1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3 */
4
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19
20 #include "cqhci.h"
21 #include "cqhci-crypto.h"
22
23 #define DCMD_SLOT 31
24 #define NUM_SLOTS 32
25
26 struct cqhci_slot {
27 struct mmc_request *mrq;
28 unsigned int flags;
29 #define CQHCI_EXTERNAL_TIMEOUT BIT(0)
30 #define CQHCI_COMPLETED BIT(1)
31 #define CQHCI_HOST_CRC BIT(2)
32 #define CQHCI_HOST_TIMEOUT BIT(3)
33 #define CQHCI_HOST_OTHER BIT(4)
34 };
35
get_desc(struct cqhci_host * cq_host,u8 tag)36 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
37 {
38 return cq_host->desc_base + (tag * cq_host->slot_sz);
39 }
40
get_link_desc(struct cqhci_host * cq_host,u8 tag)41 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
42 {
43 u8 *desc = get_desc(cq_host, tag);
44
45 return desc + cq_host->task_desc_len;
46 }
47
get_trans_desc_dma(struct cqhci_host * cq_host,u8 tag)48 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
49 {
50 return cq_host->trans_desc_dma_base +
51 (cq_host->mmc->max_segs * tag *
52 cq_host->trans_desc_len);
53 }
54
get_trans_desc(struct cqhci_host * cq_host,u8 tag)55 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
56 {
57 return cq_host->trans_desc_base +
58 (cq_host->trans_desc_len * cq_host->mmc->max_segs * tag);
59 }
60
setup_trans_desc(struct cqhci_host * cq_host,u8 tag)61 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
62 {
63 u8 *link_temp;
64 dma_addr_t trans_temp;
65
66 link_temp = get_link_desc(cq_host, tag);
67 trans_temp = get_trans_desc_dma(cq_host, tag);
68
69 memset(link_temp, 0, cq_host->link_desc_len);
70 if (cq_host->link_desc_len > 8)
71 *(link_temp + 8) = 0;
72
73 if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
74 *link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
75 return;
76 }
77
78 *link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
79
80 if (cq_host->dma64) {
81 __le64 *data_addr = (__le64 __force *)(link_temp + 4);
82
83 data_addr[0] = cpu_to_le64(trans_temp);
84 } else {
85 __le32 *data_addr = (__le32 __force *)(link_temp + 4);
86
87 data_addr[0] = cpu_to_le32(trans_temp);
88 }
89 }
90
cqhci_set_irqs(struct cqhci_host * cq_host,u32 set)91 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
92 {
93 cqhci_writel(cq_host, set, CQHCI_ISTE);
94 cqhci_writel(cq_host, set, CQHCI_ISGE);
95 }
96
97 #define DRV_NAME "cqhci"
98
99 #define CQHCI_DUMP(f, x...) \
100 pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
101
cqhci_dumpregs(struct cqhci_host * cq_host)102 static void cqhci_dumpregs(struct cqhci_host *cq_host)
103 {
104 struct mmc_host *mmc = cq_host->mmc;
105
106 CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
107
108 CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n",
109 cqhci_readl(cq_host, CQHCI_CAP),
110 cqhci_readl(cq_host, CQHCI_VER));
111 CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n",
112 cqhci_readl(cq_host, CQHCI_CFG),
113 cqhci_readl(cq_host, CQHCI_CTL));
114 CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n",
115 cqhci_readl(cq_host, CQHCI_IS),
116 cqhci_readl(cq_host, CQHCI_ISTE));
117 CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n",
118 cqhci_readl(cq_host, CQHCI_ISGE),
119 cqhci_readl(cq_host, CQHCI_IC));
120 CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n",
121 cqhci_readl(cq_host, CQHCI_TDLBA),
122 cqhci_readl(cq_host, CQHCI_TDLBAU));
123 CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n",
124 cqhci_readl(cq_host, CQHCI_TDBR),
125 cqhci_readl(cq_host, CQHCI_TCN));
126 CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
127 cqhci_readl(cq_host, CQHCI_DQS),
128 cqhci_readl(cq_host, CQHCI_DPT));
129 CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n",
130 cqhci_readl(cq_host, CQHCI_TCLR),
131 cqhci_readl(cq_host, CQHCI_SSC1));
132 CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n",
133 cqhci_readl(cq_host, CQHCI_SSC2),
134 cqhci_readl(cq_host, CQHCI_CRDCT));
135 CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n",
136 cqhci_readl(cq_host, CQHCI_RMEM),
137 cqhci_readl(cq_host, CQHCI_TERRI));
138 CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n",
139 cqhci_readl(cq_host, CQHCI_CRI),
140 cqhci_readl(cq_host, CQHCI_CRA));
141
142 if (cq_host->ops->dumpregs)
143 cq_host->ops->dumpregs(mmc);
144 else
145 CQHCI_DUMP(": ===========================================\n");
146 }
147
148 /*
149 * The allocated descriptor table for task, link & transfer descritors
150 * looks like:
151 * |----------|
152 * |task desc | |->|----------|
153 * |----------| | |trans desc|
154 * |link desc-|->| |----------|
155 * |----------| .
