1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27
28 #include "dm_services.h"
29
30 #include "dc.h"
31
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36
37 #include "resource.h"
38
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42
43 #include "bios_parser_interface.h"
44 #include "include/irq_service_interface.h"
45 #include "transform.h"
46 #include "dmcu.h"
47 #include "dpp.h"
48 #include "timing_generator.h"
49 #include "abm.h"
50 #include "virtual/virtual_link_encoder.h"
51
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54
55 #include "dc_link_ddc.h"
56 #include "dm_helpers.h"
57 #include "mem_input.h"
58 #include "hubp.h"
59
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62
63 #include "dsc.h"
64
65 #include "vm_helper.h"
66
67 #include "dce/dce_i2c.h"
68
69 #include "dmub/dmub_srv.h"
70
71 #include "dce/dmub_hw_lock_mgr.h"
72
73 #define CTX \
74 dc->ctx
75
76 #define DC_LOGGER \
77 dc->ctx->logger
78
79 static const char DC_BUILD_ID[] = "production-build";
80
81 /**
82 * DOC: Overview
83 *
84 * DC is the OS-agnostic component of the amdgpu DC driver.
85 *
86 * DC maintains and validates a set of structs representing the state of the
87 * driver and writes that state to AMD hardware
88 *
89 * Main DC HW structs:
90 *
91 * struct dc - The central struct. One per driver. Created on driver load,
92 * destroyed on driver unload.
93 *
94 * struct dc_context - One per driver.
95 * Used as a backpointer by most other structs in dc.
96 *
97 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
98 * plugpoints). Created on driver load, destroyed on driver unload.
99 *
100 * struct dc_sink - One per display. Created on boot or hotplug.
101 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
102 * (the display directly attached). It may also have one or more remote
103 * sinks (in the Multi-Stream Transport case)
104 *
105 * struct resource_pool - One per driver. Represents the hw blocks not in the
106 * main pipeline. Not directly accessible by dm.
107 *
108 * Main dc state structs:
109 *
110 * These structs can be created and destroyed as needed. There is a full set of
111 * these structs in dc->current_state representing the currently programmed state.
112 *
113 * struct dc_state - The global DC state to track global state information,
114 * such as bandwidth values.
115 *
116 * struct dc_stream_state - Represents the hw configuration for the pipeline from
117 * a framebuffer to a display. Maps one-to-one with dc_sink.
118 *
119 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
120 * and may have more in the Multi-Plane Overlay case.
121 *
122 * struct resource_context - Represents the programmable state of everything in
123 * the resource_pool. Not directly accessible by dm.
124 *
125 * struct pipe_ctx - A member of struct resource_context. Represents the
126 * internal hardware pipeline components. Each dc_plane_state has either
127 * one or two (in the pipe-split case).
128 */
129
130 /*******************************************************************************
131 * Private functions
132 ******************************************************************************/
133
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)134 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
135 {
136 if (new > *original)
137 *original = new;
138 }
139
destroy_links(struct dc * dc)140 static void destroy_links(struct dc *dc)
141 {
142 uint32_t i;
143
144 for (i = 0; i < dc->link_count; i++) {
145 if (NULL != dc->links[i])
146 link_destroy(&dc->links[i]);
147 }
148 }
149
create_links(struct dc * dc,uint32_t num_virtual_links)150 static bool create_links(
151 struct dc *dc,
152 uint32_t num_virtual_links)
153 {
154 int i;
155 int connectors_num;
156 struct dc_bios *bios = dc->ctx->dc_bios;
157
158 dc->link_count = 0;
159
160 connectors_num = bios->funcs->get_connectors_number(bios);
161
162 if (connectors_num > ENUM_ID_COUNT) {
163 dm_error(
164 "DC: Number of connectors %d exceeds maximum of %d!\n",
165 connectors_num,
166 ENUM_ID_COUNT);
167 return false;
168 }
169
170 dm_output_to_console(
171 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
172 __func__,
173 connectors_num,
174 num_virtual_links);
175
176 for (i = 0; i < connectors_num; i++) {
177 struct link_init_data link_init_params = {0};
178 struct dc_link *link;
179
180 link_init_params.ctx = dc->ctx;
181 /* next BIOS object table connector */
182 link_init_params.connector_index = i;
183 link_init_params.link_index = dc->link_count;
184 link_init_params.dc = dc;
185 link = link_create(&link_init_params);
186
187 if (link) {
188 bool should_destory_link = false;
189
190 if (link->connector_signal == SIGNAL_TYPE_EDP) {
191 if (dc->config.edp_not_connected) {
192 if (!IS_DIAG_DC(dc->ctx->dce_environment))
193 should_destory_link = true;
194 } else {
195 enum dc_connection_type type;
196 dc_link_detect_sink(link, &type);
197 if (type == dc_connection_none)
198 should_destory_link = true;
199 }
200 }
201
202 if (dc->config.force_enum_edp || !should_destory_link) {
203 dc->links[dc->link_count] = link;
204 link->dc = dc;
205 ++dc->link_count;
206 } else {
207 link_destroy(&link);
208 }
209 }
210 }
211
212 for (i = 0; i < num_virtual_links; i++) {
213 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
214 struct encoder_init_data enc_init = {0};
215
216 if (link == NULL) {
217 BREAK_TO_DEBUGGER();
218 goto failed_alloc;
219 }
220
221 link->link_index = dc->link_count;
222 dc->links[dc->link_count] = link;
223 dc->link_count++;
224
225 link->ctx = dc->ctx;
226 link->dc = dc;
227 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
228 link->link_id.type = OBJECT_TYPE_CONNECTOR;
229 link->link_id.id = CONNECTOR_ID_VIRTUAL;
230 link->link_id.enum_id = ENUM_ID_1;
231 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
232
233 if (!link->link_enc) {
234 BREAK_TO_DEBUGGER();
235 goto failed_alloc;
236 }
237
238 link->link_status.dpcd_caps = &link->dpcd_caps;
239
240 enc_init.ctx = dc->ctx;
241 enc_init.channel = CHANNEL_ID_UNKNOWN;
242 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
243 enc_init.transmitter = TRANSMITTER_UNKNOWN;
244 enc_init.connector = link->link_id;
245 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
246 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
247 enc_init.encoder.enum_id = ENUM_ID_1;
248 virtual_link_encoder_construct(link->link_enc, &enc_init);
249 }
250
251 return true;
252
253 failed_alloc:
254 return false;
255 }
256
dc_perf_trace_create(void)257 static struct dc_perf_trace *dc_perf_trace_create(void)
258 {
259 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
260 }
261
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)262 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
263 {
264 kfree(*perf_trace);
265 *perf_trace = NULL;
266 }
267
268 /**
269 *****************************************************************************
270 * Function: dc_stream_adjust_vmin_vmax
271 *
272 * @brief
273 * Looks up the pipe context of dc_stream_state and updates the
274 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
275 * Rate, which is a power-saving feature that targets reducing panel
276 * refresh rate while the screen is static
277 *
278 * @param [in] dc: dc reference
279 * @param [in] stream: Initial dc stream state
280 * @param [in] adjust: Updated parameters for vertical_total_min and
281 * vertical_total_max
282 *****************************************************************************
283 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)284 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
285 struct dc_stream_state *stream,
286 struct dc_crtc_timing_adjust *adjust)
287 {
288 int i = 0;
289 bool ret = false;
290
291 stream->adjust = *adjust;
292
293 for (i = 0; i < MAX_PIPES; i++) {
294 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
295
296 if (pipe->stream == stream && pipe->stream_res.tg) {
297 dc->hwss.set_drr(&pipe,
298 1,
299 adjust->v_total_min,
300 adjust->v_total_max,
301 adjust->v_total_mid,
302 adjust->v_total_mid_frame_num);
303
304 ret = true;
305 }
306 }
307 return ret;
308 }
309
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)310 bool dc_stream_get_crtc_position(struct dc *dc,
311 struct dc_stream_state **streams, int num_streams,
312 unsigned int *v_pos, unsigned int *nom_v_pos)
313 {
314 /* TODO: Support multiple streams */
315 const struct dc_stream_state *stream = streams[0];
316 int i = 0;
317 bool ret = false;
318 struct crtc_position position;
319
320 for (i = 0; i < MAX_PIPES; i++) {
321 struct pipe_ctx *pipe =
322 &dc->current_state->res_ctx.pipe_ctx[i];
323
324 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
325 dc->hwss.get_position(&pipe, 1, &position);
326
327 *v_pos = position.vertical_count;
328 *nom_v_pos = position.nominal_vcount;
329 ret = true;
330 }
331 }
332 return ret;
333 }
334
335 /**
336 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
337 * @dc: DC Object
338 * @stream: The stream to configure CRC on.
339 * @enable: Enable CRC if true, disable otherwise.
340 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
341 * once.
342 *
343 * By default, only CRC0 is configured, and the entire frame is used to
344 * calculate the crc.
345 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,bool enable,bool continuous)346 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
347 bool enable, bool continuous)
348 {
349 int i;
350 struct pipe_ctx *pipe;
351 struct crc_params param;
352 struct timing_generator *tg;
353
354 for (i = 0; i < MAX_PIPES; i++) {
355 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
356 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
357 break;
358 }
359 /* Stream not found */
360 if (i == MAX_PIPES)
361 return false;
362
363 /* Always capture the full frame */
364 param.windowa_x_start = 0;
365 param.windowa_y_start = 0;
366 param.windowa_x_end = pipe->stream->timing.h_addressable;
367 param.windowa_y_end = pipe->stream->timing.v_addressable;
368 param.windowb_x_start = 0;
369 param.windowb_y_start = 0;
370 param.windowb_x_end = pipe->stream->timing.h_addressable;
371 param.windowb_y_end = pipe->stream->timing.v_addressable;
372
373 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
374 param.odm_mode = pipe->next_odm_pipe ? 1:0;
375
376 /* Default to the union of both windows */
377 param.selection = UNION_WINDOW_A_B;
378 param.continuous_mode = continuous;
379 param.enable = enable;
380
381 tg = pipe->stream_res.tg;
382
383 /* Only call if supported */
384 if (tg->funcs->configure_crc)
385 return tg->funcs->configure_crc(tg, ¶m);
386 DC_LOG_WARNING("CRC capture not supported.");
387 return false;
388 }
389
390 /**
391 * dc_stream_get_crc() - Get CRC values for the given stream.
392 * @dc: DC object
393 * @stream: The DC stream state of the stream to get CRCs from.
394 * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
395 *
396 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
397 * Return false if stream is not found, or if CRCs are not enabled.
