1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 #include <trace/hooks/net.h>
150
151 #include "net-sysfs.h"
152
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly; /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167 static int call_netdevice_notifiers_extack(unsigned long val,
168 struct net_device *dev,
169 struct netlink_ext_ack *extack);
170 static struct napi_struct *napi_by_id(unsigned int napi_id);
171
172 /*
173 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
174 * semaphore.
175 *
176 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
177 *
178 * Writers must hold the rtnl semaphore while they loop through the
179 * dev_base_head list, and hold dev_base_lock for writing when they do the
180 * actual updates. This allows pure readers to access the list even
181 * while a writer is preparing to update it.
182 *
183 * To put it another way, dev_base_lock is held for writing only to
184 * protect against pure readers; the rtnl semaphore provides the
185 * protection against other writers.
186 *
187 * See, for example usages, register_netdevice() and
188 * unregister_netdevice(), which must be called with the rtnl
189 * semaphore held.
190 */
191 DEFINE_RWLOCK(dev_base_lock);
192 EXPORT_SYMBOL(dev_base_lock);
193
194 static DEFINE_MUTEX(ifalias_mutex);
195
196 /* protects napi_hash addition/deletion and napi_gen_id */
197 static DEFINE_SPINLOCK(napi_hash_lock);
198
199 static unsigned int napi_gen_id = NR_CPUS;
200 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
201
202 static DECLARE_RWSEM(devnet_rename_sem);
203
dev_base_seq_inc(struct net * net)204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0)
207 ;
208 }
209
dev_name_hash(struct net * net,const char * name)210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 {
212 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
213
214 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 }
216
dev_index_hash(struct net * net,int ifindex)217 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
218 {
219 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 }
221
rps_lock(struct softnet_data * sd)222 static inline void rps_lock(struct softnet_data *sd)
223 {
224 #ifdef CONFIG_RPS
225 spin_lock(&sd->input_pkt_queue.lock);
226 #endif
227 }
228
rps_unlock(struct softnet_data * sd)229 static inline void rps_unlock(struct softnet_data *sd)
230 {
231 #ifdef CONFIG_RPS
232 spin_unlock(&sd->input_pkt_queue.lock);
233 #endif
234 }
235
netdev_name_node_alloc(struct net_device * dev,const char * name)236 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
237 const char *name)
238 {
239 struct netdev_name_node *name_node;
240
241 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
242 if (!name_node)
243 return NULL;
244 INIT_HLIST_NODE(&name_node->hlist);
245 name_node->dev = dev;
246 name_node->name = name;
247 return name_node;
248 }
249
250 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)251 netdev_name_node_head_alloc(struct net_device *dev)
252 {
253 struct netdev_name_node *name_node;
254
255 name_node = netdev_name_node_alloc(dev, dev->name);
256 if (!name_node)
257 return NULL;
258 INIT_LIST_HEAD(&name_node->list);
259 return name_node;
260 }
261
netdev_name_node_free(struct netdev_name_node * name_node)262 static void netdev_name_node_free(struct netdev_name_node *name_node)
263 {
264 kfree(name_node);
265 }
266
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)267 static void netdev_name_node_add(struct net *net,
268 struct netdev_name_node *name_node)
269 {
270 hlist_add_head_rcu(&name_node->hlist,
271 dev_name_hash(net, name_node->name));
272 }
273
netdev_name_node_del(struct netdev_name_node * name_node)274 static void netdev_name_node_del(struct netdev_name_node *name_node)
275 {
276 hlist_del_rcu(&name_node->hlist);
277 }
278
netdev_name_node_lookup(struct net * net,const char * name)279 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
280 const char *name)
281 {
282 struct hlist_head *head = dev_name_hash(net, name);
283 struct netdev_name_node *name_node;
284
285 hlist_for_each_entry(name_node, head, hlist)
286 if (!strcmp(name_node->name, name))
287 return name_node;
288 return NULL;
289 }
290
netdev_name_node_lookup_rcu(struct net * net,const char * name)291 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
292 const char *name)
293 {
294 struct hlist_head *head = dev_name_hash(net, name);
295 struct netdev_name_node *name_node;
296
297 hlist_for_each_entry_rcu(name_node, head, hlist)
298 if (!strcmp(name_node->name, name))
299 return name_node;
300 return NULL;
301 }
302
netdev_name_node_alt_create(struct net_device * dev,const char * name)303 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
304 {
305 struct netdev_name_node *name_node;
306 struct net *net = dev_net(dev);
307
308 name_node = netdev_name_node_lookup(net, name);
309 if (name_node)
310 return -EEXIST;
311 name_node = netdev_name_node_alloc(dev, name);
312 if (!name_node)
313 return -ENOMEM;
314 netdev_name_node_add(net, name_node);
315 /* The node that holds dev->name acts as a head of per-device list. */
316 list_add_tail(&name_node->list, &dev->name_node->list);
317
318 return 0;
319 }
320 EXPORT_SYMBOL(netdev_name_node_alt_create);
321
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)322 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
323 {
324 list_del(&name_node->list);
325 netdev_name_node_del(name_node);
326 kfree(name_node->name);
327 netdev_name_node_free(name_node);
328 }
329
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)330 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
331 {
332 struct netdev_name_node *name_node;
333 struct net *net = dev_net(dev);
334
335 name_node = netdev_name_node_lookup(net, name);
336 if (!name_node)
337 return -ENOENT;
338 /* lookup might have found our primary name or a name belonging
339 * to another device.
340 */
341 if (name_node == dev->name_node || name_node->dev != dev)
342 return -EINVAL;
343
344 __netdev_name_node_alt_destroy(name_node);
345
346 return 0;
347 }
348 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
349
netdev_name_node_alt_flush(struct net_device * dev)350 static void netdev_name_node_alt_flush(struct net_device *dev)
351 {
352 struct netdev_name_node *name_node, *tmp;
353
354 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
355 __netdev_name_node_alt_destroy(name_node);
356 }
357
358 /* Device list insertion */
list_netdevice(struct net_device * dev)359 static void list_netdevice(struct net_device *dev)
360 {
361 struct net *net = dev_net(dev);
362
363 ASSERT_RTNL();
364
365 write_lock_bh(&dev_base_lock);
366 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
367 netdev_name_node_add(net, dev->name_node);
368 hlist_add_head_rcu(&dev->index_hlist,
369 dev_index_hash(net, dev->ifindex));
370 write_unlock_bh(&dev_base_lock);
371
372 dev_base_seq_inc(net);
373 }
374
375 /* Device list removal
376 * caller must respect a RCU grace period before freeing/reusing dev
377 */
unlist_netdevice(struct net_device * dev)378 static void unlist_netdevice(struct net_device *dev)
379 {
380 ASSERT_RTNL();
381
382 /* Unlink dev from the device chain */
383 write_lock_bh(&dev_base_lock);
384 list_del_rcu(&dev->dev_list);
385 netdev_name_node_del(dev->name_node);
386 hlist_del_rcu(&dev->index_hlist);
387 write_unlock_bh(&dev_base_lock);
388
389 dev_base_seq_inc(dev_net(dev));
390 }
391
392 /*
393 * Our notifier list
394 */
395
396 static RAW_NOTIFIER_HEAD(netdev_chain);
397
398 /*
399 * Device drivers call our routines to queue packets here. We empty the
400 * queue in the local softnet handler.
401 */
402
403 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
404 EXPORT_PER_CPU_SYMBOL(softnet_data);
405
406 #ifdef CONFIG_LOCKDEP
407 /*
408 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
409 * according to dev->type
410 */
411 static const unsigned short netdev_lock_type[] = {
412 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
413 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
414 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
415 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
416 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
417 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
418 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
419 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
420 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
421 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
422 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
423 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
424 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
425 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
426 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
427
428 static const char *const netdev_lock_name[] = {
429 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
430 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
431 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
432 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
433 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
434 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
435 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
436 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
437 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
438 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
439 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
440 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
441 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
442 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
443 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
444
445 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
447
netdev_lock_pos(unsigned short dev_type)448 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
449 {
450 int i;
451
452 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
453 if (netdev_lock_type[i] == dev_type)
454 return i;
455 /* the last key is used by default */
456 return ARRAY_SIZE(netdev_lock_type) - 1;
457 }
458
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)459 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
460 unsigned short dev_type)
461 {
462 int i;
463
464 i = netdev_lock_pos(dev_type);
465 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
466 netdev_lock_name[i]);
467 }
468
netdev_set_addr_lockdep_class(struct net_device * dev)469 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
470 {
471 int i;
472
473 i = netdev_lock_pos(dev->type);
474 lockdep_set_class_and_name(&dev->addr_list_lock,
475 &netdev_addr_lock_key[i],
476 netdev_lock_name[i]);
477 }
478 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)479 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
480 unsigned short dev_type)
481 {
482 }
483
netdev_set_addr_lockdep_class(struct net_device * dev)484 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
485 {
486 }
487 #endif
488
489 /*******************************************************************************
490 *
491 * Protocol management and registration routines
492 *
493 *******************************************************************************/
494
495
496 /*
497 * Add a protocol ID to the list. Now that the input handler is
498 * smarter we can dispense with all the messy stuff that used to be
499 * here.
500 *
501 * BEWARE!!! Protocol handlers, mangling input packets,
502 * MUST BE last in hash buckets and checking protocol handlers
503 * MUST start from promiscuous ptype_all chain in net_bh.
504 * It is true now, do not change it.
505 * Explanation follows: if protocol handler, mangling packet, will
506 * be the first on list, it is not able to sense, that packet
507 * is cloned and should be copied-on-write, so that it will
508 * change it and subsequent readers will get broken packet.
509 * --ANK (980803)
510 */
511
ptype_head(const struct packet_type * pt)512 static inline struct list_head *ptype_head(const struct packet_type *pt)
513 {
514 struct list_head vendor_pt = { .next = NULL, };
515
516 trace_android_vh_ptype_head(pt, &vendor_pt);
517 if (vendor_pt.next)
518 return vendor_pt.next;
519
520 if (pt->type == htons(ETH_P_ALL))
521 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
522 else
523 return pt->dev ? &pt->dev->ptype_specific :
524 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
525 }
526
527 /**
528 * dev_add_pack - add packet handler
529 * @pt: packet type declaration
530 *
531 * Add a protocol handler to the networking stack. The passed &packet_type
532 * is linked into kernel lists and may not be freed until it has been
533 * removed from the kernel lists.
534 *
535 * This call does not sleep therefore it can not
536 * guarantee all CPU's that are in middle of receiving packets
537 * will see the new packet type (until the next received packet).
538 */
539
dev_add_pack(struct packet_type * pt)540 void dev_add_pack(struct packet_type *pt)
541 {
542 struct list_head *head = ptype_head(pt);
543
544 spin_lock(&ptype_lock);
545 list_add_rcu(&pt->list, head);
546 spin_unlock(&ptype_lock);
547 }
548 EXPORT_SYMBOL(dev_add_pack);
549
550 /**
551 * __dev_remove_pack - remove packet handler
552 * @pt: packet type declaration
553 *
554 * Remove a protocol handler that was previously added to the kernel
555 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
556 * from the kernel lists and can be freed or reused once this function
557 * returns.
558 *
559 * The packet type might still be in use by receivers
560 * and must not be freed until after all the CPU's have gone
561 * through a quiescent state.
562 */
__dev_remove_pack(struct packet_type * pt)563 void __dev_remove_pack(struct packet_type *pt)
564 {
565 struct list_head *head = ptype_head(pt);
566 struct packet_type *pt1;
567
568 spin_lock(&ptype_lock);
569
570 list_for_each_entry(pt1, head, list) {
571 if (pt == pt1) {
572 list_del_rcu(&pt->list);
573 goto out;
574 }
575 }
576
577 pr_warn("dev_remove_pack: %p not found\n", pt);
578 out:
579 spin_unlock(&ptype_lock);
580 }
581 EXPORT_SYMBOL(__dev_remove_pack);
582
583 /**
584 * dev_remove_pack - remove packet handler
585 * @pt: packet type declaration
586 *
587 * Remove a protocol handler that was previously added to the kernel
588 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
589 * from the kernel lists and can be freed or reused once this function
590 * returns.
591 *
592 * This call sleeps to guarantee that no CPU is looking at the packet
593 * type after return.
594 */
dev_remove_pack(struct packet_type * pt)595 void dev_remove_pack(struct packet_type *pt)
596 {
597 __dev_remove_pack(pt);
598
599 synchronize_net();
600 }
601 EXPORT_SYMBOL(dev_remove_pack);
602
603
604 /**
605 * dev_add_offload - register offload handlers
606 * @po: protocol offload declaration
607 *
608 * Add protocol offload handlers to the networking stack. The passed
609 * &proto_offload is linked into kernel lists and may not be freed until
610 * it has been removed from the kernel lists.
611 *
612 * This call does not sleep therefore it can not
613 * guarantee all CPU's that are in middle of receiving packets
614 * will see the new offload handlers (until the next received packet).
615 */
dev_add_offload(struct packet_offload * po)616 void dev_add_offload(struct packet_offload *po)
617 {
618 struct packet_offload *elem;
619
620 spin_lock(&offload_lock);
621 list_for_each_entry(elem, &offload_base, list) {
622 if (po->priority < elem->priority)
623 break;
624 }
625 list_add_rcu(&po->list, elem->list.prev);
626 spin_unlock(&offload_lock);
627 }
628 EXPORT_SYMBOL(dev_add_offload);
629
630 /**
631 * __dev_remove_offload - remove offload handler
632 * @po: packet offload declaration
633 *
634 * Remove a protocol offload handler that was previously added to the
635 * kernel offload handlers by dev_add_offload(). The passed &offload_type
636 * is removed from the kernel lists and can be freed or reused once this
637 * function returns.
638 *
639 * The packet type might still be in use by receivers
640 * and must not be freed until after all the CPU's have gone
641 * through a quiescent state.
642 */
__dev_remove_offload(struct packet_offload * po)643 static void __dev_remove_offload(struct packet_offload *po)
644 {
645 struct list_head *head = &offload_base;
646 struct packet_offload *po1;
647
648 spin_lock(&offload_lock);
649
650 list_for_each_entry(po1, head, list) {
651 if (po == po1) {
652 list_del_rcu(&po->list);
653 goto out;
654 }
655 }
656
657 pr_warn("dev_remove_offload: %p not found\n", po);
658 out:
659 spin_unlock(&offload_lock);
660 }
661
662 /**
663 * dev_remove_offload - remove packet offload handler
664 * @po: packet offload declaration
665 *
666 * Remove a packet offload handler that was previously added to the kernel
667 * offload handlers by dev_add_offload(). The passed &offload_type is
668 * removed from the kernel lists and can be freed or reused once this
669 * function returns.
670 *
671 * This call sleeps to guarantee that no CPU is looking at the packet
672 * type after return.
673 */
dev_remove_offload(struct packet_offload * po)674 void dev_remove_offload(struct packet_offload *po)
675 {
676 __dev_remove_offload(po);
677
678 synchronize_net();
679 }
680 EXPORT_SYMBOL(dev_remove_offload);
681
682 /******************************************************************************
683 *
684 * Device Boot-time Settings Routines
685 *
686 ******************************************************************************/
687
688 /* Boot time configuration table */
689 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
690
691 /**
692 * netdev_boot_setup_add - add new setup entry
693 * @name: name of the device
694 * @map: configured settings for the device
695 *
696 * Adds new setup entry to the dev_boot_setup list. The function
697 * returns 0 on error and 1 on success. This is a generic routine to
698 * all netdevices.
699 */
netdev_boot_setup_add(char * name,struct ifmap * map)700 static int netdev_boot_setup_add(char *name, struct ifmap *map)
701 {
702 struct netdev_boot_setup *s;
703 int i;
704
705 s = dev_boot_setup;
706 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
707 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
708 memset(s[i].name, 0, sizeof(s[i].name));
709 strlcpy(s[i].name, name, IFNAMSIZ);
710 memcpy(&s[i].map, map, sizeof(s[i].map));
711 break;
712 }
713 }
714
715 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
716 }
717
718 /**
719 * netdev_boot_setup_check - check boot time settings
720 * @dev: the netdevice
721 *
722 * Check boot time settings for the device.
723 * The found settings are set for the device to be used
724 * later in the device probing.
725 * Returns 0 if no settings found, 1 if they are.
726 */
netdev_boot_setup_check(struct net_device * dev)727 int netdev_boot_setup_check(struct net_device *dev)
728 {
729 struct netdev_boot_setup *s = dev_boot_setup;
730 int i;
731
732 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
733 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
734 !strcmp(dev->name, s[i].name)) {
735 dev->irq = s[i].map.irq;
736 dev->base_addr = s[i].map.base_addr;
737 dev->mem_start = s[i].map.mem_start;
738 dev->mem_end = s[i].map.mem_end;
739 return 1;
740 }
741 }
742 return 0;
743 }
744 EXPORT_SYMBOL(netdev_boot_setup_check);
745
746
747 /**
748 * netdev_boot_base - get address from boot time settings
749 * @prefix: prefix for network device
750 * @unit: id for network device
751 *
752 * Check boot time settings for the base address of device.
753 * The found settings are set for the device to be used
754 * later in the device probing.
755 * Returns 0 if no settings found.
756 */
netdev_boot_base(const char * prefix,int unit)757 unsigned long netdev_boot_base(const char *prefix, int unit)
758 {
759 const struct netdev_boot_setup *s = dev_boot_setup;
760 char name[IFNAMSIZ];
761 int i;
762
763 sprintf(name, "%s%d", prefix, unit);
764
765 /*
766 * If device already registered then return base of 1
767 * to indicate not to probe for this interface
768 */
769 if (__dev_get_by_name(&init_net, name))
770 return 1;
771
772 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
773 if (!strcmp(name, s[i].name))
774 return s[i].map.base_addr;
775 return 0;
776 }
777
778 /*
779 * Saves at boot time configured settings for any netdevice.
780 */
netdev_boot_setup(char * str)781 int __init netdev_boot_setup(char *str)
782 {
783 int ints[5];
784 struct ifmap map;
785
786 str = get_options(str, ARRAY_SIZE(ints), ints);
787 if (!str || !*str)
788 return 0;
789
790 /* Save settings */
791 memset(&map, 0, sizeof(map));
792 if (ints[0] > 0)
793 map.irq = ints[1];
794 if (ints[0] > 1)
795 map.base_addr = ints[2];
796 if (ints[0] > 2)
797 map.mem_start = ints[3];
798 if (ints[0] > 3)
799 map.mem_end = ints[4];
800
801 /* Add new entry to the list */
802 return netdev_boot_setup_add(str, &map);
803 }
804
805 __setup("netdev=", netdev_boot_setup);
806
807 /*******************************************************************************
808 *
809 * Device Interface Subroutines
810 *
811 *******************************************************************************/
812
813 /**
814 * dev_get_iflink - get 'iflink' value of a interface
815 * @dev: targeted interface
816 *
817 * Indicates the ifindex the interface is linked to.
818 * Physical interfaces have the same 'ifindex' and 'iflink' values.
819 */
820
dev_get_iflink(const struct net_device * dev)821 int dev_get_iflink(const struct net_device *dev)
822 {
823 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
824 return dev->netdev_ops->ndo_get_iflink(dev);
825
826 return dev->ifindex;
827 }
828 EXPORT_SYMBOL(dev_get_iflink);
829
830 /**
831 * dev_fill_metadata_dst - Retrieve tunnel egress information.
832 * @dev: targeted interface
833 * @skb: The packet.
834 *
835 * For better visibility of tunnel traffic OVS needs to retrieve
836 * egress tunnel information for a packet. Following API allows
837 * user to get this info.
838 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)839 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
840 {
841 struct ip_tunnel_info *info;
842
843 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
844 return -EINVAL;
845
846 info = skb_tunnel_info_unclone(skb);
847 if (!info)
848 return -ENOMEM;
849 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
850 return -EINVAL;
851
852 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
853 }
854 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
855
856 /**
857 * __dev_get_by_name - find a device by its name
858 * @net: the applicable net namespace
859 * @name: name to find
860 *
861 * Find an interface by name. Must be called under RTNL semaphore
862 * or @dev_base_lock. If the name is found a pointer to the device
863 * is returned. If the name is not found then %NULL is returned. The
864 * reference counters are not incremented so the caller must be
865 * careful with locks.
866 */
867
__dev_get_by_name(struct net * net,const char * name)868 struct net_device *__dev_get_by_name(struct net *net, const char *name)
869 {
870 struct netdev_name_node *node_name;
871
872 node_name = netdev_name_node_lookup(net, name);
873 return node_name ? node_name->dev : NULL;
874 }
875 EXPORT_SYMBOL(__dev_get_by_name);
876
877 /**
878 * dev_get_by_name_rcu - find a device by its name
879 * @net: the applicable net namespace
880 * @name: name to find
881 *
882 * Find an interface by name.
883 * If the name is found a pointer to the device is returned.
884 * If the name is not found then %NULL is returned.
885 * The reference counters are not incremented so the caller must be
886 * careful with locks. The caller must hold RCU lock.
887 */
888
dev_get_by_name_rcu(struct net * net,const char * name)889 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
890 {
891 struct netdev_name_node *node_name;
892
893 node_name = netdev_name_node_lookup_rcu(net, name);
894 return node_name ? node_name->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_name_rcu);
897
898 /**
899 * dev_get_by_name - find a device by its name
900 * @net: the applicable net namespace
901 * @name: name to find
902 *
903 * Find an interface by name. This can be called from any
904 * context and does its own locking. The returned handle has
905 * the usage count incremented and the caller must use dev_put() to
906 * release it when it is no longer needed. %NULL is returned if no
907 * matching device is found.
908 */
909
dev_get_by_name(struct net * net,const char * name)910 struct net_device *dev_get_by_name(struct net *net, const char *name)
911 {
912 struct net_device *dev;
913
914 rcu_read_lock();
915 dev = dev_get_by_name_rcu(net, name);
916 if (dev)
917 dev_hold(dev);
918 rcu_read_unlock();
919 return dev;
920 }
921 EXPORT_SYMBOL(dev_get_by_name);
922
923 /**
924 * __dev_get_by_index - find a device by its ifindex
925 * @net: the applicable net namespace
926 * @ifindex: index of device
927 *
928 * Search for an interface by index. Returns %NULL if the device
929 * is not found or a pointer to the device. The device has not
930 * had its reference counter increased so the caller must be careful
931 * about locking. The caller must hold either the RTNL semaphore
932 * or @dev_base_lock.
