1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 *
6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
7 * the chip is a quasi-EHCI compatible.
8 */
9
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/io.h>
27 #include <linux/iopoll.h>
28
29 #include <asm/irq.h>
30 #include <asm/unaligned.h>
31
32 #include <linux/irq.h>
33 #include <linux/platform_device.h>
34
35 #define DRIVER_VERSION "0.0.50"
36
37 #define OXU_DEVICEID 0x00
38 #define OXU_REV_MASK 0xffff0000
39 #define OXU_REV_SHIFT 16
40 #define OXU_REV_2100 0x2100
41 #define OXU_BO_SHIFT 8
42 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT)
43 #define OXU_MAJ_REV_SHIFT 4
44 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT)
45 #define OXU_MIN_REV_SHIFT 0
46 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT)
47 #define OXU_HOSTIFCONFIG 0x04
48 #define OXU_SOFTRESET 0x08
49 #define OXU_SRESET (1 << 0)
50
51 #define OXU_PIOBURSTREADCTRL 0x0C
52
53 #define OXU_CHIPIRQSTATUS 0x10
54 #define OXU_CHIPIRQEN_SET 0x14
55 #define OXU_CHIPIRQEN_CLR 0x18
56 #define OXU_USBSPHLPWUI 0x00000080
57 #define OXU_USBOTGLPWUI 0x00000040
58 #define OXU_USBSPHI 0x00000002
59 #define OXU_USBOTGI 0x00000001
60
61 #define OXU_CLKCTRL_SET 0x1C
62 #define OXU_SYSCLKEN 0x00000008
63 #define OXU_USBSPHCLKEN 0x00000002
64 #define OXU_USBOTGCLKEN 0x00000001
65
66 #define OXU_ASO 0x68
67 #define OXU_SPHPOEN 0x00000100
68 #define OXU_OVRCCURPUPDEN 0x00000800
69 #define OXU_ASO_OP (1 << 10)
70 #define OXU_COMPARATOR 0x000004000
71
72 #define OXU_USBMODE 0x1A8
73 #define OXU_VBPS 0x00000020
74 #define OXU_ES_LITTLE 0x00000000
75 #define OXU_CM_HOST_ONLY 0x00000003
76
77 /*
78 * Proper EHCI structs & defines
79 */
80
81 /* Magic numbers that can affect system performance */
82 #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
83 #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
84 #define EHCI_TUNE_RL_TT 0
85 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
86 #define EHCI_TUNE_MULT_TT 1
87 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */
88
89 struct oxu_hcd;
90
91 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
92
93 /* Section 2.2 Host Controller Capability Registers */
94 struct ehci_caps {
95 /* these fields are specified as 8 and 16 bit registers,
96 * but some hosts can't perform 8 or 16 bit PCI accesses.
97 */
98 u32 hc_capbase;
99 #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */
100 #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */
101 u32 hcs_params; /* HCSPARAMS - offset 0x4 */
102 #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */
103 #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */
104 #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
105 #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */
106 #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */
107 #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */
108 #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
109
110 u32 hcc_params; /* HCCPARAMS - offset 0x8 */
111 #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */
112 #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */
113 #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */
114 #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
116 #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */
117 u8 portroute[8]; /* nibbles for routing - offset 0xC */
118 } __packed;
119
120
121 /* Section 2.3 Host Controller Operational Registers */
122 struct ehci_regs {
123 /* USBCMD: offset 0x00 */
124 u32 command;
125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
126 #define CMD_PARK (1<<11) /* enable "park" on async qh */
127 #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
128 #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */
129 #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
130 #define CMD_ASE (1<<5) /* async schedule enable */
131 #define CMD_PSE (1<<4) /* periodic schedule enable */
132 /* 3:2 is periodic frame list size */
133 #define CMD_RESET (1<<1) /* reset HC not bus */
134 #define CMD_RUN (1<<0) /* start/stop HC */
135
136 /* USBSTS: offset 0x04 */
137 u32 status;
138 #define STS_ASS (1<<15) /* Async Schedule Status */
139 #define STS_PSS (1<<14) /* Periodic Schedule Status */
140 #define STS_RECL (1<<13) /* Reclamation */
141 #define STS_HALT (1<<12) /* Not running (any reason) */
142 /* some bits reserved */
143 /* these STS_* flags are also intr_enable bits (USBINTR) */
144 #define STS_IAA (1<<5) /* Interrupted on async advance */
145 #define STS_FATAL (1<<4) /* such as some PCI access errors */
146 #define STS_FLR (1<<3) /* frame list rolled over */
147 #define STS_PCD (1<<2) /* port change detect */
148 #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
149 #define STS_INT (1<<0) /* "normal" completion (short, ...) */
150
151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
152
153 /* USBINTR: offset 0x08 */
154 u32 intr_enable;
155
156 /* FRINDEX: offset 0x0C */
157 u32 frame_index; /* current microframe number */
158 /* CTRLDSSEGMENT: offset 0x10 */
159 u32 segment; /* address bits 63:32 if needed */
160 /* PERIODICLISTBASE: offset 0x14 */
161 u32 frame_list; /* points to periodic list */
162 /* ASYNCLISTADDR: offset 0x18 */
163 u32 async_next; /* address of next async queue head */
164
165 u32 reserved[9];
166
167 /* CONFIGFLAG: offset 0x40 */
168 u32 configured_flag;
169 #define FLAG_CF (1<<0) /* true: we'll support "high speed" */
170
171 /* PORTSC: offset 0x44 */
172 u32 port_status[0]; /* up to N_PORTS */
173 /* 31:23 reserved */
174 #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */
175 #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */
176 #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */
177 /* 19:16 for port testing */
178 #define PORT_LED_OFF (0<<14)
179 #define PORT_LED_AMBER (1<<14)
180 #define PORT_LED_GREEN (2<<14)
181 #define PORT_LED_MASK (3<<14)
182 #define PORT_OWNER (1<<13) /* true: companion hc owns this port */
183 #define PORT_POWER (1<<12) /* true: has power (see PPC) */
184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
186 /* 9 reserved */
187 #define PORT_RESET (1<<8) /* reset port */
188 #define PORT_SUSPEND (1<<7) /* suspend port */
189 #define PORT_RESUME (1<<6) /* resume it */
190 #define PORT_OCC (1<<5) /* over current change */
191 #define PORT_OC (1<<4) /* over current active */
192 #define PORT_PEC (1<<3) /* port enable change */
193 #define PORT_PE (1<<2) /* port enable */
194 #define PORT_CSC (1<<1) /* connect status change */
195 #define PORT_CONNECT (1<<0) /* device connected */
196 #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC)
197 } __packed;
198
199 /* Appendix C, Debug port ... intended for use with special "debug devices"
200 * that can help if there's no serial console. (nonstandard enumeration.)
201 */
202 struct ehci_dbg_port {
203 u32 control;
204 #define DBGP_OWNER (1<<30)
205 #define DBGP_ENABLED (1<<28)
206 #define DBGP_DONE (1<<16)
207 #define DBGP_INUSE (1<<10)
208 #define DBGP_ERRCODE(x) (((x)>>7)&0x07)
209 # define DBGP_ERR_BAD 1
210 # define DBGP_ERR_SIGNAL 2
211 #define DBGP_ERROR (1<<6)
212 #define DBGP_GO (1<<5)
213 #define DBGP_OUT (1<<4)
214 #define DBGP_LEN(x) (((x)>>0)&0x0f)
215 u32 pids;
216 #define DBGP_PID_GET(x) (((x)>>16)&0xff)
217 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
218 u32 data03;
219 u32 data47;
220 u32 address;
221 #define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep))
222 } __packed;
223
224 #define QTD_NEXT(dma) cpu_to_le32((u32)dma)
225
226 /*
227 * EHCI Specification 0.95 Section 3.5
228 * QTD: describe data transfer components (buffer, direction, ...)
229 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
230 *
231 * These are associated only with "QH" (Queue Head) structures,
232 * used with control, bulk, and interrupt transfers.
233 */
234 struct ehci_qtd {
235 /* first part defined by EHCI spec */
236 __le32 hw_next; /* see EHCI 3.5.1 */
237 __le32 hw_alt_next; /* see EHCI 3.5.2 */
238 __le32 hw_token; /* see EHCI 3.5.3 */
239 #define QTD_TOGGLE (1 << 31) /* data toggle */
240 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
241 #define QTD_IOC (1 << 15) /* interrupt on complete */
242 #define QTD_CERR(tok) (((tok)>>10) & 0x3)
243 #define QTD_PID(tok) (((tok)>>8) & 0x3)
244 #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
245 #define QTD_STS_HALT (1 << 6) /* halted on error */
246 #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
247 #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
248 #define QTD_STS_XACT (1 << 3) /* device gave illegal response */
249 #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
250 #define QTD_STS_STS (1 << 1) /* split transaction state */
251 #define QTD_STS_PING (1 << 0) /* issue PING? */
252 __le32 hw_buf[5]; /* see EHCI 3.5.4 */
253 __le32 hw_buf_hi[5]; /* Appendix B */
254
255 /* the rest is HCD-private */
256 dma_addr_t qtd_dma; /* qtd address */
257 struct list_head qtd_list; /* sw qtd list */
258 struct urb *urb; /* qtd's urb */
259 size_t length; /* length of buffer */
260
261 u32 qtd_buffer_len;
262 void *buffer;
263 dma_addr_t buffer_dma;
264 void *transfer_buffer;
265 void *transfer_dma;
266 } __aligned(32);
267
268 /* mask NakCnt+T in qh->hw_alt_next */
269 #define QTD_MASK cpu_to_le32 (~0x1f)
270
271 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
272
273 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
274 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
275
276 /* values for that type tag */
277 #define Q_TYPE_QH cpu_to_le32 (1 << 1)
278
279 /* next async queue entry, or pointer to interrupt/periodic QH */
280 #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
281
282 /* for periodic/async schedules and qtd lists, mark end of list */
283 #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */
284
285 /*
286 * Entries in periodic shadow table are pointers to one of four kinds
287 * of data structure. That's dictated by the hardware; a type tag is
288 * encoded in the low bits of the hardware's periodic schedule. Use
289 * Q_NEXT_TYPE to get the tag.
290 *
291 * For entries in the async schedule, the type tag always says "qh".
292 */
293 union ehci_shadow {
294 struct ehci_qh *qh; /* Q_TYPE_QH */
295 __le32 *hw_next; /* (all types) */
296 void *ptr;
297 };
298
299 /*
300 * EHCI Specification 0.95 Section 3.6
301 * QH: describes control/bulk/interrupt endpoints
302 * See Fig 3-7 "Queue Head Structure Layout".
303 *
304 * These appear in both the async and (for interrupt) periodic schedules.
305 */
306
307 struct ehci_qh {
308 /* first part defined by EHCI spec */
309 __le32 hw_next; /* see EHCI 3.6.1 */
310 __le32 hw_info1; /* see EHCI 3.6.2 */
311 #define QH_HEAD 0x00008000
312 __le32 hw_info2; /* see EHCI 3.6.2 */
313 #define QH_SMASK 0x000000ff
314 #define QH_CMASK 0x0000ff00
315 #define QH_HUBADDR 0x007f0000
316 #define QH_HUBPORT 0x3f800000
317 #define QH_MULT 0xc0000000
318 __le32 hw_current; /* qtd list - see EHCI 3.6.4 */
319
320 /* qtd overlay (hardware parts of a struct ehci_qtd) */
321 __le32 hw_qtd_next;
322 __le32 hw_alt_next;
323 __le32 hw_token;
324 __le32 hw_buf[5];
325 __le32 hw_buf_hi[5];
326
327 /* the rest is HCD-private */
328 dma_addr_t qh_dma; /* address of qh */
329 union ehci_shadow qh_next; /* ptr to qh; or periodic */
330 struct list_head qtd_list; /* sw qtd list */
331 struct ehci_qtd *dummy;
332 struct ehci_qh *reclaim; /* next to reclaim */
333
334 struct oxu_hcd *oxu;
335 struct kref kref;
336 unsigned int stamp;
337
338 u8 qh_state;
339 #define QH_STATE_LINKED 1 /* HC sees this */
340 #define QH_STATE_UNLINK 2 /* HC may still see this */
341 #define QH_STATE_IDLE 3 /* HC doesn't see this */
342 #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */
343 #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
344
345 /* periodic schedule info */
346 u8 usecs; /* intr bandwidth */
347 u8 gap_uf; /* uframes split/csplit gap */
348 u8 c_usecs; /* ... split completion bw */
349 u16 tt_usecs; /* tt downstream bandwidth */
350 unsigned short period; /* polling interval */
351 unsigned short start; /* where polling starts */
352 #define NO_FRAME ((unsigned short)~0) /* pick new start */
353 struct usb_device *dev; /* access to TT */
354 } __aligned(32);
355
356 /*
357 * Proper OXU210HP structs
358 */
359
360 #define OXU_OTG_CORE_OFFSET 0x00400
361 #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100)
362 #define OXU_SPH_CORE_OFFSET 0x00800
363 #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100)
364
365 #define OXU_OTG_MEM 0xE000
366 #define OXU_SPH_MEM 0x16000
367
368 /* Only how many elements & element structure are specifies here. */
369 /* 2 host controllers are enabled - total size <= 28 kbytes */
370 #define DEFAULT_I_TDPS 1024
371 #define QHEAD_NUM 16
372 #define QTD_NUM 32
373 #define SITD_NUM 8
374 #define MURB_NUM 8
375
376 #define BUFFER_NUM 8
377 #define BUFFER_SIZE 512
378
379 struct oxu_info {
380 struct usb_hcd *hcd[2];
381 };
382
383 struct oxu_buf {
384 u8 buffer[BUFFER_SIZE];
385 } __aligned(BUFFER_SIZE);
386
387 struct oxu_onchip_mem {
388 struct oxu_buf db_pool[BUFFER_NUM];
389
390 u32 frame_list[DEFAULT_I_TDPS];
391 struct ehci_qh qh_pool[QHEAD_NUM];
392 struct ehci_qtd qtd_pool[QTD_NUM];
393 } __aligned(4 << 10);
394
395 #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
396
397 struct oxu_murb {
398 struct urb urb;
399 struct urb *main;
400 u8 last;
401 };
402
403 struct oxu_hcd { /* one per controller */
404 unsigned int is_otg:1;
405
406 u8 qh_used[QHEAD_NUM];
407 u8 qtd_used[QTD_NUM];
408 u8 db_used[BUFFER_NUM];
409 u8 murb_used[MURB_NUM];
410
411 struct oxu_onchip_mem __iomem *mem;
412 spinlock_t mem_lock;
413
414 struct timer_list urb_timer;
415
416 struct ehci_caps __iomem *caps;
417 struct ehci_regs __iomem *regs;
418
419 u32 hcs_params; /* cached register copy */
420 spinlock_t lock;
421
422 /* async schedule support */
423 struct ehci_qh *async;
424 struct ehci_qh *reclaim;
425 unsigned int reclaim_ready:1;
426 unsigned int scanning:1;
427
428 /* periodic schedule support */
429 unsigned int periodic_size;
430 __le32 *periodic; /* hw periodic table */
431 dma_addr_t periodic_dma;
432 unsigned int i_thresh; /* uframes HC might cache */
433
434 union ehci_shadow *pshadow; /* mirror hw periodic table */
435 int next_uframe; /* scan periodic, start here */
436 unsigned int periodic_sched; /* periodic activity count */
437
438 /* per root hub port */
439 unsigned long reset_done[EHCI_MAX_ROOT_PORTS];
440 /* bit vectors (one bit per port) */
441 unsigned long bus_suspended; /* which ports were
442 * already suspended at the
443 * start of a bus suspend
444 */
445 unsigned long companion_ports;/* which ports are dedicated
446 * to the companion controller
447 */
448
449 struct timer_list watchdog;
450 unsigned long actions;
451 unsigned int stamp;
452 unsigned long next_statechange;
453 u32 command;
454
455 /* SILICON QUIRKS */
456 struct list_head urb_list; /* this is the head to urb
457 * queue that didn't get enough
458 * resources
459 */
460 struct oxu_murb *murb_pool; /* murb per split big urb */
461 unsigned int urb_len;
462
463 u8 sbrn; /* packed release number */
464 };
465
466 #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */
467 #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */
468 #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */
469 #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */
470
471 enum ehci_timer_action {
472 TIMER_IO_WATCHDOG,
473 TIMER_IAA_WATCHDOG,
474 TIMER_ASYNC_SHRINK,
475 TIMER_ASYNC_OFF,
476 };
477
478 /*
479 * Main defines
480 */
481
482 #define oxu_dbg(oxu, fmt, args...) \
483 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
484 #define oxu_err(oxu, fmt, args...) \
485 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
486 #define oxu_info(oxu, fmt, args...) \
487 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
488
489 #ifdef CONFIG_DYNAMIC_DEBUG
490 #define DEBUG
491 #endif
492
oxu_to_hcd(struct oxu_hcd * oxu)493 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
494 {
495 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
496 }
497
hcd_to_oxu(struct usb_hcd * hcd)498 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
499 {
500 return (struct oxu_hcd *) (hcd->hcd_priv);
501 }
502
503 /*
504 * Debug stuff
505 */
506
507 #undef OXU_URB_TRACE
508 #undef OXU_VERBOSE_DEBUG
509
510 #ifdef OXU_VERBOSE_DEBUG
511 #define oxu_vdbg oxu_dbg
512 #else
513 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
514 #endif
515
516 #ifdef DEBUG
517
518 static int __attribute__((__unused__))
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)519 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
520 {
521 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
522 label, label[0] ? " " : "", status,
523 (status & STS_ASS) ? " Async" : "",
524 (status & STS_PSS) ? " Periodic" : "",
525 (status & STS_RECL) ? " Recl" : "",
526 (status & STS_HALT) ? " Halt" : "",
527 (status & STS_IAA) ? " IAA" : "",
528 (status & STS_FATAL) ? " FATAL" : "",
529 (status & STS_FLR) ? " FLR" : "",
530 (status & STS_PCD) ? " PCD" : "",
531 (status & STS_ERR) ? " ERR" : "",
532 (status & STS_INT) ? " INT" : ""
533 );
534 }
535
536 static int __attribute__((__unused__))
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)537 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
538 {
539 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
540 label, label[0] ? " " : "", enable,
541 (enable & STS_IAA) ? " IAA" : "",
542 (enable & STS_FATAL) ? " FATAL" : "",
543 (enable & STS_FLR) ? " FLR" : "",
544 (enable & STS_PCD) ? " PCD" : "",
