• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 
28 #include "dm_services.h"
29 
30 #include "dc.h"
31 
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36 
37 #include "resource.h"
38 
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42 
43 #include "bios_parser_interface.h"
44 #include "include/irq_service_interface.h"
45 #include "transform.h"
46 #include "dmcu.h"
47 #include "dpp.h"
48 #include "timing_generator.h"
49 #include "abm.h"
50 #include "virtual/virtual_link_encoder.h"
51 
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 
55 #include "dc_link_ddc.h"
56 #include "dm_helpers.h"
57 #include "mem_input.h"
58 #include "hubp.h"
59 
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62 
63 #include "dsc.h"
64 
65 #include "vm_helper.h"
66 
67 #include "dce/dce_i2c.h"
68 
69 #include "dmub/dmub_srv.h"
70 
71 #include "dce/dmub_hw_lock_mgr.h"
72 
73 #define CTX \
74 	dc->ctx
75 
76 #define DC_LOGGER \
77 	dc->ctx->logger
78 
79 static const char DC_BUILD_ID[] = "production-build";
80 
81 /**
82  * DOC: Overview
83  *
84  * DC is the OS-agnostic component of the amdgpu DC driver.
85  *
86  * DC maintains and validates a set of structs representing the state of the
87  * driver and writes that state to AMD hardware
88  *
89  * Main DC HW structs:
90  *
91  * struct dc - The central struct.  One per driver.  Created on driver load,
92  * destroyed on driver unload.
93  *
94  * struct dc_context - One per driver.
95  * Used as a backpointer by most other structs in dc.
96  *
97  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
98  * plugpoints).  Created on driver load, destroyed on driver unload.
99  *
100  * struct dc_sink - One per display.  Created on boot or hotplug.
101  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
102  * (the display directly attached).  It may also have one or more remote
103  * sinks (in the Multi-Stream Transport case)
104  *
105  * struct resource_pool - One per driver.  Represents the hw blocks not in the
106  * main pipeline.  Not directly accessible by dm.
107  *
108  * Main dc state structs:
109  *
110  * These structs can be created and destroyed as needed.  There is a full set of
111  * these structs in dc->current_state representing the currently programmed state.
112  *
113  * struct dc_state - The global DC state to track global state information,
114  * such as bandwidth values.
115  *
116  * struct dc_stream_state - Represents the hw configuration for the pipeline from
117  * a framebuffer to a display.  Maps one-to-one with dc_sink.
118  *
119  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
120  * and may have more in the Multi-Plane Overlay case.
121  *
122  * struct resource_context - Represents the programmable state of everything in
123  * the resource_pool.  Not directly accessible by dm.
124  *
125  * struct pipe_ctx - A member of struct resource_context.  Represents the
126  * internal hardware pipeline components.  Each dc_plane_state has either
127  * one or two (in the pipe-split case).
128  */
129 
130 /*******************************************************************************
131  * Private functions
132  ******************************************************************************/
133 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)134 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
135 {
136 	if (new > *original)
137 		*original = new;
138 }
139 
destroy_links(struct dc * dc)140 static void destroy_links(struct dc *dc)
141 {
142 	uint32_t i;
143 
144 	for (i = 0; i < dc->link_count; i++) {
145 		if (NULL != dc->links[i])
146 			link_destroy(&dc->links[i]);
147 	}
148 }
149 
create_links(struct dc * dc,uint32_t num_virtual_links)150 static bool create_links(
151 		struct dc *dc,
152 		uint32_t num_virtual_links)
153 {
154 	int i;
155 	int connectors_num;
156 	struct dc_bios *bios = dc->ctx->dc_bios;
157 
158 	dc->link_count = 0;
159 
160 	connectors_num = bios->funcs->get_connectors_number(bios);
161 
162 	if (connectors_num > ENUM_ID_COUNT) {
163 		dm_error(
164 			"DC: Number of connectors %d exceeds maximum of %d!\n",
165 			connectors_num,
166 			ENUM_ID_COUNT);
167 		return false;
168 	}
169 
170 	dm_output_to_console(
171 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
172 		__func__,
173 		connectors_num,
174 		num_virtual_links);
175 
176 	for (i = 0; i < connectors_num; i++) {
177 		struct link_init_data link_init_params = {0};
178 		struct dc_link *link;
179 
180 		link_init_params.ctx = dc->ctx;
181 		/* next BIOS object table connector */
182 		link_init_params.connector_index = i;
183 		link_init_params.link_index = dc->link_count;
184 		link_init_params.dc = dc;
185 		link = link_create(&link_init_params);
186 
187 		if (link) {
188 			bool should_destory_link = false;
189 
190 			if (link->connector_signal == SIGNAL_TYPE_EDP) {
191 				if (dc->config.edp_not_connected) {
192 					if (!IS_DIAG_DC(dc->ctx->dce_environment))
193 						should_destory_link = true;
194 				} else {
195 					enum dc_connection_type type;
196 					dc_link_detect_sink(link, &type);
197 					if (type == dc_connection_none)
198 						should_destory_link = true;
199 				}
200 			}
201 
202 			if (dc->config.force_enum_edp || !should_destory_link) {
203 				dc->links[dc->link_count] = link;
204 				link->dc = dc;
205 				++dc->link_count;
206 			} else {
207 				link_destroy(&link);
208 			}
209 		}
210 	}
211 
212 	for (i = 0; i < num_virtual_links; i++) {
213 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
214 		struct encoder_init_data enc_init = {0};
215 
216 		if (link == NULL) {
217 			BREAK_TO_DEBUGGER();
218 			goto failed_alloc;
219 		}
220 
221 		link->link_index = dc->link_count;
222 		dc->links[dc->link_count] = link;
223 		dc->link_count++;
224 
225 		link->ctx = dc->ctx;
226 		link->dc = dc;
227 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
228 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
229 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
230 		link->link_id.enum_id = ENUM_ID_1;
231 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
232 
233 		if (!link->link_enc) {
234 			BREAK_TO_DEBUGGER();
235 			goto failed_alloc;
236 		}
237 
238 		link->link_status.dpcd_caps = &link->dpcd_caps;
239 
240 		enc_init.ctx = dc->ctx;
241 		enc_init.channel = CHANNEL_ID_UNKNOWN;
242 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
243 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
244 		enc_init.connector = link->link_id;
245 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
246 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
247 		enc_init.encoder.enum_id = ENUM_ID_1;
248 		virtual_link_encoder_construct(link->link_enc, &enc_init);
249 	}
250 
251 	return true;
252 
253 failed_alloc:
254 	return false;
255 }
256 
dc_perf_trace_create(void)257 static struct dc_perf_trace *dc_perf_trace_create(void)
258 {
259 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
260 }
261 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)262 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
263 {
264 	kfree(*perf_trace);
265 	*perf_trace = NULL;
266 }
267 
268 /**
269  *****************************************************************************
270  *  Function: dc_stream_adjust_vmin_vmax
271  *
272  *  @brief
273  *     Looks up the pipe context of dc_stream_state and updates the
274  *     vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
275  *     Rate, which is a power-saving feature that targets reducing panel
276  *     refresh rate while the screen is static
277  *
278  *  @param [in] dc: dc reference
279  *  @param [in] stream: Initial dc stream state
280  *  @param [in] adjust: Updated parameters for vertical_total_min and
281  *  vertical_total_max
282  *****************************************************************************
283  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)284 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
285 		struct dc_stream_state *stream,
286 		struct dc_crtc_timing_adjust *adjust)
287 {
288 	int i = 0;
289 	bool ret = false;
290 
291 	stream->adjust = *adjust;
292 
293 	for (i = 0; i < MAX_PIPES; i++) {
294 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
295 
296 		if (pipe->stream == stream && pipe->stream_res.tg) {
297 			dc->hwss.set_drr(&pipe,
298 					1,
299 					adjust->v_total_min,
300 					adjust->v_total_max,
301 					adjust->v_total_mid,
302 					adjust->v_total_mid_frame_num);
303 
304 			ret = true;
305 		}
306 	}
307 	return ret;
308 }
309 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)310 bool dc_stream_get_crtc_position(struct dc *dc,
311 		struct dc_stream_state **streams, int num_streams,
312 		unsigned int *v_pos, unsigned int *nom_v_pos)
313 {
314 	/* TODO: Support multiple streams */
315 	const struct dc_stream_state *stream = streams[0];
316 	int i = 0;
317 	bool ret = false;
318 	struct crtc_position position;
319 
320 	for (i = 0; i < MAX_PIPES; i++) {
321 		struct pipe_ctx *pipe =
322 				&dc->current_state->res_ctx.pipe_ctx[i];
323 
324 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
325 			dc->hwss.get_position(&pipe, 1, &position);
326 
327 			*v_pos = position.vertical_count;
328 			*nom_v_pos = position.nominal_vcount;
329 			ret = true;
330 		}
331 	}
332 	return ret;
333 }
334 
335 /**
336  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
337  * @dc: DC Object
338  * @stream: The stream to configure CRC on.
339  * @enable: Enable CRC if true, disable otherwise.
340  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
341  *              once.
342  *
343  * By default, only CRC0 is configured, and the entire frame is used to
344  * calculate the crc.
345  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,bool enable,bool continuous)346 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
347 			     bool enable, bool continuous)
348 {
349 	int i;
350 	struct pipe_ctx *pipe;
351 	struct crc_params param;
352 	struct timing_generator *tg;
353 
354 	for (i = 0; i < MAX_PIPES; i++) {
355 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
356 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
357 			break;
358 	}
359 	/* Stream not found */
360 	if (i == MAX_PIPES)
361 		return false;
362 
363 	/* Always capture the full frame */
364 	param.windowa_x_start = 0;
365 	param.windowa_y_start = 0;
366 	param.windowa_x_end = pipe->stream->timing.h_addressable;
367 	param.windowa_y_end = pipe->stream->timing.v_addressable;
368 	param.windowb_x_start = 0;
369 	param.windowb_y_start = 0;
370 	param.windowb_x_end = pipe->stream->timing.h_addressable;
371 	param.windowb_y_end = pipe->stream->timing.v_addressable;
372 
373 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
374 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
375 
376 	/* Default to the union of both windows */
377 	param.selection = UNION_WINDOW_A_B;
378 	param.continuous_mode = continuous;
379 	param.enable = enable;
380 
381 	tg = pipe->stream_res.tg;
382 
383 	/* Only call if supported */
384 	if (tg->funcs->configure_crc)
385 		return tg->funcs->configure_crc(tg, &param);
386 	DC_LOG_WARNING("CRC capture not supported.");
387 	return false;
388 }
389 
390 /**
391  * dc_stream_get_crc() - Get CRC values for the given stream.
392  * @dc: DC object
393  * @stream: The DC stream state of the stream to get CRCs from.
394  * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
395  *
396  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
397  * Return false if stream is not found, or if CRCs are not enabled.