933 */
934
__dev_get_by_index(struct net * net,int ifindex)935 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
936 {
937 struct net_device *dev;
938 struct hlist_head *head = dev_index_hash(net, ifindex);
939
940 hlist_for_each_entry(dev, head, index_hlist)
941 if (dev->ifindex == ifindex)
942 return dev;
943
944 return NULL;
945 }
946 EXPORT_SYMBOL(__dev_get_by_index);
947
948 /**
949 * dev_get_by_index_rcu - find a device by its ifindex
950 * @net: the applicable net namespace
951 * @ifindex: index of device
952 *
953 * Search for an interface by index. Returns %NULL if the device
954 * is not found or a pointer to the device. The device has not
955 * had its reference counter increased so the caller must be careful
956 * about locking. The caller must hold RCU lock.
957 */
958
dev_get_by_index_rcu(struct net * net,int ifindex)959 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
960 {
961 struct net_device *dev;
962 struct hlist_head *head = dev_index_hash(net, ifindex);
963
964 hlist_for_each_entry_rcu(dev, head, index_hlist)
965 if (dev->ifindex == ifindex)
966 return dev;
967
968 return NULL;
969 }
970 EXPORT_SYMBOL(dev_get_by_index_rcu);
971
972
973 /**
974 * dev_get_by_index - find a device by its ifindex
975 * @net: the applicable net namespace
976 * @ifindex: index of device
977 *
978 * Search for an interface by index. Returns NULL if the device
979 * is not found or a pointer to the device. The device returned has
980 * had a reference added and the pointer is safe until the user calls
981 * dev_put to indicate they have finished with it.
982 */
983
dev_get_by_index(struct net * net,int ifindex)984 struct net_device *dev_get_by_index(struct net *net, int ifindex)
985 {
986 struct net_device *dev;
987
988 rcu_read_lock();
989 dev = dev_get_by_index_rcu(net, ifindex);
990 if (dev)
991 dev_hold(dev);
992 rcu_read_unlock();
993 return dev;
994 }
995 EXPORT_SYMBOL(dev_get_by_index);
996
997 /**
998 * dev_get_by_napi_id - find a device by napi_id
999 * @napi_id: ID of the NAPI struct
1000 *
1001 * Search for an interface by NAPI ID. Returns %NULL if the device
1002 * is not found or a pointer to the device. The device has not had
1003 * its reference counter increased so the caller must be careful
1004 * about locking. The caller must hold RCU lock.
1005 */
1006
dev_get_by_napi_id(unsigned int napi_id)1007 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1008 {
1009 struct napi_struct *napi;
1010
1011 WARN_ON_ONCE(!rcu_read_lock_held());
1012
1013 if (napi_id < MIN_NAPI_ID)
1014 return NULL;
1015
1016 napi = napi_by_id(napi_id);
1017
1018 return napi ? napi->dev : NULL;
1019 }
1020 EXPORT_SYMBOL(dev_get_by_napi_id);
1021
1022 /**
1023 * netdev_get_name - get a netdevice name, knowing its ifindex.
1024 * @net: network namespace
1025 * @name: a pointer to the buffer where the name will be stored.
1026 * @ifindex: the ifindex of the interface to get the name from.
1027 */
netdev_get_name(struct net * net,char * name,int ifindex)1028 int netdev_get_name(struct net *net, char *name, int ifindex)
1029 {
1030 struct net_device *dev;
1031 int ret;
1032
1033 down_read(&devnet_rename_sem);
1034 rcu_read_lock();
1035
1036 dev = dev_get_by_index_rcu(net, ifindex);
1037 if (!dev) {
1038 ret = -ENODEV;
1039 goto out;
1040 }
1041
1042 strcpy(name, dev->name);
1043
1044 ret = 0;
1045 out:
1046 rcu_read_unlock();
1047 up_read(&devnet_rename_sem);
1048 return ret;
1049 }
1050
1051 /**
1052 * dev_getbyhwaddr_rcu - find a device by its hardware address
1053 * @net: the applicable net namespace
1054 * @type: media type of device
1055 * @ha: hardware address
1056 *
1057 * Search for an interface by MAC address. Returns NULL if the device
1058 * is not found or a pointer to the device.
1059 * The caller must hold RCU or RTNL.
1060 * The returned device has not had its ref count increased
1061 * and the caller must therefore be careful about locking
1062 *
1063 */
1064
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1065 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1066 const char *ha)
1067 {
1068 struct net_device *dev;
1069
1070 for_each_netdev_rcu(net, dev)
1071 if (dev->type == type &&
1072 !memcmp(dev->dev_addr, ha, dev->addr_len))
1073 return dev;
1074
1075 return NULL;
1076 }
1077 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1078
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1079 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1080 {
1081 struct net_device *dev;
1082
1083 ASSERT_RTNL();
1084 for_each_netdev(net, dev)
1085 if (dev->type == type)
1086 return dev;
1087
1088 return NULL;
1089 }
1090 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1091
dev_getfirstbyhwtype(struct net * net,unsigned short type)1092 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1093 {
1094 struct net_device *dev, *ret = NULL;
1095
1096 rcu_read_lock();
1097 for_each_netdev_rcu(net, dev)
1098 if (dev->type == type) {
1099 dev_hold(dev);
1100 ret = dev;
1101 break;
1102 }
1103 rcu_read_unlock();
1104 return ret;
1105 }
1106 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1107
1108 /**
1109 * __dev_get_by_flags - find any device with given flags
1110 * @net: the applicable net namespace
1111 * @if_flags: IFF_* values
1112 * @mask: bitmask of bits in if_flags to check
1113 *
1114 * Search for any interface with the given flags. Returns NULL if a device
1115 * is not found or a pointer to the device. Must be called inside
1116 * rtnl_lock(), and result refcount is unchanged.
1117 */
1118
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1119 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1120 unsigned short mask)
1121 {
1122 struct net_device *dev, *ret;
1123
1124 ASSERT_RTNL();
1125
1126 ret = NULL;
1127 for_each_netdev(net, dev) {
1128 if (((dev->flags ^ if_flags) & mask) == 0) {
1129 ret = dev;
1130 break;
1131 }
1132 }
1133 return ret;
1134 }
1135 EXPORT_SYMBOL(__dev_get_by_flags);
1136
1137 /**
1138 * dev_valid_name - check if name is okay for network device
1139 * @name: name string
1140 *
1141 * Network device names need to be valid file names to
1142 * allow sysfs to work. We also disallow any kind of
1143 * whitespace.
1144 */
dev_valid_name(const char * name)1145 bool dev_valid_name(const char *name)
1146 {
1147 if (*name == '\0')
1148 return false;
1149 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1150 return false;
1151 if (!strcmp(name, ".") || !strcmp(name, ".."))
1152 return false;
1153
1154 while (*name) {
1155 if (*name == '/' || *name == ':' || isspace(*name))
1156 return false;
1157 name++;
1158 }
1159 return true;
1160 }
1161 EXPORT_SYMBOL(dev_valid_name);
1162
1163 /**
1164 * __dev_alloc_name - allocate a name for a device
1165 * @net: network namespace to allocate the device name in
1166 * @name: name format string
1167 * @buf: scratch buffer and result name string
1168 *
1169 * Passed a format string - eg "lt%d" it will try and find a suitable
1170 * id. It scans list of devices to build up a free map, then chooses
1171 * the first empty slot. The caller must hold the dev_base or rtnl lock
1172 * while allocating the name and adding the device in order to avoid
1173 * duplicates.
1174 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1175 * Returns the number of the unit assigned or a negative errno code.
1176 */
1177
__dev_alloc_name(struct net * net,const char * name,char * buf)1178 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1179 {
1180 int i = 0;
1181 const char *p;
1182 const int max_netdevices = 8*PAGE_SIZE;
1183 unsigned long *inuse;
1184 struct net_device *d;
1185
1186 if (!dev_valid_name(name))
1187 return -EINVAL;
1188
1189 p = strchr(name, '%');
1190 if (p) {
1191 /*
1192 * Verify the string as this thing may have come from
1193 * the user. There must be either one "%d" and no other "%"
1194 * characters.
1195 */
1196 if (p[1] != 'd' || strchr(p + 2, '%'))
1197 return -EINVAL;
1198
1199 /* Use one page as a bit array of possible slots */
1200 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1201 if (!inuse)
1202 return -ENOMEM;
1203
1204 for_each_netdev(net, d) {
1205 struct netdev_name_node *name_node;
1206 list_for_each_entry(name_node, &d->name_node->list, list) {
1207 if (!sscanf(name_node->name, name, &i))
1208 continue;
1209 if (i < 0 || i >= max_netdevices)
1210 continue;
1211
1212 /* avoid cases where sscanf is not exact inverse of printf */
1213 snprintf(buf, IFNAMSIZ, name, i);
1214 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1215 set_bit(i, inuse);
1216 }
1217 if (!sscanf(d->name, name, &i))
1218 continue;
1219 if (i < 0 || i >= max_netdevices)
1220 continue;
1221
1222 /* avoid cases where sscanf is not exact inverse of printf */
1223 snprintf(buf, IFNAMSIZ, name, i);
1224 if (!strncmp(buf, d->name, IFNAMSIZ))
1225 set_bit(i, inuse);
1226 }
1227
1228 i = find_first_zero_bit(inuse, max_netdevices);
1229 free_page((unsigned long) inuse);
1230 }
1231
1232 snprintf(buf, IFNAMSIZ, name, i);
1233 if (!__dev_get_by_name(net, buf))
1234 return i;
1235
1236 /* It is possible to run out of possible slots
1237 * when the name is long and there isn't enough space left
1238 * for the digits, or if all bits are used.
1239 */
1240 return -ENFILE;
1241 }
1242
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1243 static int dev_alloc_name_ns(struct net *net,
1244 struct net_device *dev,
1245 const char *name)
1246 {
1247 char buf[IFNAMSIZ];
1248 int ret;
1249
1250 BUG_ON(!net);
1251 ret = __dev_alloc_name(net, name, buf);
1252 if (ret >= 0)
1253 strlcpy(dev->name, buf, IFNAMSIZ);
1254 return ret;
1255 }
1256
1257 /**
1258 * dev_alloc_name - allocate a name for a device
1259 * @dev: device
1260 * @name: name format string
1261 *
1262 * Passed a format string - eg "lt%d" it will try and find a suitable
1263 * id. It scans list of devices to build up a free map, then chooses
1264 * the first empty slot. The caller must hold the dev_base or rtnl lock
1265 * while allocating the name and adding the device in order to avoid
1266 * duplicates.
1267 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1268 * Returns the number of the unit assigned or a negative errno code.
1269 */
1270
dev_alloc_name(struct net_device * dev,const char * name)1271 int dev_alloc_name(struct net_device *dev, const char *name)
1272 {
1273 return dev_alloc_name_ns(dev_net(dev), dev, name);
1274 }
1275 EXPORT_SYMBOL(dev_alloc_name);
1276
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1277 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1278 const char *name)
1279 {
1280 BUG_ON(!net);
1281
1282 if (!dev_valid_name(name))
1283 return -EINVAL;
1284
1285 if (strchr(name, '%'))
1286 return dev_alloc_name_ns(net, dev, name);
1287 else if (__dev_get_by_name(net, name))
1288 return -EEXIST;
1289 else if (dev->name != name)
1290 strlcpy(dev->name, name, IFNAMSIZ);
1291
1292 return 0;
1293 }
1294
1295 /**
1296 * dev_change_name - change name of a device
1297 * @dev: device
1298 * @newname: name (or format string) must be at least IFNAMSIZ
1299 *
1300 * Change name of a device, can pass format strings "eth%d".
1301 * for wildcarding.
1302 */
dev_change_name(struct net_device * dev,const char * newname)1303 int dev_change_name(struct net_device *dev, const char *newname)
1304 {
1305 unsigned char old_assign_type;
1306 char oldname[IFNAMSIZ];
1307 int err = 0;
1308 int ret;
1309 struct net *net;
1310
1311 ASSERT_RTNL();
1312 BUG_ON(!dev_net(dev));
1313
1314 net = dev_net(dev);
1315
1316 /* Some auto-enslaved devices e.g. failover slaves are
1317 * special, as userspace might rename the device after
1318 * the interface had been brought up and running since
1319 * the point kernel initiated auto-enslavement. Allow
1320 * live name change even when these slave devices are
1321 * up and running.
1322 *
1323 * Typically, users of these auto-enslaving devices
1324 * don't actually care about slave name change, as
1325 * they are supposed to operate on master interface
1326 * directly.
1327 */
1328 if (dev->flags & IFF_UP &&
1329 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1330 return -EBUSY;
1331
1332 down_write(&devnet_rename_sem);
1333
1334 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1335 up_write(&devnet_rename_sem);
1336 return 0;
1337 }
1338
1339 memcpy(oldname, dev->name, IFNAMSIZ);
1340
1341 err = dev_get_valid_name(net, dev, newname);
1342 if (err < 0) {
1343 up_write(&devnet_rename_sem);
1344 return err;
1345 }
1346
1347 if (oldname[0] && !strchr(oldname, '%'))
1348 netdev_info(dev, "renamed from %s\n", oldname);
1349
1350 old_assign_type = dev->name_assign_type;
1351 dev->name_assign_type = NET_NAME_RENAMED;
1352
1353 rollback:
1354 ret = device_rename(&dev->dev, dev->name);
1355 if (ret) {
1356 memcpy(dev->name, oldname, IFNAMSIZ);
1357 dev->name_assign_type = old_assign_type;
1358 up_write(&devnet_rename_sem);
1359 return ret;
1360 }
1361
1362 up_write(&devnet_rename_sem);
1363
1364 netdev_adjacent_rename_links(dev, oldname);
1365
1366 write_lock_bh(&dev_base_lock);
1367 netdev_name_node_del(dev->name_node);
1368 write_unlock_bh(&dev_base_lock);
1369
1370 synchronize_rcu();
1371
1372 write_lock_bh(&dev_base_lock);
1373 netdev_name_node_add(net, dev->name_node);
1374 write_unlock_bh(&dev_base_lock);
1375
1376 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1377 ret = notifier_to_errno(ret);
1378
1379 if (ret) {
1380 /* err >= 0 after dev_alloc_name() or stores the first errno */
1381 if (err >= 0) {
1382 err = ret;
1383 down_write(&devnet_rename_sem);
1384 memcpy(dev->name, oldname, IFNAMSIZ);
1385 memcpy(oldname, newname, IFNAMSIZ);
1386 dev->name_assign_type = old_assign_type;
1387 old_assign_type = NET_NAME_RENAMED;
1388 goto rollback;
1389 } else {
1390 pr_err("%s: name change rollback failed: %d\n",
1391 dev->name, ret);
1392 }
1393 }
1394
1395 return err;
1396 }
1397
1398 /**
1399 * dev_set_alias - change ifalias of a device
1400 * @dev: device
1401 * @alias: name up to IFALIASZ
1402 * @len: limit of bytes to copy from info
1403 *
1404 * Set ifalias for a device,
1405 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1406 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1407 {
1408 struct dev_ifalias *new_alias = NULL;
1409
1410 if (len >= IFALIASZ)
1411 return -EINVAL;
1412
1413 if (len) {
1414 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1415 if (!new_alias)
1416 return -ENOMEM;
1417
1418 memcpy(new_alias->ifalias, alias, len);
1419 new_alias->ifalias[len] = 0;
1420 }
1421
1422 mutex_lock(&ifalias_mutex);
1423 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1424 mutex_is_locked(&ifalias_mutex));
1425 mutex_unlock(&ifalias_mutex);
1426
1427 if (new_alias)
1428 kfree_rcu(new_alias, rcuhead);
1429
1430 return len;
1431 }
1432 EXPORT_SYMBOL(dev_set_alias);
1433
1434 /**
1435 * dev_get_alias - get ifalias of a device
1436 * @dev: device
1437 * @name: buffer to store name of ifalias
1438 * @len: size of buffer
1439 *
1440 * get ifalias for a device. Caller must make sure dev cannot go
1441 * away, e.g. rcu read lock or own a reference count to device.
1442 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1443 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1444 {
1445 const struct dev_ifalias *alias;
1446 int ret = 0;
1447
1448 rcu_read_lock();
1449 alias = rcu_dereference(dev->ifalias);
1450 if (alias)
1451 ret = snprintf(name, len, "%s", alias->ifalias);
1452 rcu_read_unlock();
1453
1454 return ret;
1455 }
1456
1457 /**
1458 * netdev_features_change - device changes features
1459 * @dev: device to cause notification
1460 *
1461 * Called to indicate a device has changed features.
1462 */
netdev_features_change(struct net_device * dev)1463 void netdev_features_change(struct net_device *dev)
1464 {
1465 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1466 }
1467 EXPORT_SYMBOL(netdev_features_change);
1468
1469 /**
1470 * netdev_state_change - device changes state
1471 * @dev: device to cause notification
1472 *
1473 * Called to indicate a device has changed state. This function calls
1474 * the notifier chains for netdev_chain and sends a NEWLINK message
1475 * to the routing socket.
1476 */
netdev_state_change(struct net_device * dev)1477 void netdev_state_change(struct net_device *dev)
1478 {
1479 if (dev->flags & IFF_UP) {
1480 struct netdev_notifier_change_info change_info = {
1481 .info.dev = dev,
1482 };
1483
1484 call_netdevice_notifiers_info(NETDEV_CHANGE,
1485 &change_info.info);
1486 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1487 }
1488 }
1489 EXPORT_SYMBOL(netdev_state_change);
1490
1491 /**
1492 * netdev_notify_peers - notify network peers about existence of @dev
1493 * @dev: network device
1494 *
1495 * Generate traffic such that interested network peers are aware of
1496 * @dev, such as by generating a gratuitous ARP. This may be used when
1497 * a device wants to inform the rest of the network about some sort of
1498 * reconfiguration such as a failover event or virtual machine
1499 * migration.
1500 */
netdev_notify_peers(struct net_device * dev)1501 void netdev_notify_peers(struct net_device *dev)
1502 {
1503 rtnl_lock();
1504 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1505 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1506 rtnl_unlock();
1507 }
1508 EXPORT_SYMBOL(netdev_notify_peers);
1509
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1510 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1511 {
1512 const struct net_device_ops *ops = dev->netdev_ops;
1513 int ret;
1514
1515 ASSERT_RTNL();
1516
1517 if (!netif_device_present(dev)) {
1518 /* may be detached because parent is runtime-suspended */
1519 if (dev->dev.parent)
1520 pm_runtime_resume(dev->dev.parent);
1521 if (!netif_device_present(dev))
1522 return -ENODEV;
1523 }
1524
1525 /* Block netpoll from trying to do any rx path servicing.
1526 * If we don't do this there is a chance ndo_poll_controller
1527 * or ndo_poll may be running while we open the device
1528 */
1529 netpoll_poll_disable(dev);
1530
1531 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1532 ret = notifier_to_errno(ret);
1533 if (ret)
1534 return ret;
1535
1536 set_bit(__LINK_STATE_START, &dev->state);
1537
1538 if (ops->ndo_validate_addr)
1539 ret = ops->ndo_validate_addr(dev);
1540
1541 if (!ret && ops->ndo_open)
1542 ret = ops->ndo_open(dev);
1543
1544 netpoll_poll_enable(dev);
1545
1546 if (ret)
1547 clear_bit(__LINK_STATE_START, &dev->state);
1548 else {
1549 dev->flags |= IFF_UP;
1550 dev_set_rx_mode(dev);
1551 dev_activate(dev);
1552 add_device_randomness(dev->dev_addr, dev->addr_len);
1553 }
1554
1555 return ret;
1556 }
1557
1558 /**
1559 * dev_open - prepare an interface for use.
1560 * @dev: device to open
1561 * @extack: netlink extended ack
1562 *
1563 * Takes a device from down to up state. The device's private open
1564 * function is invoked and then the multicast lists are loaded. Finally
1565 * the device is moved into the up state and a %NETDEV_UP message is
1566 * sent to the netdev notifier chain.
1567 *
1568 * Calling this function on an active interface is a nop. On a failure
1569 * a negative errno code is returned.
1570 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1571 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1572 {
1573 int ret;
1574
1575 if (dev->flags & IFF_UP)
1576 return 0;
1577
1578 ret = __dev_open(dev, extack);
1579 if (ret < 0)
1580 return ret;
1581
1582 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1583 call_netdevice_notifiers(NETDEV_UP, dev);
1584
1585 return ret;
1586 }
1587 EXPORT_SYMBOL(dev_open);
1588
__dev_close_many(struct list_head * head)1589 static void __dev_close_many(struct list_head *head)
1590 {
1591 struct net_device *dev;
1592
1593 ASSERT_RTNL();
1594 might_sleep();
1595
1596 list_for_each_entry(dev, head, close_list) {
1597 /* Temporarily disable netpoll until the interface is down */
1598 netpoll_poll_disable(dev);
1599
1600 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1601
1602 clear_bit(__LINK_STATE_START, &dev->state);
1603
1604 /* Synchronize to scheduled poll. We cannot touch poll list, it
1605 * can be even on different cpu. So just clear netif_running().
1606 *
1607 * dev->stop() will invoke napi_disable() on all of it's
1608 * napi_struct instances on this device.
1609 */
1610 smp_mb__after_atomic(); /* Commit netif_running(). */
1611 }
1612
1613 dev_deactivate_many(head);
1614
1615 list_for_each_entry(dev, head, close_list) {
1616 const struct net_device_ops *ops = dev->netdev_ops;
1617
1618 /*
1619 * Call the device specific close. This cannot fail.
1620 * Only if device is UP
1621 *
1622 * We allow it to be called even after a DETACH hot-plug
1623 * event.
1624 */
1625 if (ops->ndo_stop)
1626 ops->ndo_stop(dev);
1627
1628 dev->flags &= ~IFF_UP;
1629 netpoll_poll_enable(dev);
1630 }
1631 }
1632
__dev_close(struct net_device * dev)1633 static void __dev_close(struct net_device *dev)
1634 {
1635 LIST_HEAD(single);
1636
1637 list_add(&dev->close_list, &single);
1638 __dev_close_many(&single);
1639 list_del(&single);
1640 }
1641
dev_close_many(struct list_head * head,bool unlink)1642 void dev_close_many(struct list_head *head, bool unlink)
1643 {
1644 struct net_device *dev, *tmp;
1645
1646 /* Remove the devices that don't need to be closed */
1647 list_for_each_entry_safe(dev, tmp, head, close_list)
1648 if (!(dev->flags & IFF_UP))
1649 list_del_init(&dev->close_list);
1650
1651 __dev_close_many(head);
1652
1653 list_for_each_entry_safe(dev, tmp, head, close_list) {
1654 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1655 call_netdevice_notifiers(NETDEV_DOWN, dev);
1656 if (unlink)
1657 list_del_init(&dev->close_list);
1658 }
1659 }
1660 EXPORT_SYMBOL(dev_close_many);
1661
1662 /**
1663 * dev_close - shutdown an interface.