545 (enable & STS_ERR) ? " ERR" : "",
546 (enable & STS_INT) ? " INT" : ""
547 );
548 }
549
550 static const char *const fls_strings[] =
551 { "1024", "512", "256", "??" };
552
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)553 static int dbg_command_buf(char *buf, unsigned len,
554 const char *label, u32 command)
555 {
556 return scnprintf(buf, len,
557 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
558 label, label[0] ? " " : "", command,
559 (command & CMD_PARK) ? "park" : "(park)",
560 CMD_PARK_CNT(command),
561 (command >> 16) & 0x3f,
562 (command & CMD_LRESET) ? " LReset" : "",
563 (command & CMD_IAAD) ? " IAAD" : "",
564 (command & CMD_ASE) ? " Async" : "",
565 (command & CMD_PSE) ? " Periodic" : "",
566 fls_strings[(command >> 2) & 0x3],
567 (command & CMD_RESET) ? " Reset" : "",
568 (command & CMD_RUN) ? "RUN" : "HALT"
569 );
570 }
571
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)572 static int dbg_port_buf(char *buf, unsigned len, const char *label,
573 int port, u32 status)
574 {
575 char *sig;
576
577 /* signaling state */
578 switch (status & (3 << 10)) {
579 case 0 << 10:
580 sig = "se0";
581 break;
582 case 1 << 10:
583 sig = "k"; /* low speed */
584 break;
585 case 2 << 10:
586 sig = "j";
587 break;
588 default:
589 sig = "?";
590 break;
591 }
592
593 return scnprintf(buf, len,
594 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
595 label, label[0] ? " " : "", port, status,
596 (status & PORT_POWER) ? " POWER" : "",
597 (status & PORT_OWNER) ? " OWNER" : "",
598 sig,
599 (status & PORT_RESET) ? " RESET" : "",
600 (status & PORT_SUSPEND) ? " SUSPEND" : "",
601 (status & PORT_RESUME) ? " RESUME" : "",
602 (status & PORT_OCC) ? " OCC" : "",
603 (status & PORT_OC) ? " OC" : "",
604 (status & PORT_PEC) ? " PEC" : "",
605 (status & PORT_PE) ? " PE" : "",
606 (status & PORT_CSC) ? " CSC" : "",
607 (status & PORT_CONNECT) ? " CONNECT" : ""
608 );
609 }
610
611 #else
612
613 static inline int __attribute__((__unused__))
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)614 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
615 { return 0; }
616
617 static inline int __attribute__((__unused__))
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)618 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
619 { return 0; }
620
621 static inline int __attribute__((__unused__))
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)622 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
623 { return 0; }
624
625 static inline int __attribute__((__unused__))
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)626 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
627 { return 0; }
628
629 #endif /* DEBUG */
630
631 /* functions have the "wrong" filename when they're output... */
632 #define dbg_status(oxu, label, status) { \
633 char _buf[80]; \
634 dbg_status_buf(_buf, sizeof _buf, label, status); \
635 oxu_dbg(oxu, "%s\n", _buf); \
636 }
637
638 #define dbg_cmd(oxu, label, command) { \
639 char _buf[80]; \
640 dbg_command_buf(_buf, sizeof _buf, label, command); \
641 oxu_dbg(oxu, "%s\n", _buf); \
642 }
643
644 #define dbg_port(oxu, label, port, status) { \
645 char _buf[80]; \
646 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
647 oxu_dbg(oxu, "%s\n", _buf); \
648 }
649
650 /*
651 * Module parameters
652 */
653
654 /* Initial IRQ latency: faster than hw default */
655 static int log2_irq_thresh; /* 0 to 6 */
656 module_param(log2_irq_thresh, int, S_IRUGO);
657 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
658
659 /* Initial park setting: slower than hw default */
660 static unsigned park;
661 module_param(park, uint, S_IRUGO);
662 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
663
664 /* For flakey hardware, ignore overcurrent indicators */
665 static bool ignore_oc;
666 module_param(ignore_oc, bool, S_IRUGO);
667 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
668
669
670 static void ehci_work(struct oxu_hcd *oxu);
671 static int oxu_hub_control(struct usb_hcd *hcd,
672 u16 typeReq, u16 wValue, u16 wIndex,
673 char *buf, u16 wLength);
674
675 /*
676 * Local functions
677 */
678
679 /* Low level read/write registers functions */
oxu_readl(void __iomem * base,u32 reg)680 static inline u32 oxu_readl(void __iomem *base, u32 reg)
681 {
682 return readl(base + reg);
683 }
684
oxu_writel(void __iomem * base,u32 reg,u32 val)685 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
686 {
687 writel(val, base + reg);
688 }
689
timer_action_done(struct oxu_hcd * oxu,enum ehci_timer_action action)690 static inline void timer_action_done(struct oxu_hcd *oxu,
691 enum ehci_timer_action action)
692 {
693 clear_bit(action, &oxu->actions);
694 }
695
timer_action(struct oxu_hcd * oxu,enum ehci_timer_action action)696 static inline void timer_action(struct oxu_hcd *oxu,
697 enum ehci_timer_action action)
698 {
699 if (!test_and_set_bit(action, &oxu->actions)) {
700 unsigned long t;
701
702 switch (action) {
703 case TIMER_IAA_WATCHDOG:
704 t = EHCI_IAA_JIFFIES;
705 break;
706 case TIMER_IO_WATCHDOG:
707 t = EHCI_IO_JIFFIES;
708 break;
709 case TIMER_ASYNC_OFF:
710 t = EHCI_ASYNC_JIFFIES;
711 break;
712 case TIMER_ASYNC_SHRINK:
713 default:
714 t = EHCI_SHRINK_JIFFIES;
715 break;
716 }
717 t += jiffies;
718 /* all timings except IAA watchdog can be overridden.
719 * async queue SHRINK often precedes IAA. while it's ready
720 * to go OFF neither can matter, and afterwards the IO
721 * watchdog stops unless there's still periodic traffic.
722 */
723 if (action != TIMER_IAA_WATCHDOG
724 && t > oxu->watchdog.expires
725 && timer_pending(&oxu->watchdog))
726 return;
727 mod_timer(&oxu->watchdog, t);
728 }
729 }
730
731 /*
732 * handshake - spin reading hc until handshake completes or fails
733 * @ptr: address of hc register to be read
734 * @mask: bits to look at in result of read
735 * @done: value of those bits when handshake succeeds
736 * @usec: timeout in microseconds
737 *
738 * Returns negative errno, or zero on success
739 *
740 * Success happens when the "mask" bits have the specified value (hardware
741 * handshake done). There are two failure modes: "usec" have passed (major
742 * hardware flakeout), or the register reads as all-ones (hardware removed).
743 *
744 * That last failure should_only happen in cases like physical cardbus eject
745 * before driver shutdown. But it also seems to be caused by bugs in cardbus
746 * bridge shutdown: shutting down the bridge before the devices using it.
747 */
handshake(struct oxu_hcd * oxu,void __iomem * ptr,u32 mask,u32 done,int usec)748 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
749 u32 mask, u32 done, int usec)
750 {
751 u32 result;
752 int ret;
753
754 ret = readl_poll_timeout_atomic(ptr, result,
755 ((result & mask) == done ||
756 result == U32_MAX),
757 1, usec);
758 if (result == U32_MAX) /* card removed */
759 return -ENODEV;
760
761 return ret;
762 }
763
764 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
ehci_halt(struct oxu_hcd * oxu)765 static int ehci_halt(struct oxu_hcd *oxu)
766 {
767 u32 temp = readl(&oxu->regs->status);
768
769 /* disable any irqs left enabled by previous code */
770 writel(0, &oxu->regs->intr_enable);
771
772 if ((temp & STS_HALT) != 0)
773 return 0;
774
775 temp = readl(&oxu->regs->command);
776 temp &= ~CMD_RUN;
777 writel(temp, &oxu->regs->command);
778 return handshake(oxu, &oxu->regs->status,
779 STS_HALT, STS_HALT, 16 * 125);
780 }
781
782 /* Put TDI/ARC silicon into EHCI mode */
tdi_reset(struct oxu_hcd * oxu)783 static void tdi_reset(struct oxu_hcd *oxu)
784 {
785 u32 __iomem *reg_ptr;
786 u32 tmp;
787
788 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
789 tmp = readl(reg_ptr);
790 tmp |= 0x3;
791 writel(tmp, reg_ptr);
792 }
793
794 /* Reset a non-running (STS_HALT == 1) controller */
ehci_reset(struct oxu_hcd * oxu)795 static int ehci_reset(struct oxu_hcd *oxu)
796 {
797 int retval;
798 u32 command = readl(&oxu->regs->command);
799
800 command |= CMD_RESET;
801 dbg_cmd(oxu, "reset", command);
802 writel(command, &oxu->regs->command);
803 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
804 oxu->next_statechange = jiffies;
805 retval = handshake(oxu, &oxu->regs->command,
806 CMD_RESET, 0, 250 * 1000);
807
808 if (retval)
809 return retval;
810
811 tdi_reset(oxu);
812
813 return retval;
814 }
815
816 /* Idle the controller (from running) */
ehci_quiesce(struct oxu_hcd * oxu)817 static void ehci_quiesce(struct oxu_hcd *oxu)
818 {
819 u32 temp;
820
821 #ifdef DEBUG
822 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
823 #endif
824
825 /* wait for any schedule enables/disables to take effect */
826 temp = readl(&oxu->regs->command) << 10;
827 temp &= STS_ASS | STS_PSS;
828 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
829 temp, 16 * 125) != 0) {
830 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
831 return;
832 }
833
834 /* then disable anything that's still active */
835 temp = readl(&oxu->regs->command);
836 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
837 writel(temp, &oxu->regs->command);
838
839 /* hardware can take 16 microframes to turn off ... */
840 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
841 0, 16 * 125) != 0) {
842 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
843 return;
844 }
845 }
846
check_reset_complete(struct oxu_hcd * oxu,int index,u32 __iomem * status_reg,int port_status)847 static int check_reset_complete(struct oxu_hcd *oxu, int index,
848 u32 __iomem *status_reg, int port_status)
849 {
850 if (!(port_status & PORT_CONNECT)) {
851 oxu->reset_done[index] = 0;
852 return port_status;
853 }
854
855 /* if reset finished and it's still not enabled -- handoff */
856 if (!(port_status & PORT_PE)) {
857 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
858 index+1);
859 return port_status;
860 } else
861 oxu_dbg(oxu, "port %d high speed\n", index + 1);
862
863 return port_status;
864 }
865
ehci_hub_descriptor(struct oxu_hcd * oxu,struct usb_hub_descriptor * desc)866 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
867 struct usb_hub_descriptor *desc)
868 {
869 int ports = HCS_N_PORTS(oxu->hcs_params);
870 u16 temp;
871
872 desc->bDescriptorType = USB_DT_HUB;
873 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
874 desc->bHubContrCurrent = 0;
875
876 desc->bNbrPorts = ports;
877 temp = 1 + (ports / 8);
878 desc->bDescLength = 7 + 2 * temp;
879
880 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
881 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
882 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
883
884 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
885 if (HCS_PPC(oxu->hcs_params))
886 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
887 else
888 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
889 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
890 }
891
892
893 /* Allocate an OXU210HP on-chip memory data buffer
894 *
895 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
896 * Each transfer descriptor has one or more on-chip memory data buffers.
897 *
898 * Data buffers are allocated from a fix sized pool of data blocks.
899 * To minimise fragmentation and give reasonable memory utlisation,
900 * data buffers are allocated with sizes the power of 2 multiples of
901 * the block size, starting on an address a multiple of the allocated size.
902 *
903 * FIXME: callers of this function require a buffer to be allocated for
904 * len=0. This is a waste of on-chip memory and should be fix. Then this
905 * function should be changed to not allocate a buffer for len=0.
906 */
oxu_buf_alloc(struct oxu_hcd * oxu,struct ehci_qtd * qtd,int len)907 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
908 {
909 int n_blocks; /* minium blocks needed to hold len */
910 int a_blocks; /* blocks allocated */
911 int i, j;
912
913 /* Don't allocte bigger than supported */
914 if (len > BUFFER_SIZE * BUFFER_NUM) {
915 oxu_err(oxu, "buffer too big (%d)\n", len);
916 return -ENOMEM;
917 }
918
919 spin_lock(&oxu->mem_lock);
920
921 /* Number of blocks needed to hold len */
922 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
923
924 /* Round the number of blocks up to the power of 2 */
925 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
926 ;
927
928 /* Find a suitable available data buffer */
929 for (i = 0; i < BUFFER_NUM;
930 i += max(a_blocks, (int)oxu->db_used[i])) {
931
932 /* Check all the required blocks are available */
933 for (j = 0; j < a_blocks; j++)
934 if (oxu->db_used[i + j])
935 break;
936
937 if (j != a_blocks)
938 continue;
939
940 /* Allocate blocks found! */
941 qtd->buffer = (void *) &oxu->mem->db_pool[i];
942 qtd->buffer_dma = virt_to_phys(qtd->buffer);
943
944 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
945 oxu->db_used[i] = a_blocks;
946
947 spin_unlock(&oxu->mem_lock);
948
949 return 0;
950 }
951
952 /* Failed */
953
954 spin_unlock(&oxu->mem_lock);
955
956 return -ENOMEM;
957 }
958
oxu_buf_free(struct oxu_hcd * oxu,struct ehci_qtd * qtd)959 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
960 {
961 int index;
962
963 spin_lock(&oxu->mem_lock);
964
965 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
966 / BUFFER_SIZE;
967 oxu->db_used[index] = 0;
968 qtd->qtd_buffer_len = 0;
969 qtd->buffer_dma = 0;
970 qtd->buffer = NULL;
971
972 spin_unlock(&oxu->mem_lock);
973 }
974
ehci_qtd_init(struct ehci_qtd * qtd,dma_addr_t dma)975 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
976 {
977 memset(qtd, 0, sizeof *qtd);
978 qtd->qtd_dma = dma;
979 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
980 qtd->hw_next = EHCI_LIST_END;
981 qtd->hw_alt_next = EHCI_LIST_END;
982 INIT_LIST_HEAD(&qtd->qtd_list);
983 }
984
oxu_qtd_free(struct oxu_hcd * oxu,struct ehci_qtd * qtd)985 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
986 {
987 int index;
988
989 if (qtd->buffer)
990 oxu_buf_free(oxu, qtd);
991
992 spin_lock(&oxu->mem_lock);
993
994 index = qtd - &oxu->mem->qtd_pool[0];
995 oxu->qtd_used[index] = 0;
996
997 spin_unlock(&oxu->mem_lock);
998 }
999
ehci_qtd_alloc(struct oxu_hcd * oxu)1000 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1001 {
1002 int i;
1003 struct ehci_qtd *qtd = NULL;
1004
1005 spin_lock(&oxu->mem_lock);
1006
1007 for (i = 0; i < QTD_NUM; i++)
1008 if (!oxu->qtd_used[i])
1009 break;
1010
1011 if (i < QTD_NUM) {
1012 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1013 memset(qtd, 0, sizeof *qtd);
1014
1015 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1016 qtd->hw_next = EHCI_LIST_END;
1017 qtd->hw_alt_next = EHCI_LIST_END;
1018 INIT_LIST_HEAD(&qtd->qtd_list);
1019
1020 qtd->qtd_dma = virt_to_phys(qtd);
1021
1022 oxu->qtd_used[i] = 1;
1023 }
1024
1025 spin_unlock(&oxu->mem_lock);
1026
1027 return qtd;
1028 }
1029
oxu_qh_free(struct oxu_hcd * oxu,struct ehci_qh * qh)1030 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1031 {
1032 int index;
1033
1034 spin_lock(&oxu->mem_lock);
1035
1036 index = qh - &oxu->mem->qh_pool[0];
1037 oxu->qh_used[index] = 0;
1038
1039 spin_unlock(&oxu->mem_lock);
1040 }
1041
qh_destroy(struct kref * kref)1042 static void qh_destroy(struct kref *kref)
1043 {
1044 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1045 struct oxu_hcd *oxu = qh->oxu;
1046
1047 /* clean qtds first, and know this is not linked */
1048 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1049 oxu_dbg(oxu, "unused qh not empty!\n");
1050 BUG();
1051 }
1052 if (qh->dummy)
1053 oxu_qtd_free(oxu, qh->dummy);
1054 oxu_qh_free(oxu, qh);
1055 }
1056
oxu_qh_alloc(struct oxu_hcd * oxu)1057 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1058 {
1059 int i;
1060 struct ehci_qh *qh = NULL;
1061
1062 spin_lock(&oxu->mem_lock);
1063
1064 for (i = 0; i < QHEAD_NUM; i++)
1065 if (!oxu->qh_used[i])
1066 break;
1067
1068 if (i < QHEAD_NUM) {
1069 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1070 memset(qh, 0, sizeof *qh);
1071
1072 kref_init(&qh->kref);
1073 qh->oxu = oxu;
1074 qh->qh_dma = virt_to_phys(qh);
1075 INIT_LIST_HEAD(&qh->qtd_list);
1076
1077 /* dummy td enables safe urb queuing */
1078 qh->dummy = ehci_qtd_alloc(oxu);
1079 if (qh->dummy == NULL) {
1080 oxu_dbg(oxu, "no dummy td\n");
1081 oxu->qh_used[i] = 0;
1082 qh = NULL;
1083 goto unlock;
1084 }
1085
1086 oxu->qh_used[i] = 1;
1087 }
1088 unlock:
1089 spin_unlock(&oxu->mem_lock);
1090
1091 return qh;
1092 }
1093
1094 /* to share a qh (cpu threads, or hc) */
qh_get(struct ehci_qh * qh)1095 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1096 {
1097 kref_get(&qh->kref);
1098 return qh;
1099 }
1100
qh_put(struct ehci_qh * qh)1101 static inline void qh_put(struct ehci_qh *qh)
1102 {
1103 kref_put(&qh->kref, qh_destroy);
1104 }
1105
oxu_murb_free(struct oxu_hcd * oxu,struct oxu_murb * murb)1106 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1107 {
1108 int index;
1109
1110 spin_lock(&oxu->mem_lock);
1111
1112 index = murb - &oxu->murb_pool[0];
1113 oxu->murb_used[index] = 0;
1114
1115 spin_unlock(&oxu->mem_lock);
1116 }
1117
oxu_murb_alloc(struct oxu_hcd * oxu)1118 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1119
1120 {
1121 int i;
1122 struct oxu_murb *murb = NULL;
1123
1124 spin_lock(&oxu->mem_lock);
1125
1126 for (i = 0; i < MURB_NUM; i++)
1127 if (!oxu->murb_used[i])
1128 break;
1129
1130 if (i < MURB_NUM) {
1131 murb = &(oxu->murb_pool)[i];
1132
1133 oxu->murb_used[i] = 1;
1134 }
1135
1136 spin_unlock(&oxu->mem_lock);
1137
1138 return murb;
1139 }
1140
1141 /* The queue heads and transfer descriptors are managed from pools tied
1142 * to each of the "per device" structures.