398 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)399 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
400 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
401 {
402 int i;
403 struct pipe_ctx *pipe;
404 struct timing_generator *tg;
405
406 for (i = 0; i < MAX_PIPES; i++) {
407 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
408 if (pipe->stream == stream)
409 break;
410 }
411 /* Stream not found */
412 if (i == MAX_PIPES)
413 return false;
414
415 tg = pipe->stream_res.tg;
416
417 if (tg->funcs->get_crc)
418 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
419 DC_LOG_WARNING("CRC capture not supported.");
420 return false;
421 }
422
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)423 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
424 enum dc_dynamic_expansion option)
425 {
426 /* OPP FMT dyn expansion updates*/
427 int i = 0;
428 struct pipe_ctx *pipe_ctx;
429
430 for (i = 0; i < MAX_PIPES; i++) {
431 if (dc->current_state->res_ctx.pipe_ctx[i].stream
432 == stream) {
433 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
434 pipe_ctx->stream_res.opp->dyn_expansion = option;
435 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
436 pipe_ctx->stream_res.opp,
437 COLOR_SPACE_YCBCR601,
438 stream->timing.display_color_depth,
439 stream->signal);
440 }
441 }
442 }
443
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)444 void dc_stream_set_dither_option(struct dc_stream_state *stream,
445 enum dc_dither_option option)
446 {
447 struct bit_depth_reduction_params params;
448 struct dc_link *link = stream->link;
449 struct pipe_ctx *pipes = NULL;
450 int i;
451
452 for (i = 0; i < MAX_PIPES; i++) {
453 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
454 stream) {
455 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
456 break;
457 }
458 }
459
460 if (!pipes)
461 return;
462 if (option > DITHER_OPTION_MAX)
463 return;
464
465 stream->dither_option = option;
466
467 memset(¶ms, 0, sizeof(params));
468 resource_build_bit_depth_reduction_params(stream, ¶ms);
469 stream->bit_depth_params = params;
470
471 if (pipes->plane_res.xfm &&
472 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
473 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
474 pipes->plane_res.xfm,
475 pipes->plane_res.scl_data.lb_params.depth,
476 &stream->bit_depth_params);
477 }
478
479 pipes->stream_res.opp->funcs->
480 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
481 }
482
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)483 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
484 {
485 int i = 0;
486 bool ret = false;
487 struct pipe_ctx *pipes;
488
489 for (i = 0; i < MAX_PIPES; i++) {
490 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
491 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
492 dc->hwss.program_gamut_remap(pipes);
493 ret = true;
494 }
495 }
496
497 return ret;
498 }
499
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)500 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
501 {
502 int i = 0;
503 bool ret = false;
504 struct pipe_ctx *pipes;
505
506 for (i = 0; i < MAX_PIPES; i++) {
507 if (dc->current_state->res_ctx.pipe_ctx[i].stream
508 == stream) {
509
510 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
511 dc->hwss.program_output_csc(dc,
512 pipes,
513 stream->output_color_space,
514 stream->csc_color_matrix.matrix,
515 pipes->stream_res.opp->inst);
516 ret = true;
517 }
518 }
519
520 return ret;
521 }
522
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)523 void dc_stream_set_static_screen_params(struct dc *dc,
524 struct dc_stream_state **streams,
525 int num_streams,
526 const struct dc_static_screen_params *params)
527 {
528 int i = 0;
529 int j = 0;
530 struct pipe_ctx *pipes_affected[MAX_PIPES];
531 int num_pipes_affected = 0;
532
533 for (i = 0; i < num_streams; i++) {
534 struct dc_stream_state *stream = streams[i];
535
536 for (j = 0; j < MAX_PIPES; j++) {
537 if (dc->current_state->res_ctx.pipe_ctx[j].stream
538 == stream) {
539 pipes_affected[num_pipes_affected++] =
540 &dc->current_state->res_ctx.pipe_ctx[j];
541 }
542 }
543 }
544
545 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
546 }
547
dc_destruct(struct dc * dc)548 static void dc_destruct(struct dc *dc)
549 {
550 if (dc->current_state) {
551 dc_release_state(dc->current_state);
552 dc->current_state = NULL;
553 }
554
555 destroy_links(dc);
556
557 if (dc->clk_mgr) {
558 dc_destroy_clk_mgr(dc->clk_mgr);
559 dc->clk_mgr = NULL;
560 }
561
562 dc_destroy_resource_pool(dc);
563
564 if (dc->ctx->gpio_service)
565 dal_gpio_service_destroy(&dc->ctx->gpio_service);
566
567 if (dc->ctx->created_bios)
568 dal_bios_parser_destroy(&dc->ctx->dc_bios);
569
570 dc_perf_trace_destroy(&dc->ctx->perf_trace);
571
572 kfree(dc->ctx);
573 dc->ctx = NULL;
574
575 kfree(dc->bw_vbios);
576 dc->bw_vbios = NULL;
577
578 kfree(dc->bw_dceip);
579 dc->bw_dceip = NULL;
580
581 #ifdef CONFIG_DRM_AMD_DC_DCN
582 kfree(dc->dcn_soc);
583 dc->dcn_soc = NULL;
584
585 kfree(dc->dcn_ip);
586 dc->dcn_ip = NULL;
587
588 #endif
589 kfree(dc->vm_helper);
590 dc->vm_helper = NULL;
591
592 }
593
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)594 static bool dc_construct_ctx(struct dc *dc,
595 const struct dc_init_data *init_params)
596 {
597 struct dc_context *dc_ctx;
598 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
599
600 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
601 if (!dc_ctx)
602 return false;
603
604 dc_ctx->cgs_device = init_params->cgs_device;
605 dc_ctx->driver_context = init_params->driver;
606 dc_ctx->dc = dc;
607 dc_ctx->asic_id = init_params->asic_id;
608 dc_ctx->dc_sink_id_count = 0;
609 dc_ctx->dc_stream_id_count = 0;
610 dc_ctx->dce_environment = init_params->dce_environment;
611
612 /* Create logger */
613
614 dc_version = resource_parse_asic_id(init_params->asic_id);
615 dc_ctx->dce_version = dc_version;
616
617 dc_ctx->perf_trace = dc_perf_trace_create();
618 if (!dc_ctx->perf_trace) {
619 kfree(dc_ctx);
620 ASSERT_CRITICAL(false);
621 return false;
622 }
623
624 dc->ctx = dc_ctx;
625
626 return true;
627 }
628
dc_construct(struct dc * dc,const struct dc_init_data * init_params)629 static bool dc_construct(struct dc *dc,
630 const struct dc_init_data *init_params)
631 {
632 struct dc_context *dc_ctx;
633 struct bw_calcs_dceip *dc_dceip;
634 struct bw_calcs_vbios *dc_vbios;
635 #ifdef CONFIG_DRM_AMD_DC_DCN
636 struct dcn_soc_bounding_box *dcn_soc;
637 struct dcn_ip_params *dcn_ip;
638 #endif
639
640 dc->config = init_params->flags;
641
642 // Allocate memory for the vm_helper
643 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
644 if (!dc->vm_helper) {
645 dm_error("%s: failed to create dc->vm_helper\n", __func__);
646 goto fail;
647 }
648
649 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
650
651 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
652 if (!dc_dceip) {
653 dm_error("%s: failed to create dceip\n", __func__);
654 goto fail;
655 }
656
657 dc->bw_dceip = dc_dceip;
658
659 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
660 if (!dc_vbios) {
661 dm_error("%s: failed to create vbios\n", __func__);
662 goto fail;
663 }
664
665 dc->bw_vbios = dc_vbios;
666 #ifdef CONFIG_DRM_AMD_DC_DCN
667 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
668 if (!dcn_soc) {
669 dm_error("%s: failed to create dcn_soc\n", __func__);
670 goto fail;
671 }
672
673 dc->dcn_soc = dcn_soc;
674
675 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
676 if (!dcn_ip) {
677 dm_error("%s: failed to create dcn_ip\n", __func__);
678 goto fail;
679 }
680
681 dc->dcn_ip = dcn_ip;
682 dc->soc_bounding_box = init_params->soc_bounding_box;
683 #endif
684
685 if (!dc_construct_ctx(dc, init_params)) {
686 dm_error("%s: failed to create ctx\n", __func__);
687 goto fail;
688 }
689
690 dc_ctx = dc->ctx;
691
692 /* Resource should construct all asic specific resources.
693 * This should be the only place where we need to parse the asic id
694 */
695 if (init_params->vbios_override)
696 dc_ctx->dc_bios = init_params->vbios_override;
697 else {
698 /* Create BIOS parser */
699 struct bp_init_data bp_init_data;
700
701 bp_init_data.ctx = dc_ctx;
702 bp_init_data.bios = init_params->asic_id.atombios_base_address;
703
704 dc_ctx->dc_bios = dal_bios_parser_create(
705 &bp_init_data, dc_ctx->dce_version);
706
707 if (!dc_ctx->dc_bios) {
708 ASSERT_CRITICAL(false);
709 goto fail;
710 }
711
712 dc_ctx->created_bios = true;
713 }
714
715 dc->vendor_signature = init_params->vendor_signature;
716
717 /* Create GPIO service */
718 dc_ctx->gpio_service = dal_gpio_service_create(
719 dc_ctx->dce_version,
720 dc_ctx->dce_environment,
721 dc_ctx);
722
723 if (!dc_ctx->gpio_service) {
724 ASSERT_CRITICAL(false);
725 goto fail;
726 }
727
728 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
729 if (!dc->res_pool)
730 goto fail;
731
732 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
733 if (!dc->clk_mgr)
734 goto fail;
735 #ifdef CONFIG_DRM_AMD_DC_DCN3_0
736 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
737 #endif
738
739 dc->debug.force_ignore_link_settings = init_params->force_ignore_link_settings;
740
741 if (dc->res_pool->funcs->update_bw_bounding_box)
742 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
743
744 /* Creation of current_state must occur after dc->dml
745 * is initialized in dc_create_resource_pool because
746 * on creation it copies the contents of dc->dml
747 */
748
749 dc->current_state = dc_create_state(dc);
750
751 if (!dc->current_state) {
752 dm_error("%s: failed to create validate ctx\n", __func__);
753 goto fail;
754 }
755
756 dc_resource_state_construct(dc, dc->current_state);
757
758 if (!create_links(dc, init_params->num_virtual_links))
759 goto fail;
760
761 return true;
762
763 fail:
764 return false;
765 }
766
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)767 static bool disable_all_writeback_pipes_for_stream(
768 const struct dc *dc,
769 struct dc_stream_state *stream,
770 struct dc_state *context)
771 {
772 int i;
773
774 for (i = 0; i < stream->num_wb_info; i++)
775 stream->writeback_info[i].wb_enabled = false;
776
777 return true;
778 }
779
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)780 void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock)
781 {
782 int i = 0;
783
784 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
785 if (dc->hwss.interdependent_update_lock)
786 dc->hwss.interdependent_update_lock(dc, context, lock);
787 else {
788 for (i = 0; i < dc->res_pool->pipe_count; i++) {
789 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
790 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
791
792 // Copied conditions that were previously in dce110_apply_ctx_for_surface
793 if (stream == pipe_ctx->stream) {
794 if (!pipe_ctx->top_pipe &&
795 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
796 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
797 }
798 }
799 }
800 }
801
disable_dangling_plane(struct dc * dc,struct dc_state * context)802 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
803 {
804 int i, j;
805 struct dc_state *dangling_context = dc_create_state(dc);
806 struct dc_state *current_ctx;
807
808 if (dangling_context == NULL)
809 return;
810
811 dc_resource_state_copy_construct(dc->current_state, dangling_context);
812
813 for (i = 0; i < dc->res_pool->pipe_count; i++) {
814 struct dc_stream_state *old_stream =
815 dc->current_state->res_ctx.pipe_ctx[i].stream;
816 bool should_disable = true;
817
818 for (j = 0; j < context->stream_count; j++) {
819 if (old_stream == context->streams[j]) {
820 should_disable = false;
821 break;
822 }
823 }
824 if (should_disable && old_stream) {
825 dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
826 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
827
828 if (dc->hwss.apply_ctx_for_surface) {
829 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
830 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
831 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
832 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
833 }
834 if (dc->hwss.program_front_end_for_ctx) {
835 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
836 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
837 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
838 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
839 }
840 }
841 }
842
843 current_ctx = dc->current_state;
844 dc->current_state = dangling_context;
845 dc_release_state(current_ctx);
846 }
847
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)848 static void disable_vbios_mode_if_required(
849 struct dc *dc,
850 struct dc_state *context)
851 {
852 unsigned int i, j;
853
854 /* check if timing_changed, disable stream*/
855 for (i = 0; i < dc->res_pool->pipe_count; i++) {
856 struct dc_stream_state *stream = NULL;
857 struct dc_link *link = NULL;
858 struct pipe_ctx *pipe = NULL;
859