1664 * @dev: device to shutdown
1665 *
1666 * This function moves an active device into down state. A
1667 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1668 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1669 * chain.
1670 */
dev_close(struct net_device * dev)1671 void dev_close(struct net_device *dev)
1672 {
1673 if (dev->flags & IFF_UP) {
1674 LIST_HEAD(single);
1675
1676 list_add(&dev->close_list, &single);
1677 dev_close_many(&single, true);
1678 list_del(&single);
1679 }
1680 }
1681 EXPORT_SYMBOL(dev_close);
1682
1683
1684 /**
1685 * dev_disable_lro - disable Large Receive Offload on a device
1686 * @dev: device
1687 *
1688 * Disable Large Receive Offload (LRO) on a net device. Must be
1689 * called under RTNL. This is needed if received packets may be
1690 * forwarded to another interface.
1691 */
dev_disable_lro(struct net_device * dev)1692 void dev_disable_lro(struct net_device *dev)
1693 {
1694 struct net_device *lower_dev;
1695 struct list_head *iter;
1696
1697 dev->wanted_features &= ~NETIF_F_LRO;
1698 netdev_update_features(dev);
1699
1700 if (unlikely(dev->features & NETIF_F_LRO))
1701 netdev_WARN(dev, "failed to disable LRO!\n");
1702
1703 netdev_for_each_lower_dev(dev, lower_dev, iter)
1704 dev_disable_lro(lower_dev);
1705 }
1706 EXPORT_SYMBOL(dev_disable_lro);
1707
1708 /**
1709 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1710 * @dev: device
1711 *
1712 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1713 * called under RTNL. This is needed if Generic XDP is installed on
1714 * the device.
1715 */
dev_disable_gro_hw(struct net_device * dev)1716 static void dev_disable_gro_hw(struct net_device *dev)
1717 {
1718 dev->wanted_features &= ~NETIF_F_GRO_HW;
1719 netdev_update_features(dev);
1720
1721 if (unlikely(dev->features & NETIF_F_GRO_HW))
1722 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1723 }
1724
netdev_cmd_to_name(enum netdev_cmd cmd)1725 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1726 {
1727 #define N(val) \
1728 case NETDEV_##val: \
1729 return "NETDEV_" __stringify(val);
1730 switch (cmd) {
1731 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1732 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1733 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1734 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1735 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1736 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1737 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1738 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1739 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1740 N(PRE_CHANGEADDR)
1741 }
1742 #undef N
1743 return "UNKNOWN_NETDEV_EVENT";
1744 }
1745 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1746
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1747 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1748 struct net_device *dev)
1749 {
1750 struct netdev_notifier_info info = {
1751 .dev = dev,
1752 };
1753
1754 return nb->notifier_call(nb, val, &info);
1755 }
1756
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1757 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1758 struct net_device *dev)
1759 {
1760 int err;
1761
1762 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1763 err = notifier_to_errno(err);
1764 if (err)
1765 return err;
1766
1767 if (!(dev->flags & IFF_UP))
1768 return 0;
1769
1770 call_netdevice_notifier(nb, NETDEV_UP, dev);
1771 return 0;
1772 }
1773
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1774 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1775 struct net_device *dev)
1776 {
1777 if (dev->flags & IFF_UP) {
1778 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1779 dev);
1780 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1781 }
1782 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1783 }
1784
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1785 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1786 struct net *net)
1787 {
1788 struct net_device *dev;
1789 int err;
1790
1791 for_each_netdev(net, dev) {
1792 err = call_netdevice_register_notifiers(nb, dev);
1793 if (err)
1794 goto rollback;
1795 }
1796 return 0;
1797
1798 rollback:
1799 for_each_netdev_continue_reverse(net, dev)
1800 call_netdevice_unregister_notifiers(nb, dev);
1801 return err;
1802 }
1803
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1804 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1805 struct net *net)
1806 {
1807 struct net_device *dev;
1808
1809 for_each_netdev(net, dev)
1810 call_netdevice_unregister_notifiers(nb, dev);
1811 }
1812
1813 static int dev_boot_phase = 1;
1814
1815 /**
1816 * register_netdevice_notifier - register a network notifier block
1817 * @nb: notifier
1818 *
1819 * Register a notifier to be called when network device events occur.
1820 * The notifier passed is linked into the kernel structures and must
1821 * not be reused until it has been unregistered. A negative errno code
1822 * is returned on a failure.
1823 *
1824 * When registered all registration and up events are replayed
1825 * to the new notifier to allow device to have a race free
1826 * view of the network device list.
1827 */
1828
register_netdevice_notifier(struct notifier_block * nb)1829 int register_netdevice_notifier(struct notifier_block *nb)
1830 {
1831 struct net *net;
1832 int err;
1833
1834 /* Close race with setup_net() and cleanup_net() */
1835 down_write(&pernet_ops_rwsem);
1836 rtnl_lock();
1837 err = raw_notifier_chain_register(&netdev_chain, nb);
1838 if (err)
1839 goto unlock;
1840 if (dev_boot_phase)
1841 goto unlock;
1842 for_each_net(net) {
1843 err = call_netdevice_register_net_notifiers(nb, net);
1844 if (err)
1845 goto rollback;
1846 }
1847
1848 unlock:
1849 rtnl_unlock();
1850 up_write(&pernet_ops_rwsem);
1851 return err;
1852
1853 rollback:
1854 for_each_net_continue_reverse(net)
1855 call_netdevice_unregister_net_notifiers(nb, net);
1856
1857 raw_notifier_chain_unregister(&netdev_chain, nb);
1858 goto unlock;
1859 }
1860 EXPORT_SYMBOL(register_netdevice_notifier);
1861
1862 /**
1863 * unregister_netdevice_notifier - unregister a network notifier block
1864 * @nb: notifier
1865 *
1866 * Unregister a notifier previously registered by
1867 * register_netdevice_notifier(). The notifier is unlinked into the
1868 * kernel structures and may then be reused. A negative errno code
1869 * is returned on a failure.
1870 *
1871 * After unregistering unregister and down device events are synthesized
1872 * for all devices on the device list to the removed notifier to remove
1873 * the need for special case cleanup code.
1874 */
1875
unregister_netdevice_notifier(struct notifier_block * nb)1876 int unregister_netdevice_notifier(struct notifier_block *nb)
1877 {
1878 struct net *net;
1879 int err;
1880
1881 /* Close race with setup_net() and cleanup_net() */
1882 down_write(&pernet_ops_rwsem);
1883 rtnl_lock();
1884 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1885 if (err)
1886 goto unlock;
1887
1888 for_each_net(net)
1889 call_netdevice_unregister_net_notifiers(nb, net);
1890
1891 unlock:
1892 rtnl_unlock();
1893 up_write(&pernet_ops_rwsem);
1894 return err;
1895 }
1896 EXPORT_SYMBOL(unregister_netdevice_notifier);
1897
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1898 static int __register_netdevice_notifier_net(struct net *net,
1899 struct notifier_block *nb,
1900 bool ignore_call_fail)
1901 {
1902 int err;
1903
1904 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1905 if (err)
1906 return err;
1907 if (dev_boot_phase)
1908 return 0;
1909
1910 err = call_netdevice_register_net_notifiers(nb, net);
1911 if (err && !ignore_call_fail)
1912 goto chain_unregister;
1913
1914 return 0;
1915
1916 chain_unregister:
1917 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1918 return err;
1919 }
1920
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1921 static int __unregister_netdevice_notifier_net(struct net *net,
1922 struct notifier_block *nb)
1923 {
1924 int err;
1925
1926 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927 if (err)
1928 return err;
1929
1930 call_netdevice_unregister_net_notifiers(nb, net);
1931 return 0;
1932 }
1933
1934 /**
1935 * register_netdevice_notifier_net - register a per-netns network notifier block
1936 * @net: network namespace
1937 * @nb: notifier
1938 *
1939 * Register a notifier to be called when network device events occur.
1940 * The notifier passed is linked into the kernel structures and must
1941 * not be reused until it has been unregistered. A negative errno code
1942 * is returned on a failure.
1943 *
1944 * When registered all registration and up events are replayed
1945 * to the new notifier to allow device to have a race free
1946 * view of the network device list.
1947 */
1948
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1949 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1950 {
1951 int err;
1952
1953 rtnl_lock();
1954 err = __register_netdevice_notifier_net(net, nb, false);
1955 rtnl_unlock();
1956 return err;
1957 }
1958 EXPORT_SYMBOL(register_netdevice_notifier_net);
1959
1960 /**
1961 * unregister_netdevice_notifier_net - unregister a per-netns
1962 * network notifier block
1963 * @net: network namespace
1964 * @nb: notifier
1965 *
1966 * Unregister a notifier previously registered by
1967 * register_netdevice_notifier(). The notifier is unlinked into the
1968 * kernel structures and may then be reused. A negative errno code
1969 * is returned on a failure.
1970 *
1971 * After unregistering unregister and down device events are synthesized
1972 * for all devices on the device list to the removed notifier to remove
1973 * the need for special case cleanup code.
1974 */
1975
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1976 int unregister_netdevice_notifier_net(struct net *net,
1977 struct notifier_block *nb)
1978 {
1979 int err;
1980
1981 rtnl_lock();
1982 err = __unregister_netdevice_notifier_net(net, nb);
1983 rtnl_unlock();
1984 return err;
1985 }
1986 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1987
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1988 int register_netdevice_notifier_dev_net(struct net_device *dev,
1989 struct notifier_block *nb,
1990 struct netdev_net_notifier *nn)
1991 {
1992 int err;
1993
1994 rtnl_lock();
1995 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1996 if (!err) {
1997 nn->nb = nb;
1998 list_add(&nn->list, &dev->net_notifier_list);
1999 }
2000 rtnl_unlock();
2001 return err;
2002 }
2003 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2004
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2005 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2006 struct notifier_block *nb,
2007 struct netdev_net_notifier *nn)
2008 {
2009 int err;
2010
2011 rtnl_lock();
2012 list_del(&nn->list);
2013 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2014 rtnl_unlock();
2015 return err;
2016 }
2017 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2018
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2019 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2020 struct net *net)
2021 {
2022 struct netdev_net_notifier *nn;
2023
2024 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2025 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2026 __register_netdevice_notifier_net(net, nn->nb, true);
2027 }
2028 }
2029
2030 /**
2031 * call_netdevice_notifiers_info - call all network notifier blocks
2032 * @val: value passed unmodified to notifier function
2033 * @info: notifier information data
2034 *
2035 * Call all network notifier blocks. Parameters and return value
2036 * are as for raw_notifier_call_chain().
2037 */
2038
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2039 static int call_netdevice_notifiers_info(unsigned long val,
2040 struct netdev_notifier_info *info)
2041 {
2042 struct net *net = dev_net(info->dev);
2043 int ret;
2044
2045 ASSERT_RTNL();
2046
2047 /* Run per-netns notifier block chain first, then run the global one.
2048 * Hopefully, one day, the global one is going to be removed after
2049 * all notifier block registrators get converted to be per-netns.
2050 */
2051 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2052 if (ret & NOTIFY_STOP_MASK)
2053 return ret;
2054 return raw_notifier_call_chain(&netdev_chain, val, info);
2055 }
2056
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2057 static int call_netdevice_notifiers_extack(unsigned long val,
2058 struct net_device *dev,
2059 struct netlink_ext_ack *extack)
2060 {
2061 struct netdev_notifier_info info = {
2062 .dev = dev,
2063 .extack = extack,
2064 };
2065
2066 return call_netdevice_notifiers_info(val, &info);
2067 }
2068
2069 /**
2070 * call_netdevice_notifiers - call all network notifier blocks
2071 * @val: value passed unmodified to notifier function
2072 * @dev: net_device pointer passed unmodified to notifier function
2073 *
2074 * Call all network notifier blocks. Parameters and return value
2075 * are as for raw_notifier_call_chain().
2076 */
2077
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2078 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2079 {
2080 return call_netdevice_notifiers_extack(val, dev, NULL);
2081 }
2082 EXPORT_SYMBOL(call_netdevice_notifiers);
2083
2084 /**
2085 * call_netdevice_notifiers_mtu - call all network notifier blocks
2086 * @val: value passed unmodified to notifier function
2087 * @dev: net_device pointer passed unmodified to notifier function
2088 * @arg: additional u32 argument passed to the notifier function
2089 *
2090 * Call all network notifier blocks. Parameters and return value
2091 * are as for raw_notifier_call_chain().
2092 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2093 static int call_netdevice_notifiers_mtu(unsigned long val,
2094 struct net_device *dev, u32 arg)
2095 {
2096 struct netdev_notifier_info_ext info = {
2097 .info.dev = dev,
2098 .ext.mtu = arg,
2099 };
2100
2101 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2102
2103 return call_netdevice_notifiers_info(val, &info.info);
2104 }
2105
2106 #ifdef CONFIG_NET_INGRESS
2107 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2108
net_inc_ingress_queue(void)2109 void net_inc_ingress_queue(void)
2110 {
2111 static_branch_inc(&ingress_needed_key);
2112 }
2113 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2114
net_dec_ingress_queue(void)2115 void net_dec_ingress_queue(void)
2116 {
2117 static_branch_dec(&ingress_needed_key);
2118 }
2119 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2120 #endif
2121
2122 #ifdef CONFIG_NET_EGRESS
2123 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2124
net_inc_egress_queue(void)2125 void net_inc_egress_queue(void)
2126 {
2127 static_branch_inc(&egress_needed_key);
2128 }
2129 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2130
net_dec_egress_queue(void)2131 void net_dec_egress_queue(void)
2132 {
2133 static_branch_dec(&egress_needed_key);
2134 }
2135 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2136 #endif
2137
2138 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2139 #ifdef CONFIG_JUMP_LABEL
2140 static atomic_t netstamp_needed_deferred;
2141 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2142 static void netstamp_clear(struct work_struct *work)
2143 {
2144 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2145 int wanted;
2146
2147 wanted = atomic_add_return(deferred, &netstamp_wanted);
2148 if (wanted > 0)
2149 static_branch_enable(&netstamp_needed_key);
2150 else
2151 static_branch_disable(&netstamp_needed_key);
2152 }
2153 static DECLARE_WORK(netstamp_work, netstamp_clear);
2154 #endif
2155
net_enable_timestamp(void)2156 void net_enable_timestamp(void)
2157 {
2158 #ifdef CONFIG_JUMP_LABEL
2159 int wanted;
2160
2161 while (1) {
2162 wanted = atomic_read(&netstamp_wanted);
2163 if (wanted <= 0)
2164 break;
2165 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2166 return;
2167 }
2168 atomic_inc(&netstamp_needed_deferred);
2169 schedule_work(&netstamp_work);
2170 #else
2171 static_branch_inc(&netstamp_needed_key);
2172 #endif
2173 }
2174 EXPORT_SYMBOL(net_enable_timestamp);
2175
net_disable_timestamp(void)2176 void net_disable_timestamp(void)
2177 {
2178 #ifdef CONFIG_JUMP_LABEL
2179 int wanted;
2180
2181 while (1) {
2182 wanted = atomic_read(&netstamp_wanted);
2183 if (wanted <= 1)
2184 break;
2185 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2186 return;
2187 }
2188 atomic_dec(&netstamp_needed_deferred);
2189 schedule_work(&netstamp_work);
2190 #else
2191 static_branch_dec(&netstamp_needed_key);
2192 #endif
2193 }
2194 EXPORT_SYMBOL(net_disable_timestamp);
2195
net_timestamp_set(struct sk_buff * skb)2196 static inline void net_timestamp_set(struct sk_buff *skb)
2197 {
2198 skb->tstamp = 0;
2199 if (static_branch_unlikely(&netstamp_needed_key))
2200 __net_timestamp(skb);
2201 }
2202
2203 #define net_timestamp_check(COND, SKB) \
2204 if (static_branch_unlikely(&netstamp_needed_key)) { \
2205 if ((COND) && !(SKB)->tstamp) \
2206 __net_timestamp(SKB); \
2207 } \
2208
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2209 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2210 {
2211 unsigned int len;
2212
2213 if (!(dev->flags & IFF_UP))
2214 return false;
2215
2216 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2217 if (skb->len <= len)
2218 return true;
2219
2220 /* if TSO is enabled, we don't care about the length as the packet
2221 * could be forwarded without being segmented before
2222 */
2223 if (skb_is_gso(skb))
2224 return true;
2225
2226 return false;
2227 }
2228 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2229
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2230 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2231 {
2232 int ret = ____dev_forward_skb(dev, skb);
2233
2234 if (likely(!ret)) {
2235 skb->protocol = eth_type_trans(skb, dev);
2236 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2237 }
2238
2239 return ret;
2240 }
2241 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2242
2243 /**
2244 * dev_forward_skb - loopback an skb to another netif
2245 *
2246 * @dev: destination network device
2247 * @skb: buffer to forward
2248 *
2249 * return values:
2250 * NET_RX_SUCCESS (no congestion)
2251 * NET_RX_DROP (packet was dropped, but freed)
2252 *
2253 * dev_forward_skb can be used for injecting an skb from the
2254 * start_xmit function of one device into the receive queue
2255 * of another device.
2256 *
2257 * The receiving device may be in another namespace, so
2258 * we have to clear all information in the skb that could
2259 * impact namespace isolation.
2260 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2261 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2262 {
2263 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2264 }
2265 EXPORT_SYMBOL_GPL(dev_forward_skb);
2266
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2267 static inline int deliver_skb(struct sk_buff *skb,
2268 struct packet_type *pt_prev,
2269 struct net_device *orig_dev)
2270 {
2271 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2272 return -ENOMEM;
2273 refcount_inc(&skb->users);
2274 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2275 }
2276
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2277 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2278 struct packet_type **pt,
2279 struct net_device *orig_dev,
2280 __be16 type,
2281 struct list_head *ptype_list)
2282 {
2283 struct packet_type *ptype, *pt_prev = *pt;
2284
2285 list_for_each_entry_rcu(ptype, ptype_list, list) {
2286 if (ptype->type != type)
2287 continue;
2288 if (pt_prev)
2289 deliver_skb(skb, pt_prev, orig_dev);
2290 pt_prev = ptype;
2291 }
2292 *pt = pt_prev;
2293 }
2294
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2295 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2296 {
2297 if (!ptype->af_packet_priv || !skb->sk)
2298 return false;
2299
2300 if (ptype->id_match)
2301 return ptype->id_match(ptype, skb->sk);
2302 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2303 return true;
2304
2305 return false;
2306 }
2307
2308 /**
2309 * dev_nit_active - return true if any network interface taps are in use
2310 *
2311 * @dev: network device to check for the presence of taps
2312 */
dev_nit_active(struct net_device * dev)2313 bool dev_nit_active(struct net_device *dev)
2314 {
2315 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2316 }
2317 EXPORT_SYMBOL_GPL(dev_nit_active);
2318
2319 /*
2320 * Support routine. Sends outgoing frames to any network
2321 * taps currently in use.
2322 */
2323
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2324 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2325 {
2326 struct packet_type *ptype;
2327 struct sk_buff *skb2 = NULL;
2328 struct packet_type *pt_prev = NULL;
2329 struct list_head *ptype_list = &ptype_all;
2330
2331 rcu_read_lock();
2332 again:
2333 list_for_each_entry_rcu(ptype, ptype_list, list) {
2334 if (ptype->ignore_outgoing)
2335 continue;
2336
2337 /* Never send packets back to the socket
2338 * they originated from - MvS (miquels@drinkel.ow.org)
2339 */
2340 if (skb_loop_sk(ptype, skb))
2341 continue;
2342
2343 if (pt_prev) {
2344 deliver_skb(skb2, pt_prev, skb->dev);
2345 pt_prev = ptype;
2346 continue;
2347 }
2348
2349 /* need to clone skb, done only once */
2350 skb2 = skb_clone(skb, GFP_ATOMIC);
2351 if (!skb2)
2352 goto out_unlock;
2353
2354 net_timestamp_set(skb2);
2355
2356 /* skb->nh should be correctly
2357 * set by sender, so that the second statement is
2358 * just protection against buggy protocols.
2359 */
2360 skb_reset_mac_header(skb2);
2361
2362 if (skb_network_header(skb2) < skb2->data ||
2363 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2364 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2365 ntohs(skb2->protocol),
2366 dev->name);
2367 skb_reset_network_header(skb2);
2368 }
2369
2370 skb2->transport_header = skb2->network_header;
2371 skb2->pkt_type = PACKET_OUTGOING;
2372 pt_prev = ptype;
2373 }
2374
2375 if (ptype_list == &ptype_all) {
2376 ptype_list = &dev->ptype_all;
2377 goto again;
2378 }
2379 out_unlock:
2380 if (pt_prev) {
2381 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2382 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2383 else
2384 kfree_skb(skb2);
2385 }
2386 rcu_read_unlock();
2387 }
2388 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2389
2390 /**
2391 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2392 * @dev: Network device
2393 * @txq: number of queues available
2394 *
2395 * If real_num_tx_queues is changed the tc mappings may no longer be
2396 * valid. To resolve this verify the tc mapping remains valid and if
2397 * not NULL the mapping. With no priorities mapping to this
2398 * offset/count pair it will no longer be used. In the worst case TC0
2399 * is invalid nothing can be done so disable priority mappings. If is
2400 * expected that drivers will fix this mapping if they can before
2401 * calling netif_set_real_num_tx_queues.