1143 * This is the initialisation and cleanup code.
1144 */
ehci_mem_cleanup(struct oxu_hcd * oxu)1145 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1146 {
1147 kfree(oxu->murb_pool);
1148 oxu->murb_pool = NULL;
1149
1150 if (oxu->async)
1151 qh_put(oxu->async);
1152 oxu->async = NULL;
1153
1154 del_timer(&oxu->urb_timer);
1155
1156 oxu->periodic = NULL;
1157
1158 /* shadow periodic table */
1159 kfree(oxu->pshadow);
1160 oxu->pshadow = NULL;
1161 }
1162
1163 /* Remember to add cleanup code (above) if you add anything here.
1164 */
ehci_mem_init(struct oxu_hcd * oxu,gfp_t flags)1165 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1166 {
1167 int i;
1168
1169 for (i = 0; i < oxu->periodic_size; i++)
1170 oxu->mem->frame_list[i] = EHCI_LIST_END;
1171 for (i = 0; i < QHEAD_NUM; i++)
1172 oxu->qh_used[i] = 0;
1173 for (i = 0; i < QTD_NUM; i++)
1174 oxu->qtd_used[i] = 0;
1175
1176 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1177 if (!oxu->murb_pool)
1178 goto fail;
1179
1180 for (i = 0; i < MURB_NUM; i++)
1181 oxu->murb_used[i] = 0;
1182
1183 oxu->async = oxu_qh_alloc(oxu);
1184 if (!oxu->async)
1185 goto fail;
1186
1187 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1188 oxu->periodic_dma = virt_to_phys(oxu->periodic);
1189
1190 for (i = 0; i < oxu->periodic_size; i++)
1191 oxu->periodic[i] = EHCI_LIST_END;
1192
1193 /* software shadow of hardware table */
1194 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1195 if (oxu->pshadow != NULL)
1196 return 0;
1197
1198 fail:
1199 oxu_dbg(oxu, "couldn't init memory\n");
1200 ehci_mem_cleanup(oxu);
1201 return -ENOMEM;
1202 }
1203
1204 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1205 */
qtd_fill(struct ehci_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1206 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1207 int token, int maxpacket)
1208 {
1209 int i, count;
1210 u64 addr = buf;
1211
1212 /* one buffer entry per 4K ... first might be short or unaligned */
1213 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1214 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1215 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
1216 if (likely(len < count)) /* ... iff needed */
1217 count = len;
1218 else {
1219 buf += 0x1000;
1220 buf &= ~0x0fff;
1221
1222 /* per-qtd limit: from 16K to 20K (best alignment) */
1223 for (i = 1; count < len && i < 5; i++) {
1224 addr = buf;
1225 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1226 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1227 buf += 0x1000;
1228 if ((count + 0x1000) < len)
1229 count += 0x1000;
1230 else
1231 count = len;
1232 }
1233
1234 /* short packets may only terminate transfers */
1235 if (count != len)
1236 count -= (count % maxpacket);
1237 }
1238 qtd->hw_token = cpu_to_le32((count << 16) | token);
1239 qtd->length = count;
1240
1241 return count;
1242 }
1243
qh_update(struct oxu_hcd * oxu,struct ehci_qh * qh,struct ehci_qtd * qtd)1244 static inline void qh_update(struct oxu_hcd *oxu,
1245 struct ehci_qh *qh, struct ehci_qtd *qtd)
1246 {
1247 /* writes to an active overlay are unsafe */
1248 BUG_ON(qh->qh_state != QH_STATE_IDLE);
1249
1250 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1251 qh->hw_alt_next = EHCI_LIST_END;
1252
1253 /* Except for control endpoints, we make hardware maintain data
1254 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1255 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1256 * ever clear it.
1257 */
1258 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1259 unsigned is_out, epnum;
1260
1261 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1262 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1263 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1264 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1265 usb_settoggle(qh->dev, epnum, is_out, 1);
1266 }
1267 }
1268
1269 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1270 wmb();
1271 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1272 }
1273
1274 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1275 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1276 * recovery (including urb dequeue) would need software changes to a QH...
1277 */
qh_refresh(struct oxu_hcd * oxu,struct ehci_qh * qh)1278 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1279 {
1280 struct ehci_qtd *qtd;
1281
1282 if (list_empty(&qh->qtd_list))
1283 qtd = qh->dummy;
1284 else {
1285 qtd = list_entry(qh->qtd_list.next,
1286 struct ehci_qtd, qtd_list);
1287 /* first qtd may already be partially processed */
1288 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1289 qtd = NULL;
1290 }
1291
1292 if (qtd)
1293 qh_update(oxu, qh, qtd);
1294 }
1295
qtd_copy_status(struct oxu_hcd * oxu,struct urb * urb,size_t length,u32 token)1296 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1297 size_t length, u32 token)
1298 {
1299 /* count IN/OUT bytes, not SETUP (even short packets) */
1300 if (likely(QTD_PID(token) != 2))
1301 urb->actual_length += length - QTD_LENGTH(token);
1302
1303 /* don't modify error codes */
1304 if (unlikely(urb->status != -EINPROGRESS))
1305 return;
1306
1307 /* force cleanup after short read; not always an error */
1308 if (unlikely(IS_SHORT_READ(token)))
1309 urb->status = -EREMOTEIO;
1310
1311 /* serious "can't proceed" faults reported by the hardware */
1312 if (token & QTD_STS_HALT) {
1313 if (token & QTD_STS_BABBLE) {
1314 /* FIXME "must" disable babbling device's port too */
1315 urb->status = -EOVERFLOW;
1316 } else if (token & QTD_STS_MMF) {
1317 /* fs/ls interrupt xfer missed the complete-split */
1318 urb->status = -EPROTO;
1319 } else if (token & QTD_STS_DBE) {
1320 urb->status = (QTD_PID(token) == 1) /* IN ? */
1321 ? -ENOSR /* hc couldn't read data */
1322 : -ECOMM; /* hc couldn't write data */
1323 } else if (token & QTD_STS_XACT) {
1324 /* timeout, bad crc, wrong PID, etc; retried */
1325 if (QTD_CERR(token))
1326 urb->status = -EPIPE;
1327 else {
1328 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1329 urb->dev->devpath,
1330 usb_pipeendpoint(urb->pipe),
1331 usb_pipein(urb->pipe) ? "in" : "out");
1332 urb->status = -EPROTO;
1333 }
1334 /* CERR nonzero + no errors + halt --> stall */
1335 } else if (QTD_CERR(token))
1336 urb->status = -EPIPE;
1337 else /* unknown */
1338 urb->status = -EPROTO;
1339
1340 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1341 usb_pipedevice(urb->pipe),
1342 usb_pipeendpoint(urb->pipe),
1343 usb_pipein(urb->pipe) ? "in" : "out",
1344 token, urb->status);
1345 }
1346 }
1347
ehci_urb_done(struct oxu_hcd * oxu,struct urb * urb)1348 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1349 __releases(oxu->lock)
1350 __acquires(oxu->lock)
1351 {
1352 if (likely(urb->hcpriv != NULL)) {
1353 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
1354
1355 /* S-mask in a QH means it's an interrupt urb */
1356 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1357
1358 /* ... update hc-wide periodic stats (for usbfs) */
1359 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1360 }
1361 qh_put(qh);
1362 }
1363
1364 urb->hcpriv = NULL;
1365 switch (urb->status) {
1366 case -EINPROGRESS: /* success */
1367 urb->status = 0;
1368 default: /* fault */
1369 break;
1370 case -EREMOTEIO: /* fault or normal */
1371 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1372 urb->status = 0;
1373 break;
1374 case -ECONNRESET: /* canceled */
1375 case -ENOENT:
1376 break;
1377 }
1378
1379 #ifdef OXU_URB_TRACE
1380 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1381 __func__, urb->dev->devpath, urb,
1382 usb_pipeendpoint(urb->pipe),
1383 usb_pipein(urb->pipe) ? "in" : "out",
1384 urb->status,
1385 urb->actual_length, urb->transfer_buffer_length);
1386 #endif
1387
1388 /* complete() can reenter this HCD */
1389 spin_unlock(&oxu->lock);
1390 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1391 spin_lock(&oxu->lock);
1392 }
1393
1394 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1395 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396
1397 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1398 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399
1400 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1401
1402 /* Process and free completed qtds for a qh, returning URBs to drivers.
1403 * Chases up to qh->hw_current. Returns number of completions called,
1404 * indicating how much "real" work we did.
1405 */
qh_completions(struct oxu_hcd * oxu,struct ehci_qh * qh)1406 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1407 {
1408 struct ehci_qtd *last = NULL, *end = qh->dummy;
1409 struct ehci_qtd *qtd, *tmp;
1410 int stopped;
1411 unsigned count = 0;
1412 int do_status = 0;
1413 u8 state;
1414 struct oxu_murb *murb = NULL;
1415
1416 if (unlikely(list_empty(&qh->qtd_list)))
1417 return count;
1418
1419 /* completions (or tasks on other cpus) must never clobber HALT
1420 * till we've gone through and cleaned everything up, even when
1421 * they add urbs to this qh's queue or mark them for unlinking.
1422 *
1423 * NOTE: unlinking expects to be done in queue order.
1424 */
1425 state = qh->qh_state;
1426 qh->qh_state = QH_STATE_COMPLETING;
1427 stopped = (state == QH_STATE_IDLE);
1428
1429 /* remove de-activated QTDs from front of queue.
1430 * after faults (including short reads), cleanup this urb
1431 * then let the queue advance.
1432 * if queue is stopped, handles unlinks.
1433 */
1434 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1435 struct urb *urb;
1436 u32 token = 0;
1437
1438 urb = qtd->urb;
1439
1440 /* Clean up any state from previous QTD ...*/
1441 if (last) {
1442 if (likely(last->urb != urb)) {
1443 if (last->urb->complete == NULL) {
1444 murb = (struct oxu_murb *) last->urb;
1445 last->urb = murb->main;
1446 if (murb->last) {
1447 ehci_urb_done(oxu, last->urb);
1448 count++;
1449 }
1450 oxu_murb_free(oxu, murb);
1451 } else {
1452 ehci_urb_done(oxu, last->urb);
1453 count++;
1454 }
1455 }
1456 oxu_qtd_free(oxu, last);
1457 last = NULL;
1458 }
1459
1460 /* ignore urbs submitted during completions we reported */
1461 if (qtd == end)
1462 break;
1463
1464 /* hardware copies qtd out of qh overlay */
1465 rmb();
1466 token = le32_to_cpu(qtd->hw_token);
1467
1468 /* always clean up qtds the hc de-activated */
1469 if ((token & QTD_STS_ACTIVE) == 0) {
1470
1471 if ((token & QTD_STS_HALT) != 0) {
1472 stopped = 1;
1473
1474 /* magic dummy for some short reads; qh won't advance.
1475 * that silicon quirk can kick in with this dummy too.
1476 */
1477 } else if (IS_SHORT_READ(token) &&
1478 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1479 stopped = 1;
1480 goto halt;
1481 }
1482
1483 /* stop scanning when we reach qtds the hc is using */
1484 } else if (likely(!stopped &&
1485 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1486 break;
1487
1488 } else {
1489 stopped = 1;
1490
1491 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1492 urb->status = -ESHUTDOWN;
1493
1494 /* ignore active urbs unless some previous qtd
1495 * for the urb faulted (including short read) or
1496 * its urb was canceled. we may patch qh or qtds.
1497 */
1498 if (likely(urb->status == -EINPROGRESS))
1499 continue;
1500
1501 /* issue status after short control reads */
1502 if (unlikely(do_status != 0)
1503 && QTD_PID(token) == 0 /* OUT */) {
1504 do_status = 0;
1505 continue;
1506 }
1507
1508 /* token in overlay may be most current */
1509 if (state == QH_STATE_IDLE
1510 && cpu_to_le32(qtd->qtd_dma)
1511 == qh->hw_current)
1512 token = le32_to_cpu(qh->hw_token);
1513
1514 /* force halt for unlinked or blocked qh, so we'll
1515 * patch the qh later and so that completions can't
1516 * activate it while we "know" it's stopped.
1517 */
1518 if ((HALT_BIT & qh->hw_token) == 0) {
1519 halt:
1520 qh->hw_token |= HALT_BIT;
1521 wmb();
1522 }
1523 }
1524
1525 /* Remove it from the queue */
1526 qtd_copy_status(oxu, urb->complete ?
1527 urb : ((struct oxu_murb *) urb)->main,
1528 qtd->length, token);
1529 if ((usb_pipein(qtd->urb->pipe)) &&
1530 (NULL != qtd->transfer_buffer))
1531 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1532 do_status = (urb->status == -EREMOTEIO)
1533 && usb_pipecontrol(urb->pipe);
1534
1535 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1536 last = list_entry(qtd->qtd_list.prev,
1537 struct ehci_qtd, qtd_list);
1538 last->hw_next = qtd->hw_next;
1539 }
1540 list_del(&qtd->qtd_list);
1541 last = qtd;
1542 }
1543
1544 /* last urb's completion might still need calling */
1545 if (likely(last != NULL)) {
1546 if (last->urb->complete == NULL) {
1547 murb = (struct oxu_murb *) last->urb;
1548 last->urb = murb->main;
1549 if (murb->last) {
1550 ehci_urb_done(oxu, last->urb);
1551 count++;
1552 }
1553 oxu_murb_free(oxu, murb);
1554 } else {
1555 ehci_urb_done(oxu, last->urb);
1556 count++;
1557 }
1558 oxu_qtd_free(oxu, last);
1559 }
1560
1561 /* restore original state; caller must unlink or relink */
1562 qh->qh_state = state;
1563
1564 /* be sure the hardware's done with the qh before refreshing
1565 * it after fault cleanup, or recovering from silicon wrongly
1566 * overlaying the dummy qtd (which reduces DMA chatter).
1567 */
1568 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1569 switch (state) {
1570 case QH_STATE_IDLE:
1571 qh_refresh(oxu, qh);
1572 break;
1573 case QH_STATE_LINKED:
1574 /* should be rare for periodic transfers,
1575 * except maybe high bandwidth ...
1576 */
1577 if ((cpu_to_le32(QH_SMASK)
1578 & qh->hw_info2) != 0) {
1579 intr_deschedule(oxu, qh);
1580 (void) qh_schedule(oxu, qh);
1581 } else
1582 unlink_async(oxu, qh);
1583 break;
1584 /* otherwise, unlink already started */
1585 }
1586 }
1587
1588 return count;
1589 }
1590
1591 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1592 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1593 /* ... and packet size, for any kind of endpoint descriptor */
1594 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1595
1596 /* Reverse of qh_urb_transaction: free a list of TDs.
1597 * used for cleanup after errors, before HC sees an URB's TDs.
1598 */
qtd_list_free(struct oxu_hcd * oxu,struct urb * urb,struct list_head * head)1599 static void qtd_list_free(struct oxu_hcd *oxu,
1600 struct urb *urb, struct list_head *head)
1601 {
1602 struct ehci_qtd *qtd, *temp;
1603
1604 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1605 list_del(&qtd->qtd_list);
1606 oxu_qtd_free(oxu, qtd);
1607 }
1608 }
1609
1610 /* Create a list of filled qtds for this URB; won't link into qh.