860 pipe = &context->res_ctx.pipe_ctx[i];
861 stream = pipe->stream;
862 if (stream == NULL)
863 continue;
864
865 if (stream->apply_seamless_boot_optimization)
866 continue;
867
868 // only looking for first odm pipe
869 if (pipe->prev_odm_pipe)
870 continue;
871
872 if (stream->link->local_sink &&
873 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
874 link = stream->link;
875 }
876
877 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
878 unsigned int enc_inst, tg_inst = 0;
879 unsigned int pix_clk_100hz;
880
881 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
882 if (enc_inst != ENGINE_ID_UNKNOWN) {
883 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
884 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
885 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
886 dc->res_pool->stream_enc[j]);
887 break;
888 }
889 }
890
891 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
892 dc->res_pool->dp_clock_source,
893 tg_inst, &pix_clk_100hz);
894
895 if (link->link_status.link_active) {
896 uint32_t requested_pix_clk_100hz =
897 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
898
899 if (pix_clk_100hz != requested_pix_clk_100hz) {
900 core_link_disable_stream(pipe);
901 pipe->stream->dpms_off = false;
902 }
903 }
904 }
905 }
906 }
907 }
908
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)909 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
910 {
911 int i;
912 PERF_TRACE();
913 for (i = 0; i < MAX_PIPES; i++) {
914 int count = 0;
915 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
916
917 if (!pipe->plane_state)
918 continue;
919
920 /* Timeout 100 ms */
921 while (count < 100000) {
922 /* Must set to false to start with, due to OR in update function */
923 pipe->plane_state->status.is_flip_pending = false;
924 dc->hwss.update_pending_status(pipe);
925 if (!pipe->plane_state->status.is_flip_pending)
926 break;
927 udelay(1);
928 count++;
929 }
930 ASSERT(!pipe->plane_state->status.is_flip_pending);
931 }
932 PERF_TRACE();
933 }
934
935 /*******************************************************************************
936 * Public functions
937 ******************************************************************************/
938
dc_create(const struct dc_init_data * init_params)939 struct dc *dc_create(const struct dc_init_data *init_params)
940 {
941 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
942 unsigned int full_pipe_count;
943
944 if (NULL == dc)
945 goto alloc_fail;
946
947 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
948 if (false == dc_construct_ctx(dc, init_params)) {
949 dc_destruct(dc);
950 goto construct_fail;
951 }
952 } else {
953 if (false == dc_construct(dc, init_params)) {
954 dc_destruct(dc);
955 goto construct_fail;
956 }
957
958 full_pipe_count = dc->res_pool->pipe_count;
959 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
960 full_pipe_count--;
961 dc->caps.max_streams = min(
962 full_pipe_count,
963 dc->res_pool->stream_enc_count);
964
965 dc->optimize_seamless_boot_streams = 0;
966 dc->caps.max_links = dc->link_count;
967 dc->caps.max_audios = dc->res_pool->audio_count;
968 dc->caps.linear_pitch_alignment = 64;
969
970 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
971
972 if (dc->res_pool->dmcu != NULL)
973 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
974 }
975
976 /* Populate versioning information */
977 dc->versions.dc_ver = DC_VER;
978
979 dc->build_id = DC_BUILD_ID;
980
981 DC_LOG_DC("Display Core initialized\n");
982
983
984
985 return dc;
986
987 construct_fail:
988 kfree(dc);
989
990 alloc_fail:
991 return NULL;
992 }
993
dc_hardware_init(struct dc * dc)994 void dc_hardware_init(struct dc *dc)
995 {
996 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
997 dc->hwss.init_hw(dc);
998 }
999
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1000 void dc_init_callbacks(struct dc *dc,
1001 const struct dc_callback_init *init_params)
1002 {
1003 #ifdef CONFIG_DRM_AMD_DC_HDCP
1004 dc->ctx->cp_psp = init_params->cp_psp;
1005 #endif
1006 }
1007
dc_deinit_callbacks(struct dc * dc)1008 void dc_deinit_callbacks(struct dc *dc)
1009 {
1010 #ifdef CONFIG_DRM_AMD_DC_HDCP
1011 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1012 #endif
1013 }
1014
dc_destroy(struct dc ** dc)1015 void dc_destroy(struct dc **dc)
1016 {
1017 dc_destruct(*dc);
1018 kfree(*dc);
1019 *dc = NULL;
1020 }
1021
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1022 static void enable_timing_multisync(
1023 struct dc *dc,
1024 struct dc_state *ctx)
1025 {
1026 int i = 0, multisync_count = 0;
1027 int pipe_count = dc->res_pool->pipe_count;
1028 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1029
1030 for (i = 0; i < pipe_count; i++) {
1031 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1032 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1033 continue;
1034 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1035 continue;
1036 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1037 multisync_count++;
1038 }
1039
1040 if (multisync_count > 0) {
1041 dc->hwss.enable_per_frame_crtc_position_reset(
1042 dc, multisync_count, multisync_pipes);
1043 }
1044 }
1045
program_timing_sync(struct dc * dc,struct dc_state * ctx)1046 static void program_timing_sync(
1047 struct dc *dc,
1048 struct dc_state *ctx)
1049 {
1050 int i, j, k;
1051 int group_index = 0;
1052 int num_group = 0;
1053 int pipe_count = dc->res_pool->pipe_count;
1054 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1055
1056 for (i = 0; i < pipe_count; i++) {
1057 if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1058 continue;
1059
1060 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1061 }
1062
1063 for (i = 0; i < pipe_count; i++) {
1064 int group_size = 1;
1065 struct pipe_ctx *pipe_set[MAX_PIPES];
1066
1067 if (!unsynced_pipes[i])
1068 continue;
1069
1070 pipe_set[0] = unsynced_pipes[i];
1071 unsynced_pipes[i] = NULL;
1072
1073 /* Add tg to the set, search rest of the tg's for ones with
1074 * same timing, add all tgs with same timing to the group
1075 */
1076 for (j = i + 1; j < pipe_count; j++) {
1077 if (!unsynced_pipes[j])
1078 continue;
1079
1080 if (resource_are_streams_timing_synchronizable(
1081 unsynced_pipes[j]->stream,
1082 pipe_set[0]->stream)) {
1083 pipe_set[group_size] = unsynced_pipes[j];
1084 unsynced_pipes[j] = NULL;
1085 group_size++;
1086 }
1087 }
1088
1089 /* set first unblanked pipe as master */
1090 for (j = 0; j < group_size; j++) {
1091 bool is_blanked;
1092
1093 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1094 is_blanked =
1095 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1096 else
1097 is_blanked =
1098 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1099 if (!is_blanked) {
1100 if (j == 0)
1101 break;
1102
1103 swap(pipe_set[0], pipe_set[j]);
1104 break;
1105 }
1106 }
1107
1108
1109 for (k = 0; k < group_size; k++) {
1110 struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1111
1112 status->timing_sync_info.group_id = num_group;
1113 status->timing_sync_info.group_size = group_size;
1114 if (k == 0)
1115 status->timing_sync_info.master = true;
1116 else
1117 status->timing_sync_info.master = false;
1118
1119 }
1120 /* remove any other unblanked pipes as they have already been synced */
1121 for (j = j + 1; j < group_size; j++) {
1122 bool is_blanked;
1123
1124 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1125 is_blanked =
1126 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1127 else
1128 is_blanked =
1129 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1130 if (!is_blanked) {
1131 group_size--;
1132 pipe_set[j] = pipe_set[group_size];
1133 j--;
1134 }
1135 }
1136
1137 if (group_size > 1) {
1138 dc->hwss.enable_timing_synchronization(
1139 dc, group_index, group_size, pipe_set);
1140 group_index++;
1141 }
1142 num_group++;
1143 }
1144 }
1145
context_changed(struct dc * dc,struct dc_state * context)1146 static bool context_changed(
1147 struct dc *dc,
1148 struct dc_state *context)
1149 {
1150 uint8_t i;
1151
1152 if (context->stream_count != dc->current_state->stream_count)
1153 return true;
1154
1155 for (i = 0; i < dc->current_state->stream_count; i++) {
1156 if (dc->current_state->streams[i] != context->streams[i])
1157 return true;
1158 }
1159
1160 return false;
1161 }
1162
dc_validate_seamless_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1163 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1164 const struct dc_sink *sink,
1165 struct dc_crtc_timing *crtc_timing)
1166 {
1167 struct timing_generator *tg;
1168 struct stream_encoder *se = NULL;
1169
1170 struct dc_crtc_timing hw_crtc_timing = {0};
1171
1172 struct dc_link *link = sink->link;
1173 unsigned int i, enc_inst, tg_inst = 0;
1174
1175 // Seamless port only support single DP and EDP so far
1176 if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1177 sink->sink_signal != SIGNAL_TYPE_EDP)
1178 return false;
1179
1180 /* Check for enabled DIG to identify enabled display */
1181 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1182 return false;
1183
1184 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1185
1186 if (enc_inst == ENGINE_ID_UNKNOWN)
1187 return false;
1188
1189 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1190 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1191
1192 se = dc->res_pool->stream_enc[i];
1193
1194 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1195 dc->res_pool->stream_enc[i]);
1196 break;
1197 }
1198 }
1199
1200 // tg_inst not found
1201 if (i == dc->res_pool->stream_enc_count)
1202 return false;
1203
1204 if (tg_inst >= dc->res_pool->timing_generator_count)
1205 return false;
1206
1207 tg = dc->res_pool->timing_generators[tg_inst];
1208
1209 if (!tg->funcs->get_hw_timing)
1210 return false;
1211
1212 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1213 return false;
1214
1215 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1216 return false;
1217
1218 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1219 return false;
1220
1221 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1222 return false;
1223
1224 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1225 return false;
1226
1227 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1228 return false;
1229
1230 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1231 return false;
1232
1233 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1234 return false;
1235
1236 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1237 return false;
1238
1239 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1240 return false;
1241
1242 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1243 return false;
1244
1245 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1246 return false;
1247
1248 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1249 return false;
1250
1251 if (dc_is_dp_signal(link->connector_signal)) {
1252 unsigned int pix_clk_100hz;
1253
1254 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1255 dc->res_pool->dp_clock_source,
1256 tg_inst, &pix_clk_100hz);
1257
1258 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1259 return false;
1260
1261 if (!se->funcs->dp_get_pixel_format)
1262 return false;
1263
1264 if (!se->funcs->dp_get_pixel_format(
1265 se,
1266 &hw_crtc_timing.pixel_encoding,
1267 &hw_crtc_timing.display_color_depth))
1268 return false;
1269
1270 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1271 return false;
1272
1273 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1274 return false;
1275 }
1276
1277 return true;
1278 }
1279
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1280 bool dc_enable_stereo(
1281 struct dc *dc,
1282 struct dc_state *context,
1283 struct dc_stream_state *streams[],
1284 uint8_t stream_count)
1285 {
1286 bool ret = true;
1287 int i, j;
1288 struct pipe_ctx *pipe;
1289
1290 for (i = 0; i < MAX_PIPES; i++) {
1291 if (context != NULL)
1292 pipe = &context->res_ctx.pipe_ctx[i];
1293 else
1294 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1295 for (j = 0 ; pipe && j < stream_count; j++) {
1296 if (streams[j] && streams[j] == pipe->stream &&
1297 dc->hwss.setup_stereo)
1298 dc->hwss.setup_stereo(pipe, dc);
1299 }
1300 }
1301
1302 return ret;
1303 }
1304
dc_trigger_sync(struct dc * dc,struct dc_state * context)1305 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1306 {
1307 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1308 enable_timing_multisync(dc, context);
1309 program_timing_sync(dc, context);
1310 }
1311 }
1312
get_stream_mask(struct dc * dc,struct dc_state * context)1313 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1314 {
1315 int i;
1316 unsigned int stream_mask = 0;
1317
1318 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1319 if (context->res_ctx.pipe_ctx[i].stream)
1320 stream_mask |= 1 << i;
1321 }
1322
1323 return stream_mask;
1324 }
1325
1326 /*
1327 * Applies given context to HW and copy it into current context.
