1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5 * Internal slab definitions
6 */
7
8 #ifdef CONFIG_SLOB
9 /*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20 struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
24 slab_flags_t flags; /* Active flags on the slab */
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31 };
32
33 #endif /* CONFIG_SLOB */
34
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49 #include <linux/android_vendor.h>
50
51 /*
52 * State of the slab allocator.
53 *
54 * This is used to describe the states of the allocator during bootup.
55 * Allocators use this to gradually bootstrap themselves. Most allocators
56 * have the problem that the structures used for managing slab caches are
57 * allocated from slab caches themselves.
58 */
59 enum slab_state {
60 DOWN, /* No slab functionality yet */
61 PARTIAL, /* SLUB: kmem_cache_node available */
62 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
63 UP, /* Slab caches usable but not all extras yet */
64 FULL /* Everything is working */
65 };
66
67 extern enum slab_state slab_state;
68
69 /* The slab cache mutex protects the management structures during changes */
70 extern struct mutex slab_mutex;
71
72 /* The list of all slab caches on the system */
73 extern struct list_head slab_caches;
74
75 /* The slab cache that manages slab cache information */
76 extern struct kmem_cache *kmem_cache;
77
78 /* A table of kmalloc cache names and sizes */
79 extern const struct kmalloc_info_struct {
80 const char *name[NR_KMALLOC_TYPES];
81 unsigned int size;
82 } kmalloc_info[];
83
84 #ifndef CONFIG_SLOB
85 /* Kmalloc array related functions */
86 void setup_kmalloc_cache_index_table(void);
87 void create_kmalloc_caches(slab_flags_t);
88
89 /* Find the kmalloc slab corresponding for a certain size */
90 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
91 #endif
92
93 gfp_t kmalloc_fix_flags(gfp_t flags);
94
95 #ifdef CONFIG_SLUB
96 /*
97 * Tracking user of a slab.
98 */
99 #define TRACK_ADDRS_COUNT 16
100 struct track {
101 unsigned long addr; /* Called from address */
102 #ifdef CONFIG_STACKTRACE
103 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
104 #endif
105 int cpu; /* Was running on cpu */
106 int pid; /* Pid context */
107 unsigned long when; /* When did the operation occur */
108 #ifdef CONFIG_STACKTRACE
109 ANDROID_OEM_DATA(1);
110 #endif
111 };
112
113 enum track_item { TRACK_ALLOC, TRACK_FREE };
114 #endif
115
116 /* Functions provided by the slab allocators */
117 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
118
119 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
120 slab_flags_t flags, unsigned int useroffset,
121 unsigned int usersize);
122 extern void create_boot_cache(struct kmem_cache *, const char *name,
123 unsigned int size, slab_flags_t flags,
124 unsigned int useroffset, unsigned int usersize);
125
126 int slab_unmergeable(struct kmem_cache *s);
127 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
128 slab_flags_t flags, const char *name, void (*ctor)(void *));
129 #ifndef CONFIG_SLOB
130 struct kmem_cache *
131 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
132 slab_flags_t flags, void (*ctor)(void *));
133
134 slab_flags_t kmem_cache_flags(unsigned int object_size,
135 slab_flags_t flags, const char *name);
136 #else
137 static inline struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))138 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
139 slab_flags_t flags, void (*ctor)(void *))
140 { return NULL; }
141
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)142 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
143 slab_flags_t flags, const char *name)
144 {
145 return flags;
146 }
147 #endif
148
149
150 /* Legal flag mask for kmem_cache_create(), for various configurations */
151 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
152 SLAB_CACHE_DMA32 | SLAB_PANIC | \
153 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
154
155 #if defined(CONFIG_DEBUG_SLAB)
156 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
157 #elif defined(CONFIG_SLUB_DEBUG)
158 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
160 #else
161 #define SLAB_DEBUG_FLAGS (0)
162 #endif
163
164 #if defined(CONFIG_SLAB)
165 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
166 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
167 SLAB_ACCOUNT)
168 #elif defined(CONFIG_SLUB)
