecpus_count--;
1420 }
1421
1422 /*
1423 * Skip the whole subtree if the cpumask remains the same
1424 * and has no partition root state.
1425 */
1426 if (!cp->partition_root_state &&
1427 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1428 pos_css = css_rightmost_descendant(pos_css);
1429 continue;
1430 }
1431
1432 /*
1433 * update_parent_subparts_cpumask() should have been called
1434 * for cs already in update_cpumask(). We should also call
1435 * update_tasks_cpumask() again for tasks in the parent
1436 * cpuset if the parent's subparts_cpus changes.
1437 */
1438 new_prs = cp->partition_root_state;
1439 if ((cp != cs) && new_prs) {
1440 switch (parent->partition_root_state) {
1441 case PRS_DISABLED:
1442 /*
1443 * If parent is not a partition root or an
1444 * invalid partition root, clear its state
1445 * and its CS_CPU_EXCLUSIVE flag.
1446 */
1447 WARN_ON_ONCE(cp->partition_root_state
1448 != PRS_ERROR);
1449 new_prs = PRS_DISABLED;
1450
1451 /*
1452 * clear_bit() is an atomic operation and
1453 * readers aren't interested in the state
1454 * of CS_CPU_EXCLUSIVE anyway. So we can
1455 * just update the flag without holding
1456 * the callback_lock.
1457 */
1458 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1459 break;
1460
1461 case PRS_ENABLED:
1462 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1463 update_tasks_cpumask(parent);
1464 break;
1465
1466 case PRS_ERROR:
1467 /*
1468 * When parent is invalid, it has to be too.
1469 */
1470 new_prs = PRS_ERROR;
1471 break;
1472 }
1473 }
1474
1475 if (!css_tryget_online(&cp->css))
1476 continue;
1477 rcu_read_unlock();
1478
1479 spin_lock_irq(&callback_lock);
1480
1481 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1482 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1483 cp->nr_subparts_cpus = 0;
1484 cpumask_clear(cp->subparts_cpus);
1485 } else if (cp->nr_subparts_cpus) {
1486 /*
1487 * Make sure that effective_cpus & subparts_cpus
1488 * are mutually exclusive.
1489 *
1490 * In the unlikely event that effective_cpus
1491 * becomes empty. we clear cp->nr_subparts_cpus and
1492 * let its child partition roots to compete for
1493 * CPUs again.
1494 */
1495 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1496 cp->subparts_cpus);
1497 if (cpumask_empty(cp->effective_cpus)) {
1498 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1499 cpumask_clear(cp->subparts_cpus);
1500 cp->nr_subparts_cpus = 0;
1501 } else if (!cpumask_subset(cp->subparts_cpus,
1502 tmp->new_cpus)) {
1503 cpumask_andnot(cp->subparts_cpus,
1504 cp->subparts_cpus, tmp->new_cpus);
1505 cp->nr_subparts_cpus
1506 = cpumask_weight(cp->subparts_cpus);
1507 }
1508 }
1509
1510 if (new_prs != cp->partition_root_state)
1511 cp->partition_root_state = new_prs;
1512
1513 spin_unlock_irq(&callback_lock);
1514
1515 WARN_ON(!is_in_v2_mode() &&
1516 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1517
1518 update_tasks_cpumask(cp);
1519
1520 /*
1521 * On legacy hierarchy, if the effective cpumask of any non-
1522 * empty cpuset is changed, we need to rebuild sched domains.
1523 * On default hierarchy, the cpuset needs to be a partition
1524 * root as well.
1525 */
1526 if (!cpumask_empty(cp->cpus_allowed) &&
1527 is_sched_load_balance(cp) &&
1528 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1529 is_partition_root(cp)))
1530 need_rebuild_sched_domains = true;
1531
1532 rcu_read_lock();
1533 css_put(&cp->css);
1534 }
1535 rcu_read_unlock();
1536
1537 if (need_rebuild_sched_domains)
1538 rebuild_sched_domains_locked();
1539 }
1540
1541 /**
1542 * update_sibling_cpumasks - Update siblings cpumasks
1543 * @parent: Parent cpuset
1544 * @cs: Current cpuset
1545 * @tmp: Temp variables
1546 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1547 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1548 struct tmpmasks *tmp)
1549 {
1550 struct cpuset *sibling;
1551 struct cgroup_subsys_state *pos_css;
1552
1553 lockdep_assert_held(&cpuset_mutex);
1554
1555 /*
1556 * Check all its siblings and call update_cpumasks_hier()
1557 * if their use_parent_ecpus flag is set in order for them
1558 * to use the right effective_cpus value.
1559 *
1560 * The update_cpumasks_hier() function may sleep. So we have to
1561 * release the RCU read lock before calling it.
1562 */
1563 rcu_read_lock();
1564 cpuset_for_each_child(sibling, pos_css, parent) {
1565 if (sibling == cs)
1566 continue;
1567 if (!sibling->use_parent_ecpus)
1568 continue;
1569 if (!css_tryget_online(&sibling->css))
1570 continue;
1571
1572 rcu_read_unlock();
1573 update_cpumasks_hier(sibling, tmp);
1574 rcu_read_lock();
1575 css_put(&sibling->css);
1576 }
1577 rcu_read_unlock();
1578 }
1579
1580 /**
1581 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1582 * @cs: the cpuset to consider
1583 * @trialcs: trial cpuset
1584 * @buf: buffer of cpu numbers written to this cpuset
1585 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1586 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1587 const char *buf)
1588 {
1589 int retval;
1590 struct tmpmasks tmp;
1591
1592 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1593 if (cs == &top_cpuset)
1594 return -EACCES;
1595
1596 /*
1597 * An empty cpus_requested is ok only if the cpuset has no tasks.
1598 * Since cpulist_parse() fails on an empty mask, we special case
1599 * that parsing. The validate_change() call ensures that cpusets
1600 * with tasks have cpus.
1601 */
1602 if (!*buf) {
1603 cpumask_clear(trialcs->cpus_requested);
1604 } else {
1605 retval = cpulist_parse(buf, trialcs->cpus_requested);
1606 if (retval < 0)
1607 return retval;
1608 }
1609
1610 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
1611 return -EINVAL;
1612
1613 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
1614
1615 /* Nothing to do if the cpus didn't change */
1616 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
1617 return 0;
1618
1619 retval = validate_change(cs, trialcs);
1620 if (retval < 0)
1621 return retval;
1622
1623 #ifdef CONFIG_CPUMASK_OFFSTACK
1624 /*
1625 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1626 * to allocated cpumasks.
1627 */
1628 tmp.addmask = trialcs->subparts_cpus;
1629 tmp.delmask = trialcs->effective_cpus;
1630 tmp.new_cpus = trialcs->cpus_allowed;
1631 #endif
1632
1633 if (cs->partition_root_state) {
1634 /* Cpumask of a partition root cannot be empty */
1635 if (cpumask_empty(trialcs->cpus_allowed))
1636 return -EINVAL;
1637 if (update_parent_subparts_cpumask(cs, partcmd_update,
1638 trialcs->cpus_allowed, &tmp) < 0)
1639 return -EINVAL;
1640 }
1641
1642 spin_lock_irq(&callback_lock);
1643 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1644 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1645
1646 /*
1647 * Make sure that subparts_cpus is a subset of cpus_allowed.
1648 */
1649 if (cs->nr_subparts_cpus) {
1650 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1651 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1652 }
1653 spin_unlock_irq(&callback_lock);
1654
1655 update_cpumasks_hier(cs, &tmp);
1656
1657 if (cs->partition_root_state) {
1658 struct cpuset *parent = parent_cs(cs);
1659
1660 /*
1661 * For partition root, update the cpumasks of sibling
1662 * cpusets if they use parent's effective_cpus.
1663 */
1664 if (parent->child_ecpus_count)
1665 update_sibling_cpumasks(parent, cs, &tmp);
1666 }
1667 return 0;
1668 }
1669
1670 /*
1671 * Migrate memory region from one set of nodes to another. This is
1672 * performed asynchronously as it can be called from process migration path
1673 * holding locks involved in process management. All mm migrations are
1674 * performed in the queued order and can be waited for by flushing
1675 * cpuset_migrate_mm_wq.
1676 */
1677
1678 struct cpuset_migrate_mm_work {
1679 struct work_struct work;
1680 struct mm_struct *mm;
1681 nodemask_t from;
1682 nodemask_t to;
1683 };
1684
cpuset_migrate_mm_workfn(struct work_struct * work)1685 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1686 {
1687 struct cpuset_migrate_mm_work *mwork =
1688 container_of(work, struct cpuset_migrate_mm_work, work);
1689
1690 /* on a wq worker, no need to worry about %current's mems_allowed */
1691 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1692 mmput(mwork->mm);
1693 kfree(mwork);
1694 }
1695
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1696 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1697 const nodemask_t *to)
1698 {
1699 struct cpuset_migrate_mm_work *mwork;
1700
1701 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1702 if (mwork) {
1703 mwork->mm = mm;
1704 mwork->from = *from;
1705 mwork->to = *to;
1706 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1707 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1708 } else {
1709 mmput(mm);
1710 }
1711 }
1712
cpuset_post_attach(void)1713 static void cpuset_post_attach(void)
1714 {
1715 flush_workqueue(cpuset_migrate_mm_wq);
1716 }
1717
1718 /*
1719 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1720 * @tsk: the task to change
1721 * @newmems: new nodes that the task will be set
1722 *
1723 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1724 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1725 * parallel, it might temporarily see an empty intersection, which results in
1726 * a seqlock check and retry before OOM or allocation failure.