1328 * It's up to the user to release the src context afterwards.
1329 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1330 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1331 {
1332 struct dc_bios *dcb = dc->ctx->dc_bios;
1333 enum dc_status result = DC_ERROR_UNEXPECTED;
1334 struct pipe_ctx *pipe;
1335 int i, k, l;
1336 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1337
1338 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1339 dc_allow_idle_optimizations(dc, false);
1340 #endif
1341
1342 for (i = 0; i < context->stream_count; i++)
1343 dc_streams[i] = context->streams[i];
1344
1345 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1346 disable_vbios_mode_if_required(dc, context);
1347 dc->hwss.enable_accelerated_mode(dc, context);
1348 }
1349
1350 for (i = 0; i < context->stream_count; i++)
1351 if (context->streams[i]->apply_seamless_boot_optimization)
1352 dc->optimize_seamless_boot_streams++;
1353
1354 if (context->stream_count > dc->optimize_seamless_boot_streams ||
1355 context->stream_count == 0)
1356 dc->hwss.prepare_bandwidth(dc, context);
1357
1358 disable_dangling_plane(dc, context);
1359 /* re-program planes for existing stream, in case we need to
1360 * free up plane resource for later use
1361 */
1362 if (dc->hwss.apply_ctx_for_surface) {
1363 for (i = 0; i < context->stream_count; i++) {
1364 if (context->streams[i]->mode_changed)
1365 continue;
1366 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1367 dc->hwss.apply_ctx_for_surface(
1368 dc, context->streams[i],
1369 context->stream_status[i].plane_count,
1370 context); /* use new pipe config in new context */
1371 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1372 dc->hwss.post_unlock_program_front_end(dc, context);
1373 }
1374 }
1375
1376 /* Program hardware */
1377 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1378 pipe = &context->res_ctx.pipe_ctx[i];
1379 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1380 }
1381
1382 result = dc->hwss.apply_ctx_to_hw(dc, context);
1383
1384 if (result != DC_OK)
1385 return result;
1386
1387 dc_trigger_sync(dc, context);
1388
1389 /* Program all planes within new context*/
1390 if (dc->hwss.program_front_end_for_ctx) {
1391 dc->hwss.interdependent_update_lock(dc, context, true);
1392 dc->hwss.program_front_end_for_ctx(dc, context);
1393 dc->hwss.interdependent_update_lock(dc, context, false);
1394 dc->hwss.post_unlock_program_front_end(dc, context);
1395 }
1396 for (i = 0; i < context->stream_count; i++) {
1397 const struct dc_link *link = context->streams[i]->link;
1398
1399 if (!context->streams[i]->mode_changed)
1400 continue;
1401
1402 if (dc->hwss.apply_ctx_for_surface) {
1403 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1404 dc->hwss.apply_ctx_for_surface(
1405 dc, context->streams[i],
1406 context->stream_status[i].plane_count,
1407 context);
1408 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1409 dc->hwss.post_unlock_program_front_end(dc, context);
1410 }
1411
1412 /*
1413 * enable stereo
1414 * TODO rework dc_enable_stereo call to work with validation sets?
1415 */
1416 for (k = 0; k < MAX_PIPES; k++) {
1417 pipe = &context->res_ctx.pipe_ctx[k];
1418
1419 for (l = 0 ; pipe && l < context->stream_count; l++) {
1420 if (context->streams[l] &&
1421 context->streams[l] == pipe->stream &&
1422 dc->hwss.setup_stereo)
1423 dc->hwss.setup_stereo(pipe, dc);
1424 }
1425 }
1426
1427 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1428 context->streams[i]->timing.h_addressable,
1429 context->streams[i]->timing.v_addressable,
1430 context->streams[i]->timing.h_total,
1431 context->streams[i]->timing.v_total,
1432 context->streams[i]->timing.pix_clk_100hz / 10);
1433 }
1434
1435 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1436
1437 if (context->stream_count > dc->optimize_seamless_boot_streams ||
1438 context->stream_count == 0) {
1439 /* Must wait for no flips to be pending before doing optimize bw */
1440 wait_for_no_pipes_pending(dc, context);
1441 /* pplib is notified if disp_num changed */
1442 dc->hwss.optimize_bandwidth(dc, context);
1443 /* Need to do otg sync again as otg could be out of sync due to otg
1444 * workaround applied during clock update
1445 */
1446 dc_trigger_sync(dc, context);
1447 }
1448
1449 context->stream_mask = get_stream_mask(dc, context);
1450
1451 if (context->stream_mask != dc->current_state->stream_mask)
1452 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1453
1454 for (i = 0; i < context->stream_count; i++)
1455 context->streams[i]->mode_changed = false;
1456
1457 dc_release_state(dc->current_state);
1458
1459 dc->current_state = context;
1460
1461 dc_retain_state(dc->current_state);
1462
1463 return result;
1464 }
1465
dc_commit_state(struct dc * dc,struct dc_state * context)1466 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1467 {
1468 enum dc_status result = DC_ERROR_UNEXPECTED;
1469 int i;
1470
1471 if (false == context_changed(dc, context))
1472 return DC_OK;
1473
1474 DC_LOG_DC("%s: %d streams\n",
1475 __func__, context->stream_count);
1476
1477 for (i = 0; i < context->stream_count; i++) {
1478 struct dc_stream_state *stream = context->streams[i];
1479
1480 dc_stream_log(dc, stream);
1481 }
1482
1483 result = dc_commit_state_no_check(dc, context);
1484
1485 return (result == DC_OK);
1486 }
1487
1488 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1489 bool dc_acquire_release_mpc_3dlut(
1490 struct dc *dc, bool acquire,
1491 struct dc_stream_state *stream,
1492 struct dc_3dlut **lut,
1493 struct dc_transfer_func **shaper)
1494 {
1495 int pipe_idx;
1496 bool ret = false;
1497 bool found_pipe_idx = false;
1498 const struct resource_pool *pool = dc->res_pool;
1499 struct resource_context *res_ctx = &dc->current_state->res_ctx;
1500 int mpcc_id = 0;
1501
1502 if (pool && res_ctx) {
1503 if (acquire) {
1504 /*find pipe idx for the given stream*/
1505 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1506 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1507 found_pipe_idx = true;
1508 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1509 break;
1510 }
1511 }
1512 } else
1513 found_pipe_idx = true;/*for release pipe_idx is not required*/
1514
1515 if (found_pipe_idx) {
1516 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1517 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1518 else if (acquire == false && pool->funcs->release_post_bldn_3dlut)
1519 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1520 }
1521 }
1522 return ret;
1523 }
1524 #endif
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)1525 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1526 {
1527 int i;
1528 struct pipe_ctx *pipe;
1529
1530 for (i = 0; i < MAX_PIPES; i++) {
1531 pipe = &context->res_ctx.pipe_ctx[i];
1532
1533 if (!pipe->plane_state)
1534 continue;
1535
1536 /* Must set to false to start with, due to OR in update function */
1537 pipe->plane_state->status.is_flip_pending = false;
1538 dc->hwss.update_pending_status(pipe);
1539 if (pipe->plane_state->status.is_flip_pending)
1540 return true;
1541 }
1542 return false;
1543 }
1544
dc_post_update_surfaces_to_stream(struct dc * dc)1545 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1546 {
1547 int i;
1548 struct dc_state *context = dc->current_state;
1549
1550 if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0)
1551 return true;
1552
1553 post_surface_trace(dc);
1554
1555 if (is_flip_pending_in_pipes(dc, context))
1556 return true;
1557
1558 for (i = 0; i < dc->res_pool->pipe_count; i++)
1559 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1560 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1561 context->res_ctx.pipe_ctx[i].pipe_idx = i;
1562 dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1563 }
1564
1565 dc->hwss.optimize_bandwidth(dc, context);
1566
1567 dc->optimized_required = false;
1568 dc->wm_optimized_required = false;
1569
1570 return true;
1571 }
1572
init_state(struct dc * dc,struct dc_state * context)1573 static void init_state(struct dc *dc, struct dc_state *context)
1574 {
1575 /* Each context must have their own instance of VBA and in order to
1576 * initialize and obtain IP and SOC the base DML instance from DC is
1577 * initially copied into every context
1578 */
1579 #ifdef CONFIG_DRM_AMD_DC_DCN
1580 memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1581 #endif
1582 }
1583
dc_create_state(struct dc * dc)1584 struct dc_state *dc_create_state(struct dc *dc)
1585 {
1586 struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1587 GFP_KERNEL);
1588
1589 if (!context)
1590 return NULL;
1591
1592 init_state(dc, context);
1593
1594 kref_init(&context->refcount);
1595
1596 return context;
1597 }
1598
dc_copy_state(struct dc_state * src_ctx)1599 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1600 {
1601 int i, j;
1602 struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1603
1604 if (!new_ctx)
1605 return NULL;
1606 memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1607
1608 for (i = 0; i < MAX_PIPES; i++) {
1609 struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1610
1611 if (cur_pipe->top_pipe)
1612 cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1613
1614 if (cur_pipe->bottom_pipe)
1615 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1616
1617 if (cur_pipe->prev_odm_pipe)
1618 cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1619
1620 if (cur_pipe->next_odm_pipe)
1621 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1622
1623 }
1624
1625 for (i = 0; i < new_ctx->stream_count; i++) {
1626 dc_stream_retain(new_ctx->streams[i]);
1627 for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1628 dc_plane_state_retain(
1629 new_ctx->stream_status[i].plane_states[j]);
1630 }
1631
1632 kref_init(&new_ctx->refcount);
1633
1634 return new_ctx;
1635 }
1636
dc_retain_state(struct dc_state * context)1637 void dc_retain_state(struct dc_state *context)
1638 {
1639 kref_get(&context->refcount);
1640 }
1641
dc_state_free(struct kref * kref)1642 static void dc_state_free(struct kref *kref)
1643 {
1644 struct dc_state *context = container_of(kref, struct dc_state, refcount);
1645 dc_resource_state_destruct(context);
1646 kvfree(context);
1647 }
1648
dc_release_state(struct dc_state * context)1649 void dc_release_state(struct dc_state *context)
1650 {
1651 kref_put(&context->refcount, dc_state_free);
1652 }
1653
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)1654 bool dc_set_generic_gpio_for_stereo(bool enable,
1655 struct gpio_service *gpio_service)
1656 {
1657 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1658 struct gpio_pin_info pin_info;
1659 struct gpio *generic;
1660 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1661 GFP_KERNEL);
1662
1663 if (!config)
1664 return false;
1665 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1666
1667 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1668 kfree(config);
1669 return false;
1670 } else {
1671 generic = dal_gpio_service_create_generic_mux(
1672 gpio_service,
1673 pin_info.offset,
1674 pin_info.mask);
1675 }
1676
1677 if (!generic) {
1678 kfree(config);
1679 return false;
1680 }
1681
1682 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1683
1684 config->enable_output_from_mux = enable;
1685 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1686
1687 if (gpio_result == GPIO_RESULT_OK)
1688 gpio_result = dal_mux_setup_config(generic, config);
1689
1690 if (gpio_result == GPIO_RESULT_OK) {