156 * . .
157 * no. of slots max-segs
158 * . |----------|
159 * |----------|
160 * The idea here is to create the [task+trans] table and mark & point the
161 * link desc to the transfer desc table on a per slot basis.
162 */
cqhci_host_alloc_tdl(struct cqhci_host * cq_host)163 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
164 {
165 int i = 0;
166
167 /* task descriptor can be 64/128 bit irrespective of arch */
168 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
169 cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
170 CQHCI_TASK_DESC_SZ, CQHCI_CFG);
171 cq_host->task_desc_len = 16;
172 } else {
173 cq_host->task_desc_len = 8;
174 }
175
176 /*
177 * 96 bits length of transfer desc instead of 128 bits which means
178 * ADMA would expect next valid descriptor at the 96th bit
179 * or 128th bit
180 */
181 if (cq_host->dma64) {
182 if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
183 cq_host->trans_desc_len = 12;
184 else
185 cq_host->trans_desc_len = 16;
186 cq_host->link_desc_len = 16;
187 } else {
188 cq_host->trans_desc_len = 8;
189 cq_host->link_desc_len = 8;
190 }
191
192 /* total size of a slot: 1 task & 1 transfer (link) */
193 cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
194
195 cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
196
197 cq_host->data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs *
198 cq_host->mmc->cqe_qdepth;
199
200 pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
201 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
202 cq_host->slot_sz);
203
204 /*
205 * allocate a dma-mapped chunk of memory for the descriptors
206 * allocate a dma-mapped chunk of memory for link descriptors
207 * setup each link-desc memory offset per slot-number to
208 * the descriptor table.
209 */
210 cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
211 cq_host->desc_size,
212 &cq_host->desc_dma_base,
213 GFP_KERNEL);
214 if (!cq_host->desc_base)
215 return -ENOMEM;
216
217 cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
218 cq_host->data_size,
219 &cq_host->trans_desc_dma_base,
220 GFP_KERNEL);
221 if (!cq_host->trans_desc_base) {
222 dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
223 cq_host->desc_base,
224 cq_host->desc_dma_base);
225 cq_host->desc_base = NULL;
226 cq_host->desc_dma_base = 0;
227 return -ENOMEM;
228 }
229
230 pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
231 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
232 (unsigned long long)cq_host->desc_dma_base,
233 (unsigned long long)cq_host->trans_desc_dma_base);
234
235 for (; i < (cq_host->num_slots); i++)
236 setup_trans_desc(cq_host, i);
237
238 return 0;
239 }
240
__cqhci_enable(struct cqhci_host * cq_host)241 static void __cqhci_enable(struct cqhci_host *cq_host)
242 {
243 struct mmc_host *mmc = cq_host->mmc;
244 u32 cqcfg;
245
246 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
247
248 /* Configuration must not be changed while enabled */
249 if (cqcfg & CQHCI_ENABLE) {
250 cqcfg &= ~CQHCI_ENABLE;
251 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
252 }
253
254 cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
255
256 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
257 cqcfg |= CQHCI_DCMD;
258
259 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
260 cqcfg |= CQHCI_TASK_DESC_SZ;
261
262 if (mmc->caps2 & MMC_CAP2_CRYPTO)
263 cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
264
265 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
266
267 cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
268 CQHCI_TDLBA);
269 cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
270 CQHCI_TDLBAU);
271
272 cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
273
274 cqhci_set_irqs(cq_host, 0);
275
276 cqcfg |= CQHCI_ENABLE;
277
278 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
279
280 if (cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT)
281 cqhci_writel(cq_host, 0, CQHCI_CTL);
282
283 mmc->cqe_on = true;
284
285 if (cq_host->ops->enable)
286 cq_host->ops->enable(mmc);
287
288 /* Ensure all writes are done before interrupts are enabled */
289 wmb();
290
291 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
292
293 cq_host->activated = true;
294 }
295
__cqhci_disable(struct cqhci_host * cq_host)296 static void __cqhci_disable(struct cqhci_host *cq_host)
297 {
298 u32 cqcfg;
299
300 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
301 cqcfg &= ~CQHCI_ENABLE;
302 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