398  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)399 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
400 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
401 {
402 	int i;
403 	struct pipe_ctx *pipe;
404 	struct timing_generator *tg;
405 
406 	for (i = 0; i < MAX_PIPES; i++) {
407 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
408 		if (pipe->stream == stream)
409 			break;
410 	}
411 	/* Stream not found */
412 	if (i == MAX_PIPES)
413 		return false;
414 
415 	tg = pipe->stream_res.tg;
416 
417 	if (tg->funcs->get_crc)
418 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
419 	DC_LOG_WARNING("CRC capture not supported.");
420 	return false;
421 }
422 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)423 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
424 		enum dc_dynamic_expansion option)
425 {
426 	/* OPP FMT dyn expansion updates*/
427 	int i = 0;
428 	struct pipe_ctx *pipe_ctx;
429 
430 	for (i = 0; i < MAX_PIPES; i++) {
431 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
432 				== stream) {
433 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
434 			pipe_ctx->stream_res.opp->dyn_expansion = option;
435 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
436 					pipe_ctx->stream_res.opp,
437 					COLOR_SPACE_YCBCR601,
438 					stream->timing.display_color_depth,
439 					stream->signal);
440 		}
441 	}
442 }
443 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)444 void dc_stream_set_dither_option(struct dc_stream_state *stream,
445 		enum dc_dither_option option)
446 {
447 	struct bit_depth_reduction_params params;
448 	struct dc_link *link = stream->link;
449 	struct pipe_ctx *pipes = NULL;
450 	int i;
451 
452 	for (i = 0; i < MAX_PIPES; i++) {
453 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
454 				stream) {
455 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
456 			break;
457 		}
458 	}
459 
460 	if (!pipes)
461 		return;
462 	if (option > DITHER_OPTION_MAX)
463 		return;
464 
465 	stream->dither_option = option;
466 
467 	memset(&params, 0, sizeof(params));
468 	resource_build_bit_depth_reduction_params(stream, &params);
469 	stream->bit_depth_params = params;
470 
471 	if (pipes->plane_res.xfm &&
472 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
473 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
474 			pipes->plane_res.xfm,
475 			pipes->plane_res.scl_data.lb_params.depth,
476 			&stream->bit_depth_params);
477 	}
478 
479 	pipes->stream_res.opp->funcs->
480 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
481 }
482 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)483 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
484 {
485 	int i = 0;
486 	bool ret = false;
487 	struct pipe_ctx *pipes;
488 
489 	for (i = 0; i < MAX_PIPES; i++) {
490 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
491 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
492 			dc->hwss.program_gamut_remap(pipes);
493 			ret = true;
494 		}
495 	}
496 
497 	return ret;
498 }
499 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)500 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
501 {
502 	int i = 0;
503 	bool ret = false;
504 	struct pipe_ctx *pipes;
505 
506 	for (i = 0; i < MAX_PIPES; i++) {
507 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
508 				== stream) {
509 
510 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
511 			dc->hwss.program_output_csc(dc,
512 					pipes,
513 					stream->output_color_space,
514 					stream->csc_color_matrix.matrix,
515 					pipes->stream_res.opp->inst);
516 			ret = true;
517 		}
518 	}
519 
520 	return ret;
521 }
522 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)523 void dc_stream_set_static_screen_params(struct dc *dc,
524 		struct dc_stream_state **streams,
525 		int num_streams,
526 		const struct dc_static_screen_params *params)
527 {
528 	int i = 0;
529 	int j = 0;
530 	struct pipe_ctx *pipes_affected[MAX_PIPES];
531 	int num_pipes_affected = 0;
532 
533 	for (i = 0; i < num_streams; i++) {
534 		struct dc_stream_state *stream = streams[i];
535 
536 		for (j = 0; j < MAX_PIPES; j++) {
537 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
538 					== stream) {
539 				pipes_affected[num_pipes_affected++] =
540 						&dc->current_state->res_ctx.pipe_ctx[j];
541 			}
542 		}
543 	}
544 
545 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
546 }
547 
dc_destruct(struct dc * dc)548 static void dc_destruct(struct dc *dc)
549 {
550 	if (dc->current_state) {
551 		dc_release_state(dc->current_state);
552 		dc->current_state = NULL;
553 	}
554 
555 	destroy_links(dc);
556 
557 	if (dc->clk_mgr) {
558 		dc_destroy_clk_mgr(dc->clk_mgr);
559 		dc->clk_mgr = NULL;
560 	}
561 
562 	dc_destroy_resource_pool(dc);
563 
564 	if (dc->ctx->gpio_service)
565 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
566 
567 	if (dc->ctx->created_bios)
568 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
569 
570 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
571 
572 	kfree(dc->ctx);
573 	dc->ctx = NULL;
574 
575 	kfree(dc->bw_vbios);
576 	dc->bw_vbios = NULL;
577 
578 	kfree(dc->bw_dceip);
579 	dc->bw_dceip = NULL;
580 
581 #ifdef CONFIG_DRM_AMD_DC_DCN
582 	kfree(dc->dcn_soc);
583 	dc->dcn_soc = NULL;
584 
585 	kfree(dc->dcn_ip);
586 	dc->dcn_ip = NULL;
587 
588 #endif
589 	kfree(dc->vm_helper);
590 	dc->vm_helper = NULL;
591 
592 }
593 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)594 static bool dc_construct_ctx(struct dc *dc,
595 		const struct dc_init_data *init_params)
596 {
597 	struct dc_context *dc_ctx;
598 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
599 
600 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
601 	if (!dc_ctx)
602 		return false;
603 
604 	dc_ctx->cgs_device = init_params->cgs_device;
605 	dc_ctx->driver_context = init_params->driver;
606 	dc_ctx->dc = dc;
607 	dc_ctx->asic_id = init_params->asic_id;
608 	dc_ctx->dc_sink_id_count = 0;
609 	dc_ctx->dc_stream_id_count = 0;
610 	dc_ctx->dce_environment = init_params->dce_environment;
611 
612 	/* Create logger */
613 
614 	dc_version = resource_parse_asic_id(init_params->asic_id);
615 	dc_ctx->dce_version = dc_version;
616 
617 	dc_ctx->perf_trace = dc_perf_trace_create();
618 	if (!dc_ctx->perf_trace) {
619 		kfree(dc_ctx);
620 		ASSERT_CRITICAL(false);
621 		return false;
622 	}
623 
624 	dc->ctx = dc_ctx;
625 
626 	return true;
627 }
628 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)629 static bool dc_construct(struct dc *dc,
630 		const struct dc_init_data *init_params)
631 {
632 	struct dc_context *dc_ctx;
633 	struct bw_calcs_dceip *dc_dceip;
634 	struct bw_calcs_vbios *dc_vbios;
635 #ifdef CONFIG_DRM_AMD_DC_DCN
636 	struct dcn_soc_bounding_box *dcn_soc;
637 	struct dcn_ip_params *dcn_ip;
638 #endif
639 
640 	dc->config = init_params->flags;
641 
642 	// Allocate memory for the vm_helper
643 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
644 	if (!dc->vm_helper) {
645 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
646 		goto fail;
647 	}
648 
649 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
650 
651 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
652 	if (!dc_dceip) {
653 		dm_error("%s: failed to create dceip\n", __func__);
654 		goto fail;
655 	}
656 
657 	dc->bw_dceip = dc_dceip;
658 
659 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
660 	if (!dc_vbios) {
661 		dm_error("%s: failed to create vbios\n", __func__);
662 		goto fail;
663 	}
664 
665 	dc->bw_vbios = dc_vbios;
666 #ifdef CONFIG_DRM_AMD_DC_DCN
667 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
668 	if (!dcn_soc) {
669 		dm_error("%s: failed to create dcn_soc\n", __func__);
670 		goto fail;
671 	}
672 
673 	dc->dcn_soc = dcn_soc;
674 
675 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
676 	if (!dcn_ip) {
677 		dm_error("%s: failed to create dcn_ip\n", __func__);
678 		goto fail;
679 	}
680 
681 	dc->dcn_ip = dcn_ip;
682 	dc->soc_bounding_box = init_params->soc_bounding_box;
683 #endif
684 
685 	if (!dc_construct_ctx(dc, init_params)) {
686 		dm_error("%s: failed to create ctx\n", __func__);
687 		goto fail;
688 	}
689 
690         dc_ctx = dc->ctx;
691 
692 	/* Resource should construct all asic specific resources.
693 	 * This should be the only place where we need to parse the asic id
694 	 */
695 	if (init_params->vbios_override)
696 		dc_ctx->dc_bios = init_params->vbios_override;
697 	else {
698 		/* Create BIOS parser */
699 		struct bp_init_data bp_init_data;
700 
701 		bp_init_data.ctx = dc_ctx;
702 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
703 
704 		dc_ctx->dc_bios = dal_bios_parser_create(
705 				&bp_init_data, dc_ctx->dce_version);
706 
707 		if (!dc_ctx->dc_bios) {
708 			ASSERT_CRITICAL(false);
709 			goto fail;
710 		}
711 
712 		dc_ctx->created_bios = true;
713 	}
714 
715 	dc->vendor_signature = init_params->vendor_signature;
716 
717 	/* Create GPIO service */
718 	dc_ctx->gpio_service = dal_gpio_service_create(
719 			dc_ctx->dce_version,
720 			dc_ctx->dce_environment,
721 			dc_ctx);
722 
723 	if (!dc_ctx->gpio_service) {
724 		ASSERT_CRITICAL(false);
725 		goto fail;
726 	}
727 
728 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
729 	if (!dc->res_pool)
730 		goto fail;
731 
732 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
733 	if (!dc->clk_mgr)
734 		goto fail;
735 #ifdef CONFIG_DRM_AMD_DC_DCN3_0
736 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
737 #endif
738 
739 	dc->debug.force_ignore_link_settings = init_params->force_ignore_link_settings;
740 
741 	if (dc->res_pool->funcs->update_bw_bounding_box)
742 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
743 
744 	/* Creation of current_state must occur after dc->dml
745 	 * is initialized in dc_create_resource_pool because
746 	 * on creation it copies the contents of dc->dml
747 	 */
748 
749 	dc->current_state = dc_create_state(dc);
750 
751 	if (!dc->current_state) {
752 		dm_error("%s: failed to create validate ctx\n", __func__);
753 		goto fail;
754 	}
755 
756 	dc_resource_state_construct(dc, dc->current_state);
757 
758 	if (!create_links(dc, init_params->num_virtual_links))
759 		goto fail;
760 
761 	return true;
762 
763 fail:
764 	return false;
765 }
766 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)767 static bool disable_all_writeback_pipes_for_stream(
768 		const struct dc *dc,
769 		struct dc_stream_state *stream,
770 		struct dc_state *context)
771 {
772 	int i;
773 
774 	for (i = 0; i < stream->num_wb_info; i++)
775 		stream->writeback_info[i].wb_enabled = false;
776 
777 	return true;
778 }
779 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)780 void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock)
781 {
782 	int i = 0;
783 
784 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
785 	if (dc->hwss.interdependent_update_lock)
786 		dc->hwss.interdependent_update_lock(dc, context, lock);
787 	else {
788 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
789 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
790 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
791 
792 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
793 			if (stream == pipe_ctx->stream) {
794 				if (!pipe_ctx->top_pipe &&
795 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
796 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
797 			}
798 		}
799 	}
800 }
801 
disable_dangling_plane(struct dc * dc,struct dc_state * context)802 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
803 {
804 	int i, j;
805 	struct dc_state *dangling_context = dc_create_state(dc);
806 	struct dc_state *current_ctx;
807 
808 	if (dangling_context == NULL)
809 		return;
810 
811 	dc_resource_state_copy_construct(dc->current_state, dangling_context);
812 
813 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
814 		struct dc_stream_state *old_stream =
815 				dc->current_state->res_ctx.pipe_ctx[i].stream;
816 		bool should_disable = true;
817 
818 		for (j = 0; j < context->stream_count; j++) {
819 			if (old_stream == context->streams[j]) {
820 				should_disable = false;
821 				break;
822 			}
823 		}
824 		if (should_disable && old_stream) {
825 			dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
826 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
827 
828 			if (dc->hwss.apply_ctx_for_surface) {
829 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
830 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
831 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
832 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
833 			}
834 			if (dc->hwss.program_front_end_for_ctx) {
835 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
836 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
837 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
838 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
839 			}
840 		}
841 	}
842 
843 	current_ctx = dc->current_state;
844 	dc->current_state = dangling_context;
845 	dc_release_state(current_ctx);
846 }
847 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)848 static void disable_vbios_mode_if_required(
849 		struct dc *dc,
850 		struct dc_state *context)
851 {
852 	unsigned int i, j;
853 
854 	/* check if timing_changed, disable stream*/
855 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
856 		struct dc_stream_state *stream = NULL;
857 		struct dc_link *link = NULL;
858 		struct pipe_ctx *pipe = NULL;
859 
860 		pipe = &context->res_ctx.pipe_ctx[i];
861 		stream = pipe->stream;
862 		if (stream == NULL)