1691 dal_gpio_close(generic);
1692 dal_gpio_destroy_generic_mux(&generic);
1693 kfree(config);
1694 return true;
1695 } else {
1696 dal_gpio_close(generic);
1697 dal_gpio_destroy_generic_mux(&generic);
1698 kfree(config);
1699 return false;
1700 }
1701 }
1702
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)1703 static bool is_surface_in_context(
1704 const struct dc_state *context,
1705 const struct dc_plane_state *plane_state)
1706 {
1707 int j;
1708
1709 for (j = 0; j < MAX_PIPES; j++) {
1710 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1711
1712 if (plane_state == pipe_ctx->plane_state) {
1713 return true;
1714 }
1715 }
1716
1717 return false;
1718 }
1719
get_plane_info_update_type(const struct dc_surface_update * u)1720 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1721 {
1722 union surface_update_flags *update_flags = &u->surface->update_flags;
1723 enum surface_update_type update_type = UPDATE_TYPE_FAST;
1724
1725 if (!u->plane_info)
1726 return UPDATE_TYPE_FAST;
1727
1728 if (u->plane_info->color_space != u->surface->color_space) {
1729 update_flags->bits.color_space_change = 1;
1730 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1731 }
1732
1733 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1734 update_flags->bits.horizontal_mirror_change = 1;
1735 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1736 }
1737
1738 if (u->plane_info->rotation != u->surface->rotation) {
1739 update_flags->bits.rotation_change = 1;
1740 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1741 }
1742
1743 if (u->plane_info->format != u->surface->format) {
1744 update_flags->bits.pixel_format_change = 1;
1745 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1746 }
1747
1748 if (u->plane_info->stereo_format != u->surface->stereo_format) {
1749 update_flags->bits.stereo_format_change = 1;
1750 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1751 }
1752
1753 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1754 update_flags->bits.per_pixel_alpha_change = 1;
1755 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1756 }
1757
1758 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1759 update_flags->bits.global_alpha_change = 1;
1760 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1761 }
1762
1763 if (u->plane_info->dcc.enable != u->surface->dcc.enable
1764 || u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1765 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1766 update_flags->bits.dcc_change = 1;
1767 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1768 }
1769
1770 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1771 resource_pixel_format_to_bpp(u->surface->format)) {
1772 /* different bytes per element will require full bandwidth
1773 * and DML calculation
1774 */
1775 update_flags->bits.bpp_change = 1;
1776 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1777 }
1778
1779 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1780 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1781 update_flags->bits.plane_size_change = 1;
1782 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1783 }
1784
1785
1786 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1787 sizeof(union dc_tiling_info)) != 0) {
1788 update_flags->bits.swizzle_change = 1;
1789 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1790
1791 /* todo: below are HW dependent, we should add a hook to
1792 * DCE/N resource and validated there.
1793 */
1794 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1795 /* swizzled mode requires RQ to be setup properly,
1796 * thus need to run DML to calculate RQ settings
1797 */
1798 update_flags->bits.bandwidth_change = 1;
1799 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1800 }
1801 }
1802
1803 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
1804 return update_type;
1805 }
1806
get_scaling_info_update_type(const struct dc_surface_update * u)1807 static enum surface_update_type get_scaling_info_update_type(
1808 const struct dc_surface_update *u)
1809 {
1810 union surface_update_flags *update_flags = &u->surface->update_flags;
1811
1812 if (!u->scaling_info)
1813 return UPDATE_TYPE_FAST;
1814
1815 if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1816 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1817 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1818 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1819 || u->scaling_info->scaling_quality.integer_scaling !=
1820 u->surface->scaling_quality.integer_scaling
1821 ) {
1822 update_flags->bits.scaling_change = 1;
1823
1824 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1825 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1826 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1827 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1828 /* Making dst rect smaller requires a bandwidth change */
1829 update_flags->bits.bandwidth_change = 1;
1830 }
1831
1832 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1833 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1834
1835 update_flags->bits.scaling_change = 1;
1836 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1837 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
1838 /* Making src rect bigger requires a bandwidth change */
1839 update_flags->bits.clock_change = 1;
1840 }
1841
1842 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1843 || u->scaling_info->src_rect.y != u->surface->src_rect.y
1844 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1845 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1846 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1847 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1848 update_flags->bits.position_change = 1;
1849
1850 if (update_flags->bits.clock_change
1851 || update_flags->bits.bandwidth_change
1852 || update_flags->bits.scaling_change)
1853 return UPDATE_TYPE_FULL;
1854
1855 if (update_flags->bits.position_change)
1856 return UPDATE_TYPE_MED;
1857
1858 return UPDATE_TYPE_FAST;
1859 }
1860
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)1861 static enum surface_update_type det_surface_update(const struct dc *dc,
1862 const struct dc_surface_update *u)
1863 {
1864 const struct dc_state *context = dc->current_state;
1865 enum surface_update_type type;
1866 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1867 union surface_update_flags *update_flags = &u->surface->update_flags;
1868
1869 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1870 update_flags->raw = 0xFFFFFFFF;
1871 return UPDATE_TYPE_FULL;
1872 }
1873
1874 update_flags->raw = 0; // Reset all flags
1875
1876 type = get_plane_info_update_type(u);
1877 elevate_update_type(&overall_type, type);
1878
1879 type = get_scaling_info_update_type(u);
1880 elevate_update_type(&overall_type, type);
1881
1882 if (u->flip_addr)
1883 update_flags->bits.addr_update = 1;
1884
1885 if (u->in_transfer_func)
1886 update_flags->bits.in_transfer_func_change = 1;
1887
1888 if (u->input_csc_color_matrix)
1889 update_flags->bits.input_csc_change = 1;
1890
1891 if (u->coeff_reduction_factor)
1892 update_flags->bits.coeff_reduction_change = 1;
1893
1894 if (u->gamut_remap_matrix)
1895 update_flags->bits.gamut_remap_change = 1;
1896
1897 if (u->gamma) {
1898 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1899
1900 if (u->plane_info)
1901 format = u->plane_info->format;
1902 else if (u->surface)
1903 format = u->surface->format;
1904
1905 if (dce_use_lut(format))
1906 update_flags->bits.gamma_change = 1;
1907 }
1908
1909 if (u->hdr_mult.value)
1910 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1911 update_flags->bits.hdr_mult = 1;
1912 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1913 }
1914
1915 if (update_flags->bits.in_transfer_func_change) {
1916 type = UPDATE_TYPE_MED;
1917 elevate_update_type(&overall_type, type);
1918 }
1919
1920 if (update_flags->bits.input_csc_change
1921 || update_flags->bits.coeff_reduction_change
1922 || update_flags->bits.gamma_change
1923 || update_flags->bits.gamut_remap_change) {
1924 type = UPDATE_TYPE_FULL;
1925 elevate_update_type(&overall_type, type);
1926 }
1927
1928 return overall_type;
1929 }
1930
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1931 static enum surface_update_type check_update_surfaces_for_stream(
1932 struct dc *dc,
1933 struct dc_surface_update *updates,
1934 int surface_count,
1935 struct dc_stream_update *stream_update,
1936 const struct dc_stream_status *stream_status)
1937 {
1938 int i;
1939 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1940
1941 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1942 if (dc->idle_optimizations_allowed)
1943 overall_type = UPDATE_TYPE_FULL;
1944
1945 #endif
1946 if (stream_status == NULL || stream_status->plane_count != surface_count)
1947 overall_type = UPDATE_TYPE_FULL;
1948
1949 /* some stream updates require passive update */
1950 if (stream_update) {
1951 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1952
1953 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1954 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1955 stream_update->integer_scaling_update)
1956 su_flags->bits.scaling = 1;
1957
1958 if (stream_update->out_transfer_func)
1959 su_flags->bits.out_tf = 1;
1960
1961 if (stream_update->abm_level)
1962 su_flags->bits.abm_level = 1;
1963
1964 if (stream_update->dpms_off)
1965 su_flags->bits.dpms_off = 1;
1966
1967 if (stream_update->gamut_remap)
1968 su_flags->bits.gamut_remap = 1;
1969
1970 if (stream_update->wb_update)
1971 su_flags->bits.wb_update = 1;
1972
1973 if (stream_update->dsc_config)
1974 su_flags->bits.dsc_changed = 1;
1975
1976 if (su_flags->raw != 0)
1977 overall_type = UPDATE_TYPE_FULL;
1978
1979 if (stream_update->output_csc_transform || stream_update->output_color_space)
1980 su_flags->bits.out_csc = 1;
1981 }
1982
1983 for (i = 0 ; i < surface_count; i++) {
1984 enum surface_update_type type =
1985 det_surface_update(dc, &updates[i]);
1986
1987 elevate_update_type(&overall_type, type);
1988 }
1989
1990 return overall_type;
1991 }
1992
1993 /**
1994 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1995 *
1996 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1997 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1998 enum surface_update_type dc_check_update_surfaces_for_stream(
1999 struct dc *dc,
2000 struct dc_surface_update *updates,
2001 int surface_count,
2002 struct dc_stream_update *stream_update,
2003 const struct dc_stream_status *stream_status)
2004 {
2005 int i;
2006 enum surface_update_type type;
2007
2008 if (stream_update)
2009 stream_update->stream->update_flags.raw = 0;
2010 for (i = 0; i < surface_count; i++)
2011 updates[i].surface->update_flags.raw = 0;
2012
2013 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2014 if (type == UPDATE_TYPE_FULL) {
2015 if (stream_update) {
2016 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2017 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2018 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2019 }
2020 for (i = 0; i < surface_count; i++)
2021 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2022 }
2023
2024 if (type == UPDATE_TYPE_FAST) {
2025 // If there's an available clock comparator, we use that.
2026 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2027 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2028 dc->optimized_required = true;
2029 // Else we fallback to mem compare.