303
304 cq_host->mmc->cqe_on = false;
305
306 cq_host->activated = false;
307 }
308
cqhci_deactivate(struct mmc_host * mmc)309 int cqhci_deactivate(struct mmc_host *mmc)
310 {
311 struct cqhci_host *cq_host = mmc->cqe_private;
312
313 if (cq_host->enabled && cq_host->activated)
314 __cqhci_disable(cq_host);
315
316 return 0;
317 }
318 EXPORT_SYMBOL(cqhci_deactivate);
319
cqhci_resume(struct mmc_host * mmc)320 int cqhci_resume(struct mmc_host *mmc)
321 {
322 /* Re-enable is done upon first request */
323 return 0;
324 }
325 EXPORT_SYMBOL(cqhci_resume);
326
cqhci_enable(struct mmc_host * mmc,struct mmc_card * card)327 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
328 {
329 struct cqhci_host *cq_host = mmc->cqe_private;
330 int err;
331
332 if (!card->ext_csd.cmdq_en)
333 return -EINVAL;
334
335 if (cq_host->enabled)
336 return 0;
337
338 cq_host->rca = card->rca;
339
340 err = cqhci_host_alloc_tdl(cq_host);
341 if (err) {
342 pr_err("%s: Failed to enable CQE, error %d\n",
343 mmc_hostname(mmc), err);
344 return err;
345 }
346
347 __cqhci_enable(cq_host);
348
349 cq_host->enabled = true;
350
351 #ifdef DEBUG
352 cqhci_dumpregs(cq_host);
353 #endif
354 return 0;
355 }
356
357 /* CQHCI is idle and should halt immediately, so set a small timeout */
358 #define CQHCI_OFF_TIMEOUT 100
359
cqhci_read_ctl(struct cqhci_host * cq_host)360 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
361 {
362 return cqhci_readl(cq_host, CQHCI_CTL);
363 }
364
cqhci_off(struct mmc_host * mmc)365 static void cqhci_off(struct mmc_host *mmc)
366 {
367 struct cqhci_host *cq_host = mmc->cqe_private;
368 u32 reg;
369 int err;
370
371 if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
372 return;
373
374 if (cq_host->ops->disable)
375 cq_host->ops->disable(mmc, false);
376
377 cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
378
379 err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
380 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
381 if (err < 0)
382 pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
383 else
384 pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
385
386 if (cq_host->ops->post_disable)
387 cq_host->ops->post_disable(mmc);
388
389 mmc->cqe_on = false;
390 }
391
cqhci_disable(struct mmc_host * mmc)392 static void cqhci_disable(struct mmc_host *mmc)
393 {
394 struct cqhci_host *cq_host = mmc->cqe_private;
395
396 if (!cq_host->enabled)
397 return;
398
399 cqhci_off(mmc);
400
401 __cqhci_disable(cq_host);
402
403 dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
404 cq_host->trans_desc_base,
405 cq_host->trans_desc_dma_base);
406
407 dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
408 cq_host->desc_base,
409 cq_host->desc_dma_base);
410
411 cq_host->trans_desc_base = NULL;
412 cq_host->desc_base = NULL;
413
414 cq_host->enabled = false;
415 }
416
cqhci_prep_task_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)417 static void cqhci_prep_task_desc(struct mmc_request *mrq,
418 struct cqhci_host *cq_host, int tag)
419 {
420 __le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
421 u32 req_flags = mrq->data->flags;
422 u64 desc0;
423
424 desc0 = CQHCI_VALID(1) |
425 CQHCI_END(1) |
426 CQHCI_INT(1) |
427 CQHCI_ACT(0x5) |
428 CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
429 CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
430 CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
431 CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
432 CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
433 CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
434 CQHCI_BLK_COUNT(mrq->data->blocks) |
435 CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
436
437 task_desc[0] = cpu_to_le64(desc0);
438
439 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
440 u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
441
442 task_desc[1] = cpu_to_le64(desc1);
443
444 pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
445 mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
446 } else {
447 pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
448 mmc_hostname(mrq->host), mrq->tag, desc0);
449 }
450 }
451
cqhci_dma_map(struct mmc_host * host,struct mmc_request * mrq)452 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
453 {
454 int sg_count;
455 struct mmc_data *data = mrq->data;
456
457 if (!data)
458 return -EINVAL;
459
460 sg_count = dma_map_sg(mmc_dev(host), data->sg,
461 data->sg_len,
462 (data->flags & MMC_DATA_WRITE) ?