1727 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1728 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1729 nodemask_t *newmems)
1730 {
1731 task_lock(tsk);
1732
1733 local_irq_disable();
1734 write_seqcount_begin(&tsk->mems_allowed_seq);
1735
1736 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1737 mpol_rebind_task(tsk, newmems);
1738 tsk->mems_allowed = *newmems;
1739
1740 write_seqcount_end(&tsk->mems_allowed_seq);
1741 local_irq_enable();
1742
1743 task_unlock(tsk);
1744 }
1745
1746 static void *cpuset_being_rebound;
1747
1748 /**
1749 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1750 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1751 *
1752 * Iterate through each task of @cs updating its mems_allowed to the
1753 * effective cpuset's. As this function is called with cpuset_mutex held,
1754 * cpuset membership stays stable.
1755 */
update_tasks_nodemask(struct cpuset * cs)1756 static void update_tasks_nodemask(struct cpuset *cs)
1757 {
1758 static nodemask_t newmems; /* protected by cpuset_mutex */
1759 struct css_task_iter it;
1760 struct task_struct *task;
1761
1762 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1763
1764 guarantee_online_mems(cs, &newmems);
1765
1766 /*
1767 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1768 * take while holding tasklist_lock. Forks can happen - the
1769 * mpol_dup() cpuset_being_rebound check will catch such forks,
1770 * and rebind their vma mempolicies too. Because we still hold
1771 * the global cpuset_mutex, we know that no other rebind effort
1772 * will be contending for the global variable cpuset_being_rebound.
1773 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1774 * is idempotent. Also migrate pages in each mm to new nodes.
1775 */
1776 css_task_iter_start(&cs->css, 0, &it);
1777 while ((task = css_task_iter_next(&it))) {
1778 struct mm_struct *mm;
1779 bool migrate;
1780
1781 cpuset_change_task_nodemask(task, &newmems);
1782
1783 mm = get_task_mm(task);
1784 if (!mm)
1785 continue;
1786
1787 migrate = is_memory_migrate(cs);
1788
1789 mpol_rebind_mm(mm, &cs->mems_allowed);
1790 if (migrate)
1791 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1792 else
1793 mmput(mm);
1794 }
1795 css_task_iter_end(&it);
1796
1797 /*
1798 * All the tasks' nodemasks have been updated, update
1799 * cs->old_mems_allowed.
1800 */
1801 cs->old_mems_allowed = newmems;
1802
1803 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1804 cpuset_being_rebound = NULL;
1805 }
1806
1807 /*
1808 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1809 * @cs: the cpuset to consider
1810 * @new_mems: a temp variable for calculating new effective_mems
1811 *
1812 * When configured nodemask is changed, the effective nodemasks of this cpuset
1813 * and all its descendants need to be updated.
1814 *
1815 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1816 *
1817 * Called with cpuset_mutex held
1818 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1819 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1820 {
1821 struct cpuset *cp;
1822 struct cgroup_subsys_state *pos_css;
1823
1824 rcu_read_lock();
1825 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1826 struct cpuset *parent = parent_cs(cp);
1827
1828 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1829
1830 /*
1831 * If it becomes empty, inherit the effective mask of the
1832 * parent, which is guaranteed to have some MEMs.
1833 */
1834 if (is_in_v2_mode() && nodes_empty(*new_mems))
1835 *new_mems = parent->effective_mems;
1836
1837 /* Skip the whole subtree if the nodemask remains the same. */
1838 if (nodes_equal(*new_mems, cp->effective_mems)) {
1839 pos_css = css_rightmost_descendant(pos_css);
1840 continue;
1841 }
1842
1843 if (!css_tryget_online(&cp->css))
1844 continue;
1845 rcu_read_unlock();
1846
1847 spin_lock_irq(&callback_lock);
1848 cp->effective_mems = *new_mems;
1849 spin_unlock_irq(&callback_lock);
1850
1851 WARN_ON(!is_in_v2_mode() &&
1852 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1853
1854 update_tasks_nodemask(cp);
1855
1856 rcu_read_lock();
1857 css_put(&cp->css);
1858 }
1859 rcu_read_unlock();
1860 }
1861
1862 /*
1863 * Handle user request to change the 'mems' memory placement
1864 * of a cpuset. Needs to validate the request, update the
1865 * cpusets mems_allowed, and for each task in the cpuset,
1866 * update mems_allowed and rebind task's mempolicy and any vma
1867 * mempolicies and if the cpuset is marked 'memory_migrate',
1868 * migrate the tasks pages to the new memory.
1869 *
1870 * Call with cpuset_mutex held. May take callback_lock during call.
1871 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1872 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1873 * their mempolicies to the cpusets new mems_allowed.
1874 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1875 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1876 const char *buf)
1877 {
1878 int retval;
1879
1880 /*
1881 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1882 * it's read-only
1883 */
1884 if (cs == &top_cpuset) {
1885 retval = -EACCES;
1886 goto done;
1887 }
1888
1889 /*
1890 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1891 * Since nodelist_parse() fails on an empty mask, we special case
1892 * that parsing. The validate_change() call ensures that cpusets
1893 * with tasks have memory.
1894 */
1895 if (!*buf) {
1896 nodes_clear(trialcs->mems_allowed);
1897 } else {
1898 retval = nodelist_parse(buf, trialcs->mems_allowed);
1899 if (retval < 0)
1900 goto done;
1901
1902 if (!nodes_subset(trialcs->mems_allowed,
1903 top_cpuset.mems_allowed)) {
1904 retval = -EINVAL;
1905 goto done;
1906 }
1907 }
1908
1909 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1910 retval = 0; /* Too easy - nothing to do */
1911 goto done;
1912 }
1913 retval = validate_change(cs, trialcs);
1914 if (retval < 0)
1915 goto done;
1916
1917 spin_lock_irq(&callback_lock);
1918 cs->mems_allowed = trialcs->mems_allowed;
1919 spin_unlock_irq(&callback_lock);
1920
1921 /* use trialcs->mems_allowed as a temp variable */
1922 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1923 done:
1924 return retval;
1925 }
1926
current_cpuset_is_being_rebound(void)1927 bool current_cpuset_is_being_rebound(void)
1928 {
1929 bool ret;
1930
1931 rcu_read_lock();
1932 ret = task_cs(current) == cpuset_being_rebound;
1933 rcu_read_unlock();
1934
1935 return ret;
1936 }
1937
update_relax_domain_level(struct cpuset * cs,s64 val)1938 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1939 {
1940 #ifdef CONFIG_SMP
1941 if (val < -1 || val >= sched_domain_level_max)
1942 return -EINVAL;
1943 #endif
1944
1945 if (val != cs->relax_domain_level) {
1946 cs->relax_domain_level = val;
1947 if (!cpumask_empty(cs->cpus_allowed) &&
1948 is_sched_load_balance(cs))
1949 rebuild_sched_domains_locked();
1950 }
1951
1952 return 0;
1953 }
1954
1955 /**
1956 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1957 * @cs: the cpuset in which each task's spread flags needs to be changed
1958 *
1959 * Iterate through each task of @cs updating its spread flags. As this
1960 * function is called with cpuset_mutex held, cpuset membership stays
1961 * stable.
1962 */
update_tasks_flags(struct cpuset * cs)1963 static void update_tasks_flags(struct cpuset *cs)
1964 {
1965 struct css_task_iter it;
1966 struct task_struct *task;
1967
1968 css_task_iter_start(&cs->css, 0, &it);
1969 while ((task = css_task_iter_next(&it)))
1970 cpuset_update_task_spread_flag(cs, task);
1971 css_task_iter_end(&it);
1972 }
1973
1974 /*
1975 * update_flag - read a 0 or a 1 in a file and update associated flag
1976 * bit: the bit to update (see cpuset_flagbits_t)
1977 * cs: the cpuset to update
1978 * turning_on: whether the flag is being set or cleared
1979 *
1980 * Call with cpuset_mutex held.
1981 */
1982
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1983 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1984 int turning_on)
1985 {
1986 struct cpuset *trialcs;
1987 int balance_flag_changed;
1988 int spread_flag_changed;
1989 int err;
1990
1991 trialcs = alloc_trial_cpuset(cs);
1992 if (!trialcs)
1993 return -ENOMEM;
1994
1995 if (turning_on)
1996 set_bit(bit, &trialcs->flags);
1997 else
1998 clear_bit(bit, &trialcs->flags);
1999
2000 err = validate_change(cs, trialcs);
2001 if (err < 0)
2002 goto out;
2003
2004 balance_flag_changed = (is_sched_load_balance(cs) !=
2005 is_sched_load_balance(trialcs));
2006
2007 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2008 || (is_spread_page(cs) != is_spread_page(trialcs)));
2009
2010 spin_lock_irq(&callback_lock);
2011 cs->flags = trialcs->flags;
2012 spin_unlock_irq(&callback_lock);
2013
2014 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2015 rebuild_sched_domains_locked();
2016
2017 if (spread_flag_changed)
2018 update_tasks_flags(cs);
2019 out:
2020 free_cpuset(trialcs);
2021 return err;
2022 }
2023
2024 /*
2025 * update_prstate - update partititon_root_state
2026 * cs: the cpuset to update
2027 * new_prs: new partition root state
2028 *
2029 * Call with cpuset_mutex held.
2030 */
update_prstate(struct cpuset * cs,int new_prs)2031 static int update_prstate(struct cpuset *cs, int new_prs)
2032 {
2033 int err, old_prs = cs->partition_root_state;
2034 struct cpuset *parent = parent_cs(cs);
2035 struct tmpmasks tmpmask;
2036
2037 if (old_prs == new_prs)
2038 return 0;
2039
2040 /*
2041 * Cannot force a partial or invalid partition root to a full
2042 * partition root.