169 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
170 SLAB_TEMPORARY | SLAB_ACCOUNT)
171 #else
172 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
173 #endif
174
175 /* Common flags available with current configuration */
176 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
177
178 /* Common flags permitted for kmem_cache_create */
179 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
180 SLAB_RED_ZONE | \
181 SLAB_POISON | \
182 SLAB_STORE_USER | \
183 SLAB_TRACE | \
184 SLAB_CONSISTENCY_CHECKS | \
185 SLAB_MEM_SPREAD | \
186 SLAB_NOLEAKTRACE | \
187 SLAB_RECLAIM_ACCOUNT | \
188 SLAB_TEMPORARY | \
189 SLAB_ACCOUNT)
190
191 bool __kmem_cache_empty(struct kmem_cache *);
192 int __kmem_cache_shutdown(struct kmem_cache *);
193 void __kmem_cache_release(struct kmem_cache *);
194 int __kmem_cache_shrink(struct kmem_cache *);
195 void slab_kmem_cache_release(struct kmem_cache *);
196
197 struct seq_file;
198 struct file;
199
200 struct slabinfo {
201 unsigned long active_objs;
202 unsigned long num_objs;
203 unsigned long active_slabs;
204 unsigned long num_slabs;
205 unsigned long shared_avail;
206 unsigned int limit;
207 unsigned int batchcount;
208 unsigned int shared;
209 unsigned int objects_per_slab;
210 unsigned int cache_order;
211 };
212
213 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
214 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
215 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
216 size_t count, loff_t *ppos);
217
218 /*
219 * Generic implementation of bulk operations
220 * These are useful for situations in which the allocator cannot
221 * perform optimizations. In that case segments of the object listed
222 * may be allocated or freed using these operations.
223 */
224 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
225 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
226
cache_vmstat_idx(struct kmem_cache * s)227 static inline int cache_vmstat_idx(struct kmem_cache *s)
228 {
229 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
230 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
231 }
232
233 #ifdef CONFIG_SLUB_DEBUG
234 #ifdef CONFIG_SLUB_DEBUG_ON
235 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
236 #else
237 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
238 #endif
239 extern void print_tracking(struct kmem_cache *s, void *object);
240 extern unsigned long get_each_object_track(struct kmem_cache *s,
241 struct page *page, enum track_item alloc,
242 int (*fn)(const struct kmem_cache *, const void *,
243 const struct track *, void *), void *private);
244 extern slab_flags_t slub_debug;
__slub_debug_enabled(void)245 static inline bool __slub_debug_enabled(void)
246 {
247 return static_branch_unlikely(&slub_debug_enabled);
248 }
249 #else
print_tracking(struct kmem_cache * s,void * object)250 static inline void print_tracking(struct kmem_cache *s, void *object)
251 {
252 }
__slub_debug_enabled(void)253 static inline bool __slub_debug_enabled(void)
254 {
255 return false;
256 }
257 #ifdef CONFIG_SLUB
get_each_object_track(struct kmem_cache * s,struct page * page,enum track_item alloc,int (* fn)(const struct kmem_cache *,const void *,const struct track *,void *),void * private)258 static inline unsigned long get_each_object_track(struct kmem_cache *s,
259 struct page *page, enum track_item alloc,
260 int (*fn)(const struct kmem_cache *, const void *,
261 const struct track *, void *), void *private)
262 {
263 return 0;
264 }
265 #endif
266 #endif
267
268 /*
269 * Returns true if any of the specified slub_debug flags is enabled for the
270 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
271 * the static key.
272 */
kmem_cache_debug_flags(struct kmem_cache * s,slab_flags_t flags)273 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
274 {
275 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
276 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
277 if (__slub_debug_enabled())
278 return s->flags & flags;
279 return false;
280 }
281
282 #ifdef CONFIG_MEMCG_KMEM
page_obj_cgroups(struct page * page)283 static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
284 {
285 /*
286 * page->mem_cgroup and page->obj_cgroups are sharing the same
287 * space. To distinguish between them in case we don't know for sure
288 * that the page is a slab page (e.g. page_cgroup_ino()), let's
289 * always set the lowest bit of obj_cgroups.