2030 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2031 dc->optimized_required = true;
2032 }
2033
2034 dc->optimized_required |= dc->wm_optimized_required;
2035 }
2036
2037 return type;
2038 }
2039
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2040 static struct dc_stream_status *stream_get_status(
2041 struct dc_state *ctx,
2042 struct dc_stream_state *stream)
2043 {
2044 uint8_t i;
2045
2046 for (i = 0; i < ctx->stream_count; i++) {
2047 if (stream == ctx->streams[i]) {
2048 return &ctx->stream_status[i];
2049 }
2050 }
2051
2052 return NULL;
2053 }
2054
2055 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2056
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2057 static void copy_surface_update_to_plane(
2058 struct dc_plane_state *surface,
2059 struct dc_surface_update *srf_update)
2060 {
2061 if (srf_update->flip_addr) {
2062 surface->address = srf_update->flip_addr->address;
2063 surface->flip_immediate =
2064 srf_update->flip_addr->flip_immediate;
2065 surface->time.time_elapsed_in_us[surface->time.index] =
2066 srf_update->flip_addr->flip_timestamp_in_us -
2067 surface->time.prev_update_time_in_us;
2068 surface->time.prev_update_time_in_us =
2069 srf_update->flip_addr->flip_timestamp_in_us;
2070 surface->time.index++;
2071 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2072 surface->time.index = 0;
2073
2074 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2075 }
2076
2077 if (srf_update->scaling_info) {
2078 surface->scaling_quality =
2079 srf_update->scaling_info->scaling_quality;
2080 surface->dst_rect =
2081 srf_update->scaling_info->dst_rect;
2082 surface->src_rect =
2083 srf_update->scaling_info->src_rect;
2084 surface->clip_rect =
2085 srf_update->scaling_info->clip_rect;
2086 }
2087
2088 if (srf_update->plane_info) {
2089 surface->color_space =
2090 srf_update->plane_info->color_space;
2091 surface->format =
2092 srf_update->plane_info->format;
2093 surface->plane_size =
2094 srf_update->plane_info->plane_size;
2095 surface->rotation =
2096 srf_update->plane_info->rotation;
2097 surface->horizontal_mirror =
2098 srf_update->plane_info->horizontal_mirror;
2099 surface->stereo_format =
2100 srf_update->plane_info->stereo_format;
2101 surface->tiling_info =
2102 srf_update->plane_info->tiling_info;
2103 surface->visible =
2104 srf_update->plane_info->visible;
2105 surface->per_pixel_alpha =
2106 srf_update->plane_info->per_pixel_alpha;
2107 surface->global_alpha =
2108 srf_update->plane_info->global_alpha;
2109 surface->global_alpha_value =
2110 srf_update->plane_info->global_alpha_value;
2111 surface->dcc =
2112 srf_update->plane_info->dcc;
2113 surface->layer_index =
2114 srf_update->plane_info->layer_index;
2115 }
2116
2117 if (srf_update->gamma &&
2118 (surface->gamma_correction !=
2119 srf_update->gamma)) {
2120 memcpy(&surface->gamma_correction->entries,
2121 &srf_update->gamma->entries,
2122 sizeof(struct dc_gamma_entries));
2123 surface->gamma_correction->is_identity =
2124 srf_update->gamma->is_identity;
2125 surface->gamma_correction->num_entries =
2126 srf_update->gamma->num_entries;
2127 surface->gamma_correction->type =
2128 srf_update->gamma->type;
2129 }
2130
2131 if (srf_update->in_transfer_func &&
2132 (surface->in_transfer_func !=
2133 srf_update->in_transfer_func)) {
2134 surface->in_transfer_func->sdr_ref_white_level =
2135 srf_update->in_transfer_func->sdr_ref_white_level;
2136 surface->in_transfer_func->tf =
2137 srf_update->in_transfer_func->tf;
2138 surface->in_transfer_func->type =
2139 srf_update->in_transfer_func->type;
2140 memcpy(&surface->in_transfer_func->tf_pts,
2141 &srf_update->in_transfer_func->tf_pts,
2142 sizeof(struct dc_transfer_func_distributed_points));
2143 }
2144
2145 if (srf_update->func_shaper &&
2146 (surface->in_shaper_func !=
2147 srf_update->func_shaper))
2148 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2149 sizeof(*surface->in_shaper_func));
2150
2151 if (srf_update->lut3d_func &&
2152 (surface->lut3d_func !=
2153 srf_update->lut3d_func))
2154 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2155 sizeof(*surface->lut3d_func));
2156
2157 if (srf_update->hdr_mult.value)
2158 surface->hdr_mult =
2159 srf_update->hdr_mult;
2160
2161 if (srf_update->blend_tf &&
2162 (surface->blend_tf !=
2163 srf_update->blend_tf))
2164 memcpy(surface->blend_tf, srf_update->blend_tf,
2165 sizeof(*surface->blend_tf));
2166
2167 if (srf_update->input_csc_color_matrix)
2168 surface->input_csc_color_matrix =
2169 *srf_update->input_csc_color_matrix;
2170
2171 if (srf_update->coeff_reduction_factor)
2172 surface->coeff_reduction_factor =
2173 *srf_update->coeff_reduction_factor;
2174
2175 if (srf_update->gamut_remap_matrix)
2176 surface->gamut_remap_matrix =
2177 *srf_update->gamut_remap_matrix;
2178 }
2179
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2180 static void copy_stream_update_to_stream(struct dc *dc,
2181 struct dc_state *context,
2182 struct dc_stream_state *stream,
2183 struct dc_stream_update *update)
2184 {
2185 struct dc_context *dc_ctx = dc->ctx;
2186
2187 if (update == NULL || stream == NULL)
2188 return;
2189
2190 if (update->src.height && update->src.width)
2191 stream->src = update->src;
2192
2193 if (update->dst.height && update->dst.width)
2194 stream->dst = update->dst;
2195
2196 if (update->out_transfer_func &&
2197 stream->out_transfer_func != update->out_transfer_func) {
2198 stream->out_transfer_func->sdr_ref_white_level =
2199 update->out_transfer_func->sdr_ref_white_level;
2200 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2201 stream->out_transfer_func->type =
2202 update->out_transfer_func->type;
2203 memcpy(&stream->out_transfer_func->tf_pts,
2204 &update->out_transfer_func->tf_pts,
2205 sizeof(struct dc_transfer_func_distributed_points));
2206 }
2207
2208 if (update->hdr_static_metadata)
2209 stream->hdr_static_metadata = *update->hdr_static_metadata;
2210
2211 if (update->abm_level)
2212 stream->abm_level = *update->abm_level;
2213
2214 if (update->periodic_interrupt)
2215 stream->periodic_interrupt = *update->periodic_interrupt;
2216
2217 if (update->gamut_remap)
2218 stream->gamut_remap_matrix = *update->gamut_remap;
2219
2220 /* Note: this being updated after mode set is currently not a use case
2221 * however if it arises OCSC would need to be reprogrammed at the
2222 * minimum
2223 */
2224 if (update->output_color_space)
2225 stream->output_color_space = *update->output_color_space;
2226
2227 if (update->output_csc_transform)
2228 stream->csc_color_matrix = *update->output_csc_transform;
2229
2230 if (update->vrr_infopacket)
2231 stream->vrr_infopacket = *update->vrr_infopacket;
2232
2233 if (update->dpms_off)
2234 stream->dpms_off = *update->dpms_off;
2235
2236 if (update->vsc_infopacket)
2237 stream->vsc_infopacket = *update->vsc_infopacket;
2238
2239 if (update->vsp_infopacket)
2240 stream->vsp_infopacket = *update->vsp_infopacket;
2241
2242 if (update->dither_option)
2243 stream->dither_option = *update->dither_option;
2244 /* update current stream with writeback info */
2245 if (update->wb_update) {
2246 int i;
2247
2248 stream->num_wb_info = update->wb_update->num_wb_info;
2249 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2250 for (i = 0; i < stream->num_wb_info; i++)
2251 stream->writeback_info[i] =
2252 update->wb_update->writeback_info[i];
2253 }
2254 if (update->dsc_config) {
2255 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2256 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2257 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2258 update->dsc_config->num_slices_v != 0);
2259
2260 /* Use temporarry context for validating new DSC config */
2261 struct dc_state *dsc_validate_context = dc_create_state(dc);
2262
2263 if (dsc_validate_context) {
2264 dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2265
2266 stream->timing.dsc_cfg = *update->dsc_config;
2267 stream->timing.flags.DSC = enable_dsc;
2268 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2269 stream->timing.dsc_cfg = old_dsc_cfg;
2270 stream->timing.flags.DSC = old_dsc_enabled;
2271 update->dsc_config = NULL;
2272 }
2273
2274 dc_release_state(dsc_validate_context);
2275 } else {
2276 DC_ERROR("Failed to allocate new validate context for DSC change\n");
2277 update->dsc_config = NULL;
2278 }
2279 }
2280 }
2281
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2282 static void commit_planes_do_stream_update(struct dc *dc,
2283 struct dc_stream_state *stream,
2284 struct dc_stream_update *stream_update,
2285 enum surface_update_type update_type,
2286 struct dc_state *context)
2287 {
2288 int j;
2289 bool should_program_abm;
2290
2291 // Stream updates
2292 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2293 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2294
2295 if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2296
2297 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
2298 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
2299
2300 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2301 stream_update->vrr_infopacket ||
2302 stream_update->vsc_infopacket ||
2303 stream_update->vsp_infopacket) {
2304 resource_build_info_frame(pipe_ctx);
2305 dc->hwss.update_info_frame(pipe_ctx);
2306 }
2307
2308 if (stream_update->hdr_static_metadata &&
2309 stream->use_dynamic_meta &&
2310 dc->hwss.set_dmdata_attributes &&
2311 pipe_ctx->stream->dmdata_address.quad_part != 0)
2312 dc->hwss.set_dmdata_attributes(pipe_ctx);
2313
2314 if (stream_update->gamut_remap)
2315 dc_stream_set_gamut_remap(dc, stream);
2316
2317 if (stream_update->output_csc_transform)
2318 dc_stream_program_csc_matrix(dc, stream);
2319
2320 if (stream_update->dither_option) {
2321 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2322 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2323 &pipe_ctx->stream->bit_depth_params);
2324 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2325 &stream->bit_depth_params,
2326 &stream->clamping);
2327 while (odm_pipe) {
2328 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2329 &stream->bit_depth_params,
2330 &stream->clamping);
2331 odm_pipe = odm_pipe->next_odm_pipe;
2332 }
2333 }
2334
2335 /* Full fe update*/
2336 if (update_type == UPDATE_TYPE_FAST)
2337 continue;
2338
2339 if (stream_update->dsc_config)
2340 dp_update_dsc_config(pipe_ctx);
2341
2342 if (stream_update->dpms_off) {
2343 if (*stream_update->dpms_off) {
2344 core_link_disable_stream(pipe_ctx);
2345 /* for dpms, keep acquired resources*/
2346 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2347 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2348
2349 dc->optimized_required = true;
2350
2351 } else {
2352 if (dc->optimize_seamless_boot_streams == 0)
2353 dc->hwss.prepare_bandwidth(dc, dc->current_state);
2354
2355 core_link_enable_stream(dc->current_state, pipe_ctx);
2356 }
2357 }
2358
2359 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2360 should_program_abm = true;
2361
2362 // if otg funcs defined check if blanked before programming
2363 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2364 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2365 should_program_abm = false;
2366
2367 if (should_program_abm) {
2368 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2369 dc->hwss.set_abm_immediate_disable(pipe_ctx);
2370 } else {
2371 pipe_ctx->stream_res.abm->funcs->set_abm_level(
2372 pipe_ctx->stream_res.abm, stream->abm_level);
2373 }
2374 }
2375 }
2376 }
2377 }
2378 }
2379
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2380 static void commit_planes_for_stream(struct dc *dc,
2381 struct dc_surface_update *srf_updates,
2382 int surface_count,
2383 struct dc_stream_state *stream,
2384 struct dc_stream_update *stream_update,
2385 enum surface_update_type update_type,
2386 struct dc_state *context)
2387 {
2388 bool mpcc_disconnected = false;
2389 int i, j;
2390 struct pipe_ctx *top_pipe_to_program = NULL;
2391
2392 if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2393 /* Optimize seamless boot flag keeps clocks and watermarks high until
2394 * first flip. After first flip, optimization is required to lower
2395 * bandwidth. Important to note that it is expected UEFI will
2396 * only light up a single display on POST, therefore we only expect
2397 * one stream with seamless boot flag set.