1611 */
qh_urb_transaction(struct oxu_hcd * oxu,struct urb * urb,struct list_head * head,gfp_t flags)1612 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1613 struct urb *urb,
1614 struct list_head *head,
1615 gfp_t flags)
1616 {
1617 struct ehci_qtd *qtd, *qtd_prev;
1618 dma_addr_t buf;
1619 int len, maxpacket;
1620 int is_input;
1621 u32 token;
1622 void *transfer_buf = NULL;
1623 int ret;
1624
1625 /*
1626 * URBs map to sequences of QTDs: one logical transaction
1627 */
1628 qtd = ehci_qtd_alloc(oxu);
1629 if (unlikely(!qtd))
1630 return NULL;
1631 list_add_tail(&qtd->qtd_list, head);
1632 qtd->urb = urb;
1633
1634 token = QTD_STS_ACTIVE;
1635 token |= (EHCI_TUNE_CERR << 10);
1636 /* for split transactions, SplitXState initialized to zero */
1637
1638 len = urb->transfer_buffer_length;
1639 is_input = usb_pipein(urb->pipe);
1640 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1641 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1642
1643 if (usb_pipecontrol(urb->pipe)) {
1644 /* SETUP pid */
1645 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1646 if (ret)
1647 goto cleanup;
1648
1649 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1650 token | (2 /* "setup" */ << 8), 8);
1651 memcpy(qtd->buffer, qtd->urb->setup_packet,
1652 sizeof(struct usb_ctrlrequest));
1653
1654 /* ... and always at least one more pid */
1655 token ^= QTD_TOGGLE;
1656 qtd_prev = qtd;
1657 qtd = ehci_qtd_alloc(oxu);
1658 if (unlikely(!qtd))
1659 goto cleanup;
1660 qtd->urb = urb;
1661 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1662 list_add_tail(&qtd->qtd_list, head);
1663
1664 /* for zero length DATA stages, STATUS is always IN */
1665 if (len == 0)
1666 token |= (1 /* "in" */ << 8);
1667 }
1668
1669 /*
1670 * Data transfer stage: buffer setup
1671 */
1672
1673 ret = oxu_buf_alloc(oxu, qtd, len);
1674 if (ret)
1675 goto cleanup;
1676
1677 buf = qtd->buffer_dma;
1678 transfer_buf = urb->transfer_buffer;
1679
1680 if (!is_input)
1681 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1682
1683 if (is_input)
1684 token |= (1 /* "in" */ << 8);
1685 /* else it's already initted to "out" pid (0 << 8) */
1686
1687 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1688
1689 /*
1690 * buffer gets wrapped in one or more qtds;
1691 * last one may be "short" (including zero len)
1692 * and may serve as a control status ack
1693 */
1694 for (;;) {
1695 int this_qtd_len;
1696
1697 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1698 qtd->transfer_buffer = transfer_buf;
1699 len -= this_qtd_len;
1700 buf += this_qtd_len;
1701 transfer_buf += this_qtd_len;
1702 if (is_input)
1703 qtd->hw_alt_next = oxu->async->hw_alt_next;
1704
1705 /* qh makes control packets use qtd toggle; maybe switch it */
1706 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1707 token ^= QTD_TOGGLE;
1708
1709 if (likely(len <= 0))
1710 break;
1711
1712 qtd_prev = qtd;
1713 qtd = ehci_qtd_alloc(oxu);
1714 if (unlikely(!qtd))
1715 goto cleanup;
1716 if (likely(len > 0)) {
1717 ret = oxu_buf_alloc(oxu, qtd, len);
1718 if (ret)
1719 goto cleanup;
1720 }
1721 qtd->urb = urb;
1722 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1723 list_add_tail(&qtd->qtd_list, head);
1724 }
1725
1726 /* unless the bulk/interrupt caller wants a chance to clean
1727 * up after short reads, hc should advance qh past this urb
1728 */
1729 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1730 || usb_pipecontrol(urb->pipe)))
1731 qtd->hw_alt_next = EHCI_LIST_END;
1732
1733 /*
1734 * control requests may need a terminating data "status" ack;
1735 * bulk ones may need a terminating short packet (zero length).
1736 */
1737 if (likely(urb->transfer_buffer_length != 0)) {
1738 int one_more = 0;
1739
1740 if (usb_pipecontrol(urb->pipe)) {
1741 one_more = 1;
1742 token ^= 0x0100; /* "in" <--> "out" */
1743 token |= QTD_TOGGLE; /* force DATA1 */
1744 } else if (usb_pipebulk(urb->pipe)
1745 && (urb->transfer_flags & URB_ZERO_PACKET)
1746 && !(urb->transfer_buffer_length % maxpacket)) {
1747 one_more = 1;
1748 }
1749 if (one_more) {
1750 qtd_prev = qtd;
1751 qtd = ehci_qtd_alloc(oxu);
1752 if (unlikely(!qtd))
1753 goto cleanup;
1754 qtd->urb = urb;
1755 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1756 list_add_tail(&qtd->qtd_list, head);
1757
1758 /* never any data in such packets */
1759 qtd_fill(qtd, 0, 0, token, 0);
1760 }
1761 }
1762
1763 /* by default, enable interrupt on urb completion */
1764 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1765 return head;
1766
1767 cleanup:
1768 qtd_list_free(oxu, urb, head);
1769 return NULL;
1770 }
1771
1772 /* Each QH holds a qtd list; a QH is used for everything except iso.
1773 *
1774 * For interrupt urbs, the scheduler must set the microframe scheduling
1775 * mask(s) each time the QH gets scheduled. For highspeed, that's
1776 * just one microframe in the s-mask. For split interrupt transactions
1777 * there are additional complications: c-mask, maybe FSTNs.
1778 */
qh_make(struct oxu_hcd * oxu,struct urb * urb,gfp_t flags)1779 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1780 struct urb *urb, gfp_t flags)
1781 {
1782 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1783 u32 info1 = 0, info2 = 0;
1784 int is_input, type;
1785 int maxp = 0;
1786
1787 if (!qh)
1788 return qh;
1789
1790 /*
1791 * init endpoint/device data for this QH
1792 */
1793 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1794 info1 |= usb_pipedevice(urb->pipe) << 0;
1795
1796 is_input = usb_pipein(urb->pipe);
1797 type = usb_pipetype(urb->pipe);
1798 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1799
1800 /* Compute interrupt scheduling parameters just once, and save.
1801 * - allowing for high bandwidth, how many nsec/uframe are used?
1802 * - split transactions need a second CSPLIT uframe; same question
1803 * - splits also need a schedule gap (for full/low speed I/O)
1804 * - qh has a polling interval
1805 *
1806 * For control/bulk requests, the HC or TT handles these.
1807 */
1808 if (type == PIPE_INTERRUPT) {
1809 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1810 is_input, 0,
1811 hb_mult(maxp) * max_packet(maxp)));
1812 qh->start = NO_FRAME;
1813
1814 if (urb->dev->speed == USB_SPEED_HIGH) {
1815 qh->c_usecs = 0;
1816 qh->gap_uf = 0;
1817
1818 qh->period = urb->interval >> 3;
1819 if (qh->period == 0 && urb->interval != 1) {
1820 /* NOTE interval 2 or 4 uframes could work.
1821 * But interval 1 scheduling is simpler, and
1822 * includes high bandwidth.
1823 */
1824 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1825 urb->interval);
1826 goto done;
1827 }
1828 } else {
1829 struct usb_tt *tt = urb->dev->tt;
1830 int think_time;
1831
1832 /* gap is f(FS/LS transfer times) */
1833 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1834 is_input, 0, maxp) / (125 * 1000);
1835
1836 /* FIXME this just approximates SPLIT/CSPLIT times */
1837 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1838 qh->c_usecs = qh->usecs + HS_USECS(0);
1839 qh->usecs = HS_USECS(1);
1840 } else { /* SPLIT+DATA, gap, CSPLIT */
1841 qh->usecs += HS_USECS(1);
1842 qh->c_usecs = HS_USECS(0);
1843 }
1844
1845 think_time = tt ? tt->think_time : 0;
1846 qh->tt_usecs = NS_TO_US(think_time +
1847 usb_calc_bus_time(urb->dev->speed,
1848 is_input, 0, max_packet(maxp)));
1849 qh->period = urb->interval;
1850 }
1851 }
1852
1853 /* support for tt scheduling, and access to toggles */
1854 qh->dev = urb->dev;
1855
1856 /* using TT? */
1857 switch (urb->dev->speed) {
1858 case USB_SPEED_LOW:
1859 info1 |= (1 << 12); /* EPS "low" */
1860 fallthrough;
1861
1862 case USB_SPEED_FULL:
1863 /* EPS 0 means "full" */
1864 if (type != PIPE_INTERRUPT)
1865 info1 |= (EHCI_TUNE_RL_TT << 28);
1866 if (type == PIPE_CONTROL) {
1867 info1 |= (1 << 27); /* for TT */
1868 info1 |= 1 << 14; /* toggle from qtd */
1869 }
1870 info1 |= maxp << 16;
1871
1872 info2 |= (EHCI_TUNE_MULT_TT << 30);
1873 info2 |= urb->dev->ttport << 23;
1874
1875 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1876
1877 break;
1878
1879 case USB_SPEED_HIGH: /* no TT involved */
1880 info1 |= (2 << 12); /* EPS "high" */
1881 if (type == PIPE_CONTROL) {
1882 info1 |= (EHCI_TUNE_RL_HS << 28);
1883 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1884 info1 |= 1 << 14; /* toggle from qtd */
1885 info2 |= (EHCI_TUNE_MULT_HS << 30);
1886 } else if (type == PIPE_BULK) {
1887 info1 |= (EHCI_TUNE_RL_HS << 28);
1888 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1889 info2 |= (EHCI_TUNE_MULT_HS << 30);
1890 } else { /* PIPE_INTERRUPT */
1891 info1 |= max_packet(maxp) << 16;
1892 info2 |= hb_mult(maxp) << 30;
1893 }
1894 break;
1895 default:
1896 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1897 done:
1898 qh_put(qh);
1899 return NULL;
1900 }
1901
1902 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1903
1904 /* init as live, toggle clear, advance to dummy */
1905 qh->qh_state = QH_STATE_IDLE;
1906 qh->hw_info1 = cpu_to_le32(info1);
1907 qh->hw_info2 = cpu_to_le32(info2);
1908 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1909 qh_refresh(oxu, qh);
1910 return qh;
1911 }
1912
1913 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1914 */
qh_link_async(struct oxu_hcd * oxu,struct ehci_qh * qh)1915 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1916 {
1917 __le32 dma = QH_NEXT(qh->qh_dma);
1918 struct ehci_qh *head;
1919
1920 /* (re)start the async schedule? */
1921 head = oxu->async;
1922 timer_action_done(oxu, TIMER_ASYNC_OFF);
1923 if (!head->qh_next.qh) {
1924 u32 cmd = readl(&oxu->regs->command);
1925
1926 if (!(cmd & CMD_ASE)) {
1927 /* in case a clear of CMD_ASE didn't take yet */
1928 (void)handshake(oxu, &oxu->regs->status,
1929 STS_ASS, 0, 150);
1930 cmd |= CMD_ASE | CMD_RUN;
1931 writel(cmd, &oxu->regs->command);
1932 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1933 /* posted write need not be known to HC yet ... */
1934 }
1935 }
1936
1937 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1938 if (qh->qh_state == QH_STATE_IDLE)
1939 qh_refresh(oxu, qh);
1940
1941 /* splice right after start */
1942 qh->qh_next = head->qh_next;
1943 qh->hw_next = head->hw_next;
1944 wmb();
1945
1946 head->qh_next.qh = qh;
1947 head->hw_next = dma;
1948
1949 qh->qh_state = QH_STATE_LINKED;
1950 /* qtd completions reported later by interrupt */
1951 }
1952
1953 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1954
1955 /*
1956 * For control/bulk/interrupt, return QH with these TDs appended.
1957 * Allocates and initializes the QH if necessary.
1958 * Returns null if it can't allocate a QH it needs to.
1959 * If the QH has TDs (urbs) already, that's great.
1960 */
qh_append_tds(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)1961 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1962 struct urb *urb, struct list_head *qtd_list,
1963 int epnum, void **ptr)
1964 {
1965 struct ehci_qh *qh = NULL;
1966
1967 qh = (struct ehci_qh *) *ptr;
1968 if (unlikely(qh == NULL)) {
1969 /* can't sleep here, we have oxu->lock... */
1970 qh = qh_make(oxu, urb, GFP_ATOMIC);
1971 *ptr = qh;
1972 }
1973 if (likely(qh != NULL)) {
1974 struct ehci_qtd *qtd;
1975
1976 if (unlikely(list_empty(qtd_list)))
1977 qtd = NULL;
1978 else
1979 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1980 qtd_list);
1981
1982 /* control qh may need patching ... */
1983 if (unlikely(epnum == 0)) {
1984
1985 /* usb_reset_device() briefly reverts to address 0 */
1986 if (usb_pipedevice(urb->pipe) == 0)
1987 qh->hw_info1 &= ~QH_ADDR_MASK;
1988 }
1989
1990 /* just one way to queue requests: swap with the dummy qtd.
1991 * only hc or qh_refresh() ever modify the overlay.
1992 */
1993 if (likely(qtd != NULL)) {
1994 struct ehci_qtd *dummy;
1995 dma_addr_t dma;
1996 __le32 token;
1997
1998 /* to avoid racing the HC, use the dummy td instead of
1999 * the first td of our list (becomes new dummy). both
2000 * tds stay deactivated until we're done, when the
2001 * HC is allowed to fetch the old dummy (4.10.2).
2002 */
2003 token = qtd->hw_token;
2004 qtd->hw_token = HALT_BIT;
2005 wmb();
2006 dummy = qh->dummy;
2007
2008 dma = dummy->qtd_dma;
2009 *dummy = *qtd;
2010 dummy->qtd_dma = dma;
2011
2012 list_del(&qtd->qtd_list);
2013 list_add(&dummy->qtd_list, qtd_list);
2014 list_splice(qtd_list, qh->qtd_list.prev);
2015
2016 ehci_qtd_init(qtd, qtd->qtd_dma);
2017 qh->dummy = qtd;
2018
2019 /* hc must see the new dummy at list end */
2020 dma = qtd->qtd_dma;
2021 qtd = list_entry(qh->qtd_list.prev,
2022 struct ehci_qtd, qtd_list);
2023 qtd->hw_next = QTD_NEXT(dma);
2024
2025 /* let the hc process these next qtds */
2026 dummy->hw_token = (token & ~(0x80));
2027 wmb();
2028 dummy->hw_token = token;
2029
2030 urb->hcpriv = qh_get(qh);
2031 }
2032 }
2033 return qh;
2034 }
2035
submit_async(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)2036 static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
2037 struct list_head *qtd_list, gfp_t mem_flags)
2038 {
2039 int epnum = urb->ep->desc.bEndpointAddress;
2040 unsigned long flags;
2041 struct ehci_qh *qh = NULL;
2042 int rc = 0;
2043 #ifdef OXU_URB_TRACE
2044 struct ehci_qtd *qtd;
2045
2046 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2047
2048 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2049 __func__, urb->dev->devpath, urb,
2050 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2051 urb->transfer_buffer_length,
2052 qtd, urb->ep->hcpriv);
2053 #endif
2054
2055 spin_lock_irqsave(&oxu->lock, flags);
2056 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2057 rc = -ESHUTDOWN;
2058 goto done;
2059 }
2060
2061 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2062 if (unlikely(qh == NULL)) {
2063 rc = -ENOMEM;
2064 goto done;
2065 }
2066
2067 /* Control/bulk operations through TTs don't need scheduling,
2068 * the HC and TT handle it when the TT has a buffer ready.
2069 */
2070 if (likely(qh->qh_state == QH_STATE_IDLE))
2071 qh_link_async(oxu, qh_get(qh));
2072 done:
2073 spin_unlock_irqrestore(&oxu->lock, flags);
2074 if (unlikely(qh == NULL))
2075 qtd_list_free(oxu, urb, qtd_list);
2076 return rc;
2077 }
2078
2079 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2080
end_unlink_async(struct oxu_hcd * oxu)2081 static void end_unlink_async(struct oxu_hcd *oxu)
2082 {
2083 struct ehci_qh *qh = oxu->reclaim;
2084 struct ehci_qh *next;
2085
2086 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2087
2088 qh->qh_state = QH_STATE_IDLE;
2089 qh->qh_next.qh = NULL;
2090 qh_put(qh); /* refcount from reclaim */
2091
2092 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2093 next = qh->reclaim;
2094 oxu->reclaim = next;
2095 oxu->reclaim_ready = 0;
2096 qh->reclaim = NULL;
2097
2098 qh_completions(oxu, qh);
2099
2100 if (!list_empty(&qh->qtd_list)
2101 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2102 qh_link_async(oxu, qh);
2103 else {
2104 qh_put(qh); /* refcount from async list */
2105
2106 /* it's not free to turn the async schedule on/off; leave it
2107 * active but idle for a while once it empties.