290 */
291 return (struct obj_cgroup **)
292 ((unsigned long)page->obj_cgroups & ~0x1UL);
293 }
294
page_has_obj_cgroups(struct page * page)295 static inline bool page_has_obj_cgroups(struct page *page)
296 {
297 return ((unsigned long)page->obj_cgroups & 0x1UL);
298 }
299
300 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
301 gfp_t gfp);
302
memcg_free_page_obj_cgroups(struct page * page)303 static inline void memcg_free_page_obj_cgroups(struct page *page)
304 {
305 kfree(page_obj_cgroups(page));
306 page->obj_cgroups = NULL;
307 }
308
obj_full_size(struct kmem_cache * s)309 static inline size_t obj_full_size(struct kmem_cache *s)
310 {
311 /*
312 * For each accounted object there is an extra space which is used
313 * to store obj_cgroup membership. Charge it too.
314 */
315 return s->size + sizeof(struct obj_cgroup *);
316 }
317
318 /*
319 * Returns false if the allocation should fail.
320 */
memcg_slab_pre_alloc_hook(struct kmem_cache * s,struct obj_cgroup ** objcgp,size_t objects,gfp_t flags)321 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
322 struct obj_cgroup **objcgp,
323 size_t objects, gfp_t flags)
324 {
325 struct obj_cgroup *objcg;
326
327 if (!memcg_kmem_enabled())
328 return true;
329
330 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
331 return true;
332
333 objcg = get_obj_cgroup_from_current();
334 if (!objcg)
335 return true;
336
337 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
338 obj_cgroup_put(objcg);
339 return false;
340 }
341
342 *objcgp = objcg;
343 return true;
344 }
345
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,int idx,int nr)346 static inline void mod_objcg_state(struct obj_cgroup *objcg,
347 struct pglist_data *pgdat,
348 int idx, int nr)
349 {
350 struct mem_cgroup *memcg;
351 struct lruvec *lruvec;
352
353 rcu_read_lock();
354 memcg = obj_cgroup_memcg(objcg);
355 lruvec = mem_cgroup_lruvec(memcg, pgdat);
356 mod_memcg_lruvec_state(lruvec, idx, nr);
357 rcu_read_unlock();
358 }
359
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct obj_cgroup * objcg,gfp_t flags,size_t size,void ** p)360 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
361 struct obj_cgroup *objcg,
362 gfp_t flags, size_t size,
363 void **p)
364 {
365 struct page *page;
366 unsigned long off;
367 size_t i;
368
369 if (!memcg_kmem_enabled() || !objcg)
370 return;
371
372 for (i = 0; i < size; i++) {
373 if (likely(p[i])) {
374 page = virt_to_head_page(p[i]);
375
376 if (!page_has_obj_cgroups(page) &&
377 memcg_alloc_page_obj_cgroups(page, s, flags)) {
378 obj_cgroup_uncharge(objcg, obj_full_size(s));
379 continue;
380 }
381
382 off = obj_to_index(s, page, p[i]);
383 obj_cgroup_get(objcg);
384 page_obj_cgroups(page)[off] = objcg;
385 mod_objcg_state(objcg, page_pgdat(page),
386 cache_vmstat_idx(s), obj_full_size(s));
387 } else {
388 obj_cgroup_uncharge(objcg, obj_full_size(s));
389 }
390 }
391 obj_cgroup_put(objcg);
392 }
393
memcg_slab_free_hook(struct kmem_cache * s_orig,void ** p,int objects)394 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
395 void **p, int objects)
396 {
397 struct kmem_cache *s;
398 struct obj_cgroup *objcg;
399 struct page *page;
400 unsigned int off;
401 int i;
402
403 if (!memcg_kmem_enabled())
404 return;
405
406 for (i = 0; i < objects; i++) {
407 if (unlikely(!p[i]))
408 continue;
409
410 page = virt_to_head_page(p[i]);
411 if (!page_has_obj_cgroups(page))
412 continue;
413
414 if (!s_orig)
415 s = page->slab_cache;
416 else
417 s = s_orig;
418
419 off = obj_to_index(s, page, p[i]);
420 objcg = page_obj_cgroups(page)[off];
421 if (!objcg)
422 continue;
423
424 page_obj_cgroups(page)[off] = NULL;
425 obj_cgroup_uncharge(objcg, obj_full_size(s));
426 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
427 -obj_full_size(s));
428 obj_cgroup_put(objcg);
429 }
430 }
431
432 #else /* CONFIG_MEMCG_KMEM */
page_has_obj_cgroups(struct page * page)433 static inline bool page_has_obj_cgroups(struct page *page)
434 {
435 return false;
436 }
437
memcg_from_slab_obj(void * ptr)438 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
439 {
440 return NULL;
441 }
442
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp)443 static inline int memcg_alloc_page_obj_cgroups(struct page *page,