2043 */
2044 if (new_prs && (old_prs == PRS_ERROR))
2045 return -EINVAL;
2046
2047 if (alloc_cpumasks(NULL, &tmpmask))
2048 return -ENOMEM;
2049
2050 err = -EINVAL;
2051 if (!old_prs) {
2052 /*
2053 * Turning on partition root requires setting the
2054 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2055 * cannot be NULL.
2056 */
2057 if (cpumask_empty(cs->cpus_allowed))
2058 goto out;
2059
2060 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2061 if (err)
2062 goto out;
2063
2064 err = update_parent_subparts_cpumask(cs, partcmd_enable,
2065 NULL, &tmpmask);
2066 if (err) {
2067 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2068 goto out;
2069 }
2070 } else {
2071 /*
2072 * Turning off partition root will clear the
2073 * CS_CPU_EXCLUSIVE bit.
2074 */
2075 if (old_prs == PRS_ERROR) {
2076 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2077 err = 0;
2078 goto out;
2079 }
2080
2081 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2082 NULL, &tmpmask);
2083 if (err)
2084 goto out;
2085
2086 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2087 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2088 }
2089
2090 update_tasks_cpumask(parent);
2091
2092 if (parent->child_ecpus_count)
2093 update_sibling_cpumasks(parent, cs, &tmpmask);
2094
2095 rebuild_sched_domains_locked();
2096 out:
2097 if (!err) {
2098 spin_lock_irq(&callback_lock);
2099 cs->partition_root_state = new_prs;
2100 spin_unlock_irq(&callback_lock);
2101 }
2102
2103 free_cpumasks(NULL, &tmpmask);
2104 return err;
2105 }
2106
2107 /*
2108 * Frequency meter - How fast is some event occurring?
2109 *
2110 * These routines manage a digitally filtered, constant time based,
2111 * event frequency meter. There are four routines:
2112 * fmeter_init() - initialize a frequency meter.
2113 * fmeter_markevent() - called each time the event happens.
2114 * fmeter_getrate() - returns the recent rate of such events.
2115 * fmeter_update() - internal routine used to update fmeter.
2116 *
2117 * A common data structure is passed to each of these routines,
2118 * which is used to keep track of the state required to manage the
2119 * frequency meter and its digital filter.
2120 *
2121 * The filter works on the number of events marked per unit time.
2122 * The filter is single-pole low-pass recursive (IIR). The time unit
2123 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2124 * simulate 3 decimal digits of precision (multiplied by 1000).
2125 *
2126 * With an FM_COEF of 933, and a time base of 1 second, the filter
2127 * has a half-life of 10 seconds, meaning that if the events quit
2128 * happening, then the rate returned from the fmeter_getrate()
2129 * will be cut in half each 10 seconds, until it converges to zero.
2130 *
2131 * It is not worth doing a real infinitely recursive filter. If more
2132 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2133 * just compute FM_MAXTICKS ticks worth, by which point the level
2134 * will be stable.
2135 *
2136 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2137 * arithmetic overflow in the fmeter_update() routine.
2138 *
2139 * Given the simple 32 bit integer arithmetic used, this meter works
2140 * best for reporting rates between one per millisecond (msec) and
2141 * one per 32 (approx) seconds. At constant rates faster than one
2142 * per msec it maxes out at values just under 1,000,000. At constant
2143 * rates between one per msec, and one per second it will stabilize
2144 * to a value N*1000, where N is the rate of events per second.
2145 * At constant rates between one per second and one per 32 seconds,
2146 * it will be choppy, moving up on the seconds that have an event,
2147 * and then decaying until the next event. At rates slower than
2148 * about one in 32 seconds, it decays all the way back to zero between
2149 * each event.
2150 */
2151
2152 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2153 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2154 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2155 #define FM_SCALE 1000 /* faux fixed point scale */
2156
2157 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2158 static void fmeter_init(struct fmeter *fmp)
2159 {
2160 fmp->cnt = 0;
2161 fmp->val = 0;
2162 fmp->time = 0;
2163 spin_lock_init(&fmp->lock);
2164 }
2165
2166 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2167 static void fmeter_update(struct fmeter *fmp)
2168 {
2169 time64_t now;
2170 u32 ticks;
2171
2172 now = ktime_get_seconds();
2173 ticks = now - fmp->time;
2174
2175 if (ticks == 0)
2176 return;
2177
2178 ticks = min(FM_MAXTICKS, ticks);
2179 while (ticks-- > 0)
2180 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2181 fmp->time = now;
2182
2183 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2184 fmp->cnt = 0;
2185 }
2186
2187 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2188 static void fmeter_markevent(struct fmeter *fmp)
2189 {
2190 spin_lock(&fmp->lock);
2191 fmeter_update(fmp);
2192 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2193 spin_unlock(&fmp->lock);
2194 }
2195
2196 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2197 static int fmeter_getrate(struct fmeter *fmp)
2198 {
2199 int val;
2200
2201 spin_lock(&fmp->lock);
2202 fmeter_update(fmp);
2203 val = fmp->val;
2204 spin_unlock(&fmp->lock);
2205 return val;
2206 }
2207
2208 static struct cpuset *cpuset_attach_old_cs;
2209
reset_migrate_dl_data(struct cpuset * cs)2210 static void reset_migrate_dl_data(struct cpuset *cs)
2211 {
2212 cs->nr_migrate_dl_tasks = 0;
2213 cs->sum_migrate_dl_bw = 0;
2214 }
2215
2216 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2217 static int cpuset_can_attach(struct cgroup_taskset *tset)
2218 {
2219 struct cgroup_subsys_state *css;
2220 struct cpuset *cs, *oldcs;
2221 struct task_struct *task;
2222 int ret;
2223
2224 /* used later by cpuset_attach() */
2225 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2226 oldcs = cpuset_attach_old_cs;
2227 cs = css_cs(css);
2228
2229 mutex_lock(&cpuset_mutex);
2230
2231 /* allow moving tasks into an empty cpuset if on default hierarchy */
2232 ret = -ENOSPC;
2233 if (!is_in_v2_mode() &&
2234 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2235 goto out_unlock;
2236
2237 cgroup_taskset_for_each(task, css, tset) {
2238 ret = task_can_attach(task);
2239 if (ret)
2240 goto out_unlock;
2241 ret = security_task_setscheduler(task);
2242 if (ret)
2243 goto out_unlock;
2244
2245 if (dl_task(task)) {
2246 cs->nr_migrate_dl_tasks++;
2247 cs->sum_migrate_dl_bw += task->dl.dl_bw;
2248 }
2249 }
2250
2251 if (!cs->nr_migrate_dl_tasks)
2252 goto out_success;
2253
2254 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2255 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2256
2257 if (unlikely(cpu >= nr_cpu_ids)) {
2258 reset_migrate_dl_data(cs);
2259 ret = -EINVAL;
2260 goto out_unlock;
2261 }
2262
2263 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2264 if (ret) {
2265 reset_migrate_dl_data(cs);
2266 goto out_unlock;
2267 }
2268 }
2269
2270 out_success:
2271 /*
2272 * Mark attach is in progress. This makes validate_change() fail
2273 * changes which zero cpus/mems_allowed.
2274 */
2275 cs->attach_in_progress++;
2276 ret = 0;
2277 out_unlock:
2278 mutex_unlock(&cpuset_mutex);
2279 return ret;
2280 }
2281
cpuset_cancel_attach(struct cgroup_taskset * tset)2282 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2283 {
2284 struct cgroup_subsys_state *css;
2285 struct cpuset *cs;
2286
2287 cgroup_taskset_first(tset, &css);
2288 cs = css_cs(css);
2289
2290 mutex_lock(&cpuset_mutex);
2291 cs->attach_in_progress--;
2292 if (!cs->attach_in_progress)
2293 wake_up(&cpuset_attach_wq);
2294
2295 if (cs->nr_migrate_dl_tasks) {
2296 int cpu = cpumask_any(cs->effective_cpus);
2297
2298 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2299 reset_migrate_dl_data(cs);
2300 }
2301
2302 mutex_unlock(&cpuset_mutex);
2303 }
2304
2305 /*
2306 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2307 * but we can't allocate it dynamically there. Define it global and
2308 * allocate from cpuset_init().
2309 */
2310 static cpumask_var_t cpus_attach;
2311
cpuset_attach(struct cgroup_taskset * tset)2312 static void cpuset_attach(struct cgroup_taskset *tset)
2313 {
2314 /* static buf protected by cpuset_mutex */
2315 static nodemask_t cpuset_attach_nodemask_to;
2316 struct task_struct *task;
2317 struct task_struct *leader;
2318 struct cgroup_subsys_state *css;
2319 struct cpuset *cs;
2320 struct cpuset *oldcs = cpuset_attach_old_cs;
2321
2322 cgroup_taskset_first(tset, &css);
2323 cs = css_cs(css);
2324
2325 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2326 mutex_lock(&cpuset_mutex);
2327
2328 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2329
2330 cgroup_taskset_for_each(task, css, tset) {
2331 if (cs != &top_cpuset)
2332 guarantee_online_cpus(task, cpus_attach);
2333 else
2334 cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2335 /*
2336 * can_attach beforehand should guarantee that this doesn't
2337 * fail. TODO: have a better way to handle failure here
2338 */
2339 WARN_ON_ONCE(update_cpus_allowed(cs, task, cpus_attach));
2340
2341 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2342 cpuset_update_task_spread_flag(cs, task);
2343 }
2344
2345 /*
2346 * Change mm for all threadgroup leaders. This is expensive and may
2347 * sleep and should be moved outside migration path proper.