2398 */
2399 if (stream->apply_seamless_boot_optimization) {
2400 stream->apply_seamless_boot_optimization = false;
2401 dc->optimize_seamless_boot_streams--;
2402
2403 if (dc->optimize_seamless_boot_streams == 0)
2404 dc->optimized_required = true;
2405 }
2406 }
2407
2408 if (update_type == UPDATE_TYPE_FULL) {
2409 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
2410 dc_allow_idle_optimizations(dc, false);
2411
2412 #endif
2413 if (dc->optimize_seamless_boot_streams == 0)
2414 dc->hwss.prepare_bandwidth(dc, context);
2415
2416 context_clock_trace(dc, context);
2417 }
2418
2419 if (update_type != UPDATE_TYPE_FAST && dc->hwss.interdependent_update_lock &&
2420 dc->hwss.disconnect_pipes && dc->hwss.wait_for_pending_cleared){
2421 dc->hwss.interdependent_update_lock(dc, context, true);
2422 mpcc_disconnected = dc->hwss.disconnect_pipes(dc, context);
2423 dc->hwss.interdependent_update_lock(dc, context, false);
2424 if (mpcc_disconnected)
2425 dc->hwss.wait_for_pending_cleared(dc, context);
2426 }
2427
2428 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2429 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2430
2431 if (!pipe_ctx->top_pipe &&
2432 !pipe_ctx->prev_odm_pipe &&
2433 pipe_ctx->stream &&
2434 pipe_ctx->stream == stream) {
2435 top_pipe_to_program = pipe_ctx;
2436 }
2437 }
2438
2439 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2440 if (top_pipe_to_program &&
2441 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2442 if (should_use_dmub_lock(stream->link)) {
2443 union dmub_hw_lock_flags hw_locks = { 0 };
2444 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2445
2446 hw_locks.bits.lock_dig = 1;
2447 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2448
2449 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2450 true,
2451 &hw_locks,
2452 &inst_flags);
2453 } else
2454 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2455 top_pipe_to_program->stream_res.tg);
2456 }
2457
2458 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2459 dc->hwss.interdependent_update_lock(dc, context, true);
2460 else
2461 /* Lock the top pipe while updating plane addrs, since freesync requires
2462 * plane addr update event triggers to be synchronized.
2463 * top_pipe_to_program is expected to never be NULL
2464 */
2465 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2466
2467
2468 // Stream updates
2469 if (stream_update)
2470 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2471
2472 if (surface_count == 0) {
2473 /*
2474 * In case of turning off screen, no need to program front end a second time.
2475 * just return after program blank.
2476 */
2477 if (dc->hwss.apply_ctx_for_surface)
2478 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2479 if (dc->hwss.program_front_end_for_ctx)
2480 dc->hwss.program_front_end_for_ctx(dc, context);
2481
2482 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2483 dc->hwss.interdependent_update_lock(dc, context, false);
2484 else
2485 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2486
2487 dc->hwss.post_unlock_program_front_end(dc, context);
2488 return;
2489 }
2490
2491 if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2492 for (i = 0; i < surface_count; i++) {
2493 struct dc_plane_state *plane_state = srf_updates[i].surface;
2494 /*set logical flag for lock/unlock use*/
2495 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2496 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2497 if (!pipe_ctx->plane_state)
2498 continue;
2499 if (pipe_ctx->plane_state != plane_state)
2500 continue;
2501 plane_state->triplebuffer_flips = false;
2502 if (update_type == UPDATE_TYPE_FAST &&
2503 dc->hwss.program_triplebuffer != NULL &&
2504 !plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2505 /*triple buffer for VUpdate only*/
2506 plane_state->triplebuffer_flips = true;
2507 }
2508 }
2509 if (update_type == UPDATE_TYPE_FULL) {
2510 /* force vsync flip when reconfiguring pipes to prevent underflow */
2511 plane_state->flip_immediate = false;
2512 }
2513 }
2514 }
2515
2516 // Update Type FULL, Surface updates
2517 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2518 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2519
2520 if (!pipe_ctx->top_pipe &&
2521 !pipe_ctx->prev_odm_pipe &&
2522 pipe_ctx->stream &&
2523 pipe_ctx->stream == stream) {
2524 struct dc_stream_status *stream_status = NULL;
2525
2526 if (!pipe_ctx->plane_state)
2527 continue;
2528
2529 /* Full fe update*/
2530 if (update_type == UPDATE_TYPE_FAST)
2531 continue;
2532
2533 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2534
2535 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2536 /*turn off triple buffer for full update*/
2537 dc->hwss.program_triplebuffer(
2538 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2539 }
2540 stream_status =
2541 stream_get_status(context, pipe_ctx->stream);
2542
2543 if (dc->hwss.apply_ctx_for_surface)
2544 dc->hwss.apply_ctx_for_surface(
2545 dc, pipe_ctx->stream, stream_status->plane_count, context);
2546 }
2547 }
2548 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2549 dc->hwss.program_front_end_for_ctx(dc, context);
2550 #ifdef CONFIG_DRM_AMD_DC_DCN
2551 if (dc->debug.validate_dml_output) {
2552 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2553 struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2554 if (cur_pipe.stream == NULL)
2555 continue;
2556
2557 cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2558 cur_pipe.plane_res.hubp, dc->ctx,
2559 &context->res_ctx.pipe_ctx[i].rq_regs,
2560 &context->res_ctx.pipe_ctx[i].dlg_regs,
2561 &context->res_ctx.pipe_ctx[i].ttu_regs);
2562 }
2563 }
2564 #endif
2565 }
2566
2567 // Update Type FAST, Surface updates
2568 if (update_type == UPDATE_TYPE_FAST) {
2569 if (dc->hwss.set_flip_control_gsl)
2570 for (i = 0; i < surface_count; i++) {
2571 struct dc_plane_state *plane_state = srf_updates[i].surface;
2572
2573 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2574 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2575
2576 if (pipe_ctx->stream != stream)
2577 continue;
2578
2579 if (pipe_ctx->plane_state != plane_state)
2580 continue;
2581
2582 // GSL has to be used for flip immediate
2583 dc->hwss.set_flip_control_gsl(pipe_ctx,
2584 plane_state->flip_immediate);
2585 }
2586 }
2587 /* Perform requested Updates */
2588 for (i = 0; i < surface_count; i++) {
2589 struct dc_plane_state *plane_state = srf_updates[i].surface;
2590
2591 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2592 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2593
2594 if (pipe_ctx->stream != stream)
2595 continue;
2596
2597 if (pipe_ctx->plane_state != plane_state)
2598 continue;
2599 /*program triple buffer after lock based on flip type*/
2600 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2601 /*only enable triplebuffer for fast_update*/
2602 dc->hwss.program_triplebuffer(
2603 dc, pipe_ctx, plane_state->triplebuffer_flips);
2604 }
2605 if (srf_updates[i].flip_addr)
2606 dc->hwss.update_plane_addr(dc, pipe_ctx);
2607 }
2608 }
2609 }
2610
2611 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2612 dc->hwss.interdependent_update_lock(dc, context, false);
2613 else
2614 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2615
2616 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2617 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2618 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2619 top_pipe_to_program->stream_res.tg,
2620 CRTC_STATE_VACTIVE);
2621 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2622 top_pipe_to_program->stream_res.tg,
2623 CRTC_STATE_VBLANK);
2624 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2625 top_pipe_to_program->stream_res.tg,
2626 CRTC_STATE_VACTIVE);
2627
2628 if (stream && should_use_dmub_lock(stream->link)) {
2629 union dmub_hw_lock_flags hw_locks = { 0 };
2630 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2631
2632 hw_locks.bits.lock_dig = 1;
2633 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2634
2635 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2636 false,
2637 &hw_locks,
2638 &inst_flags);
2639 } else
2640 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2641 top_pipe_to_program->stream_res.tg);
2642 }
2643
2644 if (update_type != UPDATE_TYPE_FAST)
2645 dc->hwss.post_unlock_program_front_end(dc, context);
2646
2647 // Fire manual trigger only when bottom plane is flipped
2648 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2649 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2650
2651 if (pipe_ctx->bottom_pipe ||
2652 !pipe_ctx->stream ||
2653 pipe_ctx->stream != stream ||
2654 !pipe_ctx->plane_state->update_flags.bits.addr_update)
2655 continue;
2656
2657 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2658 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2659 }
2660 }
2661
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)2662 void dc_commit_updates_for_stream(struct dc *dc,
2663 struct dc_surface_update *srf_updates,
2664 int surface_count,
2665 struct dc_stream_state *stream,
2666 struct dc_stream_update *stream_update,
2667 struct dc_state *state)
2668 {
2669 const struct dc_stream_status *stream_status;
2670 enum surface_update_type update_type;
2671 struct dc_state *context;
2672 struct dc_context *dc_ctx = dc->ctx;
2673 int i, j;
2674
2675 stream_status = dc_stream_get_status(stream);
2676 context = dc->current_state;
2677
2678 update_type = dc_check_update_surfaces_for_stream(
2679 dc, srf_updates, surface_count, stream_update, stream_status);
2680
2681 if (update_type >= update_surface_trace_level)
2682 update_surface_trace(dc, srf_updates, surface_count);
2683
2684
2685 if (update_type >= UPDATE_TYPE_FULL) {
2686
2687 /* initialize scratch memory for building context */
2688 context = dc_create_state(dc);
2689 if (context == NULL) {
2690 DC_ERROR("Failed to allocate new validate context!\n");
2691 return;
2692 }
2693
2694 dc_resource_state_copy_construct(state, context);
2695
2696 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2697 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2698 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2699
2700 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2701 new_pipe->plane_state->force_full_update = true;
2702 }
2703 }
2704
2705
2706 for (i = 0; i < surface_count; i++) {
2707 struct dc_plane_state *surface = srf_updates[i].surface;
2708
2709 copy_surface_update_to_plane(surface, &srf_updates[i]);
2710
2711 if (update_type >= UPDATE_TYPE_MED) {
2712 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2713 struct pipe_ctx *pipe_ctx =
2714 &context->res_ctx.pipe_ctx[j];
2715
2716 if (pipe_ctx->plane_state != surface)
2717 continue;
2718
2719 resource_build_scaling_params(pipe_ctx);
2720 }
2721 }
2722 }
2723
2724 copy_stream_update_to_stream(dc, context, stream, stream_update);
2725
2726 if (update_type >= UPDATE_TYPE_FULL) {
2727 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2728 DC_ERROR("Mode validation failed for stream update!\n");
2729 dc_release_state(context);
2730 return;
2731 }
2732 }
2733
2734 commit_planes_for_stream(
2735 dc,
2736 srf_updates,
2737 surface_count,
2738 stream,
2739 stream_update,
2740 update_type,
2741 context);