444 struct kmem_cache *s, gfp_t gfp)
445 {
446 return 0;
447 }
448
memcg_free_page_obj_cgroups(struct page * page)449 static inline void memcg_free_page_obj_cgroups(struct page *page)
450 {
451 }
452
memcg_slab_pre_alloc_hook(struct kmem_cache * s,struct obj_cgroup ** objcgp,size_t objects,gfp_t flags)453 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
454 struct obj_cgroup **objcgp,
455 size_t objects, gfp_t flags)
456 {
457 return true;
458 }
459
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct obj_cgroup * objcg,gfp_t flags,size_t size,void ** p)460 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
461 struct obj_cgroup *objcg,
462 gfp_t flags, size_t size,
463 void **p)
464 {
465 }
466
memcg_slab_free_hook(struct kmem_cache * s,void ** p,int objects)467 static inline void memcg_slab_free_hook(struct kmem_cache *s,
468 void **p, int objects)
469 {
470 }
471 #endif /* CONFIG_MEMCG_KMEM */
472
virt_to_cache(const void * obj)473 static inline struct kmem_cache *virt_to_cache(const void *obj)
474 {
475 struct page *page;
476
477 page = virt_to_head_page(obj);
478 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
479 __func__))
480 return NULL;
481 return page->slab_cache;
482 }
483
account_slab_page(struct page * page,int order,struct kmem_cache * s)484 static __always_inline void account_slab_page(struct page *page, int order,
485 struct kmem_cache *s)
486 {
487 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
488 PAGE_SIZE << order);
489 }
490
unaccount_slab_page(struct page * page,int order,struct kmem_cache * s)491 static __always_inline void unaccount_slab_page(struct page *page, int order,
492 struct kmem_cache *s)
493 {
494 if (memcg_kmem_enabled())
495 memcg_free_page_obj_cgroups(page);
496
497 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
498 -(PAGE_SIZE << order));
499 }
500
cache_from_obj(struct kmem_cache * s,void * x)501 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
502 {
503 struct kmem_cache *cachep;
504
505 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
506 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
507 return s;
508
509 cachep = virt_to_cache(x);
510 if (WARN(cachep && cachep != s,
511 "%s: Wrong slab cache. %s but object is from %s\n",
512 __func__, s->name, cachep->name))
513 print_tracking(cachep, x);
514 return cachep;
515 }
516
slab_ksize(const struct kmem_cache * s)517 static inline size_t slab_ksize(const struct kmem_cache *s)
518 {
519 #ifndef CONFIG_SLUB
520 return s->object_size;
521
522 #else /* CONFIG_SLUB */
523 # ifdef CONFIG_SLUB_DEBUG
524 /*
525 * Debugging requires use of the padding between object
526 * and whatever may come after it.
527 */
528 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
529 return s->object_size;
530 # endif
531 if (s->flags & SLAB_KASAN)
532 return s->object_size;
533 /*
534 * If we have the need to store the freelist pointer
535 * back there or track user information then we can
536 * only use the space before that information.
537 */
538 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
539 return s->inuse;
540 /*
541 * Else we can use all the padding etc for the allocation
542 */
543 return s->size;
544 #endif
545 }
546
slab_pre_alloc_hook(struct kmem_cache * s,struct obj_cgroup ** objcgp,size_t size,gfp_t flags)547 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
548 struct obj_cgroup **objcgp,
549 size_t size, gfp_t flags)
550 {
551 flags &= gfp_allowed_mask;
552
553 fs_reclaim_acquire(flags);
554 fs_reclaim_release(flags);
555
556 might_sleep_if(gfpflags_allow_blocking(flags));
557
558 if (should_failslab(s, flags))
559 return NULL;
560
561 if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
562 return NULL;
563
564 return s;
565 }
566
slab_post_alloc_hook(struct kmem_cache * s,struct obj_cgroup * objcg,gfp_t flags,size_t size,void ** p,bool init)567 static inline void slab_post_alloc_hook(struct kmem_cache *s,
568 struct obj_cgroup *objcg, gfp_t flags,
569 size_t size, void **p, bool init)
570 {
571 size_t i;
572
573 flags &= gfp_allowed_mask;
574
575 /*
576 * As memory initialization might be integrated into KASAN,
577 * kasan_slab_alloc and initialization memset must be
578 * kept together to avoid discrepancies in behavior.