2348 */
2349 cpuset_attach_nodemask_to = cs->effective_mems;
2350 cgroup_taskset_for_each_leader(leader, css, tset) {
2351 struct mm_struct *mm = get_task_mm(leader);
2352
2353 if (mm) {
2354 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2355
2356 /*
2357 * old_mems_allowed is the same with mems_allowed
2358 * here, except if this task is being moved
2359 * automatically due to hotplug. In that case
2360 * @mems_allowed has been updated and is empty, so
2361 * @old_mems_allowed is the right nodesets that we
2362 * migrate mm from.
2363 */
2364 if (is_memory_migrate(cs))
2365 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2366 &cpuset_attach_nodemask_to);
2367 else
2368 mmput(mm);
2369 }
2370 }
2371
2372 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2373
2374 if (cs->nr_migrate_dl_tasks) {
2375 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
2376 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
2377 reset_migrate_dl_data(cs);
2378 }
2379
2380 cs->attach_in_progress--;
2381 if (!cs->attach_in_progress)
2382 wake_up(&cpuset_attach_wq);
2383
2384 mutex_unlock(&cpuset_mutex);
2385 }
2386
2387 /* The various types of files and directories in a cpuset file system */
2388
2389 typedef enum {
2390 FILE_MEMORY_MIGRATE,
2391 FILE_CPULIST,
2392 FILE_MEMLIST,
2393 FILE_EFFECTIVE_CPULIST,
2394 FILE_EFFECTIVE_MEMLIST,
2395 FILE_SUBPARTS_CPULIST,
2396 FILE_CPU_EXCLUSIVE,
2397 FILE_MEM_EXCLUSIVE,
2398 FILE_MEM_HARDWALL,
2399 FILE_SCHED_LOAD_BALANCE,
2400 FILE_PARTITION_ROOT,
2401 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2402 FILE_MEMORY_PRESSURE_ENABLED,
2403 FILE_MEMORY_PRESSURE,
2404 FILE_SPREAD_PAGE,
2405 FILE_SPREAD_SLAB,
2406 } cpuset_filetype_t;
2407
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2408 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2409 u64 val)
2410 {
2411 struct cpuset *cs = css_cs(css);
2412 cpuset_filetype_t type = cft->private;
2413 int retval = 0;
2414
2415 get_online_cpus();
2416 mutex_lock(&cpuset_mutex);
2417 if (!is_cpuset_online(cs)) {
2418 retval = -ENODEV;
2419 goto out_unlock;
2420 }
2421
2422 switch (type) {
2423 case FILE_CPU_EXCLUSIVE:
2424 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2425 break;
2426 case FILE_MEM_EXCLUSIVE:
2427 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2428 break;
2429 case FILE_MEM_HARDWALL:
2430 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2431 break;
2432 case FILE_SCHED_LOAD_BALANCE:
2433 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2434 break;
2435 case FILE_MEMORY_MIGRATE:
2436 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2437 break;
2438 case FILE_MEMORY_PRESSURE_ENABLED:
2439 cpuset_memory_pressure_enabled = !!val;
2440 break;
2441 case FILE_SPREAD_PAGE:
2442 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2443 break;
2444 case FILE_SPREAD_SLAB:
2445 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2446 break;
2447 default:
2448 retval = -EINVAL;
2449 break;
2450 }
2451 out_unlock:
2452 mutex_unlock(&cpuset_mutex);
2453 put_online_cpus();
2454 return retval;
2455 }
2456
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2457 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2458 s64 val)
2459 {
2460 struct cpuset *cs = css_cs(css);
2461 cpuset_filetype_t type = cft->private;
2462 int retval = -ENODEV;
2463
2464 get_online_cpus();
2465 mutex_lock(&cpuset_mutex);
2466 if (!is_cpuset_online(cs))
2467 goto out_unlock;
2468
2469 switch (type) {
2470 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2471 retval = update_relax_domain_level(cs, val);
2472 break;
2473 default:
2474 retval = -EINVAL;
2475 break;
2476 }
2477 out_unlock:
2478 mutex_unlock(&cpuset_mutex);
2479 put_online_cpus();
2480 return retval;
2481 }
2482
2483 /*
2484 * Common handling for a write to a "cpus" or "mems" file.
2485 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2486 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2487 char *buf, size_t nbytes, loff_t off)
2488 {
2489 struct cpuset *cs = css_cs(of_css(of));
2490 struct cpuset *trialcs;
2491 int retval = -ENODEV;
2492
2493 buf = strstrip(buf);
2494
2495 /*
2496 * CPU or memory hotunplug may leave @cs w/o any execution
2497 * resources, in which case the hotplug code asynchronously updates
2498 * configuration and transfers all tasks to the nearest ancestor
2499 * which can execute.
2500 *
2501 * As writes to "cpus" or "mems" may restore @cs's execution
2502 * resources, wait for the previously scheduled operations before
2503 * proceeding, so that we don't end up keep removing tasks added
2504 * after execution capability is restored.
2505 *
2506 * cpuset_hotplug_work calls back into cgroup core via
2507 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2508 * operation like this one can lead to a deadlock through kernfs
2509 * active_ref protection. Let's break the protection. Losing the
2510 * protection is okay as we check whether @cs is online after
2511 * grabbing cpuset_mutex anyway. This only happens on the legacy
2512 * hierarchies.
2513 */
2514 css_get(&cs->css);
2515 kernfs_break_active_protection(of->kn);
2516 flush_work(&cpuset_hotplug_work);
2517
2518 get_online_cpus();
2519 mutex_lock(&cpuset_mutex);
2520 if (!is_cpuset_online(cs))
2521 goto out_unlock;
2522
2523 trialcs = alloc_trial_cpuset(cs);
2524 if (!trialcs) {
2525 retval = -ENOMEM;
2526 goto out_unlock;
2527 }
2528
2529 switch (of_cft(of)->private) {
2530 case FILE_CPULIST:
2531 retval = update_cpumask(cs, trialcs, buf);
2532 break;
2533 case FILE_MEMLIST:
2534 retval = update_nodemask(cs, trialcs, buf);
2535 break;
2536 default:
2537 retval = -EINVAL;
2538 break;
2539 }
2540
2541 free_cpuset(trialcs);
2542 out_unlock:
2543 mutex_unlock(&cpuset_mutex);
2544 put_online_cpus();
2545 kernfs_unbreak_active_protection(of->kn);
2546 css_put(&cs->css);
2547 flush_workqueue(cpuset_migrate_mm_wq);
2548 return retval ?: nbytes;
2549 }
2550
2551 /*
2552 * These ascii lists should be read in a single call, by using a user
2553 * buffer large enough to hold the entire map. If read in smaller
2554 * chunks, there is no guarantee of atomicity. Since the display format
2555 * used, list of ranges of sequential numbers, is variable length,
2556 * and since these maps can change value dynamically, one could read
2557 * gibberish by doing partial reads while a list was changing.