863 			continue;
864 
865 		if (stream->apply_seamless_boot_optimization)
866 			continue;
867 
868 		// only looking for first odm pipe
869 		if (pipe->prev_odm_pipe)
870 			continue;
871 
872 		if (stream->link->local_sink &&
873 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
874 			link = stream->link;
875 		}
876 
877 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
878 			unsigned int enc_inst, tg_inst = 0;
879 			unsigned int pix_clk_100hz;
880 
881 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
882 			if (enc_inst != ENGINE_ID_UNKNOWN) {
883 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
884 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
885 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
886 							dc->res_pool->stream_enc[j]);
887 						break;
888 					}
889 				}
890 
891 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
892 					dc->res_pool->dp_clock_source,
893 					tg_inst, &pix_clk_100hz);
894 
895 				if (link->link_status.link_active) {
896 					uint32_t requested_pix_clk_100hz =
897 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
898 
899 					if (pix_clk_100hz != requested_pix_clk_100hz) {
900 						core_link_disable_stream(pipe);
901 						pipe->stream->dpms_off = false;
902 					}
903 				}
904 			}
905 		}
906 	}
907 }
908 
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)909 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
910 {
911 	int i;
912 	PERF_TRACE();
913 	for (i = 0; i < MAX_PIPES; i++) {
914 		int count = 0;
915 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
916 
917 		if (!pipe->plane_state)
918 			continue;
919 
920 		/* Timeout 100 ms */
921 		while (count < 100000) {
922 			/* Must set to false to start with, due to OR in update function */
923 			pipe->plane_state->status.is_flip_pending = false;
924 			dc->hwss.update_pending_status(pipe);
925 			if (!pipe->plane_state->status.is_flip_pending)
926 				break;
927 			udelay(1);
928 			count++;
929 		}
930 		ASSERT(!pipe->plane_state->status.is_flip_pending);
931 	}
932 	PERF_TRACE();
933 }
934 
935 /*******************************************************************************
936  * Public functions
937  ******************************************************************************/
938 
dc_create(const struct dc_init_data * init_params)939 struct dc *dc_create(const struct dc_init_data *init_params)
940 {
941 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
942 	unsigned int full_pipe_count;
943 
944 	if (NULL == dc)
945 		goto alloc_fail;
946 
947 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
948 		if (false == dc_construct_ctx(dc, init_params)) {
949 			dc_destruct(dc);
950 			goto construct_fail;
951 		}
952 	} else {
953 		if (false == dc_construct(dc, init_params)) {
954 			dc_destruct(dc);
955 			goto construct_fail;
956 		}
957 
958 		full_pipe_count = dc->res_pool->pipe_count;
959 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
960 			full_pipe_count--;
961 		dc->caps.max_streams = min(
962 				full_pipe_count,
963 				dc->res_pool->stream_enc_count);
964 
965 		dc->optimize_seamless_boot_streams = 0;
966 		dc->caps.max_links = dc->link_count;
967 		dc->caps.max_audios = dc->res_pool->audio_count;
968 		dc->caps.linear_pitch_alignment = 64;
969 
970 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
971 
972 		if (dc->res_pool->dmcu != NULL)
973 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
974 	}
975 
976 	/* Populate versioning information */
977 	dc->versions.dc_ver = DC_VER;
978 
979 	dc->build_id = DC_BUILD_ID;
980 
981 	DC_LOG_DC("Display Core initialized\n");
982 
983 
984 
985 	return dc;
986 
987 construct_fail:
988 	kfree(dc);
989 
990 alloc_fail:
991 	return NULL;
992 }
993 
dc_hardware_init(struct dc * dc)994 void dc_hardware_init(struct dc *dc)
995 {
996 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
997 		dc->hwss.init_hw(dc);
998 }
999 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1000 void dc_init_callbacks(struct dc *dc,
1001 		const struct dc_callback_init *init_params)
1002 {
1003 #ifdef CONFIG_DRM_AMD_DC_HDCP
1004 	dc->ctx->cp_psp = init_params->cp_psp;
1005 #endif
1006 }
1007 
dc_deinit_callbacks(struct dc * dc)1008 void dc_deinit_callbacks(struct dc *dc)
1009 {
1010 #ifdef CONFIG_DRM_AMD_DC_HDCP
1011 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1012 #endif
1013 }
1014 
dc_destroy(struct dc ** dc)1015 void dc_destroy(struct dc **dc)
1016 {
1017 	dc_destruct(*dc);
1018 	kfree(*dc);
1019 	*dc = NULL;
1020 }
1021 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1022 static void enable_timing_multisync(
1023 		struct dc *dc,
1024 		struct dc_state *ctx)
1025 {
1026 	int i = 0, multisync_count = 0;
1027 	int pipe_count = dc->res_pool->pipe_count;
1028 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1029 
1030 	for (i = 0; i < pipe_count; i++) {
1031 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1032 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1033 			continue;
1034 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1035 			continue;
1036 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1037 		multisync_count++;
1038 	}
1039 
1040 	if (multisync_count > 0) {
1041 		dc->hwss.enable_per_frame_crtc_position_reset(
1042 			dc, multisync_count, multisync_pipes);
1043 	}
1044 }
1045 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1046 static void program_timing_sync(
1047 		struct dc *dc,
1048 		struct dc_state *ctx)
1049 {
1050 	int i, j, k;
1051 	int group_index = 0;
1052 	int num_group = 0;
1053 	int pipe_count = dc->res_pool->pipe_count;
1054 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1055 
1056 	for (i = 0; i < pipe_count; i++) {
1057 		if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1058 			continue;
1059 
1060 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1061 	}
1062 
1063 	for (i = 0; i < pipe_count; i++) {
1064 		int group_size = 1;
1065 		struct pipe_ctx *pipe_set[MAX_PIPES];
1066 
1067 		if (!unsynced_pipes[i])
1068 			continue;
1069 
1070 		pipe_set[0] = unsynced_pipes[i];
1071 		unsynced_pipes[i] = NULL;
1072 
1073 		/* Add tg to the set, search rest of the tg's for ones with
1074 		 * same timing, add all tgs with same timing to the group
1075 		 */
1076 		for (j = i + 1; j < pipe_count; j++) {
1077 			if (!unsynced_pipes[j])
1078 				continue;
1079 
1080 			if (resource_are_streams_timing_synchronizable(
1081 					unsynced_pipes[j]->stream,
1082 					pipe_set[0]->stream)) {
1083 				pipe_set[group_size] = unsynced_pipes[j];
1084 				unsynced_pipes[j] = NULL;
1085 				group_size++;
1086 			}
1087 		}
1088 
1089 		/* set first unblanked pipe as master */
1090 		for (j = 0; j < group_size; j++) {
1091 			bool is_blanked;
1092 
1093 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1094 				is_blanked =
1095 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1096 			else
1097 				is_blanked =
1098 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1099 			if (!is_blanked) {
1100 				if (j == 0)
1101 					break;
1102 
1103 				swap(pipe_set[0], pipe_set[j]);
1104 				break;
1105 			}
1106 		}
1107 
1108 
1109 		for (k = 0; k < group_size; k++) {
1110 			struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1111 
1112 			status->timing_sync_info.group_id = num_group;
1113 			status->timing_sync_info.group_size = group_size;
1114 			if (k == 0)
1115 				status->timing_sync_info.master = true;
1116 			else
1117 				status->timing_sync_info.master = false;
1118 
1119 		}
1120 		/* remove any other unblanked pipes as they have already been synced */
1121 		for (j = j + 1; j < group_size; j++) {
1122 			bool is_blanked;
1123 
1124 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1125 				is_blanked =
1126 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1127 			else
1128 				is_blanked =
1129 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1130 			if (!is_blanked) {
1131 				group_size--;
1132 				pipe_set[j] = pipe_set[group_size];
1133 				j--;
1134 			}
1135 		}
1136 
1137 		if (group_size > 1) {
1138 			dc->hwss.enable_timing_synchronization(
1139 				dc, group_index, group_size, pipe_set);
1140 			group_index++;
1141 		}
1142 		num_group++;
1143 	}
1144 }
1145 
context_changed(struct dc * dc,struct dc_state * context)1146 static bool context_changed(
1147 		struct dc *dc,
1148 		struct dc_state *context)
1149 {
1150 	uint8_t i;
1151 
1152 	if (context->stream_count != dc->current_state->stream_count)
1153 		return true;
1154 
1155 	for (i = 0; i < dc->current_state->stream_count; i++) {
1156 		if (dc->current_state->streams[i] != context->streams[i])
1157 			return true;
1158 	}
1159 
1160 	return false;
1161 }
1162 
dc_validate_seamless_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1163 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1164 				const struct dc_sink *sink,
1165 				struct dc_crtc_timing *crtc_timing)
1166 {
1167 	struct timing_generator *tg;
1168 	struct stream_encoder *se = NULL;
1169 
1170 	struct dc_crtc_timing hw_crtc_timing = {0};
1171 
1172 	struct dc_link *link = sink->link;
1173 	unsigned int i, enc_inst, tg_inst = 0;
1174 
1175 	// Seamless port only support single DP and EDP so far
1176 	if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1177 		sink->sink_signal != SIGNAL_TYPE_EDP)
1178 		return false;
1179 
1180 	/* Check for enabled DIG to identify enabled display */
1181 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1182 		return false;
1183 
1184 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1185 
1186 	if (enc_inst == ENGINE_ID_UNKNOWN)
1187 		return false;
1188 
1189 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1190 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1191 
1192 			se = dc->res_pool->stream_enc[i];
1193 
1194 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1195 				dc->res_pool->stream_enc[i]);
1196 			break;
1197 		}
1198 	}
1199 
1200 	// tg_inst not found
1201 	if (i == dc->res_pool->stream_enc_count)
1202 		return false;
1203 
1204 	if (tg_inst >= dc->res_pool->timing_generator_count)
1205 		return false;
1206 
1207 	tg = dc->res_pool->timing_generators[tg_inst];
1208 
1209 	if (!tg->funcs->get_hw_timing)
1210 		return false;
1211 
1212 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1213 		return false;
1214 
1215 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1216 		return false;
1217 
1218 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1219 		return false;
1220 
1221 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1222 		return false;
1223 
1224 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1225 		return false;
1226 
1227 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1228 		return false;
1229 
1230 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1231 		return false;
1232 
1233 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1234 		return false;
1235 
1236 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1237 		return false;
1238 
1239 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1240 		return false;
1241 
1242 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1243 		return false;
1244 
1245 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1246 		return false;
1247 
1248 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1249 		return false;
1250 
1251 	if (dc_is_dp_signal(link->connector_signal)) {
1252 		unsigned int pix_clk_100hz;
1253 
1254 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1255 			dc->res_pool->dp_clock_source,
1256 			tg_inst, &pix_clk_100hz);
1257 
1258 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1259 			return false;
1260 
1261 		if (!se->funcs->dp_get_pixel_format)
1262 			return false;
1263 
1264 		if (!se->funcs->dp_get_pixel_format(
1265 			se,
1266 			&hw_crtc_timing.pixel_encoding,
1267 			&hw_crtc_timing.display_color_depth))
1268 			return false;
1269 
1270 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1271 			return false;
1272 
1273 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1274 			return false;
1275 	}
1276 
1277 	return true;
1278 }
1279 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1280 bool dc_enable_stereo(
1281 	struct dc *dc,
1282 	struct dc_state *context,
1283 	struct dc_stream_state *streams[],
1284 	uint8_t stream_count)
1285 {
1286 	bool ret = true;
1287 	int i, j;
1288 	struct pipe_ctx *pipe;
1289 
1290 	for (i = 0; i < MAX_PIPES; i++) {
1291 		if (context != NULL)
1292 			pipe = &context->res_ctx.pipe_ctx[i];
1293 		else
1294 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1295 		for (j = 0 ; pipe && j < stream_count; j++)  {
1296 			if (streams[j] && streams[j] == pipe->stream &&
1297 				dc->hwss.setup_stereo)
1298 				dc->hwss.setup_stereo(pipe, dc);
1299 		}
1300 	}
1301 
1302 	return ret;
1303 }
1304 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1305 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1306 {
1307 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1308 		enable_timing_multisync(dc, context);
1309 		program_timing_sync(dc, context);
1310 	}
1311 }
1312 
get_stream_mask(struct dc * dc,struct dc_state * context)1313 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1314 {
1315 	int i;
1316 	unsigned int stream_mask = 0;
1317 
1318 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1319 		if (context->res_ctx.pipe_ctx[i].stream)
1320 			stream_mask |= 1 << i;
1321 	}
1322 
1323 	return stream_mask;
1324 }
1325 
1326 /*
1327  * Applies given context to HW and copy it into current context.