463 DMA_TO_DEVICE : DMA_FROM_DEVICE);
464 if (!sg_count) {
465 pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
466 return -ENOMEM;
467 }
468
469 return sg_count;
470 }
471
cqhci_set_tran_desc(u8 * desc,dma_addr_t addr,int len,bool end,bool dma64)472 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
473 bool dma64)
474 {
475 __le32 *attr = (__le32 __force *)desc;
476
477 *attr = (CQHCI_VALID(1) |
478 CQHCI_END(end ? 1 : 0) |
479 CQHCI_INT(0) |
480 CQHCI_ACT(0x4) |
481 CQHCI_DAT_LENGTH(len));
482
483 if (dma64) {
484 __le64 *dataddr = (__le64 __force *)(desc + 4);
485
486 dataddr[0] = cpu_to_le64(addr);
487 } else {
488 __le32 *dataddr = (__le32 __force *)(desc + 4);
489
490 dataddr[0] = cpu_to_le32(addr);
491 }
492 }
493
cqhci_prep_tran_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)494 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
495 struct cqhci_host *cq_host, int tag)
496 {
497 struct mmc_data *data = mrq->data;
498 int i, sg_count, len;
499 bool end = false;
500 bool dma64 = cq_host->dma64;
501 dma_addr_t addr;
502 u8 *desc;
503 struct scatterlist *sg;
504
505 sg_count = cqhci_dma_map(mrq->host, mrq);
506 if (sg_count < 0) {
507 pr_err("%s: %s: unable to map sg lists, %d\n",
508 mmc_hostname(mrq->host), __func__, sg_count);
509 return sg_count;
510 }
511
512 desc = get_trans_desc(cq_host, tag);
513
514 for_each_sg(data->sg, sg, sg_count, i) {
515 addr = sg_dma_address(sg);
516 len = sg_dma_len(sg);
517
518 if ((i+1) == sg_count)
519 end = true;
520 cqhci_set_tran_desc(desc, addr, len, end, dma64);
521 desc += cq_host->trans_desc_len;
522 }
523
524 return 0;
525 }
526
cqhci_prep_dcmd_desc(struct mmc_host * mmc,struct mmc_request * mrq)527 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
528 struct mmc_request *mrq)
529 {
530 u64 *task_desc = NULL;
531 u64 data = 0;
532 u8 resp_type;
533 u8 *desc;
534 __le64 *dataddr;
535 struct cqhci_host *cq_host = mmc->cqe_private;
536 u8 timing;
537
538 if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
539 resp_type = 0x0;
540 timing = 0x1;
541 } else {
542 if (mrq->cmd->flags & MMC_RSP_R1B) {
543 resp_type = 0x3;
544 timing = 0x0;
545 } else {
546 resp_type = 0x2;
547 timing = 0x1;
548 }
549 }
550
551 task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
552 memset(task_desc, 0, cq_host->task_desc_len);
553 data |= (CQHCI_VALID(1) |
554 CQHCI_END(1) |
555 CQHCI_INT(1) |
556 CQHCI_QBAR(1) |
557 CQHCI_ACT(0x5) |
558 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
559 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
560 if (cq_host->ops->update_dcmd_desc)
561 cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
562 *task_desc |= data;
563 desc = (u8 *)task_desc;
564 pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
565 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
566 dataddr = (__le64 __force *)(desc + 4);
567 dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
568
569 }
570
cqhci_post_req(struct mmc_host * host,struct mmc_request * mrq)571 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
572 {
573 struct mmc_data *data = mrq->data;
574
575 if (data) {
576 dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
577 (data->flags & MMC_DATA_READ) ?
578 DMA_FROM_DEVICE : DMA_TO_DEVICE);
579 }
580 }
581
cqhci_tag(struct mmc_request * mrq)582 static inline int cqhci_tag(struct mmc_request *mrq)
583 {
584 return mrq->cmd ? DCMD_SLOT : mrq->tag;
585 }
586
cqhci_request(struct mmc_host * mmc,struct mmc_request * mrq)587 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
588 {
589 int err = 0;
590 int tag = cqhci_tag(mrq);
591 struct cqhci_host *cq_host = mmc->cqe_private;
592 unsigned long flags;
593
594 if (!cq_host->enabled) {
595 pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
596 return -EINVAL;
597 }
598
599 /* First request after resume has to re-enable */
600 if (!cq_host->activated)
601 __cqhci_enable(cq_host);
602
603 if (!mmc->cqe_on) {
604 if (cq_host->ops->pre_enable)
605 cq_host->ops->pre_enable(mmc);
606
607 cqhci_writel(cq_host, 0, CQHCI_CTL);
608 mmc->cqe_on = true;
609 pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
610 if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