2558 */
cpuset_common_seq_show(struct seq_file * sf,void * v)2559 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2560 {
2561 struct cpuset *cs = css_cs(seq_css(sf));
2562 cpuset_filetype_t type = seq_cft(sf)->private;
2563 int ret = 0;
2564
2565 spin_lock_irq(&callback_lock);
2566
2567 switch (type) {
2568 case FILE_CPULIST:
2569 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
2570 break;
2571 case FILE_MEMLIST:
2572 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2573 break;
2574 case FILE_EFFECTIVE_CPULIST:
2575 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2576 break;
2577 case FILE_EFFECTIVE_MEMLIST:
2578 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2579 break;
2580 case FILE_SUBPARTS_CPULIST:
2581 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2582 break;
2583 default:
2584 ret = -EINVAL;
2585 }
2586
2587 spin_unlock_irq(&callback_lock);
2588 return ret;
2589 }
2590
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2591 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2592 {
2593 struct cpuset *cs = css_cs(css);
2594 cpuset_filetype_t type = cft->private;
2595 switch (type) {
2596 case FILE_CPU_EXCLUSIVE:
2597 return is_cpu_exclusive(cs);
2598 case FILE_MEM_EXCLUSIVE:
2599 return is_mem_exclusive(cs);
2600 case FILE_MEM_HARDWALL:
2601 return is_mem_hardwall(cs);
2602 case FILE_SCHED_LOAD_BALANCE:
2603 return is_sched_load_balance(cs);
2604 case FILE_MEMORY_MIGRATE:
2605 return is_memory_migrate(cs);
2606 case FILE_MEMORY_PRESSURE_ENABLED:
2607 return cpuset_memory_pressure_enabled;
2608 case FILE_MEMORY_PRESSURE:
2609 return fmeter_getrate(&cs->fmeter);
2610 case FILE_SPREAD_PAGE:
2611 return is_spread_page(cs);
2612 case FILE_SPREAD_SLAB:
2613 return is_spread_slab(cs);
2614 default:
2615 BUG();
2616 }
2617
2618 /* Unreachable but makes gcc happy */
2619 return 0;
2620 }
2621
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2622 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2623 {
2624 struct cpuset *cs = css_cs(css);
2625 cpuset_filetype_t type = cft->private;
2626 switch (type) {
2627 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2628 return cs->relax_domain_level;
2629 default:
2630 BUG();
2631 }
2632
2633 /* Unrechable but makes gcc happy */
2634 return 0;
2635 }
2636
sched_partition_show(struct seq_file * seq,void * v)2637 static int sched_partition_show(struct seq_file *seq, void *v)
2638 {
2639 struct cpuset *cs = css_cs(seq_css(seq));
2640
2641 switch (cs->partition_root_state) {
2642 case PRS_ENABLED:
2643 seq_puts(seq, "root\n");
2644 break;
2645 case PRS_DISABLED:
2646 seq_puts(seq, "member\n");
2647 break;
2648 case PRS_ERROR:
2649 seq_puts(seq, "root invalid\n");
2650 break;
2651 }
2652 return 0;
2653 }
2654
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2655 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2656 size_t nbytes, loff_t off)
2657 {
2658 struct cpuset *cs = css_cs(of_css(of));
2659 int val;
2660 int retval = -ENODEV;
2661
2662 buf = strstrip(buf);
2663
2664 /*
2665 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2666 */
2667 if (!strcmp(buf, "root"))
2668 val = PRS_ENABLED;
2669 else if (!strcmp(buf, "member"))
2670 val = PRS_DISABLED;
2671 else
2672 return -EINVAL;
2673
2674 css_get(&cs->css);
2675 get_online_cpus();
2676 mutex_lock(&cpuset_mutex);
2677 if (!is_cpuset_online(cs))
2678 goto out_unlock;
2679
2680 retval = update_prstate(cs, val);
2681 out_unlock:
2682 mutex_unlock(&cpuset_mutex);
2683 put_online_cpus();
2684 css_put(&cs->css);
2685 return retval ?: nbytes;
2686 }
2687
2688 /*
2689 * for the common functions, 'private' gives the type of file
2690 */
2691
2692 static struct cftype legacy_files[] = {
2693 {
2694 .name = "cpus",
2695 .seq_show = cpuset_common_seq_show,
2696 .write = cpuset_write_resmask,
2697 .max_write_len = (100U + 6 * NR_CPUS),
2698 .private = FILE_CPULIST,
2699 },
2700
2701 {
2702 .name = "mems",
2703 .seq_show = cpuset_common_seq_show,
2704 .write = cpuset_write_resmask,
2705 .max_write_len = (100U + 6 * MAX_NUMNODES),
2706 .private = FILE_MEMLIST,
2707 },
2708
2709 {
2710 .name = "effective_cpus",
2711 .seq_show = cpuset_common_seq_show,
2712 .private = FILE_EFFECTIVE_CPULIST,
2713 },
2714
2715 {
2716 .name = "effective_mems",
2717 .seq_show = cpuset_common_seq_show,
2718 .private = FILE_EFFECTIVE_MEMLIST,
2719 },
2720
2721 {
2722 .name = "cpu_exclusive",
2723 .read_u64 = cpuset_read_u64,
2724 .write_u64 = cpuset_write_u64,
2725 .private = FILE_CPU_EXCLUSIVE,
2726 },
2727
2728 {
2729 .name = "mem_exclusive",
2730 .read_u64 = cpuset_read_u64,
2731 .write_u64 = cpuset_write_u64,
2732 .private = FILE_MEM_EXCLUSIVE,
2733 },
2734
2735 {
2736 .name = "mem_hardwall",
2737 .read_u64 = cpuset_read_u64,
2738 .write_u64 = cpuset_write_u64,
2739 .private = FILE_MEM_HARDWALL,
2740 },
2741
2742 {
2743 .name = "sched_load_balance",
2744 .read_u64 = cpuset_read_u64,
2745 .write_u64 = cpuset_write_u64,
2746 .private = FILE_SCHED_LOAD_BALANCE,
2747 },
2748
2749 {
2750 .name = "sched_relax_domain_level",
2751 .read_s64 = cpuset_read_s64,
2752 .write_s64 = cpuset_write_s64,
2753 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2754 },
2755
2756 {
2757 .name = "memory_migrate",
2758 .read_u64 = cpuset_read_u64,
2759 .write_u64 = cpuset_write_u64,
2760 .private = FILE_MEMORY_MIGRATE,
2761 },
2762
2763 {
2764 .name = "memory_pressure",
2765 .read_u64 = cpuset_read_u64,
2766 .private = FILE_MEMORY_PRESSURE,
2767 },
2768
2769 {
2770 .name = "memory_spread_page",
2771 .read_u64 = cpuset_read_u64,
2772 .write_u64 = cpuset_write_u64,
2773 .private = FILE_SPREAD_PAGE,
2774 },
2775
2776 {
2777 .name = "memory_spread_slab",
2778 .read_u64 = cpuset_read_u64,
2779 .write_u64 = cpuset_write_u64,
2780 .private = FILE_SPREAD_SLAB,
2781 },
2782
2783 {
2784 .name = "memory_pressure_enabled",
2785 .flags = CFTYPE_ONLY_ON_ROOT,
2786 .read_u64 = cpuset_read_u64,
2787 .write_u64 = cpuset_write_u64,
2788 .private = FILE_MEMORY_PRESSURE_ENABLED,
2789 },
2790
2791 { } /* terminate */
2792 };
2793
2794 /*
2795 * This is currently a minimal set for the default hierarchy. It can be
2796 * expanded later on by migrating more features and control files from v1.
2797 */
2798 static struct cftype dfl_files[] = {
2799 {
2800 .name = "cpus",
2801 .seq_show = cpuset_common_seq_show,
2802 .write = cpuset_write_resmask,
2803 .max_write_len = (100U + 6 * NR_CPUS),
2804 .private = FILE_CPULIST,
2805 .flags = CFTYPE_NOT_ON_ROOT,
2806 },
2807
2808 {
2809 .name = "mems",
2810 .seq_show = cpuset_common_seq_show,
2811 .write = cpuset_write_resmask,
2812 .max_write_len = (100U + 6 * MAX_NUMNODES),
2813 .private = FILE_MEMLIST,
2814 .flags = CFTYPE_NOT_ON_ROOT,
2815 },
2816
2817 {
2818 .name = "cpus.effective",
2819 .seq_show = cpuset_common_seq_show,
2820 .private = FILE_EFFECTIVE_CPULIST,
2821 },
2822
2823 {
2824 .name = "mems.effective",
2825 .seq_show = cpuset_common_seq_show,
2826 .private = FILE_EFFECTIVE_MEMLIST,
2827 },
2828
2829 {
2830 .name = "cpus.partition",
2831 .seq_show = sched_partition_show,
2832 .write = sched_partition_write,
2833 .private = FILE_PARTITION_ROOT,
2834 .flags = CFTYPE_NOT_ON_ROOT,
2835 },
2836
2837 {
2838 .name = "cpus.subpartitions",
2839 .seq_show = cpuset_common_seq_show,
2840 .private = FILE_SUBPARTS_CPULIST,
2841 .flags = CFTYPE_DEBUG,
2842 },
2843
2844 { } /* terminate */
2845 };
2846
2847
2848 /*
2849 * cpuset_css_alloc - allocate a cpuset css
2850 * cgrp: control group that the new cpuset will be part of
2851 */
2852
2853 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2854 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2855 {
2856 struct cpuset *cs;
2857
2858 if (!parent_css)
2859 return &top_cpuset.css;
2860
2861 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2862 if (!cs)
2863 return ERR_PTR(-ENOMEM);
2864
2865 if (alloc_cpumasks(cs, NULL)) {
2866 kfree(cs);
2867 return ERR_PTR(-ENOMEM);
2868 }
2869
2870 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2871 nodes_clear(cs->mems_allowed);
2872 nodes_clear(cs->effective_mems);
2873 fmeter_init(&cs->fmeter);
2874 cs->relax_domain_level = -1;
2875
2876 return &cs->css;
2877 }
2878
cpuset_css_online(struct cgroup_subsys_state * css)2879 static int cpuset_css_online(struct cgroup_subsys_state *css)
2880 {
2881 struct cpuset *cs = css_cs(css);
2882 struct cpuset *parent = parent_cs(cs);
2883 struct cpuset *tmp_cs;
2884 struct cgroup_subsys_state *pos_css;
2885
2886 if (!parent)
2887 return 0;
2888
2889 get_online_cpus();
2890 mutex_lock(&cpuset_mutex);
2891
2892 set_bit(CS_ONLINE, &cs->flags);
2893 if (is_spread_page(parent))
2894 set_bit(CS_SPREAD_PAGE, &cs->flags);
2895 if (is_spread_slab(parent))
2896 set_bit(CS_SPREAD_SLAB, &cs->flags);
2897
2898 cpuset_inc();
2899
2900 spin_lock_irq(&callback_lock);
2901 if (is_in_v2_mode()) {
2902 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2903 cs->effective_mems = parent->effective_mems;
2904 cs->use_parent_ecpus = true;
2905 parent->child_ecpus_count++;
2906 }
2907 spin_unlock_irq(&callback_lock);
2908
2909 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2910 goto out_unlock;
2911
2912 /*
2913 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2914 * set. This flag handling is implemented in cgroup core for
2915 * histrical reasons - the flag may be specified during mount.
2916 *
2917 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2918 * refuse to clone the configuration - thereby refusing the task to
2919 * be entered, and as a result refusing the sys_unshare() or
2920 * clone() which initiated it. If this becomes a problem for some
2921 * users who wish to allow that scenario, then this could be
2922 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2923 * (and likewise for mems) to the new cgroup.