1328  * It's up to the user to release the src context afterwards.
1329  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1330 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1331 {
1332 	struct dc_bios *dcb = dc->ctx->dc_bios;
1333 	enum dc_status result = DC_ERROR_UNEXPECTED;
1334 	struct pipe_ctx *pipe;
1335 	int i, k, l;
1336 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1337 
1338 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1339 	dc_allow_idle_optimizations(dc, false);
1340 #endif
1341 
1342 	for (i = 0; i < context->stream_count; i++)
1343 		dc_streams[i] =  context->streams[i];
1344 
1345 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1346 		disable_vbios_mode_if_required(dc, context);
1347 		dc->hwss.enable_accelerated_mode(dc, context);
1348 	}
1349 
1350 	for (i = 0; i < context->stream_count; i++)
1351 		if (context->streams[i]->apply_seamless_boot_optimization)
1352 			dc->optimize_seamless_boot_streams++;
1353 
1354 	if (context->stream_count > dc->optimize_seamless_boot_streams ||
1355 		context->stream_count == 0)
1356 		dc->hwss.prepare_bandwidth(dc, context);
1357 
1358 	disable_dangling_plane(dc, context);
1359 	/* re-program planes for existing stream, in case we need to
1360 	 * free up plane resource for later use
1361 	 */
1362 	if (dc->hwss.apply_ctx_for_surface) {
1363 		for (i = 0; i < context->stream_count; i++) {
1364 			if (context->streams[i]->mode_changed)
1365 				continue;
1366 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1367 			dc->hwss.apply_ctx_for_surface(
1368 				dc, context->streams[i],
1369 				context->stream_status[i].plane_count,
1370 				context); /* use new pipe config in new context */
1371 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1372 			dc->hwss.post_unlock_program_front_end(dc, context);
1373 		}
1374 	}
1375 
1376 	/* Program hardware */
1377 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1378 		pipe = &context->res_ctx.pipe_ctx[i];
1379 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1380 	}
1381 
1382 	result = dc->hwss.apply_ctx_to_hw(dc, context);
1383 
1384 	if (result != DC_OK)
1385 		return result;
1386 
1387 	dc_trigger_sync(dc, context);
1388 
1389 	/* Program all planes within new context*/
1390 	if (dc->hwss.program_front_end_for_ctx) {
1391 		dc->hwss.interdependent_update_lock(dc, context, true);
1392 		dc->hwss.program_front_end_for_ctx(dc, context);
1393 		dc->hwss.interdependent_update_lock(dc, context, false);
1394 		dc->hwss.post_unlock_program_front_end(dc, context);
1395 	}
1396 	for (i = 0; i < context->stream_count; i++) {
1397 		const struct dc_link *link = context->streams[i]->link;
1398 
1399 		if (!context->streams[i]->mode_changed)
1400 			continue;
1401 
1402 		if (dc->hwss.apply_ctx_for_surface) {
1403 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1404 			dc->hwss.apply_ctx_for_surface(
1405 					dc, context->streams[i],
1406 					context->stream_status[i].plane_count,
1407 					context);
1408 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1409 			dc->hwss.post_unlock_program_front_end(dc, context);
1410 		}
1411 
1412 		/*
1413 		 * enable stereo
1414 		 * TODO rework dc_enable_stereo call to work with validation sets?
1415 		 */
1416 		for (k = 0; k < MAX_PIPES; k++) {
1417 			pipe = &context->res_ctx.pipe_ctx[k];
1418 
1419 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
1420 				if (context->streams[l] &&
1421 					context->streams[l] == pipe->stream &&
1422 					dc->hwss.setup_stereo)
1423 					dc->hwss.setup_stereo(pipe, dc);
1424 			}
1425 		}
1426 
1427 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1428 				context->streams[i]->timing.h_addressable,
1429 				context->streams[i]->timing.v_addressable,
1430 				context->streams[i]->timing.h_total,
1431 				context->streams[i]->timing.v_total,
1432 				context->streams[i]->timing.pix_clk_100hz / 10);
1433 	}
1434 
1435 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1436 
1437 	if (context->stream_count > dc->optimize_seamless_boot_streams ||
1438 		context->stream_count == 0) {
1439 		/* Must wait for no flips to be pending before doing optimize bw */
1440 		wait_for_no_pipes_pending(dc, context);
1441 		/* pplib is notified if disp_num changed */
1442 		dc->hwss.optimize_bandwidth(dc, context);
1443 		/* Need to do otg sync again as otg could be out of sync due to otg
1444 		 * workaround applied during clock update
1445 		 */
1446 		dc_trigger_sync(dc, context);
1447 	}
1448 
1449 	context->stream_mask = get_stream_mask(dc, context);
1450 
1451 	if (context->stream_mask != dc->current_state->stream_mask)
1452 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1453 
1454 	for (i = 0; i < context->stream_count; i++)
1455 		context->streams[i]->mode_changed = false;
1456 
1457 	dc_release_state(dc->current_state);
1458 
1459 	dc->current_state = context;
1460 
1461 	dc_retain_state(dc->current_state);
1462 
1463 	return result;
1464 }
1465 
dc_commit_state(struct dc * dc,struct dc_state * context)1466 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1467 {
1468 	enum dc_status result = DC_ERROR_UNEXPECTED;
1469 	int i;
1470 
1471 	if (false == context_changed(dc, context))
1472 		return DC_OK;
1473 
1474 	DC_LOG_DC("%s: %d streams\n",
1475 				__func__, context->stream_count);
1476 
1477 	for (i = 0; i < context->stream_count; i++) {
1478 		struct dc_stream_state *stream = context->streams[i];
1479 
1480 		dc_stream_log(dc, stream);
1481 	}
1482 
1483 	result = dc_commit_state_no_check(dc, context);
1484 
1485 	return (result == DC_OK);
1486 }
1487 
1488 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1489 bool dc_acquire_release_mpc_3dlut(
1490 		struct dc *dc, bool acquire,
1491 		struct dc_stream_state *stream,
1492 		struct dc_3dlut **lut,
1493 		struct dc_transfer_func **shaper)
1494 {
1495 	int pipe_idx;
1496 	bool ret = false;
1497 	bool found_pipe_idx = false;
1498 	const struct resource_pool *pool = dc->res_pool;
1499 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
1500 	int mpcc_id = 0;
1501 
1502 	if (pool && res_ctx) {
1503 		if (acquire) {
1504 			/*find pipe idx for the given stream*/
1505 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1506 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1507 					found_pipe_idx = true;
1508 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1509 					break;
1510 				}
1511 			}
1512 		} else
1513 			found_pipe_idx = true;/*for release pipe_idx is not required*/
1514 
1515 		if (found_pipe_idx) {
1516 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1517 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1518 			else if (acquire == false && pool->funcs->release_post_bldn_3dlut)
1519 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1520 		}
1521 	}
1522 	return ret;
1523 }
1524 #endif
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)1525 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1526 {
1527 	int i;
1528 	struct pipe_ctx *pipe;
1529 
1530 	for (i = 0; i < MAX_PIPES; i++) {
1531 		pipe = &context->res_ctx.pipe_ctx[i];
1532 
1533 		if (!pipe->plane_state)
1534 			continue;
1535 
1536 		/* Must set to false to start with, due to OR in update function */
1537 		pipe->plane_state->status.is_flip_pending = false;
1538 		dc->hwss.update_pending_status(pipe);
1539 		if (pipe->plane_state->status.is_flip_pending)
1540 			return true;
1541 	}
1542 	return false;
1543 }
1544 
dc_post_update_surfaces_to_stream(struct dc * dc)1545 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1546 {
1547 	int i;
1548 	struct dc_state *context = dc->current_state;
1549 
1550 	if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0)
1551 		return true;
1552 
1553 	post_surface_trace(dc);
1554 
1555 	if (is_flip_pending_in_pipes(dc, context))
1556 		return true;
1557 
1558 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1559 		if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1560 		    context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1561 			context->res_ctx.pipe_ctx[i].pipe_idx = i;
1562 			dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1563 		}
1564 
1565 	dc->hwss.optimize_bandwidth(dc, context);
1566 
1567 	dc->optimized_required = false;
1568 	dc->wm_optimized_required = false;
1569 
1570 	return true;
1571 }
1572 
init_state(struct dc * dc,struct dc_state * context)1573 static void init_state(struct dc *dc, struct dc_state *context)
1574 {
1575 	/* Each context must have their own instance of VBA and in order to
1576 	 * initialize and obtain IP and SOC the base DML instance from DC is
1577 	 * initially copied into every context
1578 	 */
1579 #ifdef CONFIG_DRM_AMD_DC_DCN
1580 	memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1581 #endif
1582 }
1583 
dc_create_state(struct dc * dc)1584 struct dc_state *dc_create_state(struct dc *dc)
1585 {
1586 	struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1587 					    GFP_KERNEL);
1588 
1589 	if (!context)
1590 		return NULL;
1591 
1592 	init_state(dc, context);
1593 
1594 	kref_init(&context->refcount);
1595 
1596 	return context;
1597 }
1598 
dc_copy_state(struct dc_state * src_ctx)1599 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1600 {
1601 	int i, j;
1602 	struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1603 
1604 	if (!new_ctx)
1605 		return NULL;
1606 	memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1607 
1608 	for (i = 0; i < MAX_PIPES; i++) {
1609 			struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1610 
1611 			if (cur_pipe->top_pipe)
1612 				cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1613 
1614 			if (cur_pipe->bottom_pipe)
1615 				cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1616 
1617 			if (cur_pipe->prev_odm_pipe)
1618 				cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1619 
1620 			if (cur_pipe->next_odm_pipe)
1621 				cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1622 
1623 	}
1624 
1625 	for (i = 0; i < new_ctx->stream_count; i++) {
1626 			dc_stream_retain(new_ctx->streams[i]);
1627 			for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1628 				dc_plane_state_retain(
1629 					new_ctx->stream_status[i].plane_states[j]);
1630 	}
1631 
1632 	kref_init(&new_ctx->refcount);
1633 
1634 	return new_ctx;
1635 }
1636 
dc_retain_state(struct dc_state * context)1637 void dc_retain_state(struct dc_state *context)
1638 {
1639 	kref_get(&context->refcount);
1640 }
1641 
dc_state_free(struct kref * kref)1642 static void dc_state_free(struct kref *kref)
1643 {
1644 	struct dc_state *context = container_of(kref, struct dc_state, refcount);
1645 	dc_resource_state_destruct(context);
1646 	kvfree(context);
1647 }
1648 
dc_release_state(struct dc_state * context)1649 void dc_release_state(struct dc_state *context)
1650 {
1651 	kref_put(&context->refcount, dc_state_free);
1652 }
1653 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)1654 bool dc_set_generic_gpio_for_stereo(bool enable,
1655 		struct gpio_service *gpio_service)
1656 {
1657 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1658 	struct gpio_pin_info pin_info;
1659 	struct gpio *generic;
1660 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1661 			   GFP_KERNEL);
1662 
1663 	if (!config)
1664 		return false;
1665 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1666 
1667 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1668 		kfree(config);
1669 		return false;
1670 	} else {
1671 		generic = dal_gpio_service_create_generic_mux(
1672 			gpio_service,
1673 			pin_info.offset,
1674 			pin_info.mask);
1675 	}
1676 
1677 	if (!generic) {
1678 		kfree(config);
1679 		return false;
1680 	}
1681 
1682 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1683 
1684 	config->enable_output_from_mux = enable;
1685 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1686 
1687 	if (gpio_result == GPIO_RESULT_OK)