2742 /*update current_State*/
2743 if (dc->current_state != context) {
2744
2745 struct dc_state *old = dc->current_state;
2746
2747 dc->current_state = context;
2748 dc_release_state(old);
2749
2750 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2751 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2752
2753 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2754 pipe_ctx->plane_state->force_full_update = false;
2755 }
2756 }
2757 /*let's use current_state to update watermark etc*/
2758 if (update_type >= UPDATE_TYPE_FULL)
2759 dc_post_update_surfaces_to_stream(dc);
2760
2761 return;
2762
2763 }
2764
dc_get_current_stream_count(struct dc * dc)2765 uint8_t dc_get_current_stream_count(struct dc *dc)
2766 {
2767 return dc->current_state->stream_count;
2768 }
2769
dc_get_stream_at_index(struct dc * dc,uint8_t i)2770 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2771 {
2772 if (i < dc->current_state->stream_count)
2773 return dc->current_state->streams[i];
2774 return NULL;
2775 }
2776
dc_stream_find_from_link(const struct dc_link * link)2777 struct dc_stream_state *dc_stream_find_from_link(const struct dc_link *link)
2778 {
2779 uint8_t i;
2780 struct dc_context *ctx = link->ctx;
2781
2782 for (i = 0; i < ctx->dc->current_state->stream_count; i++) {
2783 if (ctx->dc->current_state->streams[i]->link == link)
2784 return ctx->dc->current_state->streams[i];
2785 }
2786
2787 return NULL;
2788 }
2789
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)2790 enum dc_irq_source dc_interrupt_to_irq_source(
2791 struct dc *dc,
2792 uint32_t src_id,
2793 uint32_t ext_id)
2794 {
2795 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2796 }
2797
2798 /**
2799 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2800 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)2801 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2802 {
2803
2804 if (dc == NULL)
2805 return false;
2806
2807 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2808 }
2809
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)2810 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2811 {
2812 dal_irq_service_ack(dc->res_pool->irqs, src);
2813 }
2814
dc_power_down_on_boot(struct dc * dc)2815 void dc_power_down_on_boot(struct dc *dc)
2816 {
2817 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
2818 dc->hwss.power_down_on_boot)
2819 dc->hwss.power_down_on_boot(dc);
2820 }
2821
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)2822 void dc_set_power_state(
2823 struct dc *dc,
2824 enum dc_acpi_cm_power_state power_state)
2825 {
2826 struct kref refcount;
2827 struct display_mode_lib *dml;
2828
2829 switch (power_state) {
2830 case DC_ACPI_CM_POWER_STATE_D0:
2831 dc_resource_state_construct(dc, dc->current_state);
2832
2833 if (dc->ctx->dmub_srv)
2834 dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2835
2836 dc->hwss.init_hw(dc);
2837
2838 if (dc->hwss.init_sys_ctx != NULL &&
2839 dc->vm_pa_config.valid) {
2840 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2841 }
2842
2843 break;
2844 default:
2845 ASSERT(dc->current_state->stream_count == 0);
2846 /* Zero out the current context so that on resume we start with
2847 * clean state, and dc hw programming optimizations will not
2848 * cause any trouble.
2849 */
2850 dml = kzalloc(sizeof(struct display_mode_lib),
2851 GFP_KERNEL);
2852
2853 ASSERT(dml);
2854 if (!dml)
2855 return;
2856
2857 /* Preserve refcount */
2858 refcount = dc->current_state->refcount;
2859 /* Preserve display mode lib */
2860 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2861
2862 dc_resource_state_destruct(dc->current_state);
2863 memset(dc->current_state, 0,
2864 sizeof(*dc->current_state));
2865
2866 dc->current_state->refcount = refcount;
2867 dc->current_state->bw_ctx.dml = *dml;
2868
2869 kfree(dml);
2870
2871 break;
2872 }
2873 }
2874
dc_resume(struct dc * dc)2875 void dc_resume(struct dc *dc)
2876 {
2877 uint32_t i;
2878
2879 for (i = 0; i < dc->link_count; i++)
2880 core_link_resume(dc->links[i]);
2881 }
2882
dc_is_dmcu_initialized(struct dc * dc)2883 bool dc_is_dmcu_initialized(struct dc *dc)
2884 {
2885 struct dmcu *dmcu = dc->res_pool->dmcu;
2886
2887 if (dmcu)
2888 return dmcu->funcs->is_dmcu_initialized(dmcu);
2889 return false;
2890 }
2891
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)2892 bool dc_submit_i2c(
2893 struct dc *dc,
2894 uint32_t link_index,
2895 struct i2c_command *cmd)
2896 {
2897
2898 struct dc_link *link = dc->links[link_index];
2899 struct ddc_service *ddc = link->ddc;
2900 return dce_i2c_submit_command(
2901 dc->res_pool,
2902 ddc->ddc_pin,
2903 cmd);
2904 }
2905
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)2906 bool dc_submit_i2c_oem(
2907 struct dc *dc,
2908 struct i2c_command *cmd)
2909 {
2910 struct ddc_service *ddc = dc->res_pool->oem_device;
2911 return dce_i2c_submit_command(
2912 dc->res_pool,
2913 ddc->ddc_pin,
2914 cmd);
2915 }
2916
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)2917 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2918 {
2919 if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2920 BREAK_TO_DEBUGGER();
2921 return false;
2922 }
2923
2924 dc_sink_retain(sink);
2925
2926 dc_link->remote_sinks[dc_link->sink_count] = sink;
2927 dc_link->sink_count++;
2928
2929 return true;
2930 }
2931
2932 /**
2933 * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2934 *
2935 * EDID length is in bytes
2936 */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)2937 struct dc_sink *dc_link_add_remote_sink(
2938 struct dc_link *link,
2939 const uint8_t *edid,
2940 int len,
2941 struct dc_sink_init_data *init_data)
2942 {
2943 struct dc_sink *dc_sink;
2944 enum dc_edid_status edid_status;
2945
2946 if (len > DC_MAX_EDID_BUFFER_SIZE) {
2947 dm_error("Max EDID buffer size breached!\n");
2948 return NULL;
2949 }
2950
2951 if (!init_data) {
2952 BREAK_TO_DEBUGGER();
2953 return NULL;
2954 }
2955
2956 if (!init_data->link) {
2957 BREAK_TO_DEBUGGER();
2958 return NULL;
2959 }
2960
2961 dc_sink = dc_sink_create(init_data);
2962
2963 if (!dc_sink)
2964 return NULL;
2965
2966 memmove(dc_sink->dc_edid.raw_edid, edid, len);
2967 dc_sink->dc_edid.length = len;
2968
2969 if (!link_add_remote_sink_helper(
2970 link,
2971 dc_sink))
2972 goto fail_add_sink;
2973
2974 edid_status = dm_helpers_parse_edid_caps(
2975 link->ctx,
2976 &dc_sink->dc_edid,
2977 &dc_sink->edid_caps);
2978
2979 /*
2980 * Treat device as no EDID device if EDID
2981 * parsing fails
2982 */
2983 if (edid_status != EDID_OK) {
2984 dc_sink->dc_edid.length = 0;
2985 dm_error("Bad EDID, status%d!\n", edid_status);
2986 }
2987
2988 return dc_sink;
2989
2990 fail_add_sink:
2991 dc_sink_release(dc_sink);
2992 return NULL;
2993 }
2994
2995 /**
2996 * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2997 *
2998 * Note that this just removes the struct dc_sink - it doesn't
2999 * program hardware or alter other members of dc_link
3000 */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)3001 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
3002 {
3003 int i;
3004
3005 if (!link->sink_count) {
3006 BREAK_TO_DEBUGGER();
3007 return;
3008 }
3009
3010 for (i = 0; i < link->sink_count; i++) {
3011 if (link->remote_sinks[i] == sink) {
3012 dc_sink_release(sink);
3013 link->remote_sinks[i] = NULL;
3014
3015 /* shrink array to remove empty place */
3016 while (i < link->sink_count - 1) {
3017 link->remote_sinks[i] = link->remote_sinks[i+1];
3018 i++;
3019 }
3020 link->remote_sinks[i] = NULL;
3021 link->sink_count--;
3022 return;
3023 }
3024 }
3025 }
3026
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)3027 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3028 {
3029 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3030 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3031 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3032 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3033 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3034 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3035 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3036 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3037 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3038 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3039 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3040 {
3041 if (dc->hwss.set_clock)
3042 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3043 return DC_ERROR_UNEXPECTED;
3044 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3045 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3046 {
3047 if (dc->hwss.get_clock)
3048 dc->hwss.get_clock(dc, clock_type, clock_cfg);
3049 }
3050
3051 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)3052 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3053 {
3054 int i;
3055
3056 for (i = 0; i < dc->current_state->stream_count ; i++) {
3057 struct dc_link *link;
3058 struct dc_stream_state *stream = dc->current_state->streams[i];
3059
3060 link = stream->link;
3061 if (!link)
3062 continue;
3063
3064 if (link->psr_settings.psr_feature_enabled) {
3065 if (enable && !link->psr_settings.psr_allow_active)
3066 return dc_link_set_psr_allow_active(link, true, false);
3067 else if (!enable && link->psr_settings.psr_allow_active)
3068 return dc_link_set_psr_allow_active(link, false, true);
3069 }
3070 }
3071
3072 return true;
3073 }
3074
3075 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
3076
dc_allow_idle_optimizations(struct dc * dc,bool allow)3077 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3078 {
3079 if (dc->debug.disable_idle_power_optimizations)
3080 return;
3081
3082 if (allow == dc->idle_optimizations_allowed)
3083 return;
3084
3085 if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3086 dc->idle_optimizations_allowed = allow;
3087 }
3088
3089 /*
3090 * blank all streams, and set min and max memory clock to
3091 * lowest and highest DPM level, respectively
3092 */
dc_unlock_memory_clock_frequency(struct dc * dc)3093 void dc_unlock_memory_clock_frequency(struct dc *dc)
3094 {
3095 unsigned int i;
3096
3097 for (i = 0; i < MAX_PIPES; i++)
3098 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3099 core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3100
3101 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3102 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3103 }
3104
3105 /*
3106 * set min memory clock to the min required for current mode,
3107 * max to maxDPM, and unblank streams
3108 */
dc_lock_memory_clock_frequency(struct dc * dc)3109 void dc_lock_memory_clock_frequency(struct dc *dc)
3110 {
3111 unsigned int i;
3112
3113 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3114 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3115 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3116
3117 for (i = 0; i < MAX_PIPES; i++)
3118 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3119 core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3120 }
3121
dc_is_plane_eligible_for_idle_optimizaitons(struct dc * dc,struct dc_plane_state * plane)3122 bool dc_is_plane_eligible_for_idle_optimizaitons(struct dc *dc,
3123 struct dc_plane_state *plane)
3124 {
3125 return false;
3126 }
3127 #endif
3128