611 pr_err("%s: cqhci: CQE failed to exit halt state\n",
612 mmc_hostname(mmc));
613 }
614 if (cq_host->ops->enable)
615 cq_host->ops->enable(mmc);
616 }
617
618 if (mrq->data) {
619 cqhci_prep_task_desc(mrq, cq_host, tag);
620
621 err = cqhci_prep_tran_desc(mrq, cq_host, tag);
622 if (err) {
623 pr_err("%s: cqhci: failed to setup tx desc: %d\n",
624 mmc_hostname(mmc), err);
625 return err;
626 }
627 } else {
628 cqhci_prep_dcmd_desc(mmc, mrq);
629 }
630
631 spin_lock_irqsave(&cq_host->lock, flags);
632
633 if (cq_host->recovery_halt) {
634 err = -EBUSY;
635 goto out_unlock;
636 }
637
638 cq_host->slot[tag].mrq = mrq;
639 cq_host->slot[tag].flags = 0;
640
641 cq_host->qcnt += 1;
642 /* Make sure descriptors are ready before ringing the doorbell */
643 wmb();
644 cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
645 if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
646 pr_debug("%s: cqhci: doorbell not set for tag %d\n",
647 mmc_hostname(mmc), tag);
648 out_unlock:
649 spin_unlock_irqrestore(&cq_host->lock, flags);
650
651 if (err)
652 cqhci_post_req(mmc, mrq);
653
654 return err;
655 }
656
cqhci_recovery_needed(struct mmc_host * mmc,struct mmc_request * mrq,bool notify)657 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
658 bool notify)
659 {
660 struct cqhci_host *cq_host = mmc->cqe_private;
661
662 if (!cq_host->recovery_halt) {
663 cq_host->recovery_halt = true;
664 pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
665 wake_up(&cq_host->wait_queue);
666 if (notify && mrq->recovery_notifier)
667 mrq->recovery_notifier(mrq);
668 }
669 }
670
cqhci_error_flags(int error1,int error2)671 static unsigned int cqhci_error_flags(int error1, int error2)
672 {
673 int error = error1 ? error1 : error2;
674
675 switch (error) {
676 case -EILSEQ:
677 return CQHCI_HOST_CRC;
678 case -ETIMEDOUT:
679 return CQHCI_HOST_TIMEOUT;
680 default:
681 return CQHCI_HOST_OTHER;
682 }
683 }
684
cqhci_error_irq(struct mmc_host * mmc,u32 status,int cmd_error,int data_error)685 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
686 int data_error)
687 {
688 struct cqhci_host *cq_host = mmc->cqe_private;
689 struct cqhci_slot *slot;
690 u32 terri;
691 u32 tdpe;
692 int tag;
693
694 spin_lock(&cq_host->lock);
695
696 terri = cqhci_readl(cq_host, CQHCI_TERRI);
697
698 pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
699 mmc_hostname(mmc), status, cmd_error, data_error, terri);
700
701 /* Forget about errors when recovery has already been triggered */
702 if (cq_host->recovery_halt)
703 goto out_unlock;
704
705 if (!cq_host->qcnt) {
706 WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
707 mmc_hostname(mmc), status, cmd_error, data_error,
708 terri);
709 goto out_unlock;
710 }
711
712 if (CQHCI_TERRI_C_VALID(terri)) {
713 tag = CQHCI_TERRI_C_TASK(terri);
714 slot = &cq_host->slot[tag];
715 if (slot->mrq) {
716 slot->flags = cqhci_error_flags(cmd_error, data_error);
717 cqhci_recovery_needed(mmc, slot->mrq, true);
718 }
719 }
720
721 if (CQHCI_TERRI_D_VALID(terri)) {
722 tag = CQHCI_TERRI_D_TASK(terri);
723 slot = &cq_host->slot[tag];
724 if (slot->mrq) {
725 slot->flags = cqhci_error_flags(data_error, cmd_error);
726 cqhci_recovery_needed(mmc, slot->mrq, true);
727 }
728 }
729
730 /*
731 * Handle ICCE ("Invalid Crypto Configuration Error"). This should
732 * never happen, since the block layer ensures that all crypto-enabled
733 * I/O requests have a valid keyslot before they reach the driver.
734 *
735 * Note that GCE ("General Crypto Error") is different; it already got
736 * handled above by checking TERRI.
737 */
738 if (status & CQHCI_IS_ICCE) {
739 tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
740 WARN_ONCE(1,
741 "%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
742 mmc_hostname(mmc), status, tdpe);
743 while (tdpe != 0) {
744 tag = __ffs(tdpe);
745 tdpe &= ~(1 << tag);
746 slot = &cq_host->slot[tag];
747 if (!slot->mrq)
748 continue;
749 slot->flags = cqhci_error_flags(data_error, cmd_error);
750 cqhci_recovery_needed(mmc, slot->mrq, true);
751 }
752 }
753
754 if (!cq_host->recovery_halt) {
755 /*
756 * The only way to guarantee forward progress is to mark at
757 * least one task in error, so if none is indicated, pick one.