1688 		gpio_result = dal_mux_setup_config(generic, config);
1689 
1690 	if (gpio_result == GPIO_RESULT_OK) {
1691 		dal_gpio_close(generic);
1692 		dal_gpio_destroy_generic_mux(&generic);
1693 		kfree(config);
1694 		return true;
1695 	} else {
1696 		dal_gpio_close(generic);
1697 		dal_gpio_destroy_generic_mux(&generic);
1698 		kfree(config);
1699 		return false;
1700 	}
1701 }
1702 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)1703 static bool is_surface_in_context(
1704 		const struct dc_state *context,
1705 		const struct dc_plane_state *plane_state)
1706 {
1707 	int j;
1708 
1709 	for (j = 0; j < MAX_PIPES; j++) {
1710 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1711 
1712 		if (plane_state == pipe_ctx->plane_state) {
1713 			return true;
1714 		}
1715 	}
1716 
1717 	return false;
1718 }
1719 
get_plane_info_update_type(const struct dc_surface_update * u)1720 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1721 {
1722 	union surface_update_flags *update_flags = &u->surface->update_flags;
1723 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
1724 
1725 	if (!u->plane_info)
1726 		return UPDATE_TYPE_FAST;
1727 
1728 	if (u->plane_info->color_space != u->surface->color_space) {
1729 		update_flags->bits.color_space_change = 1;
1730 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1731 	}
1732 
1733 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1734 		update_flags->bits.horizontal_mirror_change = 1;
1735 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1736 	}
1737 
1738 	if (u->plane_info->rotation != u->surface->rotation) {
1739 		update_flags->bits.rotation_change = 1;
1740 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1741 	}
1742 
1743 	if (u->plane_info->format != u->surface->format) {
1744 		update_flags->bits.pixel_format_change = 1;
1745 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1746 	}
1747 
1748 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
1749 		update_flags->bits.stereo_format_change = 1;
1750 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1751 	}
1752 
1753 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1754 		update_flags->bits.per_pixel_alpha_change = 1;
1755 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1756 	}
1757 
1758 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1759 		update_flags->bits.global_alpha_change = 1;
1760 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1761 	}
1762 
1763 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
1764 			|| u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1765 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1766 		update_flags->bits.dcc_change = 1;
1767 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1768 	}
1769 
1770 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1771 			resource_pixel_format_to_bpp(u->surface->format)) {
1772 		/* different bytes per element will require full bandwidth
1773 		 * and DML calculation
1774 		 */
1775 		update_flags->bits.bpp_change = 1;
1776 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1777 	}
1778 
1779 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1780 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1781 		update_flags->bits.plane_size_change = 1;
1782 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1783 	}
1784 
1785 
1786 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1787 			sizeof(union dc_tiling_info)) != 0) {
1788 		update_flags->bits.swizzle_change = 1;
1789 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
1790 
1791 		/* todo: below are HW dependent, we should add a hook to
1792 		 * DCE/N resource and validated there.
1793 		 */
1794 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1795 			/* swizzled mode requires RQ to be setup properly,
1796 			 * thus need to run DML to calculate RQ settings
1797 			 */
1798 			update_flags->bits.bandwidth_change = 1;
1799 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1800 		}
1801 	}
1802 
1803 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
1804 	return update_type;
1805 }
1806 
get_scaling_info_update_type(const struct dc_surface_update * u)1807 static enum surface_update_type get_scaling_info_update_type(
1808 		const struct dc_surface_update *u)
1809 {
1810 	union surface_update_flags *update_flags = &u->surface->update_flags;
1811 
1812 	if (!u->scaling_info)
1813 		return UPDATE_TYPE_FAST;
1814 
1815 	if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1816 			|| u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1817 			|| u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1818 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1819 			|| u->scaling_info->scaling_quality.integer_scaling !=
1820 				u->surface->scaling_quality.integer_scaling
1821 			) {
1822 		update_flags->bits.scaling_change = 1;
1823 
1824 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1825 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1826 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1827 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1828 			/* Making dst rect smaller requires a bandwidth change */
1829 			update_flags->bits.bandwidth_change = 1;
1830 	}
1831 
1832 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1833 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1834 
1835 		update_flags->bits.scaling_change = 1;
1836 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1837 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
1838 			/* Making src rect bigger requires a bandwidth change */
1839 			update_flags->bits.clock_change = 1;
1840 	}
1841 
1842 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1843 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
1844 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1845 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1846 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1847 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1848 		update_flags->bits.position_change = 1;
1849 
1850 	if (update_flags->bits.clock_change
1851 			|| update_flags->bits.bandwidth_change
1852 			|| update_flags->bits.scaling_change)
1853 		return UPDATE_TYPE_FULL;
1854 
1855 	if (update_flags->bits.position_change)
1856 		return UPDATE_TYPE_MED;
1857 
1858 	return UPDATE_TYPE_FAST;
1859 }
1860 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)1861 static enum surface_update_type det_surface_update(const struct dc *dc,
1862 		const struct dc_surface_update *u)
1863 {
1864 	const struct dc_state *context = dc->current_state;
1865 	enum surface_update_type type;
1866 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1867 	union surface_update_flags *update_flags = &u->surface->update_flags;
1868 
1869 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1870 		update_flags->raw = 0xFFFFFFFF;
1871 		return UPDATE_TYPE_FULL;
1872 	}
1873 
1874 	update_flags->raw = 0; // Reset all flags
1875 
1876 	type = get_plane_info_update_type(u);
1877 	elevate_update_type(&overall_type, type);
1878 
1879 	type = get_scaling_info_update_type(u);
1880 	elevate_update_type(&overall_type, type);
1881 
1882 	if (u->flip_addr)
1883 		update_flags->bits.addr_update = 1;
1884 
1885 	if (u->in_transfer_func)
1886 		update_flags->bits.in_transfer_func_change = 1;
1887 
1888 	if (u->input_csc_color_matrix)
1889 		update_flags->bits.input_csc_change = 1;
1890 
1891 	if (u->coeff_reduction_factor)
1892 		update_flags->bits.coeff_reduction_change = 1;
1893 
1894 	if (u->gamut_remap_matrix)
1895 		update_flags->bits.gamut_remap_change = 1;
1896 
1897 	if (u->gamma) {
1898 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1899 
1900 		if (u->plane_info)
1901 			format = u->plane_info->format;
1902 		else if (u->surface)
1903 			format = u->surface->format;
1904 
1905 		if (dce_use_lut(format))
1906 			update_flags->bits.gamma_change = 1;
1907 	}
1908 
1909 	if (u->hdr_mult.value)
1910 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1911 			update_flags->bits.hdr_mult = 1;
1912 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1913 		}
1914 
1915 	if (update_flags->bits.in_transfer_func_change) {
1916 		type = UPDATE_TYPE_MED;
1917 		elevate_update_type(&overall_type, type);
1918 	}
1919 
1920 	if (update_flags->bits.input_csc_change
1921 			|| update_flags->bits.coeff_reduction_change
1922 			|| update_flags->bits.gamma_change
1923 			|| update_flags->bits.gamut_remap_change) {
1924 		type = UPDATE_TYPE_FULL;
1925 		elevate_update_type(&overall_type, type);
1926 	}
1927 
1928 	return overall_type;
1929 }
1930 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1931 static enum surface_update_type check_update_surfaces_for_stream(
1932 		struct dc *dc,
1933 		struct dc_surface_update *updates,
1934 		int surface_count,
1935 		struct dc_stream_update *stream_update,
1936 		const struct dc_stream_status *stream_status)
1937 {
1938 	int i;
1939 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1940 
1941 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1942 	if (dc->idle_optimizations_allowed)
1943 		overall_type = UPDATE_TYPE_FULL;
1944 
1945 #endif
1946 	if (stream_status == NULL || stream_status->plane_count != surface_count)
1947 		overall_type = UPDATE_TYPE_FULL;
1948 
1949 	/* some stream updates require passive update */
1950 	if (stream_update) {
1951 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1952 
1953 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1954 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1955 			stream_update->integer_scaling_update)
1956 			su_flags->bits.scaling = 1;
1957 
1958 		if (stream_update->out_transfer_func)
1959 			su_flags->bits.out_tf = 1;
1960 
1961 		if (stream_update->abm_level)
1962 			su_flags->bits.abm_level = 1;
1963 
1964 		if (stream_update->dpms_off)
1965 			su_flags->bits.dpms_off = 1;
1966 
1967 		if (stream_update->gamut_remap)
1968 			su_flags->bits.gamut_remap = 1;
1969 
1970 		if (stream_update->wb_update)
1971 			su_flags->bits.wb_update = 1;
1972 
1973 		if (stream_update->dsc_config)
1974 			su_flags->bits.dsc_changed = 1;
1975 
1976 		if (su_flags->raw != 0)
1977 			overall_type = UPDATE_TYPE_FULL;
1978 
1979 		if (stream_update->output_csc_transform || stream_update->output_color_space)
1980 			su_flags->bits.out_csc = 1;
1981 	}
1982 
1983 	for (i = 0 ; i < surface_count; i++) {
1984 		enum surface_update_type type =
1985 				det_surface_update(dc, &updates[i]);
1986 
1987 		elevate_update_type(&overall_type, type);
1988 	}
1989 
1990 	return overall_type;
1991 }
1992 
1993 /**
1994  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1995  *
1996  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1997  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1998 enum surface_update_type dc_check_update_surfaces_for_stream(
1999 		struct dc *dc,
2000 		struct dc_surface_update *updates,
2001 		int surface_count,
2002 		struct dc_stream_update *stream_update,
2003 		const struct dc_stream_status *stream_status)
2004 {
2005 	int i;
2006 	enum surface_update_type type;
2007 
2008 	if (stream_update)
2009 		stream_update->stream->update_flags.raw = 0;
2010 	for (i = 0; i < surface_count; i++)
2011 		updates[i].surface->update_flags.raw = 0;
2012 
2013 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2014 	if (type == UPDATE_TYPE_FULL) {
2015 		if (stream_update) {
2016 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2017 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2018 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2019 		}
2020 		for (i = 0; i < surface_count; i++)
2021 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2022 	}
2023 
2024 	if (type == UPDATE_TYPE_FAST) {
2025 		// If there's an available clock comparator, we use that.
2026 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2027 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2028 				dc->optimized_required = true;
2029 		// Else we fallback to mem compare.