2108 */
2109 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2110 && oxu->async->qh_next.qh == NULL)
2111 timer_action(oxu, TIMER_ASYNC_OFF);
2112 }
2113
2114 if (next) {
2115 oxu->reclaim = NULL;
2116 start_unlink_async(oxu, next);
2117 }
2118 }
2119
2120 /* makes sure the async qh will become idle */
2121 /* caller must own oxu->lock */
2122
start_unlink_async(struct oxu_hcd * oxu,struct ehci_qh * qh)2123 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2124 {
2125 int cmd = readl(&oxu->regs->command);
2126 struct ehci_qh *prev;
2127
2128 #ifdef DEBUG
2129 assert_spin_locked(&oxu->lock);
2130 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2131 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2132 #endif
2133
2134 /* stop async schedule right now? */
2135 if (unlikely(qh == oxu->async)) {
2136 /* can't get here without STS_ASS set */
2137 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2138 && !oxu->reclaim) {
2139 /* ... and CMD_IAAD clear */
2140 writel(cmd & ~CMD_ASE, &oxu->regs->command);
2141 wmb();
2142 /* handshake later, if we need to */
2143 timer_action_done(oxu, TIMER_ASYNC_OFF);
2144 }
2145 return;
2146 }
2147
2148 qh->qh_state = QH_STATE_UNLINK;
2149 oxu->reclaim = qh = qh_get(qh);
2150
2151 prev = oxu->async;
2152 while (prev->qh_next.qh != qh)
2153 prev = prev->qh_next.qh;
2154
2155 prev->hw_next = qh->hw_next;
2156 prev->qh_next = qh->qh_next;
2157 wmb();
2158
2159 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2160 /* if (unlikely(qh->reclaim != 0))
2161 * this will recurse, probably not much
2162 */
2163 end_unlink_async(oxu);
2164 return;
2165 }
2166
2167 oxu->reclaim_ready = 0;
2168 cmd |= CMD_IAAD;
2169 writel(cmd, &oxu->regs->command);
2170 (void) readl(&oxu->regs->command);
2171 timer_action(oxu, TIMER_IAA_WATCHDOG);
2172 }
2173
scan_async(struct oxu_hcd * oxu)2174 static void scan_async(struct oxu_hcd *oxu)
2175 {
2176 struct ehci_qh *qh;
2177 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2178
2179 if (!++(oxu->stamp))
2180 oxu->stamp++;
2181 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2182 rescan:
2183 qh = oxu->async->qh_next.qh;
2184 if (likely(qh != NULL)) {
2185 do {
2186 /* clean any finished work for this qh */
2187 if (!list_empty(&qh->qtd_list)
2188 && qh->stamp != oxu->stamp) {
2189 int temp;
2190
2191 /* unlinks could happen here; completion
2192 * reporting drops the lock. rescan using
2193 * the latest schedule, but don't rescan
2194 * qhs we already finished (no looping).
2195 */
2196 qh = qh_get(qh);
2197 qh->stamp = oxu->stamp;
2198 temp = qh_completions(oxu, qh);
2199 qh_put(qh);
2200 if (temp != 0)
2201 goto rescan;
2202 }
2203
2204 /* unlink idle entries, reducing HC PCI usage as well
2205 * as HCD schedule-scanning costs. delay for any qh
2206 * we just scanned, there's a not-unusual case that it
2207 * doesn't stay idle for long.
2208 * (plus, avoids some kind of re-activation race.)
2209 */
2210 if (list_empty(&qh->qtd_list)) {
2211 if (qh->stamp == oxu->stamp)
2212 action = TIMER_ASYNC_SHRINK;
2213 else if (!oxu->reclaim
2214 && qh->qh_state == QH_STATE_LINKED)
2215 start_unlink_async(oxu, qh);
2216 }
2217
2218 qh = qh->qh_next.qh;
2219 } while (qh);
2220 }
2221 if (action == TIMER_ASYNC_SHRINK)
2222 timer_action(oxu, TIMER_ASYNC_SHRINK);
2223 }
2224
2225 /*
2226 * periodic_next_shadow - return "next" pointer on shadow list
2227 * @periodic: host pointer to qh/itd/sitd
2228 * @tag: hardware tag for type of this record
2229 */
periodic_next_shadow(union ehci_shadow * periodic,__le32 tag)2230 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2231 __le32 tag)
2232 {
2233 switch (tag) {
2234 default:
2235 case Q_TYPE_QH:
2236 return &periodic->qh->qh_next;
2237 }
2238 }
2239
2240 /* caller must hold oxu->lock */
periodic_unlink(struct oxu_hcd * oxu,unsigned frame,void * ptr)2241 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2242 {
2243 union ehci_shadow *prev_p = &oxu->pshadow[frame];
2244 __le32 *hw_p = &oxu->periodic[frame];
2245 union ehci_shadow here = *prev_p;
2246
2247 /* find predecessor of "ptr"; hw and shadow lists are in sync */
2248 while (here.ptr && here.ptr != ptr) {
2249 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2250 hw_p = here.hw_next;
2251 here = *prev_p;
2252 }
2253 /* an interrupt entry (at list end) could have been shared */
2254 if (!here.ptr)
2255 return;
2256
2257 /* update shadow and hardware lists ... the old "next" pointers
2258 * from ptr may still be in use, the caller updates them.
2259 */
2260 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2261 *hw_p = *here.hw_next;
2262 }
2263
2264 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct oxu_hcd * oxu,unsigned frame,unsigned uframe)2265 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2266 unsigned frame, unsigned uframe)
2267 {
2268 __le32 *hw_p = &oxu->periodic[frame];
2269 union ehci_shadow *q = &oxu->pshadow[frame];
2270 unsigned usecs = 0;
2271
2272 while (q->ptr) {
2273 switch (Q_NEXT_TYPE(*hw_p)) {
2274 case Q_TYPE_QH:
2275 default:
2276 /* is it in the S-mask? */
2277 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2278 usecs += q->qh->usecs;
2279 /* ... or C-mask? */
2280 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2281 usecs += q->qh->c_usecs;
2282 hw_p = &q->qh->hw_next;
2283 q = &q->qh->qh_next;
2284 break;
2285 }
2286 }
2287 #ifdef DEBUG
2288 if (usecs > 100)
2289 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2290 frame * 8 + uframe, usecs);
2291 #endif
2292 return usecs;
2293 }
2294
enable_periodic(struct oxu_hcd * oxu)2295 static int enable_periodic(struct oxu_hcd *oxu)
2296 {
2297 u32 cmd;
2298 int status;
2299
2300 /* did clearing PSE did take effect yet?
2301 * takes effect only at frame boundaries...
2302 */
2303 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2304 if (status != 0) {
2305 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2306 usb_hc_died(oxu_to_hcd(oxu));
2307 return status;
2308 }
2309
2310 cmd = readl(&oxu->regs->command) | CMD_PSE;
2311 writel(cmd, &oxu->regs->command);
2312 /* posted write ... PSS happens later */
2313 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2314
2315 /* make sure ehci_work scans these */
2316 oxu->next_uframe = readl(&oxu->regs->frame_index)
2317 % (oxu->periodic_size << 3);
2318 return 0;
2319 }
2320
disable_periodic(struct oxu_hcd * oxu)2321 static int disable_periodic(struct oxu_hcd *oxu)
2322 {
2323 u32 cmd;
2324 int status;
2325
2326 /* did setting PSE not take effect yet?
2327 * takes effect only at frame boundaries...
2328 */
2329 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2330 if (status != 0) {
2331 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2332 usb_hc_died(oxu_to_hcd(oxu));
2333 return status;
2334 }
2335
2336 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2337 writel(cmd, &oxu->regs->command);
2338 /* posted write ... */
2339
2340 oxu->next_uframe = -1;
2341 return 0;
2342 }
2343
2344 /* periodic schedule slots have iso tds (normal or split) first, then a
2345 * sparse tree for active interrupt transfers.
2346 *
2347 * this just links in a qh; caller guarantees uframe masks are set right.
2348 * no FSTN support (yet; oxu 0.96+)
2349 */
qh_link_periodic(struct oxu_hcd * oxu,struct ehci_qh * qh)2350 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2351 {
2352 unsigned i;
2353 unsigned period = qh->period;
2354
2355 dev_dbg(&qh->dev->dev,
2356 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2357 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2358 qh, qh->start, qh->usecs, qh->c_usecs);
2359
2360 /* high bandwidth, or otherwise every microframe */
2361 if (period == 0)
2362 period = 1;
2363
2364 for (i = qh->start; i < oxu->periodic_size; i += period) {
2365 union ehci_shadow *prev = &oxu->pshadow[i];
2366 __le32 *hw_p = &oxu->periodic[i];
2367 union ehci_shadow here = *prev;
2368 __le32 type = 0;
2369
2370 /* skip the iso nodes at list head */
2371 while (here.ptr) {
2372 type = Q_NEXT_TYPE(*hw_p);
2373 if (type == Q_TYPE_QH)
2374 break;
2375 prev = periodic_next_shadow(prev, type);
2376 hw_p = &here.qh->hw_next;
2377 here = *prev;
2378 }
2379
2380 /* sorting each branch by period (slow-->fast)
2381 * enables sharing interior tree nodes
2382 */
2383 while (here.ptr && qh != here.qh) {
2384 if (qh->period > here.qh->period)
2385 break;
2386 prev = &here.qh->qh_next;
2387 hw_p = &here.qh->hw_next;
2388 here = *prev;
2389 }
2390 /* link in this qh, unless some earlier pass did that */
2391 if (qh != here.qh) {
2392 qh->qh_next = here;
2393 if (here.qh)
2394 qh->hw_next = *hw_p;
2395 wmb();
2396 prev->qh = qh;
2397 *hw_p = QH_NEXT(qh->qh_dma);
2398 }
2399 }
2400 qh->qh_state = QH_STATE_LINKED;
2401 qh_get(qh);
2402
2403 /* update per-qh bandwidth for usbfs */
2404 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2405 ? ((qh->usecs + qh->c_usecs) / qh->period)
2406 : (qh->usecs * 8);
2407
2408 /* maybe enable periodic schedule processing */
2409 if (!oxu->periodic_sched++)
2410 return enable_periodic(oxu);
2411
2412 return 0;
2413 }
2414
qh_unlink_periodic(struct oxu_hcd * oxu,struct ehci_qh * qh)2415 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2416 {
2417 unsigned i;
2418 unsigned period;
2419
2420 /* FIXME:
2421 * IF this isn't high speed
2422 * and this qh is active in the current uframe
2423 * (and overlay token SplitXstate is false?)
2424 * THEN
2425 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2426 */
2427
2428 /* high bandwidth, or otherwise part of every microframe */
2429 period = qh->period;
2430 if (period == 0)
2431 period = 1;
2432
2433 for (i = qh->start; i < oxu->periodic_size; i += period)
2434 periodic_unlink(oxu, i, qh);
2435
2436 /* update per-qh bandwidth for usbfs */
2437 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2438 ? ((qh->usecs + qh->c_usecs) / qh->period)
2439 : (qh->usecs * 8);
2440
2441 dev_dbg(&qh->dev->dev,
2442 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2443 qh->period,
2444 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2445 qh, qh->start, qh->usecs, qh->c_usecs);
2446
2447 /* qh->qh_next still "live" to HC */
2448 qh->qh_state = QH_STATE_UNLINK;
2449 qh->qh_next.ptr = NULL;
2450 qh_put(qh);
2451
2452 /* maybe turn off periodic schedule */
2453 oxu->periodic_sched--;
2454 if (!oxu->periodic_sched)
2455 (void) disable_periodic(oxu);
2456 }
2457
intr_deschedule(struct oxu_hcd * oxu,struct ehci_qh * qh)2458 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2459 {
2460 unsigned wait;
2461
2462 qh_unlink_periodic(oxu, qh);
2463
2464 /* simple/paranoid: always delay, expecting the HC needs to read
2465 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2466 * expect hub_wq to clean up after any CSPLITs we won't issue.
2467 * active high speed queues may need bigger delays...
2468 */
2469 if (list_empty(&qh->qtd_list)
2470 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2471 wait = 2;
2472 else
2473 wait = 55; /* worst case: 3 * 1024 */
2474
2475 udelay(wait);
2476 qh->qh_state = QH_STATE_IDLE;
2477 qh->hw_next = EHCI_LIST_END;
2478 wmb();
2479 }
2480
check_period(struct oxu_hcd * oxu,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)2481 static int check_period(struct oxu_hcd *oxu,
2482 unsigned frame, unsigned uframe,
2483 unsigned period, unsigned usecs)
2484 {
2485 int claimed;
2486
2487 /* complete split running into next frame?
2488 * given FSTN support, we could sometimes check...
2489 */
2490 if (uframe >= 8)
2491 return 0;
2492
2493 /*
2494 * 80% periodic == 100 usec/uframe available
2495 * convert "usecs we need" to "max already claimed"
2496 */
2497 usecs = 100 - usecs;
2498
2499 /* we "know" 2 and 4 uframe intervals were rejected; so
2500 * for period 0, check _every_ microframe in the schedule.
2501 */
2502 if (unlikely(period == 0)) {
2503 do {
2504 for (uframe = 0; uframe < 7; uframe++) {
2505 claimed = periodic_usecs(oxu, frame, uframe);
2506 if (claimed > usecs)
2507 return 0;
2508 }
2509 } while ((frame += 1) < oxu->periodic_size);
2510
2511 /* just check the specified uframe, at that period */
2512 } else {
2513 do {
2514 claimed = periodic_usecs(oxu, frame, uframe);
2515 if (claimed > usecs)
2516 return 0;
2517 } while ((frame += period) < oxu->periodic_size);
2518 }
2519
2520 return 1;
2521 }
2522
check_intr_schedule(struct oxu_hcd * oxu,unsigned frame,unsigned uframe,const struct ehci_qh * qh,__le32 * c_maskp)2523 static int check_intr_schedule(struct oxu_hcd *oxu,
2524 unsigned frame, unsigned uframe,
2525 const struct ehci_qh *qh, __le32 *c_maskp)
2526 {
2527 int retval = -ENOSPC;
2528
2529 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2530 goto done;
2531
2532 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2533 goto done;
2534 if (!qh->c_usecs) {
2535 retval = 0;
2536 *c_maskp = 0;
2537 goto done;
2538 }
2539
2540 done:
2541 return retval;
2542 }
2543
2544 /* "first fit" scheduling policy used the first time through,
2545 * or when the previous schedule slot can't be re-used.
2546 */
qh_schedule(struct oxu_hcd * oxu,struct ehci_qh * qh)2547 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2548 {
2549 int status;
2550 unsigned uframe;
2551 __le32 c_mask;
2552 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2553
2554 qh_refresh(oxu, qh);
2555 qh->hw_next = EHCI_LIST_END;
2556 frame = qh->start;
2557
2558 /* reuse the previous schedule slots, if we can */
2559 if (frame < qh->period) {
2560 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2561 status = check_intr_schedule(oxu, frame, --uframe,
2562 qh, &c_mask);
2563 } else {
2564 uframe = 0;
2565 c_mask = 0;
2566 status = -ENOSPC;
2567 }
2568
2569 /* else scan the schedule to find a group of slots such that all
2570 * uframes have enough periodic bandwidth available.
2571 */
2572 if (status) {
2573 /* "normal" case, uframing flexible except with splits */
2574 if (qh->period) {
2575 frame = qh->period - 1;
2576 do {
2577 for (uframe = 0; uframe < 8; uframe++) {
2578 status = check_intr_schedule(oxu,
2579 frame, uframe, qh,
2580 &c_mask);
2581 if (status == 0)
2582 break;
2583 }
2584 } while (status && frame--);
2585
2586 /* qh->period == 0 means every uframe */
2587 } else {
2588 frame = 0;
2589 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2590 }
2591 if (status)
2592 goto done;
2593 qh->start = frame;
2594
2595 /* reset S-frame and (maybe) C-frame masks */
2596 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2597 qh->hw_info2 |= qh->period
2598 ? cpu_to_le32(1 << uframe)
2599 : cpu_to_le32(QH_SMASK);
2600 qh->hw_info2 |= c_mask;
2601 } else
2602 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2603
2604 /* stuff into the periodic schedule */
2605 status = qh_link_periodic(oxu, qh);
2606 done:
2607 return status;
2608 }
2609
intr_submit(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)2610 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2611 struct list_head *qtd_list, gfp_t mem_flags)
2612 {
2613 unsigned epnum;
2614 unsigned long flags;
2615 struct ehci_qh *qh;
2616 int status = 0;
2617 struct list_head empty;
2618
2619 /* get endpoint and transfer/schedule data */
2620 epnum = urb->ep->desc.bEndpointAddress;
2621
2622 spin_lock_irqsave(&oxu->lock, flags);
2623
2624 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2625 status = -ESHUTDOWN;
2626 goto done;
2627 }
2628
2629 /* get qh and force any scheduling errors */
2630 INIT_LIST_HEAD(&empty);
2631 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2632 if (qh == NULL) {
2633 status = -ENOMEM;
2634 goto done;
2635 }
2636 if (qh->qh_state == QH_STATE_IDLE) {
2637 status = qh_schedule(oxu, qh);
2638 if (status != 0)
2639 goto done;
2640 }
2641
2642 /* then queue the urb's tds to the qh */
2643 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2644 BUG_ON(qh == NULL);
2645
2646 /* ... update usbfs periodic stats */
2647 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2648
2649 done:
2650 spin_unlock_irqrestore(&oxu->lock, flags);
2651 if (status)
2652 qtd_list_free(oxu, urb, qtd_list);
2653
2654 return status;
2655 }
2656
itd_submit(struct oxu_hcd * oxu,struct urb * urb,gfp_t mem_flags)2657 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2658 gfp_t mem_flags)
2659 {
2660 oxu_dbg(oxu, "iso support is missing!\n");
2661 return -ENOSYS;
2662 }
2663
sitd_submit(struct oxu_hcd * oxu,struct urb * urb,gfp_t mem_flags)2664 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2665 gfp_t mem_flags)
2666 {
2667 oxu_dbg(oxu, "split iso support is missing!\n");
2668 return -ENOSYS;
2669 }
2670
scan_periodic(struct oxu_hcd * oxu)2671 static void scan_periodic(struct oxu_hcd *oxu)
2672 {
2673 unsigned frame, clock, now_uframe, mod;
2674 unsigned modified;
2675
2676 mod = oxu->periodic_size << 3;
2677
2678 /*
2679 * When running, scan from last scan point up to "now"
2680 * else clean up by scanning everything that's left.
2681 * Touches as few pages as possible: cache-friendly.