2924 */
2925 rcu_read_lock();
2926 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2927 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2928 rcu_read_unlock();
2929 goto out_unlock;
2930 }
2931 }
2932 rcu_read_unlock();
2933
2934 spin_lock_irq(&callback_lock);
2935 cs->mems_allowed = parent->mems_allowed;
2936 cs->effective_mems = parent->mems_allowed;
2937 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2938 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2939 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2940 spin_unlock_irq(&callback_lock);
2941 out_unlock:
2942 mutex_unlock(&cpuset_mutex);
2943 put_online_cpus();
2944 return 0;
2945 }
2946
2947 /*
2948 * If the cpuset being removed has its flag 'sched_load_balance'
2949 * enabled, then simulate turning sched_load_balance off, which
2950 * will call rebuild_sched_domains_locked(). That is not needed
2951 * in the default hierarchy where only changes in partition
2952 * will cause repartitioning.
2953 *
2954 * If the cpuset has the 'sched.partition' flag enabled, simulate
2955 * turning 'sched.partition" off.
2956 */
2957
cpuset_css_offline(struct cgroup_subsys_state * css)2958 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2959 {
2960 struct cpuset *cs = css_cs(css);
2961
2962 get_online_cpus();
2963 mutex_lock(&cpuset_mutex);
2964
2965 if (is_partition_root(cs))
2966 update_prstate(cs, 0);
2967
2968 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2969 is_sched_load_balance(cs))
2970 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2971
2972 if (cs->use_parent_ecpus) {
2973 struct cpuset *parent = parent_cs(cs);
2974
2975 cs->use_parent_ecpus = false;
2976 parent->child_ecpus_count--;
2977 }
2978
2979 cpuset_dec();
2980 clear_bit(CS_ONLINE, &cs->flags);
2981
2982 mutex_unlock(&cpuset_mutex);
2983 put_online_cpus();
2984 }
2985
cpuset_css_free(struct cgroup_subsys_state * css)2986 static void cpuset_css_free(struct cgroup_subsys_state *css)
2987 {
2988 struct cpuset *cs = css_cs(css);
2989
2990 free_cpuset(cs);
2991 }
2992
cpuset_bind(struct cgroup_subsys_state * root_css)2993 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2994 {
2995 mutex_lock(&cpuset_mutex);
2996 spin_lock_irq(&callback_lock);
2997
2998 if (is_in_v2_mode()) {
2999 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3000 top_cpuset.mems_allowed = node_possible_map;
3001 } else {
3002 cpumask_copy(top_cpuset.cpus_allowed,
3003 top_cpuset.effective_cpus);
3004 top_cpuset.mems_allowed = top_cpuset.effective_mems;
3005 }
3006
3007 spin_unlock_irq(&callback_lock);
3008 mutex_unlock(&cpuset_mutex);
3009 }
3010
3011 /*
3012 * Make sure the new task conform to the current state of its parent,
3013 * which could have been changed by cpuset just after it inherits the
3014 * state from the parent and before it sits on the cgroup's task list.
3015 */
cpuset_fork(struct task_struct * task)3016 static void cpuset_fork(struct task_struct *task)
3017 {
3018 int inherit_cpus = 0;
3019 if (task_css_is_root(task, cpuset_cgrp_id))
3020 return;
3021
3022 trace_android_rvh_cpuset_fork(task, &inherit_cpus);
3023 if (!inherit_cpus)
3024 set_cpus_allowed_ptr(task, current->cpus_ptr);
3025 task->mems_allowed = current->mems_allowed;
3026 }
3027
3028 struct cgroup_subsys cpuset_cgrp_subsys = {
3029 .css_alloc = cpuset_css_alloc,
3030 .css_online = cpuset_css_online,
3031 .css_offline = cpuset_css_offline,
3032 .css_free = cpuset_css_free,
3033 .can_attach = cpuset_can_attach,
3034 .cancel_attach = cpuset_cancel_attach,
3035 .attach = cpuset_attach,
3036 .post_attach = cpuset_post_attach,
3037 .bind = cpuset_bind,
3038 .fork = cpuset_fork,
3039 .legacy_cftypes = legacy_files,
3040 .dfl_cftypes = dfl_files,
3041 .early_init = true,
3042 .threaded = true,
3043 };
3044
3045 /**
3046 * cpuset_init - initialize cpusets at system boot
3047 *
3048 * Description: Initialize top_cpuset
3049 **/
3050
cpuset_init(void)3051 int __init cpuset_init(void)
3052 {
3053 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3054 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3055 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3056 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
3057
3058 cpumask_setall(top_cpuset.cpus_allowed);
3059 cpumask_setall(top_cpuset.cpus_requested);
3060 nodes_setall(top_cpuset.mems_allowed);
3061 cpumask_setall(top_cpuset.effective_cpus);
3062 nodes_setall(top_cpuset.effective_mems);
3063
3064 fmeter_init(&top_cpuset.fmeter);
3065 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3066 top_cpuset.relax_domain_level = -1;
3067
3068 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3069
3070 return 0;
3071 }
3072
3073 /*
3074 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3075 * or memory nodes, we need to walk over the cpuset hierarchy,
3076 * removing that CPU or node from all cpusets. If this removes the
3077 * last CPU or node from a cpuset, then move the tasks in the empty
3078 * cpuset to its next-highest non-empty parent.
3079 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)3080 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3081 {
3082 struct cpuset *parent;
3083
3084 /*
3085 * Find its next-highest non-empty parent, (top cpuset
3086 * has online cpus, so can't be empty).
3087 */
3088 parent = parent_cs(cs);
3089 while (cpumask_empty(parent->cpus_allowed) ||
3090 nodes_empty(parent->mems_allowed))
3091 parent = parent_cs(parent);
3092
3093 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3094 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3095 pr_cont_cgroup_name(cs->css.cgroup);
3096 pr_cont("\n");
3097 }
3098 }
3099
3100 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3101 hotplug_update_tasks_legacy(struct cpuset *cs,
3102 struct cpumask *new_cpus, nodemask_t *new_mems,
3103 bool cpus_updated, bool mems_updated)
3104 {
3105 bool is_empty;
3106
3107 spin_lock_irq(&callback_lock);
3108 cpumask_copy(cs->cpus_allowed, new_cpus);
3109 cpumask_copy(cs->effective_cpus, new_cpus);
3110 cs->mems_allowed = *new_mems;
3111 cs->effective_mems = *new_mems;
3112 spin_unlock_irq(&callback_lock);
3113
3114 /*
3115 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3116 * as the tasks will be migratecd to an ancestor.
3117 */
3118 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3119 update_tasks_cpumask(cs);
3120 if (mems_updated && !nodes_empty(cs->mems_allowed))
3121 update_tasks_nodemask(cs);
3122
3123 is_empty = cpumask_empty(cs->cpus_allowed) ||
3124 nodes_empty(cs->mems_allowed);
3125
3126 mutex_unlock(&cpuset_mutex);
3127
3128 /*
3129 * Move tasks to the nearest ancestor with execution resources,
3130 * This is full cgroup operation which will also call back into
3131 * cpuset. Should be done outside any lock.
3132 */
3133 if (is_empty)
3134 remove_tasks_in_empty_cpuset(cs);
3135
3136 mutex_lock(&cpuset_mutex);
3137 }
3138
3139 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3140 hotplug_update_tasks(struct cpuset *cs,
3141 struct cpumask *new_cpus, nodemask_t *new_mems,
3142 bool cpus_updated, bool mems_updated)
3143 {
3144 if (cpumask_empty(new_cpus))
3145 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3146 if (nodes_empty(*new_mems))
3147 *new_mems = parent_cs(cs)->effective_mems;
3148
3149 spin_lock_irq(&callback_lock);
3150 cpumask_copy(cs->effective_cpus, new_cpus);
3151 cs->effective_mems = *new_mems;
3152 spin_unlock_irq(&callback_lock);
3153
3154 if (cpus_updated)
3155 update_tasks_cpumask(cs);
3156 if (mems_updated)
3157 update_tasks_nodemask(cs);
3158 }
3159
3160 static bool force_rebuild;
3161
cpuset_force_rebuild(void)3162 void cpuset_force_rebuild(void)
3163 {
3164 force_rebuild = true;
3165 }
3166
3167 /**
3168 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3169 * @cs: cpuset in interest
3170 * @tmp: the tmpmasks structure pointer
3171 *
3172 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3173 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3174 * all its tasks are moved to the nearest ancestor with both resources.
3175 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3176 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3177 {
3178 static cpumask_t new_cpus;
3179 static nodemask_t new_mems;
3180 bool cpus_updated;
3181 bool mems_updated;
3182 struct cpuset *parent;
3183 retry:
3184 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3185
3186 mutex_lock(&cpuset_mutex);
3187
3188 /*
3189 * We have raced with task attaching. We wait until attaching
3190 * is finished, so we won't attach a task to an empty cpuset.
3191 */
3192 if (cs->attach_in_progress) {
3193 mutex_unlock(&cpuset_mutex);
3194 goto retry;
3195 }
3196
3197 parent = parent_cs(cs);
3198 compute_effective_cpumask(&new_cpus, cs, parent);
3199 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3200
3201 if (cs->nr_subparts_cpus)
3202 /*
3203 * Make sure that CPUs allocated to child partitions
3204 * do not show up in effective_cpus.
3205 */
3206 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3207
3208 if (!tmp || !cs->partition_root_state)
3209 goto update_tasks;
3210
3211 /*
3212 * In the unlikely event that a partition root has empty
3213 * effective_cpus or its parent becomes erroneous, we have to
3214 * transition it to the erroneous state.
3215 */
3216 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3217 (parent->partition_root_state == PRS_ERROR))) {
3218 if (cs->nr_subparts_cpus) {
3219 spin_lock_irq(&callback_lock);
3220 cs->nr_subparts_cpus = 0;
3221 cpumask_clear(cs->subparts_cpus);
3222 spin_unlock_irq(&callback_lock);
3223 compute_effective_cpumask(&new_cpus, cs, parent);
3224 }
3225
3226 /*
3227 * If the effective_cpus is empty because the child
3228 * partitions take away all the CPUs, we can keep
3229 * the current partition and let the child partitions
3230 * fight for available CPUs.