2030 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2031 			dc->optimized_required = true;
2032 		}
2033 
2034 		dc->optimized_required |= dc->wm_optimized_required;
2035 	}
2036 
2037 	return type;
2038 }
2039 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2040 static struct dc_stream_status *stream_get_status(
2041 	struct dc_state *ctx,
2042 	struct dc_stream_state *stream)
2043 {
2044 	uint8_t i;
2045 
2046 	for (i = 0; i < ctx->stream_count; i++) {
2047 		if (stream == ctx->streams[i]) {
2048 			return &ctx->stream_status[i];
2049 		}
2050 	}
2051 
2052 	return NULL;
2053 }
2054 
2055 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2056 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2057 static void copy_surface_update_to_plane(
2058 		struct dc_plane_state *surface,
2059 		struct dc_surface_update *srf_update)
2060 {
2061 	if (srf_update->flip_addr) {
2062 		surface->address = srf_update->flip_addr->address;
2063 		surface->flip_immediate =
2064 			srf_update->flip_addr->flip_immediate;
2065 		surface->time.time_elapsed_in_us[surface->time.index] =
2066 			srf_update->flip_addr->flip_timestamp_in_us -
2067 				surface->time.prev_update_time_in_us;
2068 		surface->time.prev_update_time_in_us =
2069 			srf_update->flip_addr->flip_timestamp_in_us;
2070 		surface->time.index++;
2071 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2072 			surface->time.index = 0;
2073 
2074 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2075 	}
2076 
2077 	if (srf_update->scaling_info) {
2078 		surface->scaling_quality =
2079 				srf_update->scaling_info->scaling_quality;
2080 		surface->dst_rect =
2081 				srf_update->scaling_info->dst_rect;
2082 		surface->src_rect =
2083 				srf_update->scaling_info->src_rect;
2084 		surface->clip_rect =
2085 				srf_update->scaling_info->clip_rect;
2086 	}
2087 
2088 	if (srf_update->plane_info) {
2089 		surface->color_space =
2090 				srf_update->plane_info->color_space;
2091 		surface->format =
2092 				srf_update->plane_info->format;
2093 		surface->plane_size =
2094 				srf_update->plane_info->plane_size;
2095 		surface->rotation =
2096 				srf_update->plane_info->rotation;
2097 		surface->horizontal_mirror =
2098 				srf_update->plane_info->horizontal_mirror;
2099 		surface->stereo_format =
2100 				srf_update->plane_info->stereo_format;
2101 		surface->tiling_info =
2102 				srf_update->plane_info->tiling_info;
2103 		surface->visible =
2104 				srf_update->plane_info->visible;
2105 		surface->per_pixel_alpha =
2106 				srf_update->plane_info->per_pixel_alpha;
2107 		surface->global_alpha =
2108 				srf_update->plane_info->global_alpha;
2109 		surface->global_alpha_value =
2110 				srf_update->plane_info->global_alpha_value;
2111 		surface->dcc =
2112 				srf_update->plane_info->dcc;
2113 		surface->layer_index =
2114 				srf_update->plane_info->layer_index;
2115 	}
2116 
2117 	if (srf_update->gamma &&
2118 			(surface->gamma_correction !=
2119 					srf_update->gamma)) {
2120 		memcpy(&surface->gamma_correction->entries,
2121 			&srf_update->gamma->entries,
2122 			sizeof(struct dc_gamma_entries));
2123 		surface->gamma_correction->is_identity =
2124 			srf_update->gamma->is_identity;
2125 		surface->gamma_correction->num_entries =
2126 			srf_update->gamma->num_entries;
2127 		surface->gamma_correction->type =
2128 			srf_update->gamma->type;
2129 	}
2130 
2131 	if (srf_update->in_transfer_func &&
2132 			(surface->in_transfer_func !=
2133 				srf_update->in_transfer_func)) {
2134 		surface->in_transfer_func->sdr_ref_white_level =
2135 			srf_update->in_transfer_func->sdr_ref_white_level;
2136 		surface->in_transfer_func->tf =
2137 			srf_update->in_transfer_func->tf;
2138 		surface->in_transfer_func->type =
2139 			srf_update->in_transfer_func->type;
2140 		memcpy(&surface->in_transfer_func->tf_pts,
2141 			&srf_update->in_transfer_func->tf_pts,
2142 			sizeof(struct dc_transfer_func_distributed_points));
2143 	}
2144 
2145 	if (srf_update->func_shaper &&
2146 			(surface->in_shaper_func !=
2147 			srf_update->func_shaper))
2148 		memcpy(surface->in_shaper_func, srf_update->func_shaper,
2149 		sizeof(*surface->in_shaper_func));
2150 
2151 	if (srf_update->lut3d_func &&
2152 			(surface->lut3d_func !=
2153 			srf_update->lut3d_func))
2154 		memcpy(surface->lut3d_func, srf_update->lut3d_func,
2155 		sizeof(*surface->lut3d_func));
2156 
2157 	if (srf_update->hdr_mult.value)
2158 		surface->hdr_mult =
2159 				srf_update->hdr_mult;
2160 
2161 	if (srf_update->blend_tf &&
2162 			(surface->blend_tf !=
2163 			srf_update->blend_tf))
2164 		memcpy(surface->blend_tf, srf_update->blend_tf,
2165 		sizeof(*surface->blend_tf));
2166 
2167 	if (srf_update->input_csc_color_matrix)
2168 		surface->input_csc_color_matrix =
2169 			*srf_update->input_csc_color_matrix;
2170 
2171 	if (srf_update->coeff_reduction_factor)
2172 		surface->coeff_reduction_factor =
2173 			*srf_update->coeff_reduction_factor;
2174 
2175 	if (srf_update->gamut_remap_matrix)
2176 		surface->gamut_remap_matrix =
2177 			*srf_update->gamut_remap_matrix;
2178 }
2179 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2180 static void copy_stream_update_to_stream(struct dc *dc,
2181 					 struct dc_state *context,
2182 					 struct dc_stream_state *stream,
2183 					 struct dc_stream_update *update)
2184 {
2185 	struct dc_context *dc_ctx = dc->ctx;
2186 
2187 	if (update == NULL || stream == NULL)
2188 		return;
2189 
2190 	if (update->src.height && update->src.width)
2191 		stream->src = update->src;
2192 
2193 	if (update->dst.height && update->dst.width)
2194 		stream->dst = update->dst;
2195 
2196 	if (update->out_transfer_func &&
2197 	    stream->out_transfer_func != update->out_transfer_func) {
2198 		stream->out_transfer_func->sdr_ref_white_level =
2199 			update->out_transfer_func->sdr_ref_white_level;
2200 		stream->out_transfer_func->tf = update->out_transfer_func->tf;
2201 		stream->out_transfer_func->type =
2202 			update->out_transfer_func->type;
2203 		memcpy(&stream->out_transfer_func->tf_pts,
2204 		       &update->out_transfer_func->tf_pts,
2205 		       sizeof(struct dc_transfer_func_distributed_points));
2206 	}
2207 
2208 	if (update->hdr_static_metadata)
2209 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2210 
2211 	if (update->abm_level)
2212 		stream->abm_level = *update->abm_level;
2213 
2214 	if (update->periodic_interrupt)
2215 		stream->periodic_interrupt = *update->periodic_interrupt;
2216 
2217 	if (update->gamut_remap)
2218 		stream->gamut_remap_matrix = *update->gamut_remap;
2219 
2220 	/* Note: this being updated after mode set is currently not a use case
2221 	 * however if it arises OCSC would need to be reprogrammed at the
2222 	 * minimum
2223 	 */
2224 	if (update->output_color_space)
2225 		stream->output_color_space = *update->output_color_space;
2226 
2227 	if (update->output_csc_transform)
2228 		stream->csc_color_matrix = *update->output_csc_transform;
2229 
2230 	if (update->vrr_infopacket)
2231 		stream->vrr_infopacket = *update->vrr_infopacket;
2232 
2233 	if (update->dpms_off)
2234 		stream->dpms_off = *update->dpms_off;
2235 
2236 	if (update->vsc_infopacket)
2237 		stream->vsc_infopacket = *update->vsc_infopacket;
2238 
2239 	if (update->vsp_infopacket)
2240 		stream->vsp_infopacket = *update->vsp_infopacket;
2241 
2242 	if (update->dither_option)
2243 		stream->dither_option = *update->dither_option;
2244 	/* update current stream with writeback info */
2245 	if (update->wb_update) {
2246 		int i;
2247 
2248 		stream->num_wb_info = update->wb_update->num_wb_info;
2249 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2250 		for (i = 0; i < stream->num_wb_info; i++)
2251 			stream->writeback_info[i] =
2252 				update->wb_update->writeback_info[i];
2253 	}
2254 	if (update->dsc_config) {
2255 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2256 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2257 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2258 				       update->dsc_config->num_slices_v != 0);
2259 
2260 		/* Use temporarry context for validating new DSC config */
2261 		struct dc_state *dsc_validate_context = dc_create_state(dc);
2262 
2263 		if (dsc_validate_context) {
2264 			dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2265 
2266 			stream->timing.dsc_cfg = *update->dsc_config;
2267 			stream->timing.flags.DSC = enable_dsc;
2268 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2269 				stream->timing.dsc_cfg = old_dsc_cfg;
2270 				stream->timing.flags.DSC = old_dsc_enabled;
2271 				update->dsc_config = NULL;
2272 			}
2273 
2274 			dc_release_state(dsc_validate_context);
2275 		} else {
2276 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
2277 			update->dsc_config = NULL;
2278 		}
2279 	}
2280 }
2281 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2282 static void commit_planes_do_stream_update(struct dc *dc,
2283 		struct dc_stream_state *stream,
2284 		struct dc_stream_update *stream_update,
2285 		enum surface_update_type update_type,
2286 		struct dc_state *context)
2287 {
2288 	int j;
2289 	bool should_program_abm;
2290 
2291 	// Stream updates
2292 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2293 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2294 
2295 		if (!pipe_ctx->top_pipe &&  !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2296 
2297 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
2298 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
2299 
2300 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2301 					stream_update->vrr_infopacket ||
2302 					stream_update->vsc_infopacket ||
2303 					stream_update->vsp_infopacket) {
2304 				resource_build_info_frame(pipe_ctx);
2305 				dc->hwss.update_info_frame(pipe_ctx);
2306 			}
2307 
2308 			if (stream_update->hdr_static_metadata &&
2309 					stream->use_dynamic_meta &&
2310 					dc->hwss.set_dmdata_attributes &&
2311 					pipe_ctx->stream->dmdata_address.quad_part != 0)
2312 				dc->hwss.set_dmdata_attributes(pipe_ctx);
2313 
2314 			if (stream_update->gamut_remap)
2315 				dc_stream_set_gamut_remap(dc, stream);
2316 
2317 			if (stream_update->output_csc_transform)
2318 				dc_stream_program_csc_matrix(dc, stream);
2319 
2320 			if (stream_update->dither_option) {
2321 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2322 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2323 									&pipe_ctx->stream->bit_depth_params);
2324 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2325 						&stream->bit_depth_params,
2326 						&stream->clamping);
2327 				while (odm_pipe) {
2328 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2329 							&stream->bit_depth_params,
2330 							&stream->clamping);
2331 					odm_pipe = odm_pipe->next_odm_pipe;
2332 				}
2333 			}
2334 
2335 			/* Full fe update*/
2336 			if (update_type == UPDATE_TYPE_FAST)
2337 				continue;
2338 
2339 			if (stream_update->dsc_config)
2340 				dp_update_dsc_config(pipe_ctx);
2341 
2342 			if (stream_update->dpms_off) {
2343 				if (*stream_update->dpms_off) {
2344 					core_link_disable_stream(pipe_ctx);
2345 					/* for dpms, keep acquired resources*/
2346 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2347 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2348 
2349 					dc->optimized_required = true;
2350 
2351 				} else {
2352 					if (dc->optimize_seamless_boot_streams == 0)
2353 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
2354 
2355 					core_link_enable_stream(dc->current_state, pipe_ctx);
2356 				}
2357 			}
2358 
2359 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2360 				should_program_abm = true;
2361 
2362 				// if otg funcs defined check if blanked before programming
2363 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2364 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2365 						should_program_abm = false;
2366 
2367 				if (should_program_abm) {
2368 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2369 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
2370 					} else {
2371 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
2372 							pipe_ctx->stream_res.abm, stream->abm_level);
2373 					}
2374 				}
2375 			}
2376 		}
2377 	}
2378 }
2379 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2380 static void commit_planes_for_stream(struct dc *dc,
2381 		struct dc_surface_update *srf_updates,
2382 		int surface_count,
2383 		struct dc_stream_state *stream,
2384 		struct dc_stream_update *stream_update,
2385 		enum surface_update_type update_type,
2386 		struct dc_state *context)
2387 {
2388 	bool mpcc_disconnected = false;
2389 	int i, j;
2390 	struct pipe_ctx *top_pipe_to_program = NULL;
2391 
2392 	if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2393 		/* Optimize seamless boot flag keeps clocks and watermarks high until
2394 		 * first flip. After first flip, optimization is required to lower
2395 		 * bandwidth. Important to note that it is expected UEFI will
2396 		 * only light up a single display on POST, therefore we only expect
2397 		 * one stream with seamless boot flag set.