2682 */
2683 now_uframe = oxu->next_uframe;
2684 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2685 clock = readl(&oxu->regs->frame_index);
2686 else
2687 clock = now_uframe + mod - 1;
2688 clock %= mod;
2689
2690 for (;;) {
2691 union ehci_shadow q, *q_p;
2692 __le32 type, *hw_p;
2693
2694 /* don't scan past the live uframe */
2695 frame = now_uframe >> 3;
2696 if (frame != (clock >> 3)) {
2697 /* safe to scan the whole frame at once */
2698 now_uframe |= 0x07;
2699 }
2700
2701 restart:
2702 /* scan each element in frame's queue for completions */
2703 q_p = &oxu->pshadow[frame];
2704 hw_p = &oxu->periodic[frame];
2705 q.ptr = q_p->ptr;
2706 type = Q_NEXT_TYPE(*hw_p);
2707 modified = 0;
2708
2709 while (q.ptr != NULL) {
2710 union ehci_shadow temp;
2711
2712 switch (type) {
2713 case Q_TYPE_QH:
2714 /* handle any completions */
2715 temp.qh = qh_get(q.qh);
2716 type = Q_NEXT_TYPE(q.qh->hw_next);
2717 q = q.qh->qh_next;
2718 modified = qh_completions(oxu, temp.qh);
2719 if (unlikely(list_empty(&temp.qh->qtd_list)))
2720 intr_deschedule(oxu, temp.qh);
2721 qh_put(temp.qh);
2722 break;
2723 default:
2724 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2725 type, frame, q.ptr);
2726 q.ptr = NULL;
2727 }
2728
2729 /* assume completion callbacks modify the queue */
2730 if (unlikely(modified))
2731 goto restart;
2732 }
2733
2734 /* Stop when we catch up to the HC */
2735
2736 /* FIXME: this assumes we won't get lapped when
2737 * latencies climb; that should be rare, but...
2738 * detect it, and just go all the way around.
2739 * FLR might help detect this case, so long as latencies
2740 * don't exceed periodic_size msec (default 1.024 sec).
2741 */
2742
2743 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2744
2745 if (now_uframe == clock) {
2746 unsigned now;
2747
2748 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2749 break;
2750 oxu->next_uframe = now_uframe;
2751 now = readl(&oxu->regs->frame_index) % mod;
2752 if (now_uframe == now)
2753 break;
2754
2755 /* rescan the rest of this frame, then ... */
2756 clock = now;
2757 } else {
2758 now_uframe++;
2759 now_uframe %= mod;
2760 }
2761 }
2762 }
2763
2764 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2765 * The firmware seems to think that powering off is a wakeup event!
2766 * This routine turns off remote wakeup and everything else, on all ports.
2767 */
ehci_turn_off_all_ports(struct oxu_hcd * oxu)2768 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2769 {
2770 int port = HCS_N_PORTS(oxu->hcs_params);
2771
2772 while (port--)
2773 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2774 }
2775
ehci_port_power(struct oxu_hcd * oxu,int is_on)2776 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2777 {
2778 unsigned port;
2779
2780 if (!HCS_PPC(oxu->hcs_params))
2781 return;
2782
2783 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2784 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2785 if (is_on)
2786 oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2787 USB_PORT_FEAT_POWER, port--, NULL, 0);
2788 else
2789 oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2790 USB_PORT_FEAT_POWER, port--, NULL, 0);
2791 }
2792
2793 msleep(20);
2794 }
2795
2796 /* Called from some interrupts, timers, and so on.
2797 * It calls driver completion functions, after dropping oxu->lock.
2798 */
ehci_work(struct oxu_hcd * oxu)2799 static void ehci_work(struct oxu_hcd *oxu)
2800 {
2801 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2802 if (oxu->reclaim_ready)
2803 end_unlink_async(oxu);
2804
2805 /* another CPU may drop oxu->lock during a schedule scan while
2806 * it reports urb completions. this flag guards against bogus
2807 * attempts at re-entrant schedule scanning.
2808 */
2809 if (oxu->scanning)
2810 return;
2811 oxu->scanning = 1;
2812 scan_async(oxu);
2813 if (oxu->next_uframe != -1)
2814 scan_periodic(oxu);
2815 oxu->scanning = 0;
2816
2817 /* the IO watchdog guards against hardware or driver bugs that
2818 * misplace IRQs, and should let us run completely without IRQs.
2819 * such lossage has been observed on both VT6202 and VT8235.
2820 */
2821 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2822 (oxu->async->qh_next.ptr != NULL ||
2823 oxu->periodic_sched != 0))
2824 timer_action(oxu, TIMER_IO_WATCHDOG);
2825 }
2826
unlink_async(struct oxu_hcd * oxu,struct ehci_qh * qh)2827 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2828 {
2829 /* if we need to use IAA and it's busy, defer */
2830 if (qh->qh_state == QH_STATE_LINKED
2831 && oxu->reclaim
2832 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2833 struct ehci_qh *last;
2834
2835 for (last = oxu->reclaim;
2836 last->reclaim;
2837 last = last->reclaim)
2838 continue;
2839 qh->qh_state = QH_STATE_UNLINK_WAIT;
2840 last->reclaim = qh;
2841
2842 /* bypass IAA if the hc can't care */
2843 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2844 end_unlink_async(oxu);
2845
2846 /* something else might have unlinked the qh by now */
2847 if (qh->qh_state == QH_STATE_LINKED)
2848 start_unlink_async(oxu, qh);
2849 }
2850
2851 /*
2852 * USB host controller methods
2853 */
2854
oxu210_hcd_irq(struct usb_hcd * hcd)2855 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2856 {
2857 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2858 u32 status, pcd_status = 0;
2859 int bh;
2860
2861 spin_lock(&oxu->lock);
2862
2863 status = readl(&oxu->regs->status);
2864
2865 /* e.g. cardbus physical eject */
2866 if (status == ~(u32) 0) {
2867 oxu_dbg(oxu, "device removed\n");
2868 goto dead;
2869 }
2870
2871 /* Shared IRQ? */
2872 status &= INTR_MASK;
2873 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2874 spin_unlock(&oxu->lock);
2875 return IRQ_NONE;
2876 }
2877
2878 /* clear (just) interrupts */
2879 writel(status, &oxu->regs->status);
2880 readl(&oxu->regs->command); /* unblock posted write */
2881 bh = 0;
2882
2883 #ifdef OXU_VERBOSE_DEBUG
2884 /* unrequested/ignored: Frame List Rollover */
2885 dbg_status(oxu, "irq", status);
2886 #endif
2887
2888 /* INT, ERR, and IAA interrupt rates can be throttled */
2889
2890 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2891 if (likely((status & (STS_INT|STS_ERR)) != 0))
2892 bh = 1;
2893
2894 /* complete the unlinking of some qh [4.15.2.3] */
2895 if (status & STS_IAA) {
2896 oxu->reclaim_ready = 1;
2897 bh = 1;
2898 }
2899
2900 /* remote wakeup [4.3.1] */
2901 if (status & STS_PCD) {
2902 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2903 pcd_status = status;
2904
2905 /* resume root hub? */
2906 if (!(readl(&oxu->regs->command) & CMD_RUN))
2907 usb_hcd_resume_root_hub(hcd);
2908
2909 while (i--) {
2910 int pstatus = readl(&oxu->regs->port_status[i]);
2911
2912 if (pstatus & PORT_OWNER)
2913 continue;
2914 if (!(pstatus & PORT_RESUME)
2915 || oxu->reset_done[i] != 0)
2916 continue;
2917
2918 /* start USB_RESUME_TIMEOUT resume signaling from this
2919 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2920 * stop that signaling.
2921 */
2922 oxu->reset_done[i] = jiffies +
2923 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2924 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2925 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2926 }
2927 }
2928
2929 /* PCI errors [4.15.2.4] */
2930 if (unlikely((status & STS_FATAL) != 0)) {
2931 /* bogus "fatal" IRQs appear on some chips... why? */
2932 status = readl(&oxu->regs->status);
2933 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2934 dbg_status(oxu, "fatal", status);
2935 if (status & STS_HALT) {
2936 oxu_err(oxu, "fatal error\n");
2937 dead:
2938 ehci_reset(oxu);
2939 writel(0, &oxu->regs->configured_flag);
2940 usb_hc_died(hcd);
2941 /* generic layer kills/unlinks all urbs, then
2942 * uses oxu_stop to clean up the rest
2943 */
2944 bh = 1;
2945 }
2946 }
2947
2948 if (bh)
2949 ehci_work(oxu);
2950 spin_unlock(&oxu->lock);
2951 if (pcd_status & STS_PCD)
2952 usb_hcd_poll_rh_status(hcd);
2953 return IRQ_HANDLED;
2954 }
2955
oxu_irq(struct usb_hcd * hcd)2956 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2957 {
2958 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2959 int ret = IRQ_HANDLED;
2960
2961 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2962 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2963
2964 /* Disable all interrupt */
2965 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2966
2967 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2968 (!oxu->is_otg && (status & OXU_USBSPHI)))
2969 oxu210_hcd_irq(hcd);
2970 else
2971 ret = IRQ_NONE;
2972
2973 /* Enable all interrupt back */
2974 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2975
2976 return ret;
2977 }
2978
oxu_watchdog(struct timer_list * t)2979 static void oxu_watchdog(struct timer_list *t)
2980 {
2981 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog);
2982 unsigned long flags;
2983
2984 spin_lock_irqsave(&oxu->lock, flags);
2985
2986 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2987 if (oxu->reclaim) {
2988 u32 status = readl(&oxu->regs->status);
2989 if (status & STS_IAA) {
2990 oxu_vdbg(oxu, "lost IAA\n");
2991 writel(STS_IAA, &oxu->regs->status);
2992 oxu->reclaim_ready = 1;
2993 }
2994 }
2995
2996 /* stop async processing after it's idled a bit */
2997 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2998 start_unlink_async(oxu, oxu->async);
2999
3000 /* oxu could run by timer, without IRQs ... */
3001 ehci_work(oxu);
3002
3003 spin_unlock_irqrestore(&oxu->lock, flags);
3004 }
3005
3006 /* One-time init, only for memory state.
3007 */
oxu_hcd_init(struct usb_hcd * hcd)3008 static int oxu_hcd_init(struct usb_hcd *hcd)
3009 {
3010 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3011 u32 temp;
3012 int retval;
3013 u32 hcc_params;
3014
3015 spin_lock_init(&oxu->lock);
3016
3017 timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3018
3019 /*
3020 * hw default: 1K periodic list heads, one per frame.
3021 * periodic_size can shrink by USBCMD update if hcc_params allows.
3022 */
3023 oxu->periodic_size = DEFAULT_I_TDPS;
3024 retval = ehci_mem_init(oxu, GFP_KERNEL);
3025 if (retval < 0)
3026 return retval;
3027
3028 /* controllers may cache some of the periodic schedule ... */
3029 hcc_params = readl(&oxu->caps->hcc_params);
3030 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
3031 oxu->i_thresh = 8;
3032 else /* N microframes cached */
3033 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3034
3035 oxu->reclaim = NULL;
3036 oxu->reclaim_ready = 0;
3037 oxu->next_uframe = -1;
3038
3039 /*
3040 * dedicate a qh for the async ring head, since we couldn't unlink
3041 * a 'real' qh without stopping the async schedule [4.8]. use it
3042 * as the 'reclamation list head' too.
3043 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3044 * from automatically advancing to the next td after short reads.
3045 */
3046 oxu->async->qh_next.qh = NULL;
3047 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3048 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3049 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3050 oxu->async->hw_qtd_next = EHCI_LIST_END;
3051 oxu->async->qh_state = QH_STATE_LINKED;
3052 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3053
3054 /* clear interrupt enables, set irq latency */
3055 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3056 log2_irq_thresh = 0;
3057 temp = 1 << (16 + log2_irq_thresh);
3058 if (HCC_CANPARK(hcc_params)) {
3059 /* HW default park == 3, on hardware that supports it (like
3060 * NVidia and ALI silicon), maximizes throughput on the async
3061 * schedule by avoiding QH fetches between transfers.
3062 *
3063 * With fast usb storage devices and NForce2, "park" seems to
3064 * make problems: throughput reduction (!), data errors...
3065 */
3066 if (park) {
3067 park = min(park, (unsigned) 3);
3068 temp |= CMD_PARK;
3069 temp |= park << 8;
3070 }
3071 oxu_dbg(oxu, "park %d\n", park);
3072 }
3073 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3074 /* periodic schedule size can be smaller than default */
3075 temp &= ~(3 << 2);
3076 temp |= (EHCI_TUNE_FLS << 2);
3077 }
3078 oxu->command = temp;
3079
3080 return 0;
3081 }
3082
3083 /* Called during probe() after chip reset completes.
3084 */
oxu_reset(struct usb_hcd * hcd)3085 static int oxu_reset(struct usb_hcd *hcd)
3086 {
3087 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3088
3089 spin_lock_init(&oxu->mem_lock);
3090 INIT_LIST_HEAD(&oxu->urb_list);
3091 oxu->urb_len = 0;
3092
3093 if (oxu->is_otg) {
3094 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3095 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3096 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3097
3098 oxu->mem = hcd->regs + OXU_SPH_MEM;
3099 } else {
3100 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3101 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3102 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3103
3104 oxu->mem = hcd->regs + OXU_OTG_MEM;
3105 }
3106
3107 oxu->hcs_params = readl(&oxu->caps->hcs_params);
3108 oxu->sbrn = 0x20;
3109
3110 return oxu_hcd_init(hcd);
3111 }
3112
oxu_run(struct usb_hcd * hcd)3113 static int oxu_run(struct usb_hcd *hcd)
3114 {
3115 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3116 int retval;
3117 u32 temp, hcc_params;
3118
3119 hcd->uses_new_polling = 1;
3120
3121 /* EHCI spec section 4.1 */
3122 retval = ehci_reset(oxu);
3123 if (retval != 0) {
3124 ehci_mem_cleanup(oxu);
3125 return retval;
3126 }
3127 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3128 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3129
3130 /* hcc_params controls whether oxu->regs->segment must (!!!)
3131 * be used; it constrains QH/ITD/SITD and QTD locations.
3132 * dma_pool consistent memory always uses segment zero.
3133 * streaming mappings for I/O buffers, like pci_map_single(),
3134 * can return segments above 4GB, if the device allows.
3135 *
3136 * NOTE: the dma mask is visible through dev->dma_mask, so
3137 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3138 * Scsi_Host.highmem_io, and so forth. It's readonly to all
3139 * host side drivers though.
3140 */
3141 hcc_params = readl(&oxu->caps->hcc_params);
3142 if (HCC_64BIT_ADDR(hcc_params))
3143 writel(0, &oxu->regs->segment);
3144
3145 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3146 CMD_ASE | CMD_RESET);
3147 oxu->command |= CMD_RUN;
3148 writel(oxu->command, &oxu->regs->command);
3149 dbg_cmd(oxu, "init", oxu->command);
3150
3151 /*
3152 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3153 * are explicitly handed to companion controller(s), so no TT is
3154 * involved with the root hub. (Except where one is integrated,
3155 * and there's no companion controller unless maybe for USB OTG.)
3156 */
3157 hcd->state = HC_STATE_RUNNING;
3158 writel(FLAG_CF, &oxu->regs->configured_flag);
3159 readl(&oxu->regs->command); /* unblock posted writes */
3160
3161 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3162 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3163 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3164 temp >> 8, temp & 0xff, DRIVER_VERSION,
3165 ignore_oc ? ", overcurrent ignored" : "");
3166
3167 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3168
3169 return 0;
3170 }
3171
oxu_stop(struct usb_hcd * hcd)3172 static void oxu_stop(struct usb_hcd *hcd)
3173 {
3174 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3175
3176 /* Turn off port power on all root hub ports. */
3177 ehci_port_power(oxu, 0);
3178
3179 /* no more interrupts ... */
3180 del_timer_sync(&oxu->watchdog);
3181
3182 spin_lock_irq(&oxu->lock);
3183 if (HC_IS_RUNNING(hcd->state))
3184 ehci_quiesce(oxu);
3185
3186 ehci_reset(oxu);
3187 writel(0, &oxu->regs->intr_enable);
3188 spin_unlock_irq(&oxu->lock);
3189
3190 /* let companion controllers work when we aren't */
3191 writel(0, &oxu->regs->configured_flag);
3192
3193 /* root hub is shut down separately (first, when possible) */
3194 spin_lock_irq(&oxu->lock);
3195 if (oxu->async)
3196 ehci_work(oxu);
3197 spin_unlock_irq(&oxu->lock);
3198 ehci_mem_cleanup(oxu);
3199
3200 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3201 }
3202
3203 /* Kick in for silicon on any bus (not just pci, etc).
3204 * This forcibly disables dma and IRQs, helping kexec and other cases
3205 * where the next system software may expect clean state.
3206 */
oxu_shutdown(struct usb_hcd * hcd)3207 static void oxu_shutdown(struct usb_hcd *hcd)
3208 {
3209 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3210
3211 (void) ehci_halt(oxu);
3212 ehci_turn_off_all_ports(oxu);
3213
3214 /* make BIOS/etc use companion controller during reboot */
3215 writel(0, &oxu->regs->configured_flag);
3216
3217 /* unblock posted writes */
3218 readl(&oxu->regs->configured_flag);
3219 }
3220
3221 /* Non-error returns are a promise to giveback() the urb later
3222 * we drop ownership so next owner (or urb unlink) can get it
3223 *
3224 * urb + dev is in hcd.self.controller.urb_list
3225 * we're queueing TDs onto software and hardware lists
3226 *
3227 * hcd-specific init for hcpriv hasn't been done yet
3228 *
3229 * NOTE: control, bulk, and interrupt share the same code to append TDs
3230 * to a (possibly active) QH, and the same QH scanning code.