3231 */
3232 if ((parent->partition_root_state == PRS_ERROR) ||
3233 cpumask_empty(&new_cpus)) {
3234 update_parent_subparts_cpumask(cs, partcmd_disable,
3235 NULL, tmp);
3236 spin_lock_irq(&callback_lock);
3237 cs->partition_root_state = PRS_ERROR;
3238 spin_unlock_irq(&callback_lock);
3239 }
3240 cpuset_force_rebuild();
3241 }
3242
3243 /*
3244 * On the other hand, an erroneous partition root may be transitioned
3245 * back to a regular one or a partition root with no CPU allocated
3246 * from the parent may change to erroneous.
3247 */
3248 if (is_partition_root(parent) &&
3249 ((cs->partition_root_state == PRS_ERROR) ||
3250 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3251 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3252 cpuset_force_rebuild();
3253
3254 update_tasks:
3255 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3256 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3257
3258 if (is_in_v2_mode())
3259 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3260 cpus_updated, mems_updated);
3261 else
3262 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3263 cpus_updated, mems_updated);
3264
3265 mutex_unlock(&cpuset_mutex);
3266 }
3267
3268 /**
3269 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3270 *
3271 * This function is called after either CPU or memory configuration has
3272 * changed and updates cpuset accordingly. The top_cpuset is always
3273 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3274 * order to make cpusets transparent (of no affect) on systems that are
3275 * actively using CPU hotplug but making no active use of cpusets.
3276 *
3277 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3278 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3279 * all descendants.
3280 *
3281 * Note that CPU offlining during suspend is ignored. We don't modify
3282 * cpusets across suspend/resume cycles at all.
3283 */
cpuset_hotplug_workfn(struct work_struct * work)3284 void cpuset_hotplug_workfn(struct work_struct *work)
3285 {
3286 static cpumask_t new_cpus;
3287 static nodemask_t new_mems;
3288 bool cpus_updated, mems_updated;
3289 bool on_dfl = is_in_v2_mode();
3290 struct tmpmasks tmp, *ptmp = NULL;
3291
3292 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3293 ptmp = &tmp;
3294
3295 mutex_lock(&cpuset_mutex);
3296
3297 /* fetch the available cpus/mems and find out which changed how */
3298 cpumask_copy(&new_cpus, cpu_active_mask);
3299 new_mems = node_states[N_MEMORY];
3300
3301 /*
3302 * If subparts_cpus is populated, it is likely that the check below
3303 * will produce a false positive on cpus_updated when the cpu list
3304 * isn't changed. It is extra work, but it is better to be safe.
3305 */
3306 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3307 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3308
3309 /*
3310 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3311 * we assumed that cpus are updated.
3312 */
3313 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3314 cpus_updated = true;
3315
3316 /* synchronize cpus_allowed to cpu_active_mask */
3317 if (cpus_updated) {
3318 spin_lock_irq(&callback_lock);
3319 if (!on_dfl)
3320 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3321 /*
3322 * Make sure that CPUs allocated to child partitions
3323 * do not show up in effective_cpus. If no CPU is left,
3324 * we clear the subparts_cpus & let the child partitions
3325 * fight for the CPUs again.
3326 */
3327 if (top_cpuset.nr_subparts_cpus) {
3328 if (cpumask_subset(&new_cpus,
3329 top_cpuset.subparts_cpus)) {
3330 top_cpuset.nr_subparts_cpus = 0;
3331 cpumask_clear(top_cpuset.subparts_cpus);
3332 } else {
3333 cpumask_andnot(&new_cpus, &new_cpus,
3334 top_cpuset.subparts_cpus);
3335 }
3336 }
3337 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3338 spin_unlock_irq(&callback_lock);
3339 /* we don't mess with cpumasks of tasks in top_cpuset */
3340 }
3341
3342 /* synchronize mems_allowed to N_MEMORY */
3343 if (mems_updated) {
3344 spin_lock_irq(&callback_lock);
3345 if (!on_dfl)
3346 top_cpuset.mems_allowed = new_mems;
3347 top_cpuset.effective_mems = new_mems;
3348 spin_unlock_irq(&callback_lock);
3349 update_tasks_nodemask(&top_cpuset);
3350 }
3351
3352 mutex_unlock(&cpuset_mutex);
3353
3354 /* if cpus or mems changed, we need to propagate to descendants */
3355 if (cpus_updated || mems_updated) {
3356 struct cpuset *cs;
3357 struct cgroup_subsys_state *pos_css;
3358
3359 rcu_read_lock();
3360 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3361 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3362 continue;
3363 rcu_read_unlock();
3364
3365 cpuset_hotplug_update_tasks(cs, ptmp);
3366
3367 rcu_read_lock();
3368 css_put(&cs->css);
3369 }
3370 rcu_read_unlock();
3371 }
3372
3373 /* rebuild sched domains if cpus_allowed has changed */
3374 if (cpus_updated || force_rebuild) {
3375 force_rebuild = false;
3376 rebuild_sched_domains();
3377 }
3378
3379 free_cpumasks(NULL, ptmp);
3380 }
3381
cpuset_update_active_cpus(void)3382 void cpuset_update_active_cpus(void)
3383 {
3384 /*
3385 * We're inside cpu hotplug critical region which usually nests
3386 * inside cgroup synchronization. Bounce actual hotplug processing
3387 * to a work item to avoid reverse locking order.
3388 */
3389 schedule_work(&cpuset_hotplug_work);
3390 }
3391
cpuset_update_active_cpus_affine(int cpu)3392 void cpuset_update_active_cpus_affine(int cpu)
3393 {
3394 schedule_work_on(cpu, &cpuset_hotplug_work);
3395 }
3396
cpuset_wait_for_hotplug(void)3397 void cpuset_wait_for_hotplug(void)
3398 {
3399 flush_work(&cpuset_hotplug_work);
3400 }
3401
3402 /*
3403 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3404 * Call this routine anytime after node_states[N_MEMORY] changes.
3405 * See cpuset_update_active_cpus() for CPU hotplug handling.
3406 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3407 static int cpuset_track_online_nodes(struct notifier_block *self,
3408 unsigned long action, void *arg)
3409 {
3410 schedule_work(&cpuset_hotplug_work);
3411 return NOTIFY_OK;
3412 }
3413
3414 static struct notifier_block cpuset_track_online_nodes_nb = {
3415 .notifier_call = cpuset_track_online_nodes,
3416 .priority = 10, /* ??! */
3417 };
3418
3419 /**
3420 * cpuset_init_smp - initialize cpus_allowed
3421 *
3422 * Description: Finish top cpuset after cpu, node maps are initialized
3423 */
cpuset_init_smp(void)3424 void __init cpuset_init_smp(void)
3425 {
3426 /*
3427 * cpus_allowd/mems_allowed set to v2 values in the initial
3428 * cpuset_bind() call will be reset to v1 values in another
3429 * cpuset_bind() call when v1 cpuset is mounted.
3430 */
3431 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3432
3433 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3434 top_cpuset.effective_mems = node_states[N_MEMORY];
3435
3436 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3437
3438 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3439 BUG_ON(!cpuset_migrate_mm_wq);
3440 }
3441
3442 /**
3443 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3444 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3445 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3446 *
3447 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3448 * attached to the specified @tsk. Guaranteed to return some non-empty
3449 * subset of cpu_online_mask, even if this means going outside the
3450 * tasks cpuset.
3451 **/
3452
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3453 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3454 {
3455 unsigned long flags;
3456
3457 spin_lock_irqsave(&callback_lock, flags);
3458 rcu_read_lock();
3459 guarantee_online_cpus(tsk, pmask);
3460 rcu_read_unlock();
3461 spin_unlock_irqrestore(&callback_lock, flags);
3462 }
3463 EXPORT_SYMBOL_GPL(cpuset_cpus_allowed);
3464 /**
3465 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3466 * @tsk: pointer to task_struct with which the scheduler is struggling
3467 *
3468 * Description: In the case that the scheduler cannot find an allowed cpu in
3469 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3470 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3471 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3472 * This is the absolute last resort for the scheduler and it is only used if
3473 * _every_ other avenue has been traveled.
3474 **/
3475
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3476 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3477 {
3478 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3479 const struct cpumask *cs_mask;
3480
3481 rcu_read_lock();
3482 cs_mask = task_cs(tsk)->cpus_allowed;
3483
3484 if (!is_in_v2_mode() || !cpumask_subset(cs_mask, possible_mask))
3485 goto unlock; /* select_fallback_rq will try harder */
3486
3487 do_set_cpus_allowed(tsk, cs_mask);
3488 unlock:
3489 rcu_read_unlock();
3490
3491 /*
3492 * We own tsk->cpus_allowed, nobody can change it under us.
3493 *
3494 * But we used cs && cs->cpus_allowed lockless and thus can
3495 * race with cgroup_attach_task() or update_cpumask() and get
3496 * the wrong tsk->cpus_allowed. However, both cases imply the
3497 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3498 * which takes task_rq_lock().
3499 *
3500 * If we are called after it dropped the lock we must see all
3501 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3502 * set any mask even if it is not right from task_cs() pov,
3503 * the pending set_cpus_allowed_ptr() will fix things.
3504 *
3505 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3506 * if required.