2398 		 */
2399 		if (stream->apply_seamless_boot_optimization) {
2400 			stream->apply_seamless_boot_optimization = false;
2401 			dc->optimize_seamless_boot_streams--;
2402 
2403 			if (dc->optimize_seamless_boot_streams == 0)
2404 				dc->optimized_required = true;
2405 		}
2406 	}
2407 
2408 	if (update_type == UPDATE_TYPE_FULL) {
2409 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
2410 		dc_allow_idle_optimizations(dc, false);
2411 
2412 #endif
2413 		if (dc->optimize_seamless_boot_streams == 0)
2414 			dc->hwss.prepare_bandwidth(dc, context);
2415 
2416 		context_clock_trace(dc, context);
2417 	}
2418 
2419 	if (update_type != UPDATE_TYPE_FAST && dc->hwss.interdependent_update_lock &&
2420 		dc->hwss.disconnect_pipes && dc->hwss.wait_for_pending_cleared){
2421 		dc->hwss.interdependent_update_lock(dc, context, true);
2422 		mpcc_disconnected = dc->hwss.disconnect_pipes(dc, context);
2423 		dc->hwss.interdependent_update_lock(dc, context, false);
2424 		if (mpcc_disconnected)
2425 			dc->hwss.wait_for_pending_cleared(dc, context);
2426 	}
2427 
2428 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2429 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2430 
2431 		if (!pipe_ctx->top_pipe &&
2432 			!pipe_ctx->prev_odm_pipe &&
2433 			pipe_ctx->stream &&
2434 			pipe_ctx->stream == stream) {
2435 			top_pipe_to_program = pipe_ctx;
2436 		}
2437 	}
2438 
2439 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2440 		if (top_pipe_to_program &&
2441 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2442 			if (should_use_dmub_lock(stream->link)) {
2443 				union dmub_hw_lock_flags hw_locks = { 0 };
2444 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2445 
2446 				hw_locks.bits.lock_dig = 1;
2447 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2448 
2449 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2450 							true,
2451 							&hw_locks,
2452 							&inst_flags);
2453 			} else
2454 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2455 						top_pipe_to_program->stream_res.tg);
2456 		}
2457 
2458 	if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2459 		dc->hwss.interdependent_update_lock(dc, context, true);
2460 	else
2461 		/* Lock the top pipe while updating plane addrs, since freesync requires
2462 		 *  plane addr update event triggers to be synchronized.
2463 		 *  top_pipe_to_program is expected to never be NULL
2464 		 */
2465 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2466 
2467 
2468 	// Stream updates
2469 	if (stream_update)
2470 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2471 
2472 	if (surface_count == 0) {
2473 		/*
2474 		 * In case of turning off screen, no need to program front end a second time.
2475 		 * just return after program blank.
2476 		 */
2477 		if (dc->hwss.apply_ctx_for_surface)
2478 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2479 		if (dc->hwss.program_front_end_for_ctx)
2480 			dc->hwss.program_front_end_for_ctx(dc, context);
2481 
2482 		if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2483 			dc->hwss.interdependent_update_lock(dc, context, false);
2484 		else
2485 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2486 
2487 		dc->hwss.post_unlock_program_front_end(dc, context);
2488 		return;
2489 	}
2490 
2491 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2492 		for (i = 0; i < surface_count; i++) {
2493 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2494 			/*set logical flag for lock/unlock use*/
2495 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2496 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2497 				if (!pipe_ctx->plane_state)
2498 					continue;
2499 				if (pipe_ctx->plane_state != plane_state)
2500 					continue;
2501 				plane_state->triplebuffer_flips = false;
2502 				if (update_type == UPDATE_TYPE_FAST &&
2503 					dc->hwss.program_triplebuffer != NULL &&
2504 					!plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2505 						/*triple buffer for VUpdate  only*/
2506 						plane_state->triplebuffer_flips = true;
2507 				}
2508 			}
2509 			if (update_type == UPDATE_TYPE_FULL) {
2510 				/* force vsync flip when reconfiguring pipes to prevent underflow */
2511 				plane_state->flip_immediate = false;
2512 			}
2513 		}
2514 	}
2515 
2516 	// Update Type FULL, Surface updates
2517 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2518 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2519 
2520 		if (!pipe_ctx->top_pipe &&
2521 			!pipe_ctx->prev_odm_pipe &&
2522 			pipe_ctx->stream &&
2523 			pipe_ctx->stream == stream) {
2524 			struct dc_stream_status *stream_status = NULL;
2525 
2526 			if (!pipe_ctx->plane_state)
2527 				continue;
2528 
2529 			/* Full fe update*/
2530 			if (update_type == UPDATE_TYPE_FAST)
2531 				continue;
2532 
2533 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2534 
2535 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2536 				/*turn off triple buffer for full update*/
2537 				dc->hwss.program_triplebuffer(
2538 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2539 			}
2540 			stream_status =
2541 				stream_get_status(context, pipe_ctx->stream);
2542 
2543 			if (dc->hwss.apply_ctx_for_surface)
2544 				dc->hwss.apply_ctx_for_surface(
2545 					dc, pipe_ctx->stream, stream_status->plane_count, context);
2546 		}
2547 	}
2548 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2549 		dc->hwss.program_front_end_for_ctx(dc, context);
2550 #ifdef CONFIG_DRM_AMD_DC_DCN
2551 		if (dc->debug.validate_dml_output) {
2552 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
2553 				struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2554 				if (cur_pipe.stream == NULL)
2555 					continue;
2556 
2557 				cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2558 						cur_pipe.plane_res.hubp, dc->ctx,
2559 						&context->res_ctx.pipe_ctx[i].rq_regs,
2560 						&context->res_ctx.pipe_ctx[i].dlg_regs,
2561 						&context->res_ctx.pipe_ctx[i].ttu_regs);
2562 			}
2563 		}
2564 #endif
2565 	}
2566 
2567 	// Update Type FAST, Surface updates
2568 	if (update_type == UPDATE_TYPE_FAST) {
2569 		if (dc->hwss.set_flip_control_gsl)
2570 			for (i = 0; i < surface_count; i++) {
2571 				struct dc_plane_state *plane_state = srf_updates[i].surface;
2572 
2573 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
2574 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2575 
2576 					if (pipe_ctx->stream != stream)
2577 						continue;
2578 
2579 					if (pipe_ctx->plane_state != plane_state)
2580 						continue;
2581 
2582 					// GSL has to be used for flip immediate
2583 					dc->hwss.set_flip_control_gsl(pipe_ctx,
2584 							plane_state->flip_immediate);
2585 				}
2586 			}
2587 		/* Perform requested Updates */
2588 		for (i = 0; i < surface_count; i++) {
2589 			struct dc_plane_state *plane_state = srf_updates[i].surface;
2590 
2591 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2592 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2593 
2594 				if (pipe_ctx->stream != stream)
2595 					continue;
2596 
2597 				if (pipe_ctx->plane_state != plane_state)
2598 					continue;
2599 				/*program triple buffer after lock based on flip type*/
2600 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2601 					/*only enable triplebuffer for  fast_update*/
2602 					dc->hwss.program_triplebuffer(
2603 						dc, pipe_ctx, plane_state->triplebuffer_flips);
2604 				}
2605 				if (srf_updates[i].flip_addr)
2606 					dc->hwss.update_plane_addr(dc, pipe_ctx);
2607 			}
2608 		}
2609 	}
2610 
2611 	if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2612 		dc->hwss.interdependent_update_lock(dc, context, false);
2613 	else
2614 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2615 
2616 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2617 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2618 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2619 					top_pipe_to_program->stream_res.tg,
2620 					CRTC_STATE_VACTIVE);
2621 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2622 					top_pipe_to_program->stream_res.tg,
2623 					CRTC_STATE_VBLANK);
2624 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2625 					top_pipe_to_program->stream_res.tg,
2626 					CRTC_STATE_VACTIVE);
2627 
2628 			if (stream && should_use_dmub_lock(stream->link)) {
2629 				union dmub_hw_lock_flags hw_locks = { 0 };
2630 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2631 
2632 				hw_locks.bits.lock_dig = 1;
2633 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2634 
2635 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2636 							false,
2637 							&hw_locks,
2638 							&inst_flags);
2639 			} else
2640 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2641 					top_pipe_to_program->stream_res.tg);
2642 		}
2643 
2644 	if (update_type != UPDATE_TYPE_FAST)
2645 		dc->hwss.post_unlock_program_front_end(dc, context);
2646 
2647 	// Fire manual trigger only when bottom plane is flipped
2648 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
2649 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2650 
2651 		if (pipe_ctx->bottom_pipe ||
2652 				!pipe_ctx->stream ||
2653 				pipe_ctx->stream != stream ||
2654 				!pipe_ctx->plane_state->update_flags.bits.addr_update)
2655 			continue;
2656 
2657 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2658 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2659 	}
2660 }
2661 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)2662 void dc_commit_updates_for_stream(struct dc *dc,
2663 		struct dc_surface_update *srf_updates,
2664 		int surface_count,
2665 		struct dc_stream_state *stream,
2666 		struct dc_stream_update *stream_update,
2667 		struct dc_state *state)
2668 {
2669 	const struct dc_stream_status *stream_status;
2670 	enum surface_update_type update_type;
2671 	struct dc_state *context;
2672 	struct dc_context *dc_ctx = dc->ctx;
2673 	int i, j;
2674 
2675 	stream_status = dc_stream_get_status(stream);
2676 	context = dc->current_state;
2677 
2678 	update_type = dc_check_update_surfaces_for_stream(
2679 				dc, srf_updates, surface_count, stream_update, stream_status);
2680 
2681 	if (update_type >= update_surface_trace_level)
2682 		update_surface_trace(dc, srf_updates, surface_count);
2683 
2684 
2685 	if (update_type >= UPDATE_TYPE_FULL) {
2686 
2687 		/* initialize scratch memory for building context */
2688 		context = dc_create_state(dc);
2689 		if (context == NULL) {
2690 			DC_ERROR("Failed to allocate new validate context!\n");
2691 			return;
2692 		}
2693 
2694 		dc_resource_state_copy_construct(state, context);
2695 
2696 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2697 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2698 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2699 
2700 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2701 				new_pipe->plane_state->force_full_update = true;
2702 		}
2703 	}
2704 
2705 
2706 	for (i = 0; i < surface_count; i++) {
2707 		struct dc_plane_state *surface = srf_updates[i].surface;
2708 
2709 		copy_surface_update_to_plane(surface, &srf_updates[i]);
2710 
2711 		if (update_type >= UPDATE_TYPE_MED) {
2712 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
2713 				struct pipe_ctx *pipe_ctx =
2714 					&context->res_ctx.pipe_ctx[j];
2715 
2716 				if (pipe_ctx->plane_state != surface)
2717 					continue;
2718 
2719 				resource_build_scaling_params(pipe_ctx);
2720 			}
2721 		}
2722 	}
2723 
2724 	copy_stream_update_to_stream(dc, context, stream, stream_update);
2725 
2726 	if (update_type >= UPDATE_TYPE_FULL) {
2727 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2728 			DC_ERROR("Mode validation failed for stream update!\n");
2729 			dc_release_state(context);
2730 			return;
2731 		}
2732 	}
2733 