3231 */
__oxu_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3232 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3233 gfp_t mem_flags)
3234 {
3235 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3236 struct list_head qtd_list;
3237
3238 INIT_LIST_HEAD(&qtd_list);
3239
3240 switch (usb_pipetype(urb->pipe)) {
3241 case PIPE_CONTROL:
3242 case PIPE_BULK:
3243 default:
3244 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3245 return -ENOMEM;
3246 return submit_async(oxu, urb, &qtd_list, mem_flags);
3247
3248 case PIPE_INTERRUPT:
3249 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3250 return -ENOMEM;
3251 return intr_submit(oxu, urb, &qtd_list, mem_flags);
3252
3253 case PIPE_ISOCHRONOUS:
3254 if (urb->dev->speed == USB_SPEED_HIGH)
3255 return itd_submit(oxu, urb, mem_flags);
3256 else
3257 return sitd_submit(oxu, urb, mem_flags);
3258 }
3259 }
3260
3261 /* This function is responsible for breaking URBs with big data size
3262 * into smaller size and processing small urbs in sequence.
3263 */
oxu_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3264 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3265 gfp_t mem_flags)
3266 {
3267 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3268 int num, rem;
3269 void *transfer_buffer;
3270 struct urb *murb;
3271 int i, ret;
3272
3273 /* If not bulk pipe just enqueue the URB */
3274 if (!usb_pipebulk(urb->pipe))
3275 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3276
3277 /* Otherwise we should verify the USB transfer buffer size! */
3278 transfer_buffer = urb->transfer_buffer;
3279
3280 num = urb->transfer_buffer_length / 4096;
3281 rem = urb->transfer_buffer_length % 4096;
3282 if (rem != 0)
3283 num++;
3284
3285 /* If URB is smaller than 4096 bytes just enqueue it! */
3286 if (num == 1)
3287 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3288
3289 /* Ok, we have more job to do! :) */
3290
3291 for (i = 0; i < num - 1; i++) {
3292 /* Get free micro URB poll till a free urb is received */
3293
3294 do {
3295 murb = (struct urb *) oxu_murb_alloc(oxu);
3296 if (!murb)
3297 schedule();
3298 } while (!murb);
3299
3300 /* Coping the urb */
3301 memcpy(murb, urb, sizeof(struct urb));
3302
3303 murb->transfer_buffer_length = 4096;
3304 murb->transfer_buffer = transfer_buffer + i * 4096;
3305
3306 /* Null pointer for the encodes that this is a micro urb */
3307 murb->complete = NULL;
3308
3309 ((struct oxu_murb *) murb)->main = urb;
3310 ((struct oxu_murb *) murb)->last = 0;
3311
3312 /* This loop is to guarantee urb to be processed when there's
3313 * not enough resources at a particular time by retrying.
3314 */
3315 do {
3316 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3317 if (ret)
3318 schedule();
3319 } while (ret);
3320 }
3321
3322 /* Last urb requires special handling */
3323
3324 /* Get free micro URB poll till a free urb is received */
3325 do {
3326 murb = (struct urb *) oxu_murb_alloc(oxu);
3327 if (!murb)
3328 schedule();
3329 } while (!murb);
3330
3331 /* Coping the urb */
3332 memcpy(murb, urb, sizeof(struct urb));
3333
3334 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3335 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3336
3337 /* Null pointer for the encodes that this is a micro urb */
3338 murb->complete = NULL;
3339
3340 ((struct oxu_murb *) murb)->main = urb;
3341 ((struct oxu_murb *) murb)->last = 1;
3342
3343 do {
3344 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3345 if (ret)
3346 schedule();
3347 } while (ret);
3348
3349 return ret;
3350 }
3351
3352 /* Remove from hardware lists.
3353 * Completions normally happen asynchronously
3354 */
oxu_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3355 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3356 {
3357 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3358 struct ehci_qh *qh;
3359 unsigned long flags;
3360
3361 spin_lock_irqsave(&oxu->lock, flags);
3362 switch (usb_pipetype(urb->pipe)) {
3363 case PIPE_CONTROL:
3364 case PIPE_BULK:
3365 default:
3366 qh = (struct ehci_qh *) urb->hcpriv;
3367 if (!qh)
3368 break;
3369 unlink_async(oxu, qh);
3370 break;
3371
3372 case PIPE_INTERRUPT:
3373 qh = (struct ehci_qh *) urb->hcpriv;
3374 if (!qh)
3375 break;
3376 switch (qh->qh_state) {
3377 case QH_STATE_LINKED:
3378 intr_deschedule(oxu, qh);
3379 fallthrough;
3380 case QH_STATE_IDLE:
3381 qh_completions(oxu, qh);
3382 break;
3383 default:
3384 oxu_dbg(oxu, "bogus qh %p state %d\n",
3385 qh, qh->qh_state);
3386 goto done;
3387 }
3388
3389 /* reschedule QH iff another request is queued */
3390 if (!list_empty(&qh->qtd_list)
3391 && HC_IS_RUNNING(hcd->state)) {
3392 int status;
3393
3394 status = qh_schedule(oxu, qh);
3395 spin_unlock_irqrestore(&oxu->lock, flags);
3396
3397 if (status != 0) {
3398 /* shouldn't happen often, but ...
3399 * FIXME kill those tds' urbs
3400 */
3401 dev_err(hcd->self.controller,
3402 "can't reschedule qh %p, err %d\n", qh,
3403 status);
3404 }
3405 return status;
3406 }
3407 break;
3408 }
3409 done:
3410 spin_unlock_irqrestore(&oxu->lock, flags);
3411 return 0;
3412 }
3413
3414 /* Bulk qh holds the data toggle */
oxu_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3415 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3416 struct usb_host_endpoint *ep)
3417 {
3418 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3419 unsigned long flags;
3420 struct ehci_qh *qh, *tmp;
3421
3422 /* ASSERT: any requests/urbs are being unlinked */
3423 /* ASSERT: nobody can be submitting urbs for this any more */
3424
3425 rescan:
3426 spin_lock_irqsave(&oxu->lock, flags);
3427 qh = ep->hcpriv;
3428 if (!qh)
3429 goto done;
3430
3431 /* endpoints can be iso streams. for now, we don't
3432 * accelerate iso completions ... so spin a while.
3433 */
3434 if (qh->hw_info1 == 0) {
3435 oxu_vdbg(oxu, "iso delay\n");
3436 goto idle_timeout;
3437 }
3438
3439 if (!HC_IS_RUNNING(hcd->state))
3440 qh->qh_state = QH_STATE_IDLE;
3441 switch (qh->qh_state) {
3442 case QH_STATE_LINKED:
3443 for (tmp = oxu->async->qh_next.qh;
3444 tmp && tmp != qh;
3445 tmp = tmp->qh_next.qh)
3446 continue;
3447 /* periodic qh self-unlinks on empty */
3448 if (!tmp)
3449 goto nogood;
3450 unlink_async(oxu, qh);
3451 fallthrough;
3452 case QH_STATE_UNLINK: /* wait for hw to finish? */
3453 idle_timeout:
3454 spin_unlock_irqrestore(&oxu->lock, flags);
3455 schedule_timeout_uninterruptible(1);
3456 goto rescan;
3457 case QH_STATE_IDLE: /* fully unlinked */
3458 if (list_empty(&qh->qtd_list)) {
3459 qh_put(qh);
3460 break;
3461 }
3462 fallthrough;
3463 default:
3464 nogood:
3465 /* caller was supposed to have unlinked any requests;
3466 * that's not our job. just leak this memory.
3467 */
3468 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3469 qh, ep->desc.bEndpointAddress, qh->qh_state,
3470 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3471 break;
3472 }
3473 ep->hcpriv = NULL;
3474 done:
3475 spin_unlock_irqrestore(&oxu->lock, flags);
3476 }
3477
oxu_get_frame(struct usb_hcd * hcd)3478 static int oxu_get_frame(struct usb_hcd *hcd)
3479 {
3480 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3481
3482 return (readl(&oxu->regs->frame_index) >> 3) %
3483 oxu->periodic_size;
3484 }
3485
3486 /* Build "status change" packet (one or two bytes) from HC registers */
oxu_hub_status_data(struct usb_hcd * hcd,char * buf)3487 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3488 {
3489 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3490 u32 temp, mask, status = 0;
3491 int ports, i, retval = 1;
3492 unsigned long flags;
3493
3494 /* if !PM, root hub timers won't get shut down ... */
3495 if (!HC_IS_RUNNING(hcd->state))
3496 return 0;
3497
3498 /* init status to no-changes */
3499 buf[0] = 0;
3500 ports = HCS_N_PORTS(oxu->hcs_params);
3501 if (ports > 7) {
3502 buf[1] = 0;
3503 retval++;
3504 }
3505
3506 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3507 * causing massive log spam unless we completely ignore them. It
3508 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3509 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3510 * PORT_POWER; that's surprising, but maybe within-spec.
3511 */
3512 if (!ignore_oc)
3513 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3514 else
3515 mask = PORT_CSC | PORT_PEC;
3516
3517 /* no hub change reports (bit 0) for now (power, ...) */
3518
3519 /* port N changes (bit N)? */
3520 spin_lock_irqsave(&oxu->lock, flags);
3521 for (i = 0; i < ports; i++) {
3522 temp = readl(&oxu->regs->port_status[i]);
3523
3524 /*
3525 * Return status information even for ports with OWNER set.
3526 * Otherwise hub_wq wouldn't see the disconnect event when a
3527 * high-speed device is switched over to the companion
3528 * controller by the user.
3529 */
3530
3531 if (!(temp & PORT_CONNECT))
3532 oxu->reset_done[i] = 0;
3533 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3534 time_after_eq(jiffies, oxu->reset_done[i]))) {
3535 if (i < 7)
3536 buf[0] |= 1 << (i + 1);
3537 else
3538 buf[1] |= 1 << (i - 7);
3539 status = STS_PCD;
3540 }
3541 }
3542 /* FIXME autosuspend idle root hubs */
3543 spin_unlock_irqrestore(&oxu->lock, flags);
3544 return status ? retval : 0;
3545 }
3546
3547 /* Returns the speed of a device attached to a port on the root hub. */
oxu_port_speed(struct oxu_hcd * oxu,unsigned int portsc)3548 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3549 unsigned int portsc)
3550 {
3551 switch ((portsc >> 26) & 3) {
3552 case 0:
3553 return 0;
3554 case 1:
3555 return USB_PORT_STAT_LOW_SPEED;
3556 case 2:
3557 default:
3558 return USB_PORT_STAT_HIGH_SPEED;
3559 }
3560 }
3561
3562 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
oxu_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3563 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3564 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3565 {
3566 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3567 int ports = HCS_N_PORTS(oxu->hcs_params);
3568 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3569 u32 temp, status;
3570 unsigned long flags;
3571 int retval = 0;
3572 unsigned selector;
3573
3574 /*
3575 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3576 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3577 * (track current state ourselves) ... blink for diagnostics,
3578 * power, "this is the one", etc. EHCI spec supports this.
3579 */
3580
3581 spin_lock_irqsave(&oxu->lock, flags);
3582 switch (typeReq) {
3583 case ClearHubFeature:
3584 switch (wValue) {
3585 case C_HUB_LOCAL_POWER:
3586 case C_HUB_OVER_CURRENT:
3587 /* no hub-wide feature/status flags */
3588 break;
3589 default:
3590 goto error;
3591 }
3592 break;
3593 case ClearPortFeature:
3594 if (!wIndex || wIndex > ports)
3595 goto error;
3596 wIndex--;
3597 temp = readl(status_reg);
3598
3599 /*
3600 * Even if OWNER is set, so the port is owned by the
3601 * companion controller, hub_wq needs to be able to clear
3602 * the port-change status bits (especially
3603 * USB_PORT_STAT_C_CONNECTION).
3604 */
3605
3606 switch (wValue) {
3607 case USB_PORT_FEAT_ENABLE:
3608 writel(temp & ~PORT_PE, status_reg);
3609 break;
3610 case USB_PORT_FEAT_C_ENABLE:
3611 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3612 break;
3613 case USB_PORT_FEAT_SUSPEND:
3614 if (temp & PORT_RESET)
3615 goto error;
3616 if (temp & PORT_SUSPEND) {
3617 if ((temp & PORT_PE) == 0)
3618 goto error;
3619 /* resume signaling for 20 msec */
3620 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3621 writel(temp | PORT_RESUME, status_reg);
3622 oxu->reset_done[wIndex] = jiffies
3623 + msecs_to_jiffies(20);
3624 }
3625 break;
3626 case USB_PORT_FEAT_C_SUSPEND:
3627 /* we auto-clear this feature */
3628 break;
3629 case USB_PORT_FEAT_POWER:
3630 if (HCS_PPC(oxu->hcs_params))
3631 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3632 status_reg);
3633 break;
3634 case USB_PORT_FEAT_C_CONNECTION:
3635 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3636 break;
3637 case USB_PORT_FEAT_C_OVER_CURRENT:
3638 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3639 break;
3640 case USB_PORT_FEAT_C_RESET:
3641 /* GetPortStatus clears reset */
3642 break;
3643 default:
3644 goto error;
3645 }
3646 readl(&oxu->regs->command); /* unblock posted write */
3647 break;
3648 case GetHubDescriptor:
3649 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3650 buf);
3651 break;
3652 case GetHubStatus:
3653 /* no hub-wide feature/status flags */
3654 memset(buf, 0, 4);
3655 break;
3656 case GetPortStatus:
3657 if (!wIndex || wIndex > ports)
3658 goto error;
3659 wIndex--;
3660 status = 0;
3661 temp = readl(status_reg);
3662
3663 /* wPortChange bits */
3664 if (temp & PORT_CSC)
3665 status |= USB_PORT_STAT_C_CONNECTION << 16;
3666 if (temp & PORT_PEC)
3667 status |= USB_PORT_STAT_C_ENABLE << 16;
3668 if ((temp & PORT_OCC) && !ignore_oc)
3669 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3670
3671 /* whoever resumes must GetPortStatus to complete it!! */
3672 if (temp & PORT_RESUME) {
3673
3674 /* Remote Wakeup received? */
3675 if (!oxu->reset_done[wIndex]) {
3676 /* resume signaling for 20 msec */
3677 oxu->reset_done[wIndex] = jiffies
3678 + msecs_to_jiffies(20);
3679 /* check the port again */
3680 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3681 oxu->reset_done[wIndex]);
3682 }
3683
3684 /* resume completed? */
3685 else if (time_after_eq(jiffies,
3686 oxu->reset_done[wIndex])) {
3687 status |= USB_PORT_STAT_C_SUSPEND << 16;
3688 oxu->reset_done[wIndex] = 0;
3689
3690 /* stop resume signaling */
3691 temp = readl(status_reg);
3692 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3693 status_reg);
3694 retval = handshake(oxu, status_reg,
3695 PORT_RESUME, 0, 2000 /* 2msec */);
3696 if (retval != 0) {
3697 oxu_err(oxu,
3698 "port %d resume error %d\n",
3699 wIndex + 1, retval);
3700 goto error;
3701 }
3702 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3703 }
3704 }
3705
3706 /* whoever resets must GetPortStatus to complete it!! */
3707 if ((temp & PORT_RESET)
3708 && time_after_eq(jiffies,
3709 oxu->reset_done[wIndex])) {
3710 status |= USB_PORT_STAT_C_RESET << 16;
3711 oxu->reset_done[wIndex] = 0;
3712
3713 /* force reset to complete */
3714 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3715 status_reg);
3716 /* REVISIT: some hardware needs 550+ usec to clear
3717 * this bit; seems too long to spin routinely...
3718 */
3719 retval = handshake(oxu, status_reg,
3720 PORT_RESET, 0, 750);
3721 if (retval != 0) {
3722 oxu_err(oxu, "port %d reset error %d\n",
3723 wIndex + 1, retval);
3724 goto error;
3725 }
3726
3727 /* see what we found out */
3728 temp = check_reset_complete(oxu, wIndex, status_reg,
3729 readl(status_reg));
3730 }
3731
3732 /* transfer dedicated ports to the companion hc */
3733 if ((temp & PORT_CONNECT) &&
3734 test_bit(wIndex, &oxu->companion_ports)) {
3735 temp &= ~PORT_RWC_BITS;
3736 temp |= PORT_OWNER;
3737 writel(temp, status_reg);
3738 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3739 temp = readl(status_reg);
3740 }
3741
3742 /*
3743 * Even if OWNER is set, there's no harm letting hub_wq
3744 * see the wPortStatus values (they should all be 0 except
3745 * for PORT_POWER anyway).