3507 */
3508 }
3509
cpuset_init_current_mems_allowed(void)3510 void __init cpuset_init_current_mems_allowed(void)
3511 {
3512 nodes_setall(current->mems_allowed);
3513 }
3514
3515 /**
3516 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3517 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3518 *
3519 * Description: Returns the nodemask_t mems_allowed of the cpuset
3520 * attached to the specified @tsk. Guaranteed to return some non-empty
3521 * subset of node_states[N_MEMORY], even if this means going outside the
3522 * tasks cpuset.
3523 **/
3524
cpuset_mems_allowed(struct task_struct * tsk)3525 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3526 {
3527 nodemask_t mask;
3528 unsigned long flags;
3529
3530 spin_lock_irqsave(&callback_lock, flags);
3531 rcu_read_lock();
3532 guarantee_online_mems(task_cs(tsk), &mask);
3533 rcu_read_unlock();
3534 spin_unlock_irqrestore(&callback_lock, flags);
3535
3536 return mask;
3537 }
3538
3539 /**
3540 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3541 * @nodemask: the nodemask to be checked
3542 *
3543 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3544 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3545 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3546 {
3547 return nodes_intersects(*nodemask, current->mems_allowed);
3548 }
3549
3550 /*
3551 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3552 * mem_hardwall ancestor to the specified cpuset. Call holding
3553 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3554 * (an unusual configuration), then returns the root cpuset.
3555 */
nearest_hardwall_ancestor(struct cpuset * cs)3556 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3557 {
3558 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3559 cs = parent_cs(cs);
3560 return cs;
3561 }
3562
3563 /**
3564 * cpuset_node_allowed - Can we allocate on a memory node?
3565 * @node: is this an allowed node?
3566 * @gfp_mask: memory allocation flags
3567 *
3568 * If we're in interrupt, yes, we can always allocate. If @node is set in
3569 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3570 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3571 * yes. If current has access to memory reserves as an oom victim, yes.
3572 * Otherwise, no.
3573 *
3574 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3575 * and do not allow allocations outside the current tasks cpuset
3576 * unless the task has been OOM killed.
3577 * GFP_KERNEL allocations are not so marked, so can escape to the
3578 * nearest enclosing hardwalled ancestor cpuset.
3579 *
3580 * Scanning up parent cpusets requires callback_lock. The
3581 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3582 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3583 * current tasks mems_allowed came up empty on the first pass over
3584 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3585 * cpuset are short of memory, might require taking the callback_lock.
3586 *
3587 * The first call here from mm/page_alloc:get_page_from_freelist()
3588 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3589 * so no allocation on a node outside the cpuset is allowed (unless
3590 * in interrupt, of course).
3591 *
3592 * The second pass through get_page_from_freelist() doesn't even call
3593 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3594 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3595 * in alloc_flags. That logic and the checks below have the combined
3596 * affect that:
3597 * in_interrupt - any node ok (current task context irrelevant)
3598 * GFP_ATOMIC - any node ok
3599 * tsk_is_oom_victim - any node ok
3600 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3601 * GFP_USER - only nodes in current tasks mems allowed ok.
3602 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3603 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3604 {
3605 struct cpuset *cs; /* current cpuset ancestors */
3606 int allowed; /* is allocation in zone z allowed? */
3607 unsigned long flags;
3608
3609 if (in_interrupt())
3610 return true;
3611 if (node_isset(node, current->mems_allowed))
3612 return true;
3613 /*
3614 * Allow tasks that have access to memory reserves because they have
3615 * been OOM killed to get memory anywhere.
3616 */
3617 if (unlikely(tsk_is_oom_victim(current)))
3618 return true;
3619 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3620 return false;
3621
3622 if (current->flags & PF_EXITING) /* Let dying task have memory */
3623 return true;
3624
3625 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3626 spin_lock_irqsave(&callback_lock, flags);
3627
3628 rcu_read_lock();
3629 cs = nearest_hardwall_ancestor(task_cs(current));
3630 allowed = node_isset(node, cs->mems_allowed);
3631 rcu_read_unlock();
3632
3633 spin_unlock_irqrestore(&callback_lock, flags);
3634 return allowed;
3635 }
3636
3637 /**
3638 * cpuset_mem_spread_node() - On which node to begin search for a file page
3639 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3640 *
3641 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3642 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3643 * and if the memory allocation used cpuset_mem_spread_node()
3644 * to determine on which node to start looking, as it will for
3645 * certain page cache or slab cache pages such as used for file
3646 * system buffers and inode caches, then instead of starting on the
3647 * local node to look for a free page, rather spread the starting
3648 * node around the tasks mems_allowed nodes.
3649 *
3650 * We don't have to worry about the returned node being offline
3651 * because "it can't happen", and even if it did, it would be ok.
3652 *
3653 * The routines calling guarantee_online_mems() are careful to
3654 * only set nodes in task->mems_allowed that are online. So it
3655 * should not be possible for the following code to return an
3656 * offline node. But if it did, that would be ok, as this routine
3657 * is not returning the node where the allocation must be, only
3658 * the node where the search should start. The zonelist passed to
3659 * __alloc_pages() will include all nodes. If the slab allocator
3660 * is passed an offline node, it will fall back to the local node.
3661 * See kmem_cache_alloc_node().
3662 */
3663
cpuset_spread_node(int * rotor)3664 static int cpuset_spread_node(int *rotor)
3665 {
3666 return *rotor = next_node_in(*rotor, current->mems_allowed);
3667 }
3668
cpuset_mem_spread_node(void)3669 int cpuset_mem_spread_node(void)
3670 {
3671 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3672 current->cpuset_mem_spread_rotor =
3673 node_random(¤t->mems_allowed);
3674
3675 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3676 }
3677
cpuset_slab_spread_node(void)3678 int cpuset_slab_spread_node(void)
3679 {
3680 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3681 current->cpuset_slab_spread_rotor =
3682 node_random(¤t->mems_allowed);
3683
3684 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3685 }
3686
3687 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3688
3689 /**
3690 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3691 * @tsk1: pointer to task_struct of some task.
3692 * @tsk2: pointer to task_struct of some other task.
3693 *
3694 * Description: Return true if @tsk1's mems_allowed intersects the
3695 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3696 * one of the task's memory usage might impact the memory available
3697 * to the other.
3698 **/
3699
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3700 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3701 const struct task_struct *tsk2)
3702 {
3703 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3704 }
3705
3706 /**
3707 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3708 *
3709 * Description: Prints current's name, cpuset name, and cached copy of its
3710 * mems_allowed to the kernel log.
3711 */
cpuset_print_current_mems_allowed(void)3712 void cpuset_print_current_mems_allowed(void)
3713 {
3714 struct cgroup *cgrp;
3715
3716 rcu_read_lock();
3717
3718 cgrp = task_cs(current)->css.cgroup;
3719 pr_cont(",cpuset=");
3720 pr_cont_cgroup_name(cgrp);
3721 pr_cont(",mems_allowed=%*pbl",
3722 nodemask_pr_args(¤t->mems_allowed));
3723
3724 rcu_read_unlock();
3725 }
3726
3727 /*
3728 * Collection of memory_pressure is suppressed unless
3729 * this flag is enabled by writing "1" to the special
3730 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3731 */
3732
3733 int cpuset_memory_pressure_enabled __read_mostly;
3734
3735 /**
3736 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3737 *
3738 * Keep a running average of the rate of synchronous (direct)
3739 * page reclaim efforts initiated by tasks in each cpuset.
3740 *
3741 * This represents the rate at which some task in the cpuset
3742 * ran low on memory on all nodes it was allowed to use, and
3743 * had to enter the kernels page reclaim code in an effort to
3744 * create more free memory by tossing clean pages or swapping
3745 * or writing dirty pages.
3746 *
3747 * Display to user space in the per-cpuset read-only file
3748 * "memory_pressure". Value displayed is an integer
3749 * representing the recent rate of entry into the synchronous
3750 * (direct) page reclaim by any task attached to the cpuset.
3751 **/
3752
__cpuset_memory_pressure_bump(void)3753 void __cpuset_memory_pressure_bump(void)
3754 {
3755 rcu_read_lock();
3756 fmeter_markevent(&task_cs(current)->fmeter);
3757 rcu_read_unlock();
3758 }
3759
3760 #ifdef CONFIG_PROC_PID_CPUSET
3761 /*
3762 * proc_cpuset_show()
3763 * - Print tasks cpuset path into seq_file.
3764 * - Used for /proc/<pid>/cpuset.
3765 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3766 * doesn't really matter if tsk->cpuset changes after we read it,
3767 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3768 * anyway.
3769 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3770 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3771 struct pid *pid, struct task_struct *tsk)
3772 {
3773 char *buf;
3774 struct cgroup_subsys_state *css;
3775 int retval;
3776
3777 retval = -ENOMEM;
3778 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3779 if (!buf)
3780 goto out;
3781
3782 css = task_get_css(tsk, cpuset_cgrp_id);
3783 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3784 current->nsproxy->cgroup_ns);
3785 css_put(css);
3786 if (retval >= PATH_MAX)
3787 retval = -ENAMETOOLONG;
3788 if (retval < 0)
3789 goto out_free;
3790 seq_puts(m, buf);
3791 seq_putc(m, '\n');
3792 retval = 0;
3793 out_free:
3794 kfree(buf);
3795 out:
3796 return retval;
3797 }
3798 #endif /* CONFIG_PROC_PID_CPUSET */
3799
3800 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3801 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3802 {
3803 seq_printf(m, "Mems_allowed:\t%*pb\n",
3804 nodemask_pr_args(&task->mems_allowed));
3805 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3806 nodemask_pr_args(&task->mems_allowed));
3807 }
3808