2402 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2403 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2404 {
2405 int i;
2406 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2407
2408 /* If TC0 is invalidated disable TC mapping */
2409 if (tc->offset + tc->count > txq) {
2410 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2411 dev->num_tc = 0;
2412 return;
2413 }
2414
2415 /* Invalidated prio to tc mappings set to TC0 */
2416 for (i = 1; i < TC_BITMASK + 1; i++) {
2417 int q = netdev_get_prio_tc_map(dev, i);
2418
2419 tc = &dev->tc_to_txq[q];
2420 if (tc->offset + tc->count > txq) {
2421 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2422 i, q);
2423 netdev_set_prio_tc_map(dev, i, 0);
2424 }
2425 }
2426 }
2427
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2428 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2429 {
2430 if (dev->num_tc) {
2431 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2432 int i;
2433
2434 /* walk through the TCs and see if it falls into any of them */
2435 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2436 if ((txq - tc->offset) < tc->count)
2437 return i;
2438 }
2439
2440 /* didn't find it, just return -1 to indicate no match */
2441 return -1;
2442 }
2443
2444 return 0;
2445 }
2446 EXPORT_SYMBOL(netdev_txq_to_tc);
2447
2448 #ifdef CONFIG_XPS
2449 struct static_key xps_needed __read_mostly;
2450 EXPORT_SYMBOL(xps_needed);
2451 struct static_key xps_rxqs_needed __read_mostly;
2452 EXPORT_SYMBOL(xps_rxqs_needed);
2453 static DEFINE_MUTEX(xps_map_mutex);
2454 #define xmap_dereference(P) \
2455 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2456
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2457 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2458 int tci, u16 index)
2459 {
2460 struct xps_map *map = NULL;
2461 int pos;
2462
2463 if (dev_maps)
2464 map = xmap_dereference(dev_maps->attr_map[tci]);
2465 if (!map)
2466 return false;
2467
2468 for (pos = map->len; pos--;) {
2469 if (map->queues[pos] != index)
2470 continue;
2471
2472 if (map->len > 1) {
2473 map->queues[pos] = map->queues[--map->len];
2474 break;
2475 }
2476
2477 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2478 kfree_rcu(map, rcu);
2479 return false;
2480 }
2481
2482 return true;
2483 }
2484
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2485 static bool remove_xps_queue_cpu(struct net_device *dev,
2486 struct xps_dev_maps *dev_maps,
2487 int cpu, u16 offset, u16 count)
2488 {
2489 int num_tc = dev->num_tc ? : 1;
2490 bool active = false;
2491 int tci;
2492
2493 for (tci = cpu * num_tc; num_tc--; tci++) {
2494 int i, j;
2495
2496 for (i = count, j = offset; i--; j++) {
2497 if (!remove_xps_queue(dev_maps, tci, j))
2498 break;
2499 }
2500
2501 active |= i < 0;
2502 }
2503
2504 return active;
2505 }
2506
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2507 static void reset_xps_maps(struct net_device *dev,
2508 struct xps_dev_maps *dev_maps,
2509 bool is_rxqs_map)
2510 {
2511 if (is_rxqs_map) {
2512 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2513 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2514 } else {
2515 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2516 }
2517 static_key_slow_dec_cpuslocked(&xps_needed);
2518 kfree_rcu(dev_maps, rcu);
2519 }
2520
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2521 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2522 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2523 u16 offset, u16 count, bool is_rxqs_map)
2524 {
2525 bool active = false;
2526 int i, j;
2527
2528 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2529 j < nr_ids;)
2530 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2531 count);
2532 if (!active)
2533 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2534
2535 if (!is_rxqs_map) {
2536 for (i = offset + (count - 1); count--; i--) {
2537 netdev_queue_numa_node_write(
2538 netdev_get_tx_queue(dev, i),
2539 NUMA_NO_NODE);
2540 }
2541 }
2542 }
2543
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2544 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2545 u16 count)
2546 {
2547 const unsigned long *possible_mask = NULL;
2548 struct xps_dev_maps *dev_maps;
2549 unsigned int nr_ids;
2550
2551 if (!static_key_false(&xps_needed))
2552 return;
2553
2554 cpus_read_lock();
2555 mutex_lock(&xps_map_mutex);
2556
2557 if (static_key_false(&xps_rxqs_needed)) {
2558 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2559 if (dev_maps) {
2560 nr_ids = dev->num_rx_queues;
2561 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2562 offset, count, true);
2563 }
2564 }
2565
2566 dev_maps = xmap_dereference(dev->xps_cpus_map);
2567 if (!dev_maps)
2568 goto out_no_maps;
2569
2570 if (num_possible_cpus() > 1)
2571 possible_mask = cpumask_bits(cpu_possible_mask);
2572 nr_ids = nr_cpu_ids;
2573 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2574 false);
2575
2576 out_no_maps:
2577 mutex_unlock(&xps_map_mutex);
2578 cpus_read_unlock();
2579 }
2580
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2581 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2582 {
2583 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2584 }
2585
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2586 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2587 u16 index, bool is_rxqs_map)
2588 {
2589 struct xps_map *new_map;
2590 int alloc_len = XPS_MIN_MAP_ALLOC;
2591 int i, pos;
2592
2593 for (pos = 0; map && pos < map->len; pos++) {
2594 if (map->queues[pos] != index)
2595 continue;
2596 return map;
2597 }
2598
2599 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2600 if (map) {
2601 if (pos < map->alloc_len)
2602 return map;
2603
2604 alloc_len = map->alloc_len * 2;
2605 }
2606
2607 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2608 * map
2609 */
2610 if (is_rxqs_map)
2611 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2612 else
2613 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2614 cpu_to_node(attr_index));
2615 if (!new_map)
2616 return NULL;
2617
2618 for (i = 0; i < pos; i++)
2619 new_map->queues[i] = map->queues[i];
2620 new_map->alloc_len = alloc_len;
2621 new_map->len = pos;
2622
2623 return new_map;
2624 }
2625
2626 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2627 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2628 u16 index, bool is_rxqs_map)
2629 {
2630 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2631 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2632 int i, j, tci, numa_node_id = -2;
2633 int maps_sz, num_tc = 1, tc = 0;
2634 struct xps_map *map, *new_map;
2635 bool active = false;
2636 unsigned int nr_ids;
2637
2638 WARN_ON_ONCE(index >= dev->num_tx_queues);
2639
2640 if (dev->num_tc) {
2641 /* Do not allow XPS on subordinate device directly */
2642 num_tc = dev->num_tc;
2643 if (num_tc < 0)
2644 return -EINVAL;
2645
2646 /* If queue belongs to subordinate dev use its map */
2647 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2648
2649 tc = netdev_txq_to_tc(dev, index);
2650 if (tc < 0)
2651 return -EINVAL;
2652 }
2653
2654 mutex_lock(&xps_map_mutex);
2655 if (is_rxqs_map) {
2656 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2657 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2658 nr_ids = dev->num_rx_queues;
2659 } else {
2660 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2661 if (num_possible_cpus() > 1) {
2662 online_mask = cpumask_bits(cpu_online_mask);
2663 possible_mask = cpumask_bits(cpu_possible_mask);
2664 }
2665 dev_maps = xmap_dereference(dev->xps_cpus_map);
2666 nr_ids = nr_cpu_ids;
2667 }
2668
2669 if (maps_sz < L1_CACHE_BYTES)
2670 maps_sz = L1_CACHE_BYTES;
2671
2672 /* allocate memory for queue storage */
2673 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2674 j < nr_ids;) {
2675 if (!new_dev_maps)
2676 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2677 if (!new_dev_maps) {
2678 mutex_unlock(&xps_map_mutex);
2679 return -ENOMEM;
2680 }
2681
2682 tci = j * num_tc + tc;
2683 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2684 NULL;
2685
2686 map = expand_xps_map(map, j, index, is_rxqs_map);
2687 if (!map)
2688 goto error;
2689
2690 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2691 }
2692
2693 if (!new_dev_maps)
2694 goto out_no_new_maps;
2695
2696 if (!dev_maps) {
2697 /* Increment static keys at most once per type */
2698 static_key_slow_inc_cpuslocked(&xps_needed);
2699 if (is_rxqs_map)
2700 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2701 }
2702
2703 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2704 j < nr_ids;) {
2705 /* copy maps belonging to foreign traffic classes */
2706 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2707 /* fill in the new device map from the old device map */
2708 map = xmap_dereference(dev_maps->attr_map[tci]);
2709 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2710 }
2711
2712 /* We need to explicitly update tci as prevous loop
2713 * could break out early if dev_maps is NULL.
2714 */
2715 tci = j * num_tc + tc;
2716
2717 if (netif_attr_test_mask(j, mask, nr_ids) &&
2718 netif_attr_test_online(j, online_mask, nr_ids)) {
2719 /* add tx-queue to CPU/rx-queue maps */
2720 int pos = 0;
2721
2722 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2723 while ((pos < map->len) && (map->queues[pos] != index))
2724 pos++;
2725
2726 if (pos == map->len)
2727 map->queues[map->len++] = index;
2728 #ifdef CONFIG_NUMA
2729 if (!is_rxqs_map) {
2730 if (numa_node_id == -2)
2731 numa_node_id = cpu_to_node(j);
2732 else if (numa_node_id != cpu_to_node(j))
2733 numa_node_id = -1;
2734 }
2735 #endif
2736 } else if (dev_maps) {
2737 /* fill in the new device map from the old device map */
2738 map = xmap_dereference(dev_maps->attr_map[tci]);
2739 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2740 }
2741
2742 /* copy maps belonging to foreign traffic classes */
2743 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2744 /* fill in the new device map from the old device map */
2745 map = xmap_dereference(dev_maps->attr_map[tci]);
2746 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2747 }
2748 }
2749
2750 if (is_rxqs_map)
2751 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2752 else
2753 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2754
2755 /* Cleanup old maps */
2756 if (!dev_maps)
2757 goto out_no_old_maps;
2758
2759 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2760 j < nr_ids;) {
2761 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2762 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2763 map = xmap_dereference(dev_maps->attr_map[tci]);
2764 if (map && map != new_map)
2765 kfree_rcu(map, rcu);
2766 }
2767 }
2768
2769 kfree_rcu(dev_maps, rcu);
2770
2771 out_no_old_maps:
2772 dev_maps = new_dev_maps;
2773 active = true;
2774
2775 out_no_new_maps:
2776 if (!is_rxqs_map) {
2777 /* update Tx queue numa node */
2778 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2779 (numa_node_id >= 0) ?
2780 numa_node_id : NUMA_NO_NODE);
2781 }
2782
2783 if (!dev_maps)
2784 goto out_no_maps;
2785
2786 /* removes tx-queue from unused CPUs/rx-queues */
2787 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2788 j < nr_ids;) {
2789 for (i = tc, tci = j * num_tc; i--; tci++)
2790 active |= remove_xps_queue(dev_maps, tci, index);
2791 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2792 !netif_attr_test_online(j, online_mask, nr_ids))
2793 active |= remove_xps_queue(dev_maps, tci, index);
2794 for (i = num_tc - tc, tci++; --i; tci++)
2795 active |= remove_xps_queue(dev_maps, tci, index);
2796 }
2797
2798 /* free map if not active */
2799 if (!active)
2800 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2801
2802 out_no_maps:
2803 mutex_unlock(&xps_map_mutex);
2804
2805 return 0;
2806 error:
2807 /* remove any maps that we added */
2808 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2809 j < nr_ids;) {
2810 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2811 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2812 map = dev_maps ?
2813 xmap_dereference(dev_maps->attr_map[tci]) :
2814 NULL;
2815 if (new_map && new_map != map)
2816 kfree(new_map);
2817 }
2818 }
2819
2820 mutex_unlock(&xps_map_mutex);
2821
2822 kfree(new_dev_maps);
2823 return -ENOMEM;
2824 }
2825 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2826
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2827 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2828 u16 index)
2829 {
2830 int ret;
2831
2832 cpus_read_lock();
2833 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2834 cpus_read_unlock();
2835
2836 return ret;
2837 }
2838 EXPORT_SYMBOL(netif_set_xps_queue);
2839
2840 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2841 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2842 {
2843 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844
2845 /* Unbind any subordinate channels */
2846 while (txq-- != &dev->_tx[0]) {
2847 if (txq->sb_dev)
2848 netdev_unbind_sb_channel(dev, txq->sb_dev);
2849 }
2850 }
2851
netdev_reset_tc(struct net_device * dev)2852 void netdev_reset_tc(struct net_device *dev)
2853 {
2854 #ifdef CONFIG_XPS
2855 netif_reset_xps_queues_gt(dev, 0);
2856 #endif
2857 netdev_unbind_all_sb_channels(dev);
2858
2859 /* Reset TC configuration of device */
2860 dev->num_tc = 0;
2861 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2862 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2863 }
2864 EXPORT_SYMBOL(netdev_reset_tc);
2865
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2866 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2867 {
2868 if (tc >= dev->num_tc)
2869 return -EINVAL;
2870
2871 #ifdef CONFIG_XPS
2872 netif_reset_xps_queues(dev, offset, count);
2873 #endif
2874 dev->tc_to_txq[tc].count = count;
2875 dev->tc_to_txq[tc].offset = offset;
2876 return 0;
2877 }
2878 EXPORT_SYMBOL(netdev_set_tc_queue);
2879
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2880 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2881 {
2882 if (num_tc > TC_MAX_QUEUE)
2883 return -EINVAL;
2884
2885 #ifdef CONFIG_XPS
2886 netif_reset_xps_queues_gt(dev, 0);
2887 #endif
2888 netdev_unbind_all_sb_channels(dev);
2889
2890 dev->num_tc = num_tc;
2891 return 0;
2892 }
2893 EXPORT_SYMBOL(netdev_set_num_tc);
2894
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2895 void netdev_unbind_sb_channel(struct net_device *dev,
2896 struct net_device *sb_dev)
2897 {
2898 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2899
2900 #ifdef CONFIG_XPS
2901 netif_reset_xps_queues_gt(sb_dev, 0);
2902 #endif
2903 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2904 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2905
2906 while (txq-- != &dev->_tx[0]) {
2907 if (txq->sb_dev == sb_dev)
2908 txq->sb_dev = NULL;
2909 }
2910 }
2911 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2912
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2913 int netdev_bind_sb_channel_queue(struct net_device *dev,
2914 struct net_device *sb_dev,
2915 u8 tc, u16 count, u16 offset)
2916 {
2917 /* Make certain the sb_dev and dev are already configured */
2918 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2919 return -EINVAL;
2920
2921 /* We cannot hand out queues we don't have */
2922 if ((offset + count) > dev->real_num_tx_queues)
2923 return -EINVAL;
2924
2925 /* Record the mapping */
2926 sb_dev->tc_to_txq[tc].count = count;
2927 sb_dev->tc_to_txq[tc].offset = offset;
2928
2929 /* Provide a way for Tx queue to find the tc_to_txq map or
2930 * XPS map for itself.
2931 */
2932 while (count--)
2933 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2934
2935 return 0;
2936 }
2937 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2938
netdev_set_sb_channel(struct net_device * dev,u16 channel)2939 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2940 {
2941 /* Do not use a multiqueue device to represent a subordinate channel */
2942 if (netif_is_multiqueue(dev))
2943 return -ENODEV;
2944
2945 /* We allow channels 1 - 32767 to be used for subordinate channels.
2946 * Channel 0 is meant to be "native" mode and used only to represent
2947 * the main root device. We allow writing 0 to reset the device back
2948 * to normal mode after being used as a subordinate channel.
2949 */
2950 if (channel > S16_MAX)
2951 return -EINVAL;
2952
2953 dev->num_tc = -channel;
2954
2955 return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_sb_channel);
2958
2959 /*
2960 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2961 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2962 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2963 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2964 {
2965 bool disabling;
2966 int rc;
2967
2968 disabling = txq < dev->real_num_tx_queues;
2969
2970 if (txq < 1 || txq > dev->num_tx_queues)
2971 return -EINVAL;
2972
2973 if (dev->reg_state == NETREG_REGISTERED ||
2974 dev->reg_state == NETREG_UNREGISTERING) {
2975 ASSERT_RTNL();
2976
2977 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2978 txq);
2979 if (rc)
2980 return rc;
2981
2982 if (dev->num_tc)
2983 netif_setup_tc(dev, txq);
2984
2985 dev->real_num_tx_queues = txq;
2986
2987 if (disabling) {
2988 synchronize_net();
2989 qdisc_reset_all_tx_gt(dev, txq);
2990 #ifdef CONFIG_XPS
2991 netif_reset_xps_queues_gt(dev, txq);
2992 #endif
2993 }
2994 } else {
2995 dev->real_num_tx_queues = txq;
2996 }
2997
2998 return 0;
2999 }
3000 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3001
3002 #ifdef CONFIG_SYSFS
3003 /**
3004 * netif_set_real_num_rx_queues - set actual number of RX queues used
3005 * @dev: Network device
3006 * @rxq: Actual number of RX queues
3007 *
3008 * This must be called either with the rtnl_lock held or before
3009 * registration of the net device. Returns 0 on success, or a
3010 * negative error code. If called before registration, it always
3011 * succeeds.
3012 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3013 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3014 {
3015 int rc;
3016
3017 if (rxq < 1 || rxq > dev->num_rx_queues)
3018 return -EINVAL;
3019
3020 if (dev->reg_state == NETREG_REGISTERED) {
3021 ASSERT_RTNL();
3022
3023 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3024 rxq);
3025 if (rc)
3026 return rc;
3027 }
3028
3029 dev->real_num_rx_queues = rxq;
3030 return 0;
3031 }
3032 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3033 #endif
3034
3035 /**
3036 * netif_get_num_default_rss_queues - default number of RSS queues
3037 *
3038 * This routine should set an upper limit on the number of RSS queues
3039 * used by default by multiqueue devices.
3040 */
netif_get_num_default_rss_queues(void)3041 int netif_get_num_default_rss_queues(void)
3042 {
3043 return is_kdump_kernel() ?
3044 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3045 }
3046 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3047
__netif_reschedule(struct Qdisc * q)3048 static void __netif_reschedule(struct Qdisc *q)
3049 {
3050 struct softnet_data *sd;
3051 unsigned long flags;
3052
3053 local_irq_save(flags);
3054 sd = this_cpu_ptr(&softnet_data);
3055 q->next_sched = NULL;
3056 *sd->output_queue_tailp = q;
3057 sd->output_queue_tailp = &q->next_sched;
3058 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3059 local_irq_restore(flags);
3060 }
3061
__netif_schedule(struct Qdisc * q)3062 void __netif_schedule(struct Qdisc *q)
3063 {
3064 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3065 __netif_reschedule(q);
3066 }
3067 EXPORT_SYMBOL(__netif_schedule);
3068
3069 struct dev_kfree_skb_cb {
3070 enum skb_free_reason reason;
3071 };
3072
get_kfree_skb_cb(const struct sk_buff * skb)3073 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3074 {
3075 return (struct dev_kfree_skb_cb *)skb->cb;
3076 }
3077
netif_schedule_queue(struct netdev_queue * txq)3078 void netif_schedule_queue(struct netdev_queue *txq)
3079 {
3080 rcu_read_lock();
3081 if (!netif_xmit_stopped(txq)) {
3082 struct Qdisc *q = rcu_dereference(txq->qdisc);
3083
3084 __netif_schedule(q);
3085 }
3086 rcu_read_unlock();
3087 }
3088 EXPORT_SYMBOL(netif_schedule_queue);
3089
netif_tx_wake_queue(struct netdev_queue * dev_queue)3090 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3091 {
3092 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3093 struct Qdisc *q;
3094
3095 rcu_read_lock();
3096 q = rcu_dereference(dev_queue->qdisc);
3097 __netif_schedule(q);
3098 rcu_read_unlock();
3099 }
3100 }
3101 EXPORT_SYMBOL(netif_tx_wake_queue);
3102
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3103 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3104 {
3105 unsigned long flags;
3106
3107 if (unlikely(!skb))
3108 return;
3109
3110 if (likely(refcount_read(&skb->users) == 1)) {
3111 smp_rmb();
3112 refcount_set(&skb->users, 0);
3113 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3114 return;
3115 }
3116 get_kfree_skb_cb(skb)->reason = reason;
3117 local_irq_save(flags);
3118 skb->next = __this_cpu_read(softnet_data.completion_queue);
3119 __this_cpu_write(softnet_data.completion_queue, skb);
3120 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3121 local_irq_restore(flags);
3122 }
3123 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3124
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3125 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3126 {
3127 if (in_irq() || irqs_disabled())
3128 __dev_kfree_skb_irq(skb, reason);
3129 else if (unlikely(reason == SKB_REASON_DROPPED))
3130 kfree_skb(skb);
3131 else
3132 consume_skb(skb);
3133 }
3134 EXPORT_SYMBOL(__dev_kfree_skb_any);
3135
3136
3137 /**
3138 * netif_device_detach - mark device as removed
3139 * @dev: network device
3140 *
3141 * Mark device as removed from system and therefore no longer available.
3142 */
netif_device_detach(struct net_device * dev)3143 void netif_device_detach(struct net_device *dev)
3144 {
3145 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3146 netif_running(dev)) {
3147 netif_tx_stop_all_queues(dev);
3148 }
3149 }
3150 EXPORT_SYMBOL(netif_device_detach);
3151
3152 /**
3153 * netif_device_attach - mark device as attached
3154 * @dev: network device
3155 *
3156 * Mark device as attached from system and restart if needed.
3157 */
netif_device_attach(struct net_device * dev)3158 void netif_device_attach(struct net_device *dev)
3159 {
3160 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3161 netif_running(dev)) {
3162 netif_tx_wake_all_queues(dev);
3163 __netdev_watchdog_up(dev);
3164 }
3165 }
3166 EXPORT_SYMBOL(netif_device_attach);
3167
3168 /*
3169 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3170 * to be used as a distribution range.
3171 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3172 static u16 skb_tx_hash(const struct net_device *dev,
3173 const struct net_device *sb_dev,
3174 struct sk_buff *skb)
3175 {
3176 u32 hash;
3177 u16 qoffset = 0;
3178 u16 qcount = dev->real_num_tx_queues;
3179
3180 if (dev->num_tc) {
3181 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3182
3183 qoffset = sb_dev->tc_to_txq[tc].offset;
3184 qcount = sb_dev->tc_to_txq[tc].count;
3185 if (unlikely(!qcount)) {
3186 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3187 sb_dev->name, qoffset, tc);
3188 qoffset = 0;
3189 qcount = dev->real_num_tx_queues;
3190 }
3191 }
3192
3193 if (skb_rx_queue_recorded(skb)) {
3194 hash = skb_get_rx_queue(skb);
3195 if (hash >= qoffset)
3196 hash -= qoffset;
3197 while (unlikely(hash >= qcount))
3198 hash -= qcount;
3199 return hash + qoffset;
3200 }
3201
3202 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3203 }
3204
skb_warn_bad_offload(const struct sk_buff * skb)3205 static void skb_warn_bad_offload(const struct sk_buff *skb)
3206 {
3207 static const netdev_features_t null_features;
3208 struct net_device *dev = skb->dev;
3209 const char *name = "";
3210
3211 if (!net_ratelimit())
3212 return;
3213
3214 if (dev) {
3215 if (dev->dev.parent)
3216 name = dev_driver_string(dev->dev.parent);
3217 else
3218 name = netdev_name(dev);
3219 }
3220 skb_dump(KERN_WARNING, skb, false);
3221 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3222 name, dev ? &dev->features : &null_features,
3223 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3224 }
3225
3226 /*
3227 * Invalidate hardware checksum when packet is to be mangled, and
3228 * complete checksum manually on outgoing path.