3746 */
3747
3748 if (temp & PORT_CONNECT) {
3749 status |= USB_PORT_STAT_CONNECTION;
3750 /* status may be from integrated TT */
3751 status |= oxu_port_speed(oxu, temp);
3752 }
3753 if (temp & PORT_PE)
3754 status |= USB_PORT_STAT_ENABLE;
3755 if (temp & (PORT_SUSPEND|PORT_RESUME))
3756 status |= USB_PORT_STAT_SUSPEND;
3757 if (temp & PORT_OC)
3758 status |= USB_PORT_STAT_OVERCURRENT;
3759 if (temp & PORT_RESET)
3760 status |= USB_PORT_STAT_RESET;
3761 if (temp & PORT_POWER)
3762 status |= USB_PORT_STAT_POWER;
3763
3764 #ifndef OXU_VERBOSE_DEBUG
3765 if (status & ~0xffff) /* only if wPortChange is interesting */
3766 #endif
3767 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3768 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3769 break;
3770 case SetHubFeature:
3771 switch (wValue) {
3772 case C_HUB_LOCAL_POWER:
3773 case C_HUB_OVER_CURRENT:
3774 /* no hub-wide feature/status flags */
3775 break;
3776 default:
3777 goto error;
3778 }
3779 break;
3780 case SetPortFeature:
3781 selector = wIndex >> 8;
3782 wIndex &= 0xff;
3783 if (!wIndex || wIndex > ports)
3784 goto error;
3785 wIndex--;
3786 temp = readl(status_reg);
3787 if (temp & PORT_OWNER)
3788 break;
3789
3790 temp &= ~PORT_RWC_BITS;
3791 switch (wValue) {
3792 case USB_PORT_FEAT_SUSPEND:
3793 if ((temp & PORT_PE) == 0
3794 || (temp & PORT_RESET) != 0)
3795 goto error;
3796 if (device_may_wakeup(&hcd->self.root_hub->dev))
3797 temp |= PORT_WAKE_BITS;
3798 writel(temp | PORT_SUSPEND, status_reg);
3799 break;
3800 case USB_PORT_FEAT_POWER:
3801 if (HCS_PPC(oxu->hcs_params))
3802 writel(temp | PORT_POWER, status_reg);
3803 break;
3804 case USB_PORT_FEAT_RESET:
3805 if (temp & PORT_RESUME)
3806 goto error;
3807 /* line status bits may report this as low speed,
3808 * which can be fine if this root hub has a
3809 * transaction translator built in.
3810 */
3811 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3812 temp |= PORT_RESET;
3813 temp &= ~PORT_PE;
3814
3815 /*
3816 * caller must wait, then call GetPortStatus
3817 * usb 2.0 spec says 50 ms resets on root
3818 */
3819 oxu->reset_done[wIndex] = jiffies
3820 + msecs_to_jiffies(50);
3821 writel(temp, status_reg);
3822 break;
3823
3824 /* For downstream facing ports (these): one hub port is put
3825 * into test mode according to USB2 11.24.2.13, then the hub
3826 * must be reset (which for root hub now means rmmod+modprobe,
3827 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3828 * about the EHCI-specific stuff.
3829 */
3830 case USB_PORT_FEAT_TEST:
3831 if (!selector || selector > 5)
3832 goto error;
3833 ehci_quiesce(oxu);
3834 ehci_halt(oxu);
3835 temp |= selector << 16;
3836 writel(temp, status_reg);
3837 break;
3838
3839 default:
3840 goto error;
3841 }
3842 readl(&oxu->regs->command); /* unblock posted writes */
3843 break;
3844
3845 default:
3846 error:
3847 /* "stall" on error */
3848 retval = -EPIPE;
3849 }
3850 spin_unlock_irqrestore(&oxu->lock, flags);
3851 return retval;
3852 }
3853
3854 #ifdef CONFIG_PM
3855
oxu_bus_suspend(struct usb_hcd * hcd)3856 static int oxu_bus_suspend(struct usb_hcd *hcd)
3857 {
3858 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3859 int port;
3860 int mask;
3861
3862 oxu_dbg(oxu, "suspend root hub\n");
3863
3864 if (time_before(jiffies, oxu->next_statechange))
3865 msleep(5);
3866
3867 port = HCS_N_PORTS(oxu->hcs_params);
3868 spin_lock_irq(&oxu->lock);
3869
3870 /* stop schedules, clean any completed work */
3871 if (HC_IS_RUNNING(hcd->state)) {
3872 ehci_quiesce(oxu);
3873 hcd->state = HC_STATE_QUIESCING;
3874 }
3875 oxu->command = readl(&oxu->regs->command);
3876 if (oxu->reclaim)
3877 oxu->reclaim_ready = 1;
3878 ehci_work(oxu);
3879
3880 /* Unlike other USB host controller types, EHCI doesn't have
3881 * any notion of "global" or bus-wide suspend. The driver has
3882 * to manually suspend all the active unsuspended ports, and
3883 * then manually resume them in the bus_resume() routine.
3884 */
3885 oxu->bus_suspended = 0;
3886 while (port--) {
3887 u32 __iomem *reg = &oxu->regs->port_status[port];
3888 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3889 u32 t2 = t1;
3890
3891 /* keep track of which ports we suspend */
3892 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3893 !(t1 & PORT_SUSPEND)) {
3894 t2 |= PORT_SUSPEND;
3895 set_bit(port, &oxu->bus_suspended);
3896 }
3897
3898 /* enable remote wakeup on all ports */
3899 if (device_may_wakeup(&hcd->self.root_hub->dev))
3900 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3901 else
3902 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3903
3904 if (t1 != t2) {
3905 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3906 port + 1, t1, t2);
3907 writel(t2, reg);
3908 }
3909 }
3910
3911 spin_unlock_irq(&oxu->lock);
3912 /* turn off now-idle HC */
3913 del_timer_sync(&oxu->watchdog);
3914 spin_lock_irq(&oxu->lock);
3915 ehci_halt(oxu);
3916 hcd->state = HC_STATE_SUSPENDED;
3917
3918 /* allow remote wakeup */
3919 mask = INTR_MASK;
3920 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3921 mask &= ~STS_PCD;
3922 writel(mask, &oxu->regs->intr_enable);
3923 readl(&oxu->regs->intr_enable);
3924
3925 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3926 spin_unlock_irq(&oxu->lock);
3927 return 0;
3928 }
3929
3930 /* Caller has locked the root hub, and should reset/reinit on error */
oxu_bus_resume(struct usb_hcd * hcd)3931 static int oxu_bus_resume(struct usb_hcd *hcd)
3932 {
3933 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3934 u32 temp;
3935 int i;
3936
3937 if (time_before(jiffies, oxu->next_statechange))
3938 msleep(5);
3939 spin_lock_irq(&oxu->lock);
3940
3941 /* Ideally and we've got a real resume here, and no port's power
3942 * was lost. (For PCI, that means Vaux was maintained.) But we
3943 * could instead be restoring a swsusp snapshot -- so that BIOS was
3944 * the last user of the controller, not reset/pm hardware keeping
3945 * state we gave to it.
3946 */
3947 temp = readl(&oxu->regs->intr_enable);
3948 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3949
3950 /* at least some APM implementations will try to deliver
3951 * IRQs right away, so delay them until we're ready.
3952 */
3953 writel(0, &oxu->regs->intr_enable);
3954
3955 /* re-init operational registers */
3956 writel(0, &oxu->regs->segment);
3957 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3958 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3959
3960 /* restore CMD_RUN, framelist size, and irq threshold */
3961 writel(oxu->command, &oxu->regs->command);
3962
3963 /* Some controller/firmware combinations need a delay during which
3964 * they set up the port statuses. See Bugzilla #8190. */
3965 mdelay(8);
3966
3967 /* manually resume the ports we suspended during bus_suspend() */
3968 i = HCS_N_PORTS(oxu->hcs_params);
3969 while (i--) {
3970 temp = readl(&oxu->regs->port_status[i]);
3971 temp &= ~(PORT_RWC_BITS
3972 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3973 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3974 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3975 temp |= PORT_RESUME;
3976 }
3977 writel(temp, &oxu->regs->port_status[i]);
3978 }
3979 i = HCS_N_PORTS(oxu->hcs_params);
3980 mdelay(20);
3981 while (i--) {
3982 temp = readl(&oxu->regs->port_status[i]);
3983 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3984 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3985 writel(temp, &oxu->regs->port_status[i]);
3986 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3987 }
3988 }
3989 (void) readl(&oxu->regs->command);
3990
3991 /* maybe re-activate the schedule(s) */
3992 temp = 0;
3993 if (oxu->async->qh_next.qh)
3994 temp |= CMD_ASE;
3995 if (oxu->periodic_sched)
3996 temp |= CMD_PSE;
3997 if (temp) {
3998 oxu->command |= temp;
3999 writel(oxu->command, &oxu->regs->command);
4000 }
4001
4002 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
4003 hcd->state = HC_STATE_RUNNING;
4004
4005 /* Now we can safely re-enable irqs */
4006 writel(INTR_MASK, &oxu->regs->intr_enable);
4007
4008 spin_unlock_irq(&oxu->lock);
4009 return 0;
4010 }
4011
4012 #else
4013
oxu_bus_suspend(struct usb_hcd * hcd)4014 static int oxu_bus_suspend(struct usb_hcd *hcd)
4015 {
4016 return 0;
4017 }
4018
oxu_bus_resume(struct usb_hcd * hcd)4019 static int oxu_bus_resume(struct usb_hcd *hcd)
4020 {
4021 return 0;
4022 }
4023
4024 #endif /* CONFIG_PM */
4025
4026 static const struct hc_driver oxu_hc_driver = {
4027 .description = "oxu210hp_hcd",
4028 .product_desc = "oxu210hp HCD",
4029 .hcd_priv_size = sizeof(struct oxu_hcd),
4030
4031 /*
4032 * Generic hardware linkage
4033 */
4034 .irq = oxu_irq,
4035 .flags = HCD_MEMORY | HCD_USB2,
4036
4037 /*
4038 * Basic lifecycle operations
4039 */
4040 .reset = oxu_reset,
4041 .start = oxu_run,
4042 .stop = oxu_stop,
4043 .shutdown = oxu_shutdown,
4044
4045 /*
4046 * Managing i/o requests and associated device resources
4047 */
4048 .urb_enqueue = oxu_urb_enqueue,
4049 .urb_dequeue = oxu_urb_dequeue,
4050 .endpoint_disable = oxu_endpoint_disable,
4051
4052 /*
4053 * Scheduling support
4054 */
4055 .get_frame_number = oxu_get_frame,
4056
4057 /*
4058 * Root hub support
4059 */
4060 .hub_status_data = oxu_hub_status_data,
4061 .hub_control = oxu_hub_control,
4062 .bus_suspend = oxu_bus_suspend,
4063 .bus_resume = oxu_bus_resume,
4064 };
4065
4066 /*
4067 * Module stuff
4068 */
4069
oxu_configuration(struct platform_device * pdev,void __iomem * base)4070 static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4071 {
4072 u32 tmp;
4073
4074 /* Initialize top level registers.
4075 * First write ever
4076 */
4077 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4078 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4079 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4080
4081 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4082 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4083
4084 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4085 OXU_COMPARATOR | OXU_ASO_OP);
4086
4087 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4088 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4089
4090 /* Clear all top interrupt enable */
4091 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4092
4093 /* Clear all top interrupt status */
4094 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4095
4096 /* Enable all needed top interrupt except OTG SPH core */
4097 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4098 }
4099
oxu_verify_id(struct platform_device * pdev,void __iomem * base)4100 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4101 {
4102 u32 id;
4103 static const char * const bo[] = {
4104 "reserved",
4105 "128-pin LQFP",
4106 "84-pin TFBGA",
4107 "reserved",
4108 };
4109
4110 /* Read controller signature register to find a match */
4111 id = oxu_readl(base, OXU_DEVICEID);
4112 dev_info(&pdev->dev, "device ID %x\n", id);
4113 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4114 return -1;
4115
4116 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4117 id >> OXU_REV_SHIFT,
4118 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4119 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4120 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4121
4122 return 0;
4123 }
4124
4125 static const struct hc_driver oxu_hc_driver;
oxu_create(struct platform_device * pdev,unsigned long memstart,unsigned long memlen,void __iomem * base,int irq,int otg)4126 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4127 unsigned long memstart, unsigned long memlen,
4128 void __iomem *base, int irq, int otg)
4129 {
4130 struct device *dev = &pdev->dev;
4131
4132 struct usb_hcd *hcd;
4133 struct oxu_hcd *oxu;
4134 int ret;
4135
4136 /* Set endian mode and host mode */
4137 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4138 OXU_USBMODE,
4139 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4140
4141 hcd = usb_create_hcd(&oxu_hc_driver, dev,
4142 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4143 if (!hcd)
4144 return ERR_PTR(-ENOMEM);
4145
4146 hcd->rsrc_start = memstart;
4147 hcd->rsrc_len = memlen;
4148 hcd->regs = base;
4149 hcd->irq = irq;
4150 hcd->state = HC_STATE_HALT;
4151
4152 oxu = hcd_to_oxu(hcd);
4153 oxu->is_otg = otg;
4154
4155 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4156 if (ret < 0) {
4157 usb_put_hcd(hcd);
4158 return ERR_PTR(ret);
4159 }
4160
4161 device_wakeup_enable(hcd->self.controller);
4162 return hcd;
4163 }
4164
oxu_init(struct platform_device * pdev,unsigned long memstart,unsigned long memlen,void __iomem * base,int irq)4165 static int oxu_init(struct platform_device *pdev,
4166 unsigned long memstart, unsigned long memlen,
4167 void __iomem *base, int irq)
4168 {
4169 struct oxu_info *info = platform_get_drvdata(pdev);
4170 struct usb_hcd *hcd;
4171 int ret;
4172
4173 /* First time configuration at start up */
4174 oxu_configuration(pdev, base);
4175
4176 ret = oxu_verify_id(pdev, base);
4177 if (ret) {
4178 dev_err(&pdev->dev, "no devices found!\n");
4179 return -ENODEV;
4180 }
4181
4182 /* Create the OTG controller */
4183 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4184 if (IS_ERR(hcd)) {
4185 dev_err(&pdev->dev, "cannot create OTG controller!\n");
4186 ret = PTR_ERR(hcd);
4187 goto error_create_otg;
4188 }
4189 info->hcd[0] = hcd;
4190
4191 /* Create the SPH host controller */
4192 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4193 if (IS_ERR(hcd)) {
4194 dev_err(&pdev->dev, "cannot create SPH controller!\n");
4195 ret = PTR_ERR(hcd);
4196 goto error_create_sph;
4197 }
4198 info->hcd[1] = hcd;
4199
4200 oxu_writel(base, OXU_CHIPIRQEN_SET,
4201 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4202
4203 return 0;
4204
4205 error_create_sph:
4206 usb_remove_hcd(info->hcd[0]);
4207 usb_put_hcd(info->hcd[0]);
4208
4209 error_create_otg:
4210 return ret;
4211 }
4212
oxu_drv_probe(struct platform_device * pdev)4213 static int oxu_drv_probe(struct platform_device *pdev)
4214 {
4215 struct resource *res;
4216 void __iomem *base;
4217 unsigned long memstart, memlen;
4218 int irq, ret;
4219 struct oxu_info *info;
4220
4221 if (usb_disabled())
4222 return -ENODEV;
4223
4224 /*
4225 * Get the platform resources
4226 */
4227 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
4228 if (!res) {
4229 dev_err(&pdev->dev,
4230 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
4231 return -ENODEV;
4232 }
4233 irq = res->start;
4234 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4235
4236 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4237 base = devm_ioremap_resource(&pdev->dev, res);
4238 if (IS_ERR(base)) {
4239 ret = PTR_ERR(base);
4240 goto error;
4241 }
4242 memstart = res->start;
4243 memlen = resource_size(res);
4244
4245 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4246 if (ret) {
4247 dev_err(&pdev->dev, "error setting irq type\n");
4248 ret = -EFAULT;
4249 goto error;
4250 }
4251
4252 /* Allocate a driver data struct to hold useful info for both
4253 * SPH & OTG devices
4254 */
4255 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4256 if (!info) {
4257 ret = -EFAULT;
4258 goto error;
4259 }
4260 platform_set_drvdata(pdev, info);
4261
4262 ret = oxu_init(pdev, memstart, memlen, base, irq);
4263 if (ret < 0) {
4264 dev_dbg(&pdev->dev, "cannot init USB devices\n");
4265 goto error;
4266 }
4267
4268 dev_info(&pdev->dev, "devices enabled and running\n");
4269 platform_set_drvdata(pdev, info);
4270
4271 return 0;
4272
4273 error:
4274 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4275 return ret;
4276 }
4277
oxu_remove(struct platform_device * pdev,struct usb_hcd * hcd)4278 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4279 {
4280 usb_remove_hcd(hcd);
4281 usb_put_hcd(hcd);
4282 }
4283
oxu_drv_remove(struct platform_device * pdev)4284 static int oxu_drv_remove(struct platform_device *pdev)
4285 {
4286 struct oxu_info *info = platform_get_drvdata(pdev);
4287
4288 oxu_remove(pdev, info->hcd[0]);
4289 oxu_remove(pdev, info->hcd[1]);
4290
4291 return 0;
4292 }
4293
oxu_drv_shutdown(struct platform_device * pdev)4294 static void oxu_drv_shutdown(struct platform_device *pdev)
4295 {
4296 oxu_drv_remove(pdev);
4297 }
4298
4299 #if 0
4300 /* FIXME: TODO */
4301 static int oxu_drv_suspend(struct device *dev)
4302 {
4303 struct platform_device *pdev = to_platform_device(dev);
4304 struct usb_hcd *hcd = dev_get_drvdata(dev);
4305
4306 return 0;
4307 }
4308
4309 static int oxu_drv_resume(struct device *dev)
4310 {
4311 struct platform_device *pdev = to_platform_device(dev);
4312 struct usb_hcd *hcd = dev_get_drvdata(dev);
4313
4314 return 0;
4315 }
4316 #else
4317 #define oxu_drv_suspend NULL
4318 #define oxu_drv_resume NULL
4319 #endif
4320
4321 static struct platform_driver oxu_driver = {
4322 .probe = oxu_drv_probe,
4323 .remove = oxu_drv_remove,
4324 .shutdown = oxu_drv_shutdown,
4325 .suspend = oxu_drv_suspend,
4326 .resume = oxu_drv_resume,
4327 .driver = {
4328 .name = "oxu210hp-hcd",
4329 .bus = &platform_bus_type
4330 }
4331 };
4332
4333 module_platform_driver(oxu_driver);
4334
4335 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4336 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4337 MODULE_LICENSE("GPL");
4338