579 *
580 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
581 */
582 for (i = 0; i < size; i++) {
583 p[i] = kasan_slab_alloc(s, p[i], flags, init);
584 if (p[i] && init && !kasan_has_integrated_init())
585 memset(p[i], 0, s->object_size);
586 kmemleak_alloc_recursive(p[i], s->object_size, 1,
587 s->flags, flags);
588 }
589
590 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
591 }
592
593 #ifndef CONFIG_SLOB
594 /*
595 * The slab lists for all objects.
596 */
597 struct kmem_cache_node {
598 spinlock_t list_lock;
599
600 #ifdef CONFIG_SLAB
601 struct list_head slabs_partial; /* partial list first, better asm code */
602 struct list_head slabs_full;
603 struct list_head slabs_free;
604 unsigned long total_slabs; /* length of all slab lists */
605 unsigned long free_slabs; /* length of free slab list only */
606 unsigned long free_objects;
607 unsigned int free_limit;
608 unsigned int colour_next; /* Per-node cache coloring */
609 struct array_cache *shared; /* shared per node */
610 struct alien_cache **alien; /* on other nodes */
611 unsigned long next_reap; /* updated without locking */
612 int free_touched; /* updated without locking */
613 #endif
614
615 #ifdef CONFIG_SLUB
616 unsigned long nr_partial;
617 struct list_head partial;
618 #ifdef CONFIG_SLUB_DEBUG
619 atomic_long_t nr_slabs;
620 atomic_long_t total_objects;
621 struct list_head full;
622 #endif
623 #endif
624
625 };
626
get_node(struct kmem_cache * s,int node)627 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
628 {
629 return s->node[node];
630 }
631
632 /*
633 * Iterator over all nodes. The body will be executed for each node that has
634 * a kmem_cache_node structure allocated (which is true for all online nodes)
635 */
636 #define for_each_kmem_cache_node(__s, __node, __n) \
637 for (__node = 0; __node < nr_node_ids; __node++) \
638 if ((__n = get_node(__s, __node)))
639
640 #endif
641
642 void *slab_start(struct seq_file *m, loff_t *pos);
643 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
644 void slab_stop(struct seq_file *m, void *p);
645 int memcg_slab_show(struct seq_file *m, void *p);
646
647 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
648 void dump_unreclaimable_slab(void);
649 #else
dump_unreclaimable_slab(void)650 static inline void dump_unreclaimable_slab(void)
651 {
652 }
653 #endif
654
655 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
656
657 #ifdef CONFIG_SLAB_FREELIST_RANDOM
658 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
659 gfp_t gfp);
660 void cache_random_seq_destroy(struct kmem_cache *cachep);
661 #else
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)662 static inline int cache_random_seq_create(struct kmem_cache *cachep,
663 unsigned int count, gfp_t gfp)
664 {
665 return 0;
666 }
cache_random_seq_destroy(struct kmem_cache * cachep)667 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
668 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
669
slab_want_init_on_alloc(gfp_t flags,struct kmem_cache * c)670 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
671 {
672 if (static_branch_unlikely(&init_on_alloc)) {
673 if (c->ctor)
674 return false;
675 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
676 return flags & __GFP_ZERO;
677 return true;
678 }
679 return flags & __GFP_ZERO;
680 }
681
slab_want_init_on_free(struct kmem_cache * c)682 static inline bool slab_want_init_on_free(struct kmem_cache *c)
683 {
684 if (static_branch_unlikely(&init_on_free))
685 return !(c->ctor ||
686 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
687 return false;
688 }
689
690 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
691 void debugfs_slab_release(struct kmem_cache *);
692 #else
debugfs_slab_release(struct kmem_cache * s)693 static inline void debugfs_slab_release(struct kmem_cache *s) { }
694 #endif
695
696 #endif /* MM_SLAB_H */
697