758 */
759 for (tag = 0; tag < NUM_SLOTS; tag++) {
760 slot = &cq_host->slot[tag];
761 if (!slot->mrq)
762 continue;
763 slot->flags = cqhci_error_flags(data_error, cmd_error);
764 cqhci_recovery_needed(mmc, slot->mrq, true);
765 break;
766 }
767 }
768
769 out_unlock:
770 spin_unlock(&cq_host->lock);
771 }
772
cqhci_finish_mrq(struct mmc_host * mmc,unsigned int tag)773 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
774 {
775 struct cqhci_host *cq_host = mmc->cqe_private;
776 struct cqhci_slot *slot = &cq_host->slot[tag];
777 struct mmc_request *mrq = slot->mrq;
778 struct mmc_data *data;
779
780 if (!mrq) {
781 WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
782 mmc_hostname(mmc), tag);
783 return;
784 }
785
786 /* No completions allowed during recovery */
787 if (cq_host->recovery_halt) {
788 slot->flags |= CQHCI_COMPLETED;
789 return;
790 }
791
792 slot->mrq = NULL;
793
794 cq_host->qcnt -= 1;
795
796 data = mrq->data;
797 if (data) {
798 if (data->error)
799 data->bytes_xfered = 0;
800 else
801 data->bytes_xfered = data->blksz * data->blocks;
802 }
803
804 mmc_cqe_request_done(mmc, mrq);
805 }
806
cqhci_irq(struct mmc_host * mmc,u32 intmask,int cmd_error,int data_error)807 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
808 int data_error)
809 {
810 u32 status;
811 unsigned long tag = 0, comp_status;
812 struct cqhci_host *cq_host = mmc->cqe_private;
813
814 status = cqhci_readl(cq_host, CQHCI_IS);
815 cqhci_writel(cq_host, status, CQHCI_IS);
816
817 pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
818
819 if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
820 cmd_error || data_error)
821 cqhci_error_irq(mmc, status, cmd_error, data_error);
822
823 if (status & CQHCI_IS_TCC) {
824 /* read TCN and complete the request */
825 comp_status = cqhci_readl(cq_host, CQHCI_TCN);
826 cqhci_writel(cq_host, comp_status, CQHCI_TCN);
827 pr_debug("%s: cqhci: TCN: 0x%08lx\n",
828 mmc_hostname(mmc), comp_status);
829
830 spin_lock(&cq_host->lock);
831
832 for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
833 /* complete the corresponding mrq */
834 pr_debug("%s: cqhci: completing tag %lu\n",
835 mmc_hostname(mmc), tag);
836 cqhci_finish_mrq(mmc, tag);
837 }
838
839 if (cq_host->waiting_for_idle && !cq_host->qcnt) {
840 cq_host->waiting_for_idle = false;
841 wake_up(&cq_host->wait_queue);
842 }
843
844 spin_unlock(&cq_host->lock);
845 }
846
847 if (status & CQHCI_IS_TCL)
848 wake_up(&cq_host->wait_queue);
849
850 if (status & CQHCI_IS_HAC)
851 wake_up(&cq_host->wait_queue);
852
853 return IRQ_HANDLED;
854 }
855 EXPORT_SYMBOL(cqhci_irq);
856
cqhci_is_idle(struct cqhci_host * cq_host,int * ret)857 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
858 {
859 unsigned long flags;
860 bool is_idle;
861
862 spin_lock_irqsave(&cq_host->lock, flags);
863 is_idle = !cq_host->qcnt || cq_host->recovery_halt;
864 *ret = cq_host->recovery_halt ? -EBUSY : 0;
865 cq_host->waiting_for_idle = !is_idle;
866 spin_unlock_irqrestore(&cq_host->lock, flags);
867
868 return is_idle;
869 }
870
cqhci_wait_for_idle(struct mmc_host * mmc)871 static int cqhci_wait_for_idle(struct mmc_host *mmc)
872 {
873 struct cqhci_host *cq_host = mmc->cqe_private;
874 int ret;
875
876 wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
877
878 return ret;
879 }
880
cqhci_timeout(struct mmc_host * mmc,struct mmc_request * mrq,bool * recovery_needed)881 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
882 bool *recovery_needed)
883 {
884 struct cqhci_host *cq_host = mmc->cqe_private;
885 int tag = cqhci_tag(mrq);
886 struct cqhci_slot *slot = &cq_host->slot[tag];
887 unsigned long flags;
888 bool timed_out;
889
890 spin_lock_irqsave(&cq_host->lock, flags);
891 timed_out = slot->mrq == mrq;
892 if (timed_out) {
893 slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
894 cqhci_recovery_needed(mmc, mrq, false);
895 *recovery_needed = cq_host->recovery_halt;
896 }
897 spin_unlock_irqrestore(&cq_host->lock, flags);
898
899 if (timed_out) {
900 pr_err("%s: cqhci: timeout for tag %d\n",
901 mmc_hostname(mmc), tag);
902 cqhci_dumpregs(cq_host);
903 }
904
905 return timed_out;
906 }
907
cqhci_tasks_cleared(struct cqhci_host * cq_host)908 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
909 {
910 return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
911 }
912
cqhci_clear_all_tasks(struct mmc_host * mmc,unsigned int timeout)913 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
914 {
915 struct cqhci_host *cq_host = mmc->cqe_private;