3229 */
skb_checksum_help(struct sk_buff * skb)3230 int skb_checksum_help(struct sk_buff *skb)
3231 {
3232 __wsum csum;
3233 int ret = 0, offset;
3234
3235 if (skb->ip_summed == CHECKSUM_COMPLETE)
3236 goto out_set_summed;
3237
3238 if (unlikely(skb_shinfo(skb)->gso_size)) {
3239 skb_warn_bad_offload(skb);
3240 return -EINVAL;
3241 }
3242
3243 /* Before computing a checksum, we should make sure no frag could
3244 * be modified by an external entity : checksum could be wrong.
3245 */
3246 if (skb_has_shared_frag(skb)) {
3247 ret = __skb_linearize(skb);
3248 if (ret)
3249 goto out;
3250 }
3251
3252 offset = skb_checksum_start_offset(skb);
3253 ret = -EINVAL;
3254 if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3255 goto out;
3256
3257 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3258
3259 offset += skb->csum_offset;
3260 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3261 goto out;
3262
3263 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3264 if (ret)
3265 goto out;
3266
3267 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3268 out_set_summed:
3269 skb->ip_summed = CHECKSUM_NONE;
3270 out:
3271 return ret;
3272 }
3273 EXPORT_SYMBOL(skb_checksum_help);
3274
skb_crc32c_csum_help(struct sk_buff * skb)3275 int skb_crc32c_csum_help(struct sk_buff *skb)
3276 {
3277 __le32 crc32c_csum;
3278 int ret = 0, offset, start;
3279
3280 if (skb->ip_summed != CHECKSUM_PARTIAL)
3281 goto out;
3282
3283 if (unlikely(skb_is_gso(skb)))
3284 goto out;
3285
3286 /* Before computing a checksum, we should make sure no frag could
3287 * be modified by an external entity : checksum could be wrong.
3288 */
3289 if (unlikely(skb_has_shared_frag(skb))) {
3290 ret = __skb_linearize(skb);
3291 if (ret)
3292 goto out;
3293 }
3294 start = skb_checksum_start_offset(skb);
3295 offset = start + offsetof(struct sctphdr, checksum);
3296 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3297 ret = -EINVAL;
3298 goto out;
3299 }
3300
3301 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3302 if (ret)
3303 goto out;
3304
3305 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3306 skb->len - start, ~(__u32)0,
3307 crc32c_csum_stub));
3308 *(__le32 *)(skb->data + offset) = crc32c_csum;
3309 skb->ip_summed = CHECKSUM_NONE;
3310 skb->csum_not_inet = 0;
3311 out:
3312 return ret;
3313 }
3314
skb_network_protocol(struct sk_buff * skb,int * depth)3315 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3316 {
3317 __be16 type = skb->protocol;
3318
3319 /* Tunnel gso handlers can set protocol to ethernet. */
3320 if (type == htons(ETH_P_TEB)) {
3321 struct ethhdr *eth;
3322
3323 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3324 return 0;
3325
3326 eth = (struct ethhdr *)skb->data;
3327 type = eth->h_proto;
3328 }
3329
3330 return vlan_get_protocol_and_depth(skb, type, depth);
3331 }
3332
3333 /**
3334 * skb_mac_gso_segment - mac layer segmentation handler.
3335 * @skb: buffer to segment
3336 * @features: features for the output path (see dev->features)
3337 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3338 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3339 netdev_features_t features)
3340 {
3341 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3342 struct packet_offload *ptype;
3343 int vlan_depth = skb->mac_len;
3344 __be16 type = skb_network_protocol(skb, &vlan_depth);
3345
3346 if (unlikely(!type))
3347 return ERR_PTR(-EINVAL);
3348
3349 __skb_pull(skb, vlan_depth);
3350
3351 rcu_read_lock();
3352 list_for_each_entry_rcu(ptype, &offload_base, list) {
3353 if (ptype->type == type && ptype->callbacks.gso_segment) {
3354 segs = ptype->callbacks.gso_segment(skb, features);
3355 break;
3356 }
3357 }
3358 rcu_read_unlock();
3359
3360 __skb_push(skb, skb->data - skb_mac_header(skb));
3361
3362 return segs;
3363 }
3364 EXPORT_SYMBOL(skb_mac_gso_segment);
3365
3366
3367 /* openvswitch calls this on rx path, so we need a different check.
3368 */
skb_needs_check(struct sk_buff * skb,bool tx_path)3369 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3370 {
3371 if (tx_path)
3372 return skb->ip_summed != CHECKSUM_PARTIAL &&
3373 skb->ip_summed != CHECKSUM_UNNECESSARY;
3374
3375 return skb->ip_summed == CHECKSUM_NONE;
3376 }
3377
3378 /**
3379 * __skb_gso_segment - Perform segmentation on skb.
3380 * @skb: buffer to segment
3381 * @features: features for the output path (see dev->features)
3382 * @tx_path: whether it is called in TX path
3383 *
3384 * This function segments the given skb and returns a list of segments.
3385 *
3386 * It may return NULL if the skb requires no segmentation. This is
3387 * only possible when GSO is used for verifying header integrity.
3388 *
3389 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3390 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3391 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3392 netdev_features_t features, bool tx_path)
3393 {
3394 struct sk_buff *segs;
3395
3396 if (unlikely(skb_needs_check(skb, tx_path))) {
3397 int err;
3398
3399 /* We're going to init ->check field in TCP or UDP header */
3400 err = skb_cow_head(skb, 0);
3401 if (err < 0)
3402 return ERR_PTR(err);
3403 }
3404
3405 /* Only report GSO partial support if it will enable us to
3406 * support segmentation on this frame without needing additional
3407 * work.
3408 */
3409 if (features & NETIF_F_GSO_PARTIAL) {
3410 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3411 struct net_device *dev = skb->dev;
3412
3413 partial_features |= dev->features & dev->gso_partial_features;
3414 if (!skb_gso_ok(skb, features | partial_features))
3415 features &= ~NETIF_F_GSO_PARTIAL;
3416 }
3417
3418 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3419 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3420
3421 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3422 SKB_GSO_CB(skb)->encap_level = 0;
3423
3424 skb_reset_mac_header(skb);
3425 skb_reset_mac_len(skb);
3426
3427 segs = skb_mac_gso_segment(skb, features);
3428
3429 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3430 skb_warn_bad_offload(skb);
3431
3432 return segs;
3433 }
3434 EXPORT_SYMBOL(__skb_gso_segment);
3435
3436 /* Take action when hardware reception checksum errors are detected. */
3437 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3438 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3439 {
3440 if (net_ratelimit()) {
3441 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3442 skb_dump(KERN_ERR, skb, true);
3443 dump_stack();
3444 }
3445 }
3446 EXPORT_SYMBOL(netdev_rx_csum_fault);
3447 #endif
3448
3449 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3450 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3451 {
3452 #ifdef CONFIG_HIGHMEM
3453 int i;
3454
3455 if (!(dev->features & NETIF_F_HIGHDMA)) {
3456 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3457 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3458
3459 if (PageHighMem(skb_frag_page(frag)))
3460 return 1;
3461 }
3462 }
3463 #endif
3464 return 0;
3465 }
3466
3467 /* If MPLS offload request, verify we are testing hardware MPLS features
3468 * instead of standard features for the netdev.
3469 */
3470 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3471 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3472 netdev_features_t features,
3473 __be16 type)
3474 {
3475 if (eth_p_mpls(type))
3476 features &= skb->dev->mpls_features;
3477
3478 return features;
3479 }
3480 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3481 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3482 netdev_features_t features,
3483 __be16 type)
3484 {
3485 return features;
3486 }
3487 #endif
3488
harmonize_features(struct sk_buff * skb,netdev_features_t features)3489 static netdev_features_t harmonize_features(struct sk_buff *skb,
3490 netdev_features_t features)
3491 {
3492 __be16 type;
3493
3494 type = skb_network_protocol(skb, NULL);
3495 features = net_mpls_features(skb, features, type);
3496
3497 if (skb->ip_summed != CHECKSUM_NONE &&
3498 !can_checksum_protocol(features, type)) {
3499 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3500 }
3501 if (illegal_highdma(skb->dev, skb))
3502 features &= ~NETIF_F_SG;
3503
3504 return features;
3505 }
3506
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3507 netdev_features_t passthru_features_check(struct sk_buff *skb,
3508 struct net_device *dev,
3509 netdev_features_t features)
3510 {
3511 return features;
3512 }
3513 EXPORT_SYMBOL(passthru_features_check);
3514
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3515 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3516 struct net_device *dev,
3517 netdev_features_t features)
3518 {
3519 return vlan_features_check(skb, features);
3520 }
3521
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3522 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3523 struct net_device *dev,
3524 netdev_features_t features)
3525 {
3526 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3527
3528 if (gso_segs > dev->gso_max_segs)
3529 return features & ~NETIF_F_GSO_MASK;
3530
3531 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3532 return features & ~NETIF_F_GSO_MASK;
3533
3534 if (!skb_shinfo(skb)->gso_type) {
3535 skb_warn_bad_offload(skb);
3536 return features & ~NETIF_F_GSO_MASK;
3537 }
3538
3539 /* Support for GSO partial features requires software
3540 * intervention before we can actually process the packets
3541 * so we need to strip support for any partial features now
3542 * and we can pull them back in after we have partially
3543 * segmented the frame.
3544 */
3545 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3546 features &= ~dev->gso_partial_features;
3547
3548 /* Make sure to clear the IPv4 ID mangling feature if the
3549 * IPv4 header has the potential to be fragmented.
3550 */
3551 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3552 struct iphdr *iph = skb->encapsulation ?
3553 inner_ip_hdr(skb) : ip_hdr(skb);
3554
3555 if (!(iph->frag_off & htons(IP_DF)))
3556 features &= ~NETIF_F_TSO_MANGLEID;
3557 }
3558
3559 return features;
3560 }
3561
netif_skb_features(struct sk_buff * skb)3562 netdev_features_t netif_skb_features(struct sk_buff *skb)
3563 {
3564 struct net_device *dev = skb->dev;
3565 netdev_features_t features = dev->features;
3566
3567 if (skb_is_gso(skb))
3568 features = gso_features_check(skb, dev, features);
3569
3570 /* If encapsulation offload request, verify we are testing
3571 * hardware encapsulation features instead of standard
3572 * features for the netdev
3573 */
3574 if (skb->encapsulation)
3575 features &= dev->hw_enc_features;
3576
3577 if (skb_vlan_tagged(skb))
3578 features = netdev_intersect_features(features,
3579 dev->vlan_features |
3580 NETIF_F_HW_VLAN_CTAG_TX |
3581 NETIF_F_HW_VLAN_STAG_TX);
3582
3583 if (dev->netdev_ops->ndo_features_check)
3584 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3585 features);
3586 else
3587 features &= dflt_features_check(skb, dev, features);
3588
3589 return harmonize_features(skb, features);
3590 }
3591 EXPORT_SYMBOL(netif_skb_features);
3592
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3593 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3594 struct netdev_queue *txq, bool more)
3595 {
3596 unsigned int len;
3597 int rc;
3598
3599 if (dev_nit_active(dev))
3600 dev_queue_xmit_nit(skb, dev);
3601
3602 len = skb->len;
3603 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3604 trace_net_dev_start_xmit(skb, dev);
3605 rc = netdev_start_xmit(skb, dev, txq, more);
3606 trace_net_dev_xmit(skb, rc, dev, len);
3607
3608 return rc;
3609 }
3610
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3611 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3612 struct netdev_queue *txq, int *ret)
3613 {
3614 struct sk_buff *skb = first;
3615 int rc = NETDEV_TX_OK;
3616
3617 while (skb) {
3618 struct sk_buff *next = skb->next;
3619
3620 skb_mark_not_on_list(skb);
3621 rc = xmit_one(skb, dev, txq, next != NULL);
3622 if (unlikely(!dev_xmit_complete(rc))) {
3623 skb->next = next;
3624 goto out;
3625 }
3626
3627 skb = next;
3628 if (netif_tx_queue_stopped(txq) && skb) {
3629 rc = NETDEV_TX_BUSY;
3630 break;
3631 }
3632 }
3633
3634 out:
3635 *ret = rc;
3636 return skb;
3637 }
3638
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3639 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3640 netdev_features_t features)
3641 {
3642 if (skb_vlan_tag_present(skb) &&
3643 !vlan_hw_offload_capable(features, skb->vlan_proto))
3644 skb = __vlan_hwaccel_push_inside(skb);
3645 return skb;
3646 }
3647
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3648 int skb_csum_hwoffload_help(struct sk_buff *skb,
3649 const netdev_features_t features)
3650 {
3651 if (unlikely(skb_csum_is_sctp(skb)))
3652 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3653 skb_crc32c_csum_help(skb);
3654
3655 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3656 }
3657 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3658
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3659 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3660 {
3661 netdev_features_t features;
3662
3663 features = netif_skb_features(skb);
3664 skb = validate_xmit_vlan(skb, features);
3665 if (unlikely(!skb))
3666 goto out_null;
3667
3668 skb = sk_validate_xmit_skb(skb, dev);
3669 if (unlikely(!skb))
3670 goto out_null;
3671
3672 if (netif_needs_gso(skb, features)) {
3673 struct sk_buff *segs;
3674
3675 segs = skb_gso_segment(skb, features);
3676 if (IS_ERR(segs)) {
3677 goto out_kfree_skb;
3678 } else if (segs) {
3679 consume_skb(skb);
3680 skb = segs;
3681 }
3682 } else {
3683 if (skb_needs_linearize(skb, features) &&
3684 __skb_linearize(skb))
3685 goto out_kfree_skb;
3686
3687 /* If packet is not checksummed and device does not
3688 * support checksumming for this protocol, complete
3689 * checksumming here.
3690 */
3691 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3692 if (skb->encapsulation)
3693 skb_set_inner_transport_header(skb,
3694 skb_checksum_start_offset(skb));
3695 else
3696 skb_set_transport_header(skb,
3697 skb_checksum_start_offset(skb));
3698 if (skb_csum_hwoffload_help(skb, features))
3699 goto out_kfree_skb;
3700 }
3701 }
3702
3703 skb = validate_xmit_xfrm(skb, features, again);
3704
3705 return skb;
3706
3707 out_kfree_skb:
3708 kfree_skb(skb);
3709 out_null:
3710 atomic_long_inc(&dev->tx_dropped);
3711 return NULL;
3712 }
3713
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3714 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3715 {
3716 struct sk_buff *next, *head = NULL, *tail;
3717
3718 for (; skb != NULL; skb = next) {
3719 next = skb->next;
3720 skb_mark_not_on_list(skb);
3721
3722 /* in case skb wont be segmented, point to itself */
3723 skb->prev = skb;
3724
3725 skb = validate_xmit_skb(skb, dev, again);
3726 if (!skb)
3727 continue;
3728
3729 if (!head)
3730 head = skb;
3731 else
3732 tail->next = skb;
3733 /* If skb was segmented, skb->prev points to
3734 * the last segment. If not, it still contains skb.
3735 */
3736 tail = skb->prev;
3737 }
3738 return head;
3739 }
3740 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3741
qdisc_pkt_len_init(struct sk_buff * skb)3742 static void qdisc_pkt_len_init(struct sk_buff *skb)
3743 {
3744 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3745
3746 qdisc_skb_cb(skb)->pkt_len = skb->len;
3747
3748 /* To get more precise estimation of bytes sent on wire,
3749 * we add to pkt_len the headers size of all segments
3750 */
3751 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3752 unsigned int hdr_len;
3753 u16 gso_segs = shinfo->gso_segs;
3754
3755 /* mac layer + network layer */
3756 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3757
3758 /* + transport layer */
3759 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3760 const struct tcphdr *th;
3761 struct tcphdr _tcphdr;
3762
3763 th = skb_header_pointer(skb, skb_transport_offset(skb),
3764 sizeof(_tcphdr), &_tcphdr);
3765 if (likely(th))
3766 hdr_len += __tcp_hdrlen(th);
3767 } else {
3768 struct udphdr _udphdr;
3769
3770 if (skb_header_pointer(skb, skb_transport_offset(skb),
3771 sizeof(_udphdr), &_udphdr))
3772 hdr_len += sizeof(struct udphdr);
3773 }
3774
3775 if (shinfo->gso_type & SKB_GSO_DODGY)
3776 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3777 shinfo->gso_size);
3778
3779 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3780 }
3781 }
3782
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3783 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3784 struct net_device *dev,
3785 struct netdev_queue *txq)
3786 {
3787 spinlock_t *root_lock = qdisc_lock(q);
3788 struct sk_buff *to_free = NULL;
3789 bool contended;
3790 int rc;
3791
3792 qdisc_calculate_pkt_len(skb, q);
3793
3794 if (q->flags & TCQ_F_NOLOCK) {
3795 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3796 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3797 qdisc_run(q);
3798
3799 if (unlikely(to_free))
3800 kfree_skb_list(to_free);
3801 return rc;
3802 }
3803
3804 /*
3805 * Heuristic to force contended enqueues to serialize on a
3806 * separate lock before trying to get qdisc main lock.
3807 * This permits qdisc->running owner to get the lock more
3808 * often and dequeue packets faster.
3809 */
3810 contended = qdisc_is_running(q);
3811 if (unlikely(contended))
3812 spin_lock(&q->busylock);
3813
3814 spin_lock(root_lock);
3815 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3816 __qdisc_drop(skb, &to_free);
3817 rc = NET_XMIT_DROP;
3818 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3819 qdisc_run_begin(q)) {
3820 /*
3821 * This is a work-conserving queue; there are no old skbs
3822 * waiting to be sent out; and the qdisc is not running -
3823 * xmit the skb directly.
3824 */
3825
3826 qdisc_bstats_update(q, skb);
3827
3828 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3829 if (unlikely(contended)) {
3830 spin_unlock(&q->busylock);
3831 contended = false;
3832 }
3833 __qdisc_run(q);
3834 }
3835
3836 qdisc_run_end(q);
3837 rc = NET_XMIT_SUCCESS;
3838 } else {
3839 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3840 if (qdisc_run_begin(q)) {
3841 if (unlikely(contended)) {
3842 spin_unlock(&q->busylock);
3843 contended = false;
3844 }
3845 __qdisc_run(q);
3846 qdisc_run_end(q);
3847 }
3848 }
3849 spin_unlock(root_lock);
3850 if (unlikely(to_free))
3851 kfree_skb_list(to_free);
3852 if (unlikely(contended))
3853 spin_unlock(&q->busylock);
3854 return rc;
3855 }
3856
3857 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3858 static void skb_update_prio(struct sk_buff *skb)
3859 {
3860 const struct netprio_map *map;
3861 const struct sock *sk;
3862 unsigned int prioidx;
3863
3864 if (skb->priority)
3865 return;
3866 map = rcu_dereference_bh(skb->dev->priomap);
3867 if (!map)
3868 return;
3869 sk = skb_to_full_sk(skb);
3870 if (!sk)
3871 return;
3872
3873 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3874
3875 if (prioidx < map->priomap_len)
3876 skb->priority = map->priomap[prioidx];
3877 }
3878 #else
3879 #define skb_update_prio(skb)
3880 #endif
3881
3882 /**
3883 * dev_loopback_xmit - loop back @skb
3884 * @net: network namespace this loopback is happening in
3885 * @sk: sk needed to be a netfilter okfn
3886 * @skb: buffer to transmit
3887 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3888 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3889 {
3890 skb_reset_mac_header(skb);
3891 __skb_pull(skb, skb_network_offset(skb));
3892 skb->pkt_type = PACKET_LOOPBACK;
3893 if (skb->ip_summed == CHECKSUM_NONE)
3894 skb->ip_summed = CHECKSUM_UNNECESSARY;
3895 WARN_ON(!skb_dst(skb));
3896 skb_dst_force(skb);
3897 netif_rx_ni(skb);
3898 return 0;
3899 }
3900 EXPORT_SYMBOL(dev_loopback_xmit);
3901
3902 #ifdef CONFIG_NET_EGRESS
3903 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3904 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3905 {
3906 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3907 struct tcf_result cl_res;
3908
3909 if (!miniq)
3910 return skb;
3911
3912 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3913 qdisc_skb_cb(skb)->mru = 0;
3914 mini_qdisc_bstats_cpu_update(miniq, skb);
3915
3916 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3917 case TC_ACT_OK:
3918 case TC_ACT_RECLASSIFY:
3919 skb->tc_index = TC_H_MIN(cl_res.classid);
3920 break;
3921 case TC_ACT_SHOT:
3922 mini_qdisc_qstats_cpu_drop(miniq);
3923 *ret = NET_XMIT_DROP;
3924 kfree_skb(skb);
3925 return NULL;
3926 case TC_ACT_STOLEN:
3927 case TC_ACT_QUEUED:
3928 case TC_ACT_TRAP:
3929 *ret = NET_XMIT_SUCCESS;
3930 consume_skb(skb);
3931 return NULL;
3932 case TC_ACT_REDIRECT:
3933 /* No need to push/pop skb's mac_header here on egress! */
3934 skb_do_redirect(skb);
3935 *ret = NET_XMIT_SUCCESS;
3936 return NULL;
3937 default:
3938 break;
3939 }
3940
3941 return skb;
3942 }
3943 #endif /* CONFIG_NET_EGRESS */
3944
3945 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3946 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3947 struct xps_dev_maps *dev_maps, unsigned int tci)
3948 {
3949 struct xps_map *map;
3950 int queue_index = -1;
3951
3952 if (dev->num_tc) {
3953 tci *= dev->num_tc;
3954 tci += netdev_get_prio_tc_map(dev, skb->priority);
3955 }
3956
3957 map = rcu_dereference(dev_maps->attr_map[tci]);
3958 if (map) {
3959 if (map->len == 1)
3960 queue_index = map->queues[0];
3961 else
3962 queue_index = map->queues[reciprocal_scale(
3963 skb_get_hash(skb), map->len)];
3964 if (unlikely(queue_index >= dev->real_num_tx_queues))
3965 queue_index = -1;
3966 }
3967 return queue_index;
3968 }
3969 #endif
3970
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3971 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3972 struct sk_buff *skb)
3973 {
3974 #ifdef CONFIG_XPS
3975 struct xps_dev_maps *dev_maps;
3976 struct sock *sk = skb->sk;
3977 int queue_index = -1;
3978
3979 if (!static_key_false(&xps_needed))
3980 return -1;
3981
3982 rcu_read_lock();
3983 if (!static_key_false(&xps_rxqs_needed))
3984 goto get_cpus_map;
3985
3986 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3987 if (dev_maps) {
3988 int tci = sk_rx_queue_get(sk);
3989
3990 if (tci >= 0 && tci < dev->num_rx_queues)
3991 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3992 tci);
3993 }
3994
3995 get_cpus_map:
3996 if (queue_index < 0) {
3997 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3998 if (dev_maps) {
3999 unsigned int tci = skb->sender_cpu - 1;
4000
4001 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4002 tci);
4003 }
4004 }
4005 rcu_read_unlock();
4006
4007 return queue_index;
4008 #else
4009 return -1;
4010 #endif
4011 }
4012
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4013 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4014 struct net_device *sb_dev)
4015 {
4016 return 0;
4017 }
4018 EXPORT_SYMBOL(dev_pick_tx_zero);
4019
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4020 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4021 struct net_device *sb_dev)
4022 {
4023 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4024 }
4025 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4026
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4027 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4028 struct net_device *sb_dev)
4029 {
4030 struct sock *sk = skb->sk;
4031 int queue_index = sk_tx_queue_get(sk);
4032
4033 sb_dev = sb_dev ? : dev;
4034
4035 if (queue_index < 0 || skb->ooo_okay ||
4036 queue_index >= dev->real_num_tx_queues) {
4037 int new_index = get_xps_queue(dev, sb_dev, skb);
4038
4039 if (new_index < 0)
4040 new_index = skb_tx_hash(dev, sb_dev, skb);
4041
4042 if (queue_index != new_index && sk &&
4043 sk_fullsock(sk) &&
4044 rcu_access_pointer(sk->sk_dst_cache))
4045 sk_tx_queue_set(sk, new_index);
4046
4047 queue_index = new_index;
4048 }
4049
4050 return queue_index;
4051 }
4052 EXPORT_SYMBOL(netdev_pick_tx);
4053
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4054 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4055 struct sk_buff *skb,
4056 struct net_device *sb_dev)
4057 {
4058 int queue_index = 0;
4059
4060 #ifdef CONFIG_XPS
4061 u32 sender_cpu = skb->sender_cpu - 1;
4062
4063 if (sender_cpu >= (u32)NR_CPUS)
4064 skb->sender_cpu = raw_smp_processor_id() + 1;
4065 #endif
4066
4067 if (dev->real_num_tx_queues != 1) {
4068 const struct net_device_ops *ops = dev->netdev_ops;
4069
4070 if (ops->ndo_select_queue)
4071 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4072 else
4073 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4074
4075 queue_index = netdev_cap_txqueue(dev, queue_index);
4076 }
4077
4078 skb_set_queue_mapping(skb, queue_index);
4079 return netdev_get_tx_queue(dev, queue_index);
4080 }
4081
4082 /**
4083 * __dev_queue_xmit - transmit a buffer
4084 * @skb: buffer to transmit
4085 * @sb_dev: suboordinate device used for L2 forwarding offload
4086 *
4087 * Queue a buffer for transmission to a network device. The caller must
4088 * have set the device and priority and built the buffer before calling
4089 * this function. The function can be called from an interrupt.