2734 	commit_planes_for_stream(
2735 				dc,
2736 				srf_updates,
2737 				surface_count,
2738 				stream,
2739 				stream_update,
2740 				update_type,
2741 				context);
2742 	/*update current_State*/
2743 	if (dc->current_state != context) {
2744 
2745 		struct dc_state *old = dc->current_state;
2746 
2747 		dc->current_state = context;
2748 		dc_release_state(old);
2749 
2750 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2751 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2752 
2753 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2754 				pipe_ctx->plane_state->force_full_update = false;
2755 		}
2756 	}
2757 	/*let's use current_state to update watermark etc*/
2758 	if (update_type >= UPDATE_TYPE_FULL)
2759 		dc_post_update_surfaces_to_stream(dc);
2760 
2761 	return;
2762 
2763 }
2764 
dc_get_current_stream_count(struct dc * dc)2765 uint8_t dc_get_current_stream_count(struct dc *dc)
2766 {
2767 	return dc->current_state->stream_count;
2768 }
2769 
dc_get_stream_at_index(struct dc * dc,uint8_t i)2770 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2771 {
2772 	if (i < dc->current_state->stream_count)
2773 		return dc->current_state->streams[i];
2774 	return NULL;
2775 }
2776 
dc_stream_find_from_link(const struct dc_link * link)2777 struct dc_stream_state *dc_stream_find_from_link(const struct dc_link *link)
2778 {
2779 	uint8_t i;
2780 	struct dc_context *ctx = link->ctx;
2781 
2782 	for (i = 0; i < ctx->dc->current_state->stream_count; i++) {
2783 		if (ctx->dc->current_state->streams[i]->link == link)
2784 			return ctx->dc->current_state->streams[i];
2785 	}
2786 
2787 	return NULL;
2788 }
2789 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)2790 enum dc_irq_source dc_interrupt_to_irq_source(
2791 		struct dc *dc,
2792 		uint32_t src_id,
2793 		uint32_t ext_id)
2794 {
2795 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2796 }
2797 
2798 /**
2799  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2800  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)2801 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2802 {
2803 
2804 	if (dc == NULL)
2805 		return false;
2806 
2807 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2808 }
2809 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)2810 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2811 {
2812 	dal_irq_service_ack(dc->res_pool->irqs, src);
2813 }
2814 
dc_power_down_on_boot(struct dc * dc)2815 void dc_power_down_on_boot(struct dc *dc)
2816 {
2817 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
2818 			dc->hwss.power_down_on_boot)
2819 		dc->hwss.power_down_on_boot(dc);
2820 }
2821 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)2822 void dc_set_power_state(
2823 	struct dc *dc,
2824 	enum dc_acpi_cm_power_state power_state)
2825 {
2826 	struct kref refcount;
2827 	struct display_mode_lib *dml;
2828 
2829 	switch (power_state) {
2830 	case DC_ACPI_CM_POWER_STATE_D0:
2831 		dc_resource_state_construct(dc, dc->current_state);
2832 
2833 		if (dc->ctx->dmub_srv)
2834 			dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2835 
2836 		dc->hwss.init_hw(dc);
2837 
2838 		if (dc->hwss.init_sys_ctx != NULL &&
2839 			dc->vm_pa_config.valid) {
2840 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2841 		}
2842 
2843 		break;
2844 	default:
2845 		ASSERT(dc->current_state->stream_count == 0);
2846 		/* Zero out the current context so that on resume we start with
2847 		 * clean state, and dc hw programming optimizations will not
2848 		 * cause any trouble.
2849 		 */
2850 		dml = kzalloc(sizeof(struct display_mode_lib),
2851 				GFP_KERNEL);
2852 
2853 		ASSERT(dml);
2854 		if (!dml)
2855 			return;
2856 
2857 		/* Preserve refcount */
2858 		refcount = dc->current_state->refcount;
2859 		/* Preserve display mode lib */
2860 		memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2861 
2862 		dc_resource_state_destruct(dc->current_state);
2863 		memset(dc->current_state, 0,
2864 				sizeof(*dc->current_state));
2865 
2866 		dc->current_state->refcount = refcount;
2867 		dc->current_state->bw_ctx.dml = *dml;
2868 
2869 		kfree(dml);
2870 
2871 		break;
2872 	}
2873 }
2874 
dc_resume(struct dc * dc)2875 void dc_resume(struct dc *dc)
2876 {
2877 	uint32_t i;
2878 
2879 	for (i = 0; i < dc->link_count; i++)
2880 		core_link_resume(dc->links[i]);
2881 }
2882 
dc_is_dmcu_initialized(struct dc * dc)2883 bool dc_is_dmcu_initialized(struct dc *dc)
2884 {
2885 	struct dmcu *dmcu = dc->res_pool->dmcu;
2886 
2887 	if (dmcu)
2888 		return dmcu->funcs->is_dmcu_initialized(dmcu);
2889 	return false;
2890 }
2891 
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)2892 bool dc_submit_i2c(
2893 		struct dc *dc,
2894 		uint32_t link_index,
2895 		struct i2c_command *cmd)
2896 {
2897 
2898 	struct dc_link *link = dc->links[link_index];
2899 	struct ddc_service *ddc = link->ddc;
2900 	return dce_i2c_submit_command(
2901 		dc->res_pool,
2902 		ddc->ddc_pin,
2903 		cmd);
2904 }
2905 
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)2906 bool dc_submit_i2c_oem(
2907 		struct dc *dc,
2908 		struct i2c_command *cmd)
2909 {
2910 	struct ddc_service *ddc = dc->res_pool->oem_device;
2911 	return dce_i2c_submit_command(
2912 		dc->res_pool,
2913 		ddc->ddc_pin,
2914 		cmd);
2915 }
2916 
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)2917 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2918 {
2919 	if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2920 		BREAK_TO_DEBUGGER();
2921 		return false;
2922 	}
2923 
2924 	dc_sink_retain(sink);
2925 
2926 	dc_link->remote_sinks[dc_link->sink_count] = sink;
2927 	dc_link->sink_count++;
2928 
2929 	return true;
2930 }
2931 
2932 /**
2933  * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2934  *
2935  * EDID length is in bytes
2936  */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)2937 struct dc_sink *dc_link_add_remote_sink(
2938 		struct dc_link *link,
2939 		const uint8_t *edid,
2940 		int len,
2941 		struct dc_sink_init_data *init_data)
2942 {
2943 	struct dc_sink *dc_sink;
2944 	enum dc_edid_status edid_status;
2945 
2946 	if (len > DC_MAX_EDID_BUFFER_SIZE) {
2947 		dm_error("Max EDID buffer size breached!\n");
2948 		return NULL;
2949 	}
2950 
2951 	if (!init_data) {
2952 		BREAK_TO_DEBUGGER();
2953 		return NULL;
2954 	}
2955 
2956 	if (!init_data->link) {
2957 		BREAK_TO_DEBUGGER();
2958 		return NULL;
2959 	}
2960 
2961 	dc_sink = dc_sink_create(init_data);
2962 
2963 	if (!dc_sink)
2964 		return NULL;
2965 
2966 	memmove(dc_sink->dc_edid.raw_edid, edid, len);
2967 	dc_sink->dc_edid.length = len;
2968 
2969 	if (!link_add_remote_sink_helper(
2970 			link,
2971 			dc_sink))
2972 		goto fail_add_sink;
2973 
2974 	edid_status = dm_helpers_parse_edid_caps(
2975 			link->ctx,
2976 			&dc_sink->dc_edid,
2977 			&dc_sink->edid_caps);
2978 
2979 	/*
2980 	 * Treat device as no EDID device if EDID
2981 	 * parsing fails
2982 	 */
2983 	if (edid_status != EDID_OK) {
2984 		dc_sink->dc_edid.length = 0;
2985 		dm_error("Bad EDID, status%d!\n", edid_status);
2986 	}
2987 
2988 	return dc_sink;
2989 
2990 fail_add_sink:
2991 	dc_sink_release(dc_sink);
2992 	return NULL;
2993 }
2994 
2995 /**
2996  * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2997  *
2998  * Note that this just removes the struct dc_sink - it doesn't
2999  * program hardware or alter other members of dc_link
3000  */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)3001 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
3002 {
3003 	int i;
3004 
3005 	if (!link->sink_count) {
3006 		BREAK_TO_DEBUGGER();
3007 		return;
3008 	}
3009 
3010 	for (i = 0; i < link->sink_count; i++) {
3011 		if (link->remote_sinks[i] == sink) {
3012 			dc_sink_release(sink);
3013 			link->remote_sinks[i] = NULL;
3014 
3015 			/* shrink array to remove empty place */
3016 			while (i < link->sink_count - 1) {
3017 				link->remote_sinks[i] = link->remote_sinks[i+1];
3018 				i++;
3019 			}
3020 			link->remote_sinks[i] = NULL;
3021 			link->sink_count--;
3022 			return;
3023 		}
3024 	}
3025 }
3026 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)3027 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3028 {
3029 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3030 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3031 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3032 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3033 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3034 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3035 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3036 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3037 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3038 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3039 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3040 {
3041 	if (dc->hwss.set_clock)
3042 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3043 	return DC_ERROR_UNEXPECTED;
3044 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3045 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3046 {
3047 	if (dc->hwss.get_clock)
3048 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
3049 }
3050 
3051 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)3052 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3053 {
3054 	int i;
3055 
3056 	for (i = 0; i < dc->current_state->stream_count ; i++) {
3057 		struct dc_link *link;
3058 		struct dc_stream_state *stream = dc->current_state->streams[i];
3059 
3060 		link = stream->link;
3061 		if (!link)
3062 			continue;
3063 
3064 		if (link->psr_settings.psr_feature_enabled) {
3065 			if (enable && !link->psr_settings.psr_allow_active)
3066 				return dc_link_set_psr_allow_active(link, true, false);
3067 			else if (!enable && link->psr_settings.psr_allow_active)
3068 				return dc_link_set_psr_allow_active(link, false, true);
3069 		}
3070 	}
3071 
3072 	return true;
3073 }
3074 
3075 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
3076 
dc_allow_idle_optimizations(struct dc * dc,bool allow)3077 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3078 {
3079 	if (dc->debug.disable_idle_power_optimizations)
3080 		return;
3081 
3082 	if (allow == dc->idle_optimizations_allowed)
3083 		return;
3084 
3085 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3086 		dc->idle_optimizations_allowed = allow;
3087 }
3088 
3089 /*
3090  * blank all streams, and set min and max memory clock to
3091  * lowest and highest DPM level, respectively
3092  */
dc_unlock_memory_clock_frequency(struct dc * dc)3093 void dc_unlock_memory_clock_frequency(struct dc *dc)
3094 {
3095 	unsigned int i;
3096 
3097 	for (i = 0; i < MAX_PIPES; i++)
3098 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3099 			core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3100 
3101 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3102 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3103 }
3104 
3105 /*
3106  * set min memory clock to the min required for current mode,
3107  * max to maxDPM, and unblank streams
3108  */
dc_lock_memory_clock_frequency(struct dc * dc)3109 void dc_lock_memory_clock_frequency(struct dc *dc)
3110 {
3111 	unsigned int i;
3112 
3113 	dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3114 	dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3115 	dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3116 
3117 	for (i = 0; i < MAX_PIPES; i++)
3118 		if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3119 			core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3120 }
3121 
dc_is_plane_eligible_for_idle_optimizaitons(struct dc * dc,struct dc_plane_state * plane)3122 bool dc_is_plane_eligible_for_idle_optimizaitons(struct dc *dc,
3123 						 struct dc_plane_state *plane)
3124 {
3125 	return false;
3126 }
3127 #endif
3128