916 bool ret;
917 u32 ctl;
918
919 cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
920
921 ctl = cqhci_readl(cq_host, CQHCI_CTL);
922 ctl |= CQHCI_CLEAR_ALL_TASKS;
923 cqhci_writel(cq_host, ctl, CQHCI_CTL);
924
925 wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
926 msecs_to_jiffies(timeout) + 1);
927
928 cqhci_set_irqs(cq_host, 0);
929
930 ret = cqhci_tasks_cleared(cq_host);
931
932 if (!ret)
933 pr_warn("%s: cqhci: Failed to clear tasks\n",
934 mmc_hostname(mmc));
935
936 return ret;
937 }
938
cqhci_halted(struct cqhci_host * cq_host)939 static bool cqhci_halted(struct cqhci_host *cq_host)
940 {
941 return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
942 }
943
cqhci_halt(struct mmc_host * mmc,unsigned int timeout)944 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
945 {
946 struct cqhci_host *cq_host = mmc->cqe_private;
947 bool ret;
948 u32 ctl;
949
950 if (cqhci_halted(cq_host))
951 return true;
952
953 cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
954
955 ctl = cqhci_readl(cq_host, CQHCI_CTL);
956 ctl |= CQHCI_HALT;
957 cqhci_writel(cq_host, ctl, CQHCI_CTL);
958
959 wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
960 msecs_to_jiffies(timeout) + 1);
961
962 cqhci_set_irqs(cq_host, 0);
963
964 ret = cqhci_halted(cq_host);
965
966 if (!ret)
967 pr_warn("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
968
969 return ret;
970 }
971
972 /*
973 * After halting we expect to be able to use the command line. We interpret the
974 * failure to halt to mean the data lines might still be in use (and the upper
975 * layers will need to send a STOP command), however failing to halt complicates
976 * the recovery, so set a timeout that would reasonably allow I/O to complete.
977 */
978 #define CQHCI_START_HALT_TIMEOUT 500
979
cqhci_recovery_start(struct mmc_host * mmc)980 static void cqhci_recovery_start(struct mmc_host *mmc)
981 {
982 struct cqhci_host *cq_host = mmc->cqe_private;
983
984 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
985
986 WARN_ON(!cq_host->recovery_halt);
987
988 cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
989
990 if (cq_host->ops->disable)
991 cq_host->ops->disable(mmc, true);
992
993 mmc->cqe_on = false;
994 }
995
cqhci_error_from_flags(unsigned int flags)996 static int cqhci_error_from_flags(unsigned int flags)
997 {
998 if (!flags)
999 return 0;
1000
1001 /* CRC errors might indicate re-tuning so prefer to report that */
1002 if (flags & CQHCI_HOST_CRC)
1003 return -EILSEQ;
1004
1005 if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
1006 return -ETIMEDOUT;
1007
1008 return -EIO;
1009 }
1010
cqhci_recover_mrq(struct cqhci_host * cq_host,unsigned int tag)1011 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
1012 {
1013 struct cqhci_slot *slot = &cq_host->slot[tag];
1014 struct mmc_request *mrq = slot->mrq;
1015 struct mmc_data *data;
1016
1017 if (!mrq)
1018 return;
1019
1020 slot->mrq = NULL;
1021
1022 cq_host->qcnt -= 1;
1023
1024 data = mrq->data;
1025 if (data) {
1026 data->bytes_xfered = 0;
1027 data->error = cqhci_error_from_flags(slot->flags);
1028 } else {
1029 mrq->cmd->error = cqhci_error_from_flags(slot->flags);
1030 }
1031
1032 mmc_cqe_request_done(cq_host->mmc, mrq);
1033 }
1034
cqhci_recover_mrqs(struct cqhci_host * cq_host)1035 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
1036 {
1037 int i;
1038
1039 for (i = 0; i < cq_host->num_slots; i++)
1040 cqhci_recover_mrq(cq_host, i);
1041 }
1042
1043 /*
1044 * By now the command and data lines should be unused so there is no reason for
1045 * CQHCI to take a long time to halt, but if it doesn't halt there could be
1046 * problems clearing tasks, so be generous.
1047 */
1048 #define CQHCI_FINISH_HALT_TIMEOUT 20
1049
1050 /* CQHCI could be expected to clear it's internal state pretty quickly */
1051 #define CQHCI_CLEAR_TIMEOUT 20
1052
cqhci_recovery_finish(struct mmc_host * mmc)1053 static void cqhci_recovery_finish(struct mmc_host *mmc)
1054 {
1055 struct cqhci_host *cq_host = mmc->cqe_private;
1056 unsigned long flags;
1057 u32 cqcfg;
1058 bool ok;
1059
1060 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1061
1062 WARN_ON(!cq_host->recovery_halt);
1063
1064 ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1065
1066 /*
1067 * The specification contradicts itself, by saying that tasks cannot be
1068 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1069 * be disabled/re-enabled, but not to disable before clearing tasks.