4090 *
4091 * A negative errno code is returned on a failure. A success does not
4092 * guarantee the frame will be transmitted as it may be dropped due
4093 * to congestion or traffic shaping.
4094 *
4095 * -----------------------------------------------------------------------------------
4096 * I notice this method can also return errors from the queue disciplines,
4097 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4098 * be positive.
4099 *
4100 * Regardless of the return value, the skb is consumed, so it is currently
4101 * difficult to retry a send to this method. (You can bump the ref count
4102 * before sending to hold a reference for retry if you are careful.)
4103 *
4104 * When calling this method, interrupts MUST be enabled. This is because
4105 * the BH enable code must have IRQs enabled so that it will not deadlock.
4106 * --BLG
4107 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4108 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4109 {
4110 struct net_device *dev = skb->dev;
4111 struct netdev_queue *txq;
4112 struct Qdisc *q;
4113 int rc = -ENOMEM;
4114 bool again = false;
4115
4116 skb_reset_mac_header(skb);
4117 skb_assert_len(skb);
4118
4119 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4120 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4121
4122 /* Disable soft irqs for various locks below. Also
4123 * stops preemption for RCU.
4124 */
4125 rcu_read_lock_bh();
4126
4127 skb_update_prio(skb);
4128
4129 qdisc_pkt_len_init(skb);
4130 #ifdef CONFIG_NET_CLS_ACT
4131 skb->tc_at_ingress = 0;
4132 # ifdef CONFIG_NET_EGRESS
4133 if (static_branch_unlikely(&egress_needed_key)) {
4134 skb = sch_handle_egress(skb, &rc, dev);
4135 if (!skb)
4136 goto out;
4137 }
4138 # endif
4139 #endif
4140 /* If device/qdisc don't need skb->dst, release it right now while
4141 * its hot in this cpu cache.
4142 */
4143 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4144 skb_dst_drop(skb);
4145 else
4146 skb_dst_force(skb);
4147
4148 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4149 q = rcu_dereference_bh(txq->qdisc);
4150
4151 trace_net_dev_queue(skb);
4152 if (q->enqueue) {
4153 rc = __dev_xmit_skb(skb, q, dev, txq);
4154 goto out;
4155 }
4156
4157 /* The device has no queue. Common case for software devices:
4158 * loopback, all the sorts of tunnels...
4159
4160 * Really, it is unlikely that netif_tx_lock protection is necessary
4161 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4162 * counters.)
4163 * However, it is possible, that they rely on protection
4164 * made by us here.
4165
4166 * Check this and shot the lock. It is not prone from deadlocks.
4167 *Either shot noqueue qdisc, it is even simpler 8)
4168 */
4169 if (dev->flags & IFF_UP) {
4170 int cpu = smp_processor_id(); /* ok because BHs are off */
4171
4172 /* Other cpus might concurrently change txq->xmit_lock_owner
4173 * to -1 or to their cpu id, but not to our id.
4174 */
4175 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4176 if (dev_xmit_recursion())
4177 goto recursion_alert;
4178
4179 skb = validate_xmit_skb(skb, dev, &again);
4180 if (!skb)
4181 goto out;
4182
4183 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4184 HARD_TX_LOCK(dev, txq, cpu);
4185
4186 if (!netif_xmit_stopped(txq)) {
4187 dev_xmit_recursion_inc();
4188 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4189 dev_xmit_recursion_dec();
4190 if (dev_xmit_complete(rc)) {
4191 HARD_TX_UNLOCK(dev, txq);
4192 goto out;
4193 }
4194 }
4195 HARD_TX_UNLOCK(dev, txq);
4196 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4197 dev->name);
4198 } else {
4199 /* Recursion is detected! It is possible,
4200 * unfortunately
4201 */
4202 recursion_alert:
4203 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4204 dev->name);
4205 }
4206 }
4207
4208 rc = -ENETDOWN;
4209 rcu_read_unlock_bh();
4210
4211 atomic_long_inc(&dev->tx_dropped);
4212 kfree_skb_list(skb);
4213 return rc;
4214 out:
4215 rcu_read_unlock_bh();
4216 return rc;
4217 }
4218
dev_queue_xmit(struct sk_buff * skb)4219 int dev_queue_xmit(struct sk_buff *skb)
4220 {
4221 return __dev_queue_xmit(skb, NULL);
4222 }
4223 EXPORT_SYMBOL(dev_queue_xmit);
4224
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4225 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4226 {
4227 return __dev_queue_xmit(skb, sb_dev);
4228 }
4229 EXPORT_SYMBOL(dev_queue_xmit_accel);
4230
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4231 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4232 {
4233 struct net_device *dev = skb->dev;
4234 struct sk_buff *orig_skb = skb;
4235 struct netdev_queue *txq;
4236 int ret = NETDEV_TX_BUSY;
4237 bool again = false;
4238
4239 if (unlikely(!netif_running(dev) ||
4240 !netif_carrier_ok(dev)))
4241 goto drop;
4242
4243 skb = validate_xmit_skb_list(skb, dev, &again);
4244 if (skb != orig_skb)
4245 goto drop;
4246
4247 skb_set_queue_mapping(skb, queue_id);
4248 txq = skb_get_tx_queue(dev, skb);
4249 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4250
4251 local_bh_disable();
4252
4253 dev_xmit_recursion_inc();
4254 HARD_TX_LOCK(dev, txq, smp_processor_id());
4255 if (!netif_xmit_frozen_or_drv_stopped(txq))
4256 ret = netdev_start_xmit(skb, dev, txq, false);
4257 HARD_TX_UNLOCK(dev, txq);
4258 dev_xmit_recursion_dec();
4259
4260 local_bh_enable();
4261 return ret;
4262 drop:
4263 atomic_long_inc(&dev->tx_dropped);
4264 kfree_skb_list(skb);
4265 return NET_XMIT_DROP;
4266 }
4267 EXPORT_SYMBOL(__dev_direct_xmit);
4268
4269 /*************************************************************************
4270 * Receiver routines
4271 *************************************************************************/
4272
4273 int netdev_max_backlog __read_mostly = 1000;
4274 EXPORT_SYMBOL(netdev_max_backlog);
4275
4276 int netdev_tstamp_prequeue __read_mostly = 1;
4277 int netdev_budget __read_mostly = 300;
4278 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4279 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4280 int weight_p __read_mostly = 64; /* old backlog weight */
4281 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4282 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4283 int dev_rx_weight __read_mostly = 64;
4284 int dev_tx_weight __read_mostly = 64;
4285 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4286 int gro_normal_batch __read_mostly = 8;
4287
4288 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4289 static inline void ____napi_schedule(struct softnet_data *sd,
4290 struct napi_struct *napi)
4291 {
4292 list_add_tail(&napi->poll_list, &sd->poll_list);
4293 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4294 }
4295
4296 #ifdef CONFIG_RPS
4297
4298 /* One global table that all flow-based protocols share. */
4299 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4300 EXPORT_SYMBOL(rps_sock_flow_table);
4301 u32 rps_cpu_mask __read_mostly;
4302 EXPORT_SYMBOL(rps_cpu_mask);
4303
4304 struct static_key_false rps_needed __read_mostly;
4305 EXPORT_SYMBOL(rps_needed);
4306 struct static_key_false rfs_needed __read_mostly;
4307 EXPORT_SYMBOL(rfs_needed);
4308
4309 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4310 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4311 struct rps_dev_flow *rflow, u16 next_cpu)
4312 {
4313 if (next_cpu < nr_cpu_ids) {
4314 #ifdef CONFIG_RFS_ACCEL
4315 struct netdev_rx_queue *rxqueue;
4316 struct rps_dev_flow_table *flow_table;
4317 struct rps_dev_flow *old_rflow;
4318 u32 flow_id;
4319 u16 rxq_index;
4320 int rc;
4321
4322 /* Should we steer this flow to a different hardware queue? */
4323 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4324 !(dev->features & NETIF_F_NTUPLE))
4325 goto out;
4326 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4327 if (rxq_index == skb_get_rx_queue(skb))
4328 goto out;
4329
4330 rxqueue = dev->_rx + rxq_index;
4331 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4332 if (!flow_table)
4333 goto out;
4334 flow_id = skb_get_hash(skb) & flow_table->mask;
4335 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4336 rxq_index, flow_id);
4337 if (rc < 0)
4338 goto out;
4339 old_rflow = rflow;
4340 rflow = &flow_table->flows[flow_id];
4341 rflow->filter = rc;
4342 if (old_rflow->filter == rflow->filter)
4343 old_rflow->filter = RPS_NO_FILTER;
4344 out:
4345 #endif
4346 rflow->last_qtail =
4347 per_cpu(softnet_data, next_cpu).input_queue_head;
4348 }
4349
4350 rflow->cpu = next_cpu;
4351 return rflow;
4352 }
4353
4354 /*
4355 * get_rps_cpu is called from netif_receive_skb and returns the target
4356 * CPU from the RPS map of the receiving queue for a given skb.
4357 * rcu_read_lock must be held on entry.
4358 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4359 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4360 struct rps_dev_flow **rflowp)
4361 {
4362 const struct rps_sock_flow_table *sock_flow_table;
4363 struct netdev_rx_queue *rxqueue = dev->_rx;
4364 struct rps_dev_flow_table *flow_table;
4365 struct rps_map *map;
4366 int cpu = -1;
4367 u32 tcpu;
4368 u32 hash;
4369
4370 if (skb_rx_queue_recorded(skb)) {
4371 u16 index = skb_get_rx_queue(skb);
4372
4373 if (unlikely(index >= dev->real_num_rx_queues)) {
4374 WARN_ONCE(dev->real_num_rx_queues > 1,
4375 "%s received packet on queue %u, but number "
4376 "of RX queues is %u\n",
4377 dev->name, index, dev->real_num_rx_queues);
4378 goto done;
4379 }
4380 rxqueue += index;
4381 }
4382
4383 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4384
4385 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4386 map = rcu_dereference(rxqueue->rps_map);
4387 if (!flow_table && !map)
4388 goto done;
4389
4390 skb_reset_network_header(skb);
4391 hash = skb_get_hash(skb);
4392 if (!hash)
4393 goto done;
4394
4395 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4396 if (flow_table && sock_flow_table) {
4397 struct rps_dev_flow *rflow;
4398 u32 next_cpu;
4399 u32 ident;
4400
4401 /* First check into global flow table if there is a match.
4402 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4403 */
4404 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4405 if ((ident ^ hash) & ~rps_cpu_mask)
4406 goto try_rps;
4407
4408 next_cpu = ident & rps_cpu_mask;
4409
4410 /* OK, now we know there is a match,
4411 * we can look at the local (per receive queue) flow table
4412 */
4413 rflow = &flow_table->flows[hash & flow_table->mask];
4414 tcpu = rflow->cpu;
4415
4416 /*
4417 * If the desired CPU (where last recvmsg was done) is
4418 * different from current CPU (one in the rx-queue flow
4419 * table entry), switch if one of the following holds:
4420 * - Current CPU is unset (>= nr_cpu_ids).
4421 * - Current CPU is offline.
4422 * - The current CPU's queue tail has advanced beyond the
4423 * last packet that was enqueued using this table entry.
4424 * This guarantees that all previous packets for the flow
4425 * have been dequeued, thus preserving in order delivery.
4426 */
4427 if (unlikely(tcpu != next_cpu) &&
4428 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4429 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4430 rflow->last_qtail)) >= 0)) {
4431 tcpu = next_cpu;
4432 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4433 }
4434
4435 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4436 *rflowp = rflow;
4437 cpu = tcpu;
4438 goto done;
4439 }
4440 }
4441
4442 try_rps:
4443
4444 if (map) {
4445 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4446 if (cpu_online(tcpu)) {
4447 cpu = tcpu;
4448 goto done;
4449 }
4450 }
4451
4452 done:
4453 return cpu;
4454 }
4455
4456 #ifdef CONFIG_RFS_ACCEL
4457
4458 /**
4459 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4460 * @dev: Device on which the filter was set
4461 * @rxq_index: RX queue index
4462 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4463 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4464 *
4465 * Drivers that implement ndo_rx_flow_steer() should periodically call
4466 * this function for each installed filter and remove the filters for
4467 * which it returns %true.
4468 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4469 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4470 u32 flow_id, u16 filter_id)
4471 {
4472 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4473 struct rps_dev_flow_table *flow_table;
4474 struct rps_dev_flow *rflow;
4475 bool expire = true;
4476 unsigned int cpu;
4477
4478 rcu_read_lock();
4479 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4480 if (flow_table && flow_id <= flow_table->mask) {
4481 rflow = &flow_table->flows[flow_id];
4482 cpu = READ_ONCE(rflow->cpu);
4483 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4484 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4485 rflow->last_qtail) <
4486 (int)(10 * flow_table->mask)))
4487 expire = false;
4488 }
4489 rcu_read_unlock();
4490 return expire;
4491 }
4492 EXPORT_SYMBOL(rps_may_expire_flow);
4493
4494 #endif /* CONFIG_RFS_ACCEL */
4495
4496 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4497 static void rps_trigger_softirq(void *data)
4498 {
4499 struct softnet_data *sd = data;
4500
4501 ____napi_schedule(sd, &sd->backlog);
4502 sd->received_rps++;
4503 }
4504
4505 #endif /* CONFIG_RPS */
4506
4507 /*
4508 * Check if this softnet_data structure is another cpu one
4509 * If yes, queue it to our IPI list and return 1
4510 * If no, return 0
4511 */
rps_ipi_queued(struct softnet_data * sd)4512 static int rps_ipi_queued(struct softnet_data *sd)
4513 {
4514 #ifdef CONFIG_RPS
4515 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4516
4517 if (sd != mysd) {
4518 sd->rps_ipi_next = mysd->rps_ipi_list;
4519 mysd->rps_ipi_list = sd;
4520
4521 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4522 return 1;
4523 }
4524 #endif /* CONFIG_RPS */
4525 return 0;
4526 }
4527
4528 #ifdef CONFIG_NET_FLOW_LIMIT
4529 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4530 #endif
4531
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4532 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4533 {
4534 #ifdef CONFIG_NET_FLOW_LIMIT
4535 struct sd_flow_limit *fl;
4536 struct softnet_data *sd;
4537 unsigned int old_flow, new_flow;
4538
4539 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4540 return false;
4541
4542 sd = this_cpu_ptr(&softnet_data);
4543
4544 rcu_read_lock();
4545 fl = rcu_dereference(sd->flow_limit);
4546 if (fl) {
4547 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4548 old_flow = fl->history[fl->history_head];
4549 fl->history[fl->history_head] = new_flow;
4550
4551 fl->history_head++;
4552 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4553
4554 if (likely(fl->buckets[old_flow]))
4555 fl->buckets[old_flow]--;
4556
4557 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4558 fl->count++;
4559 rcu_read_unlock();
4560 return true;
4561 }
4562 }
4563 rcu_read_unlock();
4564 #endif
4565 return false;
4566 }
4567
4568 /*
4569 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4570 * queue (may be a remote CPU queue).
4571 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4572 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4573 unsigned int *qtail)
4574 {
4575 struct softnet_data *sd;
4576 unsigned long flags;
4577 unsigned int qlen;
4578
4579 sd = &per_cpu(softnet_data, cpu);
4580
4581 local_irq_save(flags);
4582
4583 rps_lock(sd);
4584 if (!netif_running(skb->dev))
4585 goto drop;
4586 qlen = skb_queue_len(&sd->input_pkt_queue);
4587 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4588 if (qlen) {
4589 enqueue:
4590 __skb_queue_tail(&sd->input_pkt_queue, skb);
4591 input_queue_tail_incr_save(sd, qtail);
4592 rps_unlock(sd);
4593 local_irq_restore(flags);
4594 return NET_RX_SUCCESS;
4595 }
4596
4597 /* Schedule NAPI for backlog device
4598 * We can use non atomic operation since we own the queue lock
4599 */
4600 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4601 if (!rps_ipi_queued(sd))
4602 ____napi_schedule(sd, &sd->backlog);
4603 }
4604 goto enqueue;
4605 }
4606
4607 drop:
4608 sd->dropped++;
4609 rps_unlock(sd);
4610
4611 local_irq_restore(flags);
4612
4613 atomic_long_inc(&skb->dev->rx_dropped);
4614 kfree_skb(skb);
4615 return NET_RX_DROP;
4616 }
4617
netif_get_rxqueue(struct sk_buff * skb)4618 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4619 {
4620 struct net_device *dev = skb->dev;
4621 struct netdev_rx_queue *rxqueue;
4622
4623 rxqueue = dev->_rx;
4624
4625 if (skb_rx_queue_recorded(skb)) {
4626 u16 index = skb_get_rx_queue(skb);
4627
4628 if (unlikely(index >= dev->real_num_rx_queues)) {
4629 WARN_ONCE(dev->real_num_rx_queues > 1,
4630 "%s received packet on queue %u, but number "
4631 "of RX queues is %u\n",
4632 dev->name, index, dev->real_num_rx_queues);
4633
4634 return rxqueue; /* Return first rxqueue */
4635 }
4636 rxqueue += index;
4637 }
4638 return rxqueue;
4639 }
4640
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4641 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4642 struct xdp_buff *xdp,
4643 struct bpf_prog *xdp_prog)
4644 {
4645 struct netdev_rx_queue *rxqueue;
4646 void *orig_data, *orig_data_end;
4647 u32 metalen, act = XDP_DROP;
4648 __be16 orig_eth_type;
4649 struct ethhdr *eth;
4650 bool orig_bcast;
4651 int hlen, off;
4652 u32 mac_len;
4653
4654 /* Reinjected packets coming from act_mirred or similar should
4655 * not get XDP generic processing.
4656 */
4657 if (skb_is_redirected(skb))
4658 return XDP_PASS;
4659
4660 /* XDP packets must be linear and must have sufficient headroom
4661 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4662 * native XDP provides, thus we need to do it here as well.
4663 */
4664 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4665 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4666 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4667 int troom = skb->tail + skb->data_len - skb->end;
4668
4669 /* In case we have to go down the path and also linearize,
4670 * then lets do the pskb_expand_head() work just once here.
4671 */
4672 if (pskb_expand_head(skb,
4673 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4674 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4675 goto do_drop;
4676 if (skb_linearize(skb))
4677 goto do_drop;
4678 }
4679
4680 /* The XDP program wants to see the packet starting at the MAC
4681 * header.
4682 */
4683 mac_len = skb->data - skb_mac_header(skb);
4684 hlen = skb_headlen(skb) + mac_len;
4685 xdp->data = skb->data - mac_len;
4686 xdp->data_meta = xdp->data;
4687 xdp->data_end = xdp->data + hlen;
4688 xdp->data_hard_start = skb->data - skb_headroom(skb);
4689
4690 /* SKB "head" area always have tailroom for skb_shared_info */
4691 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4692 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4693
4694 orig_data_end = xdp->data_end;
4695 orig_data = xdp->data;
4696 eth = (struct ethhdr *)xdp->data;
4697 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4698 orig_eth_type = eth->h_proto;
4699
4700 rxqueue = netif_get_rxqueue(skb);
4701 xdp->rxq = &rxqueue->xdp_rxq;
4702
4703 act = bpf_prog_run_xdp(xdp_prog, xdp);
4704
4705 /* check if bpf_xdp_adjust_head was used */
4706 off = xdp->data - orig_data;
4707 if (off) {
4708 if (off > 0)
4709 __skb_pull(skb, off);
4710 else if (off < 0)
4711 __skb_push(skb, -off);
4712
4713 skb->mac_header += off;
4714 skb_reset_network_header(skb);
4715 }
4716
4717 /* check if bpf_xdp_adjust_tail was used */
4718 off = xdp->data_end - orig_data_end;
4719 if (off != 0) {
4720 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4721 skb->len += off; /* positive on grow, negative on shrink */
4722 }
4723
4724 /* check if XDP changed eth hdr such SKB needs update */
4725 eth = (struct ethhdr *)xdp->data;
4726 if ((orig_eth_type != eth->h_proto) ||
4727 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4728 __skb_push(skb, ETH_HLEN);
4729 skb->protocol = eth_type_trans(skb, skb->dev);
4730 }
4731
4732 switch (act) {
4733 case XDP_REDIRECT:
4734 case XDP_TX:
4735 __skb_push(skb, mac_len);
4736 break;
4737 case XDP_PASS:
4738 metalen = xdp->data - xdp->data_meta;
4739 if (metalen)
4740 skb_metadata_set(skb, metalen);
4741 break;
4742 default:
4743 bpf_warn_invalid_xdp_action(act);
4744 fallthrough;
4745 case XDP_ABORTED:
4746 trace_xdp_exception(skb->dev, xdp_prog, act);
4747 fallthrough;
4748 case XDP_DROP:
4749 do_drop:
4750 kfree_skb(skb);
4751 break;
4752 }
4753
4754 return act;
4755 }
4756
4757 /* When doing generic XDP we have to bypass the qdisc layer and the
4758 * network taps in order to match in-driver-XDP behavior.
4759 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4760 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4761 {
4762 struct net_device *dev = skb->dev;
4763 struct netdev_queue *txq;
4764 bool free_skb = true;
4765 int cpu, rc;
4766
4767 txq = netdev_core_pick_tx(dev, skb, NULL);
4768 cpu = smp_processor_id();
4769 HARD_TX_LOCK(dev, txq, cpu);
4770 if (!netif_xmit_stopped(txq)) {
4771 rc = netdev_start_xmit(skb, dev, txq, 0);
4772 if (dev_xmit_complete(rc))
4773 free_skb = false;
4774 }
4775 HARD_TX_UNLOCK(dev, txq);
4776 if (free_skb) {
4777 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4778 kfree_skb(skb);
4779 }
4780 }
4781
4782 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4783
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4784 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4785 {
4786 if (xdp_prog) {
4787 struct xdp_buff xdp;
4788 u32 act;
4789 int err;
4790
4791 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4792 if (act != XDP_PASS) {
4793 switch (act) {
4794 case XDP_REDIRECT:
4795 err = xdp_do_generic_redirect(skb->dev, skb,
4796 &xdp, xdp_prog);
4797 if (err)
4798 goto out_redir;
4799 break;
4800 case XDP_TX:
4801 generic_xdp_tx(skb, xdp_prog);
4802 break;
4803 }
4804 return XDP_DROP;
4805 }
4806 }
4807 return XDP_PASS;
4808 out_redir:
4809 kfree_skb(skb);
4810 return XDP_DROP;
4811 }
4812 EXPORT_SYMBOL_GPL(do_xdp_generic);
4813
netif_rx_internal(struct sk_buff * skb)4814 static int netif_rx_internal(struct sk_buff *skb)
4815 {
4816 int ret;
4817
4818 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4819
4820 trace_netif_rx(skb);
4821
4822 #ifdef CONFIG_RPS
4823 if (static_branch_unlikely(&rps_needed)) {
4824 struct rps_dev_flow voidflow, *rflow = &voidflow;
4825 int cpu;
4826
4827 preempt_disable();
4828 rcu_read_lock();
4829
4830 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4831 if (cpu < 0)
4832 cpu = smp_processor_id();
4833
4834 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4835
4836 rcu_read_unlock();
4837 preempt_enable();
4838 } else
4839 #endif
4840 {
4841 unsigned int qtail;
4842
4843 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4844 put_cpu();
4845 }
4846 return ret;
4847 }
4848
4849 /**
4850 * netif_rx - post buffer to the network code
4851 * @skb: buffer to post
4852 *
4853 * This function receives a packet from a device driver and queues it for
4854 * the upper (protocol) levels to process. It always succeeds. The buffer
4855 * may be dropped during processing for congestion control or by the
4856 * protocol layers.
4857 *
4858 * return values:
4859 * NET_RX_SUCCESS (no congestion)
4860 * NET_RX_DROP (packet was dropped)
4861 *
4862 */
4863
netif_rx(struct sk_buff * skb)4864 int netif_rx(struct sk_buff *skb)
4865 {
4866 int ret;
4867
4868 trace_netif_rx_entry(skb);
4869
4870 ret = netif_rx_internal(skb);
4871 trace_netif_rx_exit(ret);
4872
4873 return ret;
4874 }
4875 EXPORT_SYMBOL(netif_rx);
4876
netif_rx_ni(struct sk_buff * skb)4877 int netif_rx_ni(struct sk_buff *skb)
4878 {
4879 int err;
4880
4881 trace_netif_rx_ni_entry(skb);
4882
4883 preempt_disable();
4884 err = netif_rx_internal(skb);
4885 if (local_softirq_pending())
4886 do_softirq();
4887 preempt_enable();
4888 trace_netif_rx_ni_exit(err);
4889
4890 return err;
4891 }
4892 EXPORT_SYMBOL(netif_rx_ni);
4893
netif_rx_any_context(struct sk_buff * skb)4894 int netif_rx_any_context(struct sk_buff *skb)
4895 {
4896 /*
4897 * If invoked from contexts which do not invoke bottom half
4898 * processing either at return from interrupt or when softrqs are
4899 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4900 * directly.
4901 */
4902 if (in_interrupt())
4903 return netif_rx(skb);
4904 else
4905 return netif_rx_ni(skb);
4906 }
4907 EXPORT_SYMBOL(netif_rx_any_context);
4908
net_tx_action(struct softirq_action * h)4909 static __latent_entropy void net_tx_action(struct softirq_action *h)
4910 {
4911 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4912
4913 if (sd->completion_queue) {
4914 struct sk_buff *clist;
4915
4916 local_irq_disable();
4917 clist = sd->completion_queue;
4918 sd->completion_queue = NULL;
4919 local_irq_enable();
4920
4921 while (clist) {
4922 struct sk_buff *skb = clist;
4923
4924 clist = clist->next;
4925
4926 WARN_ON(refcount_read(&skb->users));
4927 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4928 trace_consume_skb(skb);
4929 else
4930 trace_kfree_skb(skb, net_tx_action);
4931
4932 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4933 __kfree_skb(skb);
4934 else
4935 __kfree_skb_defer(skb);
4936 }
4937
4938 __kfree_skb_flush();
4939 }
4940
4941 if (sd->output_queue) {
4942 struct Qdisc *head;
4943
4944 local_irq_disable();
4945 head = sd->output_queue;
4946 sd->output_queue = NULL;
4947 sd->output_queue_tailp = &sd->output_queue;
4948 local_irq_enable();
4949
4950 rcu_read_lock();
4951
4952 while (head) {
4953 struct Qdisc *q = head;
4954 spinlock_t *root_lock = NULL;
4955
4956 head = head->next_sched;
4957
4958 /* We need to make sure head->next_sched is read
4959 * before clearing __QDISC_STATE_SCHED
4960 */
4961 smp_mb__before_atomic();
4962
4963 if (!(q->flags & TCQ_F_NOLOCK)) {
4964 root_lock = qdisc_lock(q);
4965 spin_lock(root_lock);
4966 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4967 &q->state))) {
4968 /* There is a synchronize_net() between
4969 * STATE_DEACTIVATED flag being set and
4970 * qdisc_reset()/some_qdisc_is_busy() in
4971 * dev_deactivate(), so we can safely bail out
4972 * early here to avoid data race between
4973 * qdisc_deactivate() and some_qdisc_is_busy()
4974 * for lockless qdisc.
4975 */
4976 clear_bit(__QDISC_STATE_SCHED, &q->state);
4977 continue;
4978 }
4979
4980 clear_bit(__QDISC_STATE_SCHED, &q->state);
4981 qdisc_run(q);
4982 if (root_lock)
4983 spin_unlock(root_lock);
4984 }
4985
4986 rcu_read_unlock();
4987 }
4988
4989 xfrm_dev_backlog(sd);
4990 }
4991
4992 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4993 /* This hook is defined here for ATM LANE */
4994 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4995 unsigned char *addr) __read_mostly;
4996 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4997 #endif
4998
4999 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)5000 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5001 struct net_device *orig_dev, bool *another)
5002 {
5003 #ifdef CONFIG_NET_CLS_ACT
5004 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5005 struct tcf_result cl_res;
5006
5007 /* If there's at least one ingress present somewhere (so
5008 * we get here via enabled static key), remaining devices
5009 * that are not configured with an ingress qdisc will bail
5010 * out here.
5011 */
5012 if (!miniq)
5013 return skb;
5014
5015 if (*pt_prev) {
5016 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5017 *pt_prev = NULL;
5018 }
5019
5020 qdisc_skb_cb(skb)->pkt_len = skb->len;
5021 qdisc_skb_cb(skb)->mru = 0;
5022 skb->tc_at_ingress = 1;
5023 mini_qdisc_bstats_cpu_update(miniq, skb);
5024
5025 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5026 &cl_res, false)) {
5027 case TC_ACT_OK:
5028 case TC_ACT_RECLASSIFY:
5029 skb->tc_index = TC_H_MIN(cl_res.classid);
5030 break;
5031 case TC_ACT_SHOT:
5032 mini_qdisc_qstats_cpu_drop(miniq);
5033 kfree_skb(skb);
5034 return NULL;
5035 case TC_ACT_STOLEN:
5036 case TC_ACT_QUEUED:
5037 case TC_ACT_TRAP:
5038 consume_skb(skb);
5039 return NULL;
5040 case TC_ACT_REDIRECT:
5041 /* skb_mac_header check was done by cls/act_bpf, so
5042 * we can safely push the L2 header back before
5043 * redirecting to another netdev
5044 */
5045 __skb_push(skb, skb->mac_len);
5046 if (skb_do_redirect(skb) == -EAGAIN) {
5047 __skb_pull(skb, skb->mac_len);
5048 *another = true;
5049 break;
5050 }
5051 return NULL;
5052 case TC_ACT_CONSUMED:
5053 return NULL;
5054 default:
5055 break;
5056 }
5057 #endif /* CONFIG_NET_CLS_ACT */
5058 return skb;
5059 }
5060
5061 /**
5062 * netdev_is_rx_handler_busy - check if receive handler is registered
5063 * @dev: device to check
5064 *
5065 * Check if a receive handler is already registered for a given device.
5066 * Return true if there one.
5067 *
5068 * The caller must hold the rtnl_mutex.
5069 */
netdev_is_rx_handler_busy(struct net_device * dev)5070 bool netdev_is_rx_handler_busy(struct net_device *dev)
5071 {
5072 ASSERT_RTNL();
5073 return dev && rtnl_dereference(dev->rx_handler);
5074 }
5075 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5076
5077 /**
5078 * netdev_rx_handler_register - register receive handler
5079 * @dev: device to register a handler for
5080 * @rx_handler: receive handler to register
5081 * @rx_handler_data: data pointer that is used by rx handler
5082 *
5083 * Register a receive handler for a device. This handler will then be
5084 * called from __netif_receive_skb. A negative errno code is returned
5085 * on a failure.
5086 *
5087 * The caller must hold the rtnl_mutex.
5088 *
5089 * For a general description of rx_handler, see enum rx_handler_result.
5090 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5091 int netdev_rx_handler_register(struct net_device *dev,
5092 rx_handler_func_t *rx_handler,
5093 void *rx_handler_data)
5094 {
5095 if (netdev_is_rx_handler_busy(dev))
5096 return -EBUSY;
5097
5098 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5099 return -EINVAL;
5100
5101 /* Note: rx_handler_data must be set before rx_handler */
5102 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5103 rcu_assign_pointer(dev->rx_handler, rx_handler);
5104
5105 return 0;
5106 }
5107 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5108
5109 /**
5110 * netdev_rx_handler_unregister - unregister receive handler
5111 * @dev: device to unregister a handler from
5112 *
5113 * Unregister a receive handler from a device.
5114 *
5115 * The caller must hold the rtnl_mutex.
5116 */
netdev_rx_handler_unregister(struct net_device * dev)5117 void netdev_rx_handler_unregister(struct net_device *dev)
5118 {
5119
5120 ASSERT_RTNL();
5121 RCU_INIT_POINTER(dev->rx_handler, NULL);
5122 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5123 * section has a guarantee to see a non NULL rx_handler_data
5124 * as well.
5125 */
5126 synchronize_net();
5127 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5128 }
5129 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5130
5131 /*
5132 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5133 * the special handling of PFMEMALLOC skbs.
5134 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5135 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5136 {
5137 switch (skb->protocol) {
5138 case htons(ETH_P_ARP):
5139 case htons(ETH_P_IP):
5140 case htons(ETH_P_IPV6):
5141 case htons(ETH_P_8021Q):
5142 case htons(ETH_P_8021AD):
5143 return true;
5144 default:
5145 return false;
5146 }
5147 }
5148
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5149 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5150 int *ret, struct net_device *orig_dev)
5151 {
5152 if (nf_hook_ingress_active(skb)) {
5153 int ingress_retval;
5154
5155 if (*pt_prev) {
5156 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5157 *pt_prev = NULL;
5158 }
5159
5160 rcu_read_lock();
5161 ingress_retval = nf_hook_ingress(skb);
5162 rcu_read_unlock();
5163 return ingress_retval;
5164 }
5165 return 0;
5166 }
5167
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5168 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5169 struct packet_type **ppt_prev)
5170 {
5171 struct packet_type *ptype, *pt_prev;
5172 rx_handler_func_t *rx_handler;
5173 struct sk_buff *skb = *pskb;
5174 struct net_device *orig_dev;
5175 bool deliver_exact = false;
5176 int ret = NET_RX_DROP;
5177 __be16 type;
5178
5179 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5180
5181 trace_netif_receive_skb(skb);
5182
5183 orig_dev = skb->dev;
5184
5185 skb_reset_network_header(skb);
5186 if (!skb_transport_header_was_set(skb))
5187 skb_reset_transport_header(skb);
5188 skb_reset_mac_len(skb);
5189
5190 pt_prev = NULL;
5191
5192 another_round:
5193 skb->skb_iif = skb->dev->ifindex;
5194
5195 __this_cpu_inc(softnet_data.processed);
5196
5197 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5198 int ret2;
5199
5200 preempt_disable();
5201 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5202 preempt_enable();
5203
5204 if (ret2 != XDP_PASS) {
5205 ret = NET_RX_DROP;
5206 goto out;
5207 }
5208 skb_reset_mac_len(skb);
5209 }
5210
5211 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5212 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5213 skb = skb_vlan_untag(skb);
5214 if (unlikely(!skb))
5215 goto out;
5216 }
5217
5218 if (skb_skip_tc_classify(skb))
5219 goto skip_classify;
5220
5221 if (pfmemalloc)
5222 goto skip_taps;
5223
5224 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5225 if (pt_prev)
5226 ret = deliver_skb(skb, pt_prev, orig_dev);
5227 pt_prev = ptype;
5228 }
5229
5230 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5231 if (pt_prev)
5232 ret = deliver_skb(skb, pt_prev, orig_dev);
5233 pt_prev = ptype;
5234 }
5235
5236 skip_taps:
5237 #ifdef CONFIG_NET_INGRESS
5238 if (static_branch_unlikely(&ingress_needed_key)) {
5239 bool another = false;
5240
5241 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5242 &another);
5243 if (another)
5244 goto another_round;
5245 if (!skb)
5246 goto out;
5247
5248 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5249 goto out;
5250 }
5251 #endif
5252 skb_reset_redirect(skb);
5253 skip_classify:
5254 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5255 goto drop;
5256
5257 if (skb_vlan_tag_present(skb)) {
5258 if (pt_prev) {
5259 ret = deliver_skb(skb, pt_prev, orig_dev);
5260 pt_prev = NULL;
5261 }
5262 if (vlan_do_receive(&skb))
5263 goto another_round;
5264 else if (unlikely(!skb))
5265 goto out;
5266 }
5267
5268 rx_handler = rcu_dereference(skb->dev->rx_handler);
5269 if (rx_handler) {
5270 if (pt_prev) {
5271 ret = deliver_skb(skb, pt_prev, orig_dev);
5272 pt_prev = NULL;
5273 }
5274 switch (rx_handler(&skb)) {
5275 case RX_HANDLER_CONSUMED:
5276 ret = NET_RX_SUCCESS;
5277 goto out;
5278 case RX_HANDLER_ANOTHER:
5279 goto another_round;
5280 case RX_HANDLER_EXACT:
5281 deliver_exact = true;
5282 case RX_HANDLER_PASS:
5283 break;
5284 default:
5285 BUG();
5286 }
5287 }
5288
5289 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5290 check_vlan_id:
5291 if (skb_vlan_tag_get_id(skb)) {
5292 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5293 * find vlan device.
5294 */
5295 skb->pkt_type = PACKET_OTHERHOST;
5296 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5297 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5298 /* Outer header is 802.1P with vlan 0, inner header is
5299 * 802.1Q or 802.1AD and vlan_do_receive() above could
5300 * not find vlan dev for vlan id 0.
5301 */
5302 __vlan_hwaccel_clear_tag(skb);
5303 skb = skb_vlan_untag(skb);
5304 if (unlikely(!skb))
5305 goto out;
5306 if (vlan_do_receive(&skb))
5307 /* After stripping off 802.1P header with vlan 0
5308 * vlan dev is found for inner header.
5309 */
5310 goto another_round;
5311 else if (unlikely(!skb))
5312 goto out;
5313 else
5314 /* We have stripped outer 802.1P vlan 0 header.
5315 * But could not find vlan dev.
5316 * check again for vlan id to set OTHERHOST.
5317 */
5318 goto check_vlan_id;
5319 }
5320 /* Note: we might in the future use prio bits
5321 * and set skb->priority like in vlan_do_receive()
5322 * For the time being, just ignore Priority Code Point
5323 */
5324 __vlan_hwaccel_clear_tag(skb);
5325 }
5326
5327 type = skb->protocol;
5328
5329 /* deliver only exact match when indicated */
5330 if (likely(!deliver_exact)) {
5331 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5332 &ptype_base[ntohs(type) &
5333 PTYPE_HASH_MASK]);
5334 }
5335
5336 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5337 &orig_dev->ptype_specific);
5338
5339 if (unlikely(skb->dev != orig_dev)) {
5340 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5341 &skb->dev->ptype_specific);
5342 }
5343
5344 if (pt_prev) {
5345 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5346 goto drop;
5347 *ppt_prev = pt_prev;
5348 } else {
5349 drop:
5350 if (!deliver_exact)
5351 atomic_long_inc(&skb->dev->rx_dropped);
5352 else
5353 atomic_long_inc(&skb->dev->rx_nohandler);
5354 kfree_skb(skb);
5355 /* Jamal, now you will not able to escape explaining
5356 * me how you were going to use this. :-)
5357 */
5358 ret = NET_RX_DROP;
5359 }
5360
5361 out:
5362 /* The invariant here is that if *ppt_prev is not NULL
5363 * then skb should also be non-NULL.
5364 *
5365 * Apparently *ppt_prev assignment above holds this invariant due to
5366 * skb dereferencing near it.
5367 */
5368 *pskb = skb;
5369 return ret;
5370 }
5371
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5372 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5373 {
5374 struct net_device *orig_dev = skb->dev;
5375 struct packet_type *pt_prev = NULL;
5376 int ret;
5377
5378 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5379 if (pt_prev)
5380 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5381 skb->dev, pt_prev, orig_dev);
5382 return ret;
5383 }
5384
5385 /**
5386 * netif_receive_skb_core - special purpose version of netif_receive_skb
5387 * @skb: buffer to process
5388 *
5389 * More direct receive version of netif_receive_skb(). It should
5390 * only be used by callers that have a need to skip RPS and Generic XDP.
5391 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5392 *
5393 * This function may only be called from softirq context and interrupts
5394 * should be enabled.
5395 *
5396 * Return values (usually ignored):
5397 * NET_RX_SUCCESS: no congestion
5398 * NET_RX_DROP: packet was dropped
5399 */
netif_receive_skb_core(struct sk_buff * skb)5400 int netif_receive_skb_core(struct sk_buff *skb)
5401 {
5402 int ret;
5403
5404 rcu_read_lock();
5405 ret = __netif_receive_skb_one_core(skb, false);
5406 rcu_read_unlock();
5407
5408 return ret;
5409 }
5410 EXPORT_SYMBOL(netif_receive_skb_core);
5411
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5412 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5413 struct packet_type *pt_prev,
5414 struct net_device *orig_dev)
5415 {
5416 struct sk_buff *skb, *next;
5417
5418 if (!pt_prev)
5419 return;
5420 if (list_empty(head))
5421 return;
5422 if (pt_prev->list_func != NULL)
5423 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5424 ip_list_rcv, head, pt_prev, orig_dev);
5425 else
5426 list_for_each_entry_safe(skb, next, head, list) {
5427 skb_list_del_init(skb);
5428 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5429 }
5430 }
5431
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5432 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5433 {
5434 /* Fast-path assumptions:
5435 * - There is no RX handler.
5436 * - Only one packet_type matches.
5437 * If either of these fails, we will end up doing some per-packet
5438 * processing in-line, then handling the 'last ptype' for the whole
5439 * sublist. This can't cause out-of-order delivery to any single ptype,
5440 * because the 'last ptype' must be constant across the sublist, and all
5441 * other ptypes are handled per-packet.
5442 */
5443 /* Current (common) ptype of sublist */
5444 struct packet_type *pt_curr = NULL;
5445 /* Current (common) orig_dev of sublist */
5446 struct net_device *od_curr = NULL;
5447 struct list_head sublist;
5448 struct sk_buff *skb, *next;
5449
5450 INIT_LIST_HEAD(&sublist);
5451 list_for_each_entry_safe(skb, next, head, list) {
5452 struct net_device *orig_dev = skb->dev;
5453 struct packet_type *pt_prev = NULL;
5454
5455 skb_list_del_init(skb);
5456 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5457 if (!pt_prev)
5458 continue;
5459 if (pt_curr != pt_prev || od_curr != orig_dev) {
5460 /* dispatch old sublist */
5461 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5462 /* start new sublist */
5463 INIT_LIST_HEAD(&sublist);
5464 pt_curr = pt_prev;
5465 od_curr = orig_dev;
5466 }
5467 list_add_tail(&skb->list, &sublist);
5468 }
5469
5470 /* dispatch final sublist */
5471 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5472 }
5473
__netif_receive_skb(struct sk_buff * skb)5474 static int __netif_receive_skb(struct sk_buff *skb)
5475 {
5476 int ret;
5477
5478 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5479 unsigned int noreclaim_flag;
5480
5481 /*
5482 * PFMEMALLOC skbs are special, they should
5483 * - be delivered to SOCK_MEMALLOC sockets only
5484 * - stay away from userspace
5485 * - have bounded memory usage
5486 *
5487 * Use PF_MEMALLOC as this saves us from propagating the allocation
5488 * context down to all allocation sites.