1070 * Have a go anyway.
1071 */
1072 if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1073 ok = false;
1074
1075 /* Disable to make sure tasks really are cleared */
1076 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1077 cqcfg &= ~CQHCI_ENABLE;
1078 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1079
1080 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1081 cqcfg |= CQHCI_ENABLE;
1082 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1083
1084 cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1085
1086 if (!ok)
1087 cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT);
1088
1089 cqhci_recover_mrqs(cq_host);
1090
1091 WARN_ON(cq_host->qcnt);
1092
1093 spin_lock_irqsave(&cq_host->lock, flags);
1094 cq_host->qcnt = 0;
1095 cq_host->recovery_halt = false;
1096 mmc->cqe_on = false;
1097 spin_unlock_irqrestore(&cq_host->lock, flags);
1098
1099 /* Ensure all writes are done before interrupts are re-enabled */
1100 wmb();
1101
1102 cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1103
1104 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1105
1106 pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1107 }
1108
1109 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1110 .cqe_enable = cqhci_enable,
1111 .cqe_disable = cqhci_disable,
1112 .cqe_request = cqhci_request,
1113 .cqe_post_req = cqhci_post_req,
1114 .cqe_off = cqhci_off,
1115 .cqe_wait_for_idle = cqhci_wait_for_idle,
1116 .cqe_timeout = cqhci_timeout,
1117 .cqe_recovery_start = cqhci_recovery_start,
1118 .cqe_recovery_finish = cqhci_recovery_finish,
1119 };
1120
cqhci_pltfm_init(struct platform_device * pdev)1121 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1122 {
1123 struct cqhci_host *cq_host;
1124 struct resource *cqhci_memres = NULL;
1125
1126 /* check and setup CMDQ interface */
1127 cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1128 "cqhci");
1129 if (!cqhci_memres) {
1130 dev_dbg(&pdev->dev, "CMDQ not supported\n");
1131 return ERR_PTR(-EINVAL);
1132 }
1133
1134 cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1135 if (!cq_host)
1136 return ERR_PTR(-ENOMEM);
1137 cq_host->mmio = devm_ioremap(&pdev->dev,
1138 cqhci_memres->start,
1139 resource_size(cqhci_memres));
1140 if (!cq_host->mmio) {
1141 dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1142 return ERR_PTR(-EBUSY);
1143 }
1144 dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1145
1146 return cq_host;
1147 }
1148 EXPORT_SYMBOL(cqhci_pltfm_init);
1149
cqhci_ver_major(struct cqhci_host * cq_host)1150 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1151 {
1152 return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1153 }
1154
cqhci_ver_minor(struct cqhci_host * cq_host)1155 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1156 {
1157 u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1158
1159 return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1160 }
1161
cqhci_init(struct cqhci_host * cq_host,struct mmc_host * mmc,bool dma64)1162 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1163 bool dma64)
1164 {
1165 int err;
1166
1167 cq_host->dma64 = dma64;
1168 cq_host->mmc = mmc;
1169 cq_host->mmc->cqe_private = cq_host;
1170
1171 cq_host->num_slots = NUM_SLOTS;
1172 cq_host->dcmd_slot = DCMD_SLOT;
1173
1174 mmc->cqe_ops = &cqhci_cqe_ops;
1175
1176 mmc->cqe_qdepth = NUM_SLOTS;
1177 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1178 mmc->cqe_qdepth -= 1;
1179
1180 cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1181 sizeof(*cq_host->slot), GFP_KERNEL);
1182 if (!cq_host->slot) {
1183 err = -ENOMEM;
1184 goto out_err;
1185 }
1186
1187 err = cqhci_crypto_init(cq_host);
1188 if (err) {
1189 pr_err("%s: CQHCI crypto initialization failed\n",
1190 mmc_hostname(mmc));
1191 goto out_err;
1192 }
1193
1194 spin_lock_init(&cq_host->lock);
1195
1196 init_completion(&cq_host->halt_comp);
1197 init_waitqueue_head(&cq_host->wait_queue);
1198
1199 pr_info("%s: CQHCI version %u.%02u\n",
1200 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1201 cqhci_ver_minor(cq_host));
1202
1203 return 0;
1204
1205 out_err:
1206 pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1207 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1208 cqhci_ver_minor(cq_host), err);
1209 return err;
1210 }
1211 EXPORT_SYMBOL(cqhci_init);
1212
1213 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1214 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1215 MODULE_LICENSE("GPL v2");
1216