5489 */
5490 noreclaim_flag = memalloc_noreclaim_save();
5491 ret = __netif_receive_skb_one_core(skb, true);
5492 memalloc_noreclaim_restore(noreclaim_flag);
5493 } else
5494 ret = __netif_receive_skb_one_core(skb, false);
5495
5496 return ret;
5497 }
5498
__netif_receive_skb_list(struct list_head * head)5499 static void __netif_receive_skb_list(struct list_head *head)
5500 {
5501 unsigned long noreclaim_flag = 0;
5502 struct sk_buff *skb, *next;
5503 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5504
5505 list_for_each_entry_safe(skb, next, head, list) {
5506 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5507 struct list_head sublist;
5508
5509 /* Handle the previous sublist */
5510 list_cut_before(&sublist, head, &skb->list);
5511 if (!list_empty(&sublist))
5512 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5513 pfmemalloc = !pfmemalloc;
5514 /* See comments in __netif_receive_skb */
5515 if (pfmemalloc)
5516 noreclaim_flag = memalloc_noreclaim_save();
5517 else
5518 memalloc_noreclaim_restore(noreclaim_flag);
5519 }
5520 }
5521 /* Handle the remaining sublist */
5522 if (!list_empty(head))
5523 __netif_receive_skb_list_core(head, pfmemalloc);
5524 /* Restore pflags */
5525 if (pfmemalloc)
5526 memalloc_noreclaim_restore(noreclaim_flag);
5527 }
5528
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5529 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5530 {
5531 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5532 struct bpf_prog *new = xdp->prog;
5533 int ret = 0;
5534
5535 if (new) {
5536 u32 i;
5537
5538 mutex_lock(&new->aux->used_maps_mutex);
5539
5540 /* generic XDP does not work with DEVMAPs that can
5541 * have a bpf_prog installed on an entry
5542 */
5543 for (i = 0; i < new->aux->used_map_cnt; i++) {
5544 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5545 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5546 mutex_unlock(&new->aux->used_maps_mutex);
5547 return -EINVAL;
5548 }
5549 }
5550
5551 mutex_unlock(&new->aux->used_maps_mutex);
5552 }
5553
5554 switch (xdp->command) {
5555 case XDP_SETUP_PROG:
5556 rcu_assign_pointer(dev->xdp_prog, new);
5557 if (old)
5558 bpf_prog_put(old);
5559
5560 if (old && !new) {
5561 static_branch_dec(&generic_xdp_needed_key);
5562 } else if (new && !old) {
5563 static_branch_inc(&generic_xdp_needed_key);
5564 dev_disable_lro(dev);
5565 dev_disable_gro_hw(dev);
5566 }
5567 break;
5568
5569 default:
5570 ret = -EINVAL;
5571 break;
5572 }
5573
5574 return ret;
5575 }
5576
netif_receive_skb_internal(struct sk_buff * skb)5577 static int netif_receive_skb_internal(struct sk_buff *skb)
5578 {
5579 int ret;
5580
5581 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5582
5583 if (skb_defer_rx_timestamp(skb))
5584 return NET_RX_SUCCESS;
5585
5586 rcu_read_lock();
5587 #ifdef CONFIG_RPS
5588 if (static_branch_unlikely(&rps_needed)) {
5589 struct rps_dev_flow voidflow, *rflow = &voidflow;
5590 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5591
5592 if (cpu >= 0) {
5593 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5594 rcu_read_unlock();
5595 return ret;
5596 }
5597 }
5598 #endif
5599 ret = __netif_receive_skb(skb);
5600 rcu_read_unlock();
5601 return ret;
5602 }
5603
netif_receive_skb_list_internal(struct list_head * head)5604 static void netif_receive_skb_list_internal(struct list_head *head)
5605 {
5606 struct sk_buff *skb, *next;
5607 struct list_head sublist;
5608
5609 INIT_LIST_HEAD(&sublist);
5610 list_for_each_entry_safe(skb, next, head, list) {
5611 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5612 skb_list_del_init(skb);
5613 if (!skb_defer_rx_timestamp(skb))
5614 list_add_tail(&skb->list, &sublist);
5615 }
5616 list_splice_init(&sublist, head);
5617
5618 rcu_read_lock();
5619 #ifdef CONFIG_RPS
5620 if (static_branch_unlikely(&rps_needed)) {
5621 list_for_each_entry_safe(skb, next, head, list) {
5622 struct rps_dev_flow voidflow, *rflow = &voidflow;
5623 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5624
5625 if (cpu >= 0) {
5626 /* Will be handled, remove from list */
5627 skb_list_del_init(skb);
5628 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5629 }
5630 }
5631 }
5632 #endif
5633 __netif_receive_skb_list(head);
5634 rcu_read_unlock();
5635 }
5636
5637 /**
5638 * netif_receive_skb - process receive buffer from network
5639 * @skb: buffer to process
5640 *
5641 * netif_receive_skb() is the main receive data processing function.
5642 * It always succeeds. The buffer may be dropped during processing
5643 * for congestion control or by the protocol layers.
5644 *
5645 * This function may only be called from softirq context and interrupts
5646 * should be enabled.
5647 *
5648 * Return values (usually ignored):
5649 * NET_RX_SUCCESS: no congestion
5650 * NET_RX_DROP: packet was dropped
5651 */
netif_receive_skb(struct sk_buff * skb)5652 int netif_receive_skb(struct sk_buff *skb)
5653 {
5654 int ret;
5655
5656 trace_netif_receive_skb_entry(skb);
5657
5658 ret = netif_receive_skb_internal(skb);
5659 trace_netif_receive_skb_exit(ret);
5660
5661 return ret;
5662 }
5663 EXPORT_SYMBOL(netif_receive_skb);
5664
5665 /**
5666 * netif_receive_skb_list - process many receive buffers from network
5667 * @head: list of skbs to process.
5668 *
5669 * Since return value of netif_receive_skb() is normally ignored, and
5670 * wouldn't be meaningful for a list, this function returns void.
5671 *
5672 * This function may only be called from softirq context and interrupts
5673 * should be enabled.
5674 */
netif_receive_skb_list(struct list_head * head)5675 void netif_receive_skb_list(struct list_head *head)
5676 {
5677 struct sk_buff *skb;
5678
5679 if (list_empty(head))
5680 return;
5681 if (trace_netif_receive_skb_list_entry_enabled()) {
5682 list_for_each_entry(skb, head, list)
5683 trace_netif_receive_skb_list_entry(skb);
5684 }
5685 netif_receive_skb_list_internal(head);
5686 trace_netif_receive_skb_list_exit(0);
5687 }
5688 EXPORT_SYMBOL(netif_receive_skb_list);
5689
5690 static DEFINE_PER_CPU(struct work_struct, flush_works);
5691
5692 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5693 static void flush_backlog(struct work_struct *work)
5694 {
5695 struct sk_buff *skb, *tmp;
5696 struct softnet_data *sd;
5697
5698 local_bh_disable();
5699 sd = this_cpu_ptr(&softnet_data);
5700
5701 local_irq_disable();
5702 rps_lock(sd);
5703 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5704 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5705 __skb_unlink(skb, &sd->input_pkt_queue);
5706 dev_kfree_skb_irq(skb);
5707 input_queue_head_incr(sd);
5708 }
5709 }
5710 rps_unlock(sd);
5711 local_irq_enable();
5712
5713 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5714 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5715 __skb_unlink(skb, &sd->process_queue);
5716 kfree_skb(skb);
5717 input_queue_head_incr(sd);
5718 }
5719 }
5720 local_bh_enable();
5721 }
5722
flush_required(int cpu)5723 static bool flush_required(int cpu)
5724 {
5725 #if IS_ENABLED(CONFIG_RPS)
5726 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5727 bool do_flush;
5728
5729 local_irq_disable();
5730 rps_lock(sd);
5731
5732 /* as insertion into process_queue happens with the rps lock held,
5733 * process_queue access may race only with dequeue
5734 */
5735 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5736 !skb_queue_empty_lockless(&sd->process_queue);
5737 rps_unlock(sd);
5738 local_irq_enable();
5739
5740 return do_flush;
5741 #endif
5742 /* without RPS we can't safely check input_pkt_queue: during a
5743 * concurrent remote skb_queue_splice() we can detect as empty both
5744 * input_pkt_queue and process_queue even if the latter could end-up
5745 * containing a lot of packets.
5746 */
5747 return true;
5748 }
5749
flush_all_backlogs(void)5750 static void flush_all_backlogs(void)
5751 {
5752 static cpumask_t flush_cpus;
5753 unsigned int cpu;
5754
5755 /* since we are under rtnl lock protection we can use static data
5756 * for the cpumask and avoid allocating on stack the possibly
5757 * large mask
5758 */
5759 ASSERT_RTNL();
5760
5761 get_online_cpus();
5762
5763 cpumask_clear(&flush_cpus);
5764 for_each_online_cpu(cpu) {
5765 if (flush_required(cpu)) {
5766 queue_work_on(cpu, system_highpri_wq,
5767 per_cpu_ptr(&flush_works, cpu));
5768 cpumask_set_cpu(cpu, &flush_cpus);
5769 }
5770 }
5771
5772 /* we can have in flight packet[s] on the cpus we are not flushing,
5773 * synchronize_net() in unregister_netdevice_many() will take care of
5774 * them
5775 */
5776 for_each_cpu(cpu, &flush_cpus)
5777 flush_work(per_cpu_ptr(&flush_works, cpu));
5778
5779 put_online_cpus();
5780 }
5781
5782 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5783 static void gro_normal_list(struct napi_struct *napi)
5784 {
5785 if (!napi->rx_count)
5786 return;
5787 netif_receive_skb_list_internal(&napi->rx_list);
5788 INIT_LIST_HEAD(&napi->rx_list);
5789 napi->rx_count = 0;
5790 }
5791
5792 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5793 * pass the whole batch up to the stack.
5794 */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5795 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5796 {
5797 list_add_tail(&skb->list, &napi->rx_list);
5798 napi->rx_count += segs;
5799 if (napi->rx_count >= gro_normal_batch)
5800 gro_normal_list(napi);
5801 }
5802
5803 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5804 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5805 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5806 {
5807 struct packet_offload *ptype;
5808 __be16 type = skb->protocol;
5809 struct list_head *head = &offload_base;
5810 int err = -ENOENT;
5811
5812 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5813
5814 if (NAPI_GRO_CB(skb)->count == 1) {
5815 skb_shinfo(skb)->gso_size = 0;
5816 goto out;
5817 }
5818
5819 rcu_read_lock();
5820 list_for_each_entry_rcu(ptype, head, list) {
5821 if (ptype->type != type || !ptype->callbacks.gro_complete)
5822 continue;
5823
5824 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5825 ipv6_gro_complete, inet_gro_complete,
5826 skb, 0);
5827 break;
5828 }
5829 rcu_read_unlock();
5830
5831 if (err) {
5832 WARN_ON(&ptype->list == head);
5833 kfree_skb(skb);
5834 return NET_RX_SUCCESS;
5835 }
5836
5837 out:
5838 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5839 return NET_RX_SUCCESS;
5840 }
5841
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5842 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5843 bool flush_old)
5844 {
5845 struct list_head *head = &napi->gro_hash[index].list;
5846 struct sk_buff *skb, *p;
5847
5848 list_for_each_entry_safe_reverse(skb, p, head, list) {
5849 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5850 return;
5851 skb_list_del_init(skb);
5852 napi_gro_complete(napi, skb);
5853 napi->gro_hash[index].count--;
5854 }
5855
5856 if (!napi->gro_hash[index].count)
5857 __clear_bit(index, &napi->gro_bitmask);
5858 }
5859
5860 /* napi->gro_hash[].list contains packets ordered by age.
5861 * youngest packets at the head of it.
5862 * Complete skbs in reverse order to reduce latencies.
5863 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5864 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5865 {
5866 unsigned long bitmask = napi->gro_bitmask;
5867 unsigned int i, base = ~0U;
5868
5869 while ((i = ffs(bitmask)) != 0) {
5870 bitmask >>= i;
5871 base += i;
5872 __napi_gro_flush_chain(napi, base, flush_old);
5873 }
5874 }
5875 EXPORT_SYMBOL(napi_gro_flush);
5876
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5877 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5878 struct sk_buff *skb)
5879 {
5880 unsigned int maclen = skb->dev->hard_header_len;
5881 u32 hash = skb_get_hash_raw(skb);
5882 struct list_head *head;
5883 struct sk_buff *p;
5884
5885 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5886 list_for_each_entry(p, head, list) {
5887 unsigned long diffs;
5888
5889 NAPI_GRO_CB(p)->flush = 0;
5890
5891 if (hash != skb_get_hash_raw(p)) {
5892 NAPI_GRO_CB(p)->same_flow = 0;
5893 continue;
5894 }
5895
5896 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5897 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5898 if (skb_vlan_tag_present(p))
5899 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5900 diffs |= skb_metadata_dst_cmp(p, skb);
5901 diffs |= skb_metadata_differs(p, skb);
5902 if (maclen == ETH_HLEN)
5903 diffs |= compare_ether_header(skb_mac_header(p),
5904 skb_mac_header(skb));
5905 else if (!diffs)
5906 diffs = memcmp(skb_mac_header(p),
5907 skb_mac_header(skb),
5908 maclen);
5909
5910 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5911 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5912 if (!diffs) {
5913 struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5914 struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5915
5916 diffs |= (!!p_ext) ^ (!!skb_ext);
5917 if (!diffs && unlikely(skb_ext))
5918 diffs |= p_ext->chain ^ skb_ext->chain;
5919 }
5920 #endif
5921
5922 NAPI_GRO_CB(p)->same_flow = !diffs;
5923 }
5924
5925 return head;
5926 }
5927
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5928 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5929 {
5930 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5931 const skb_frag_t *frag0 = &pinfo->frags[0];
5932
5933 NAPI_GRO_CB(skb)->data_offset = 0;
5934 NAPI_GRO_CB(skb)->frag0 = NULL;
5935 NAPI_GRO_CB(skb)->frag0_len = 0;
5936
5937 if (!skb_headlen(skb) && pinfo->nr_frags &&
5938 !PageHighMem(skb_frag_page(frag0)) &&
5939 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5940 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5941 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5942 skb_frag_size(frag0),
5943 skb->end - skb->tail);
5944 }
5945 }
5946
gro_pull_from_frag0(struct sk_buff * skb,int grow)5947 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5948 {
5949 struct skb_shared_info *pinfo = skb_shinfo(skb);
5950
5951 BUG_ON(skb->end - skb->tail < grow);
5952
5953 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5954
5955 skb->data_len -= grow;
5956 skb->tail += grow;
5957
5958 skb_frag_off_add(&pinfo->frags[0], grow);
5959 skb_frag_size_sub(&pinfo->frags[0], grow);
5960
5961 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5962 skb_frag_unref(skb, 0);
5963 memmove(pinfo->frags, pinfo->frags + 1,
5964 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5965 }
5966 }
5967
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5968 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5969 {
5970 struct sk_buff *oldest;
5971
5972 oldest = list_last_entry(head, struct sk_buff, list);
5973
5974 /* We are called with head length >= MAX_GRO_SKBS, so this is
5975 * impossible.
5976 */
5977 if (WARN_ON_ONCE(!oldest))
5978 return;
5979
5980 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5981 * SKB to the chain.
5982 */
5983 skb_list_del_init(oldest);
5984 napi_gro_complete(napi, oldest);
5985 }
5986
5987 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5988 struct sk_buff *));
5989 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5990 struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5991 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5992 {
5993 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5994 struct list_head *head = &offload_base;
5995 struct packet_offload *ptype;
5996 __be16 type = skb->protocol;
5997 struct list_head *gro_head;
5998 struct sk_buff *pp = NULL;
5999 enum gro_result ret;
6000 int same_flow;
6001 int grow;
6002
6003 if (netif_elide_gro(skb->dev))
6004 goto normal;
6005
6006 gro_head = gro_list_prepare(napi, skb);
6007
6008 rcu_read_lock();
6009 list_for_each_entry_rcu(ptype, head, list) {
6010 if (ptype->type != type || !ptype->callbacks.gro_receive)
6011 continue;
6012
6013 skb_set_network_header(skb, skb_gro_offset(skb));
6014 skb_reset_mac_len(skb);
6015 NAPI_GRO_CB(skb)->same_flow = 0;
6016 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6017 NAPI_GRO_CB(skb)->free = 0;
6018 NAPI_GRO_CB(skb)->encap_mark = 0;
6019 NAPI_GRO_CB(skb)->recursion_counter = 0;
6020 NAPI_GRO_CB(skb)->is_fou = 0;
6021 NAPI_GRO_CB(skb)->is_atomic = 1;
6022 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6023
6024 /* Setup for GRO checksum validation */
6025 switch (skb->ip_summed) {
6026 case CHECKSUM_COMPLETE:
6027 NAPI_GRO_CB(skb)->csum = skb->csum;
6028 NAPI_GRO_CB(skb)->csum_valid = 1;
6029 NAPI_GRO_CB(skb)->csum_cnt = 0;
6030 break;
6031 case CHECKSUM_UNNECESSARY:
6032 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6033 NAPI_GRO_CB(skb)->csum_valid = 0;
6034 break;
6035 default:
6036 NAPI_GRO_CB(skb)->csum_cnt = 0;
6037 NAPI_GRO_CB(skb)->csum_valid = 0;
6038 }
6039
6040 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6041 ipv6_gro_receive, inet_gro_receive,
6042 gro_head, skb);
6043 break;
6044 }
6045 rcu_read_unlock();
6046
6047 if (&ptype->list == head)
6048 goto normal;
6049
6050 if (PTR_ERR(pp) == -EINPROGRESS) {
6051 ret = GRO_CONSUMED;
6052 goto ok;
6053 }
6054
6055 same_flow = NAPI_GRO_CB(skb)->same_flow;
6056 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6057
6058 if (pp) {
6059 skb_list_del_init(pp);
6060 napi_gro_complete(napi, pp);
6061 napi->gro_hash[hash].count--;
6062 }
6063
6064 if (same_flow)
6065 goto ok;
6066
6067 if (NAPI_GRO_CB(skb)->flush)
6068 goto normal;
6069
6070 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6071 gro_flush_oldest(napi, gro_head);
6072 } else {
6073 napi->gro_hash[hash].count++;
6074 }
6075 NAPI_GRO_CB(skb)->count = 1;
6076 NAPI_GRO_CB(skb)->age = jiffies;
6077 NAPI_GRO_CB(skb)->last = skb;
6078 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6079 list_add(&skb->list, gro_head);
6080 ret = GRO_HELD;
6081
6082 pull:
6083 grow = skb_gro_offset(skb) - skb_headlen(skb);
6084 if (grow > 0)
6085 gro_pull_from_frag0(skb, grow);
6086 ok:
6087 if (napi->gro_hash[hash].count) {
6088 if (!test_bit(hash, &napi->gro_bitmask))
6089 __set_bit(hash, &napi->gro_bitmask);
6090 } else if (test_bit(hash, &napi->gro_bitmask)) {
6091 __clear_bit(hash, &napi->gro_bitmask);
6092 }
6093
6094 return ret;
6095
6096 normal:
6097 ret = GRO_NORMAL;
6098 goto pull;
6099 }
6100
gro_find_receive_by_type(__be16 type)6101 struct packet_offload *gro_find_receive_by_type(__be16 type)
6102 {
6103 struct list_head *offload_head = &offload_base;
6104 struct packet_offload *ptype;
6105
6106 list_for_each_entry_rcu(ptype, offload_head, list) {
6107 if (ptype->type != type || !ptype->callbacks.gro_receive)
6108 continue;
6109 return ptype;
6110 }
6111 return NULL;
6112 }
6113 EXPORT_SYMBOL(gro_find_receive_by_type);
6114
gro_find_complete_by_type(__be16 type)6115 struct packet_offload *gro_find_complete_by_type(__be16 type)
6116 {
6117 struct list_head *offload_head = &offload_base;
6118 struct packet_offload *ptype;
6119
6120 list_for_each_entry_rcu(ptype, offload_head, list) {
6121 if (ptype->type != type || !ptype->callbacks.gro_complete)
6122 continue;
6123 return ptype;
6124 }
6125 return NULL;
6126 }
6127 EXPORT_SYMBOL(gro_find_complete_by_type);
6128
napi_skb_free_stolen_head(struct sk_buff * skb)6129 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6130 {
6131 nf_reset_ct(skb);
6132 skb_dst_drop(skb);
6133 skb_ext_put(skb);
6134 kmem_cache_free(skbuff_head_cache, skb);
6135 }
6136
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6137 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6138 struct sk_buff *skb,
6139 gro_result_t ret)
6140 {
6141 switch (ret) {
6142 case GRO_NORMAL:
6143 gro_normal_one(napi, skb, 1);
6144 break;
6145
6146 case GRO_DROP:
6147 kfree_skb(skb);
6148 break;
6149
6150 case GRO_MERGED_FREE:
6151 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6152 napi_skb_free_stolen_head(skb);
6153 else
6154 __kfree_skb(skb);
6155 break;
6156
6157 case GRO_HELD:
6158 case GRO_MERGED:
6159 case GRO_CONSUMED:
6160 break;
6161 }
6162
6163 return ret;
6164 }
6165
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6166 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6167 {
6168 gro_result_t ret;
6169
6170 skb_mark_napi_id(skb, napi);
6171 trace_napi_gro_receive_entry(skb);
6172
6173 skb_gro_reset_offset(skb, 0);
6174
6175 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6176 trace_napi_gro_receive_exit(ret);
6177
6178 return ret;
6179 }
6180 EXPORT_SYMBOL(napi_gro_receive);
6181
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6182 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6183 {
6184 if (unlikely(skb->pfmemalloc)) {
6185 consume_skb(skb);
6186 return;
6187 }
6188 __skb_pull(skb, skb_headlen(skb));
6189 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6190 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6191 __vlan_hwaccel_clear_tag(skb);
6192 skb->dev = napi->dev;
6193 skb->skb_iif = 0;
6194
6195 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6196 skb->pkt_type = PACKET_HOST;
6197
6198 skb->encapsulation = 0;
6199 skb_shinfo(skb)->gso_type = 0;
6200 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6201 skb_ext_reset(skb);
6202 nf_reset_ct(skb);
6203
6204 napi->skb = skb;
6205 }
6206
napi_get_frags(struct napi_struct * napi)6207 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6208 {
6209 struct sk_buff *skb = napi->skb;
6210
6211 if (!skb) {
6212 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6213 if (skb) {
6214 napi->skb = skb;
6215 skb_mark_napi_id(skb, napi);
6216 }
6217 }
6218 return skb;
6219 }
6220 EXPORT_SYMBOL(napi_get_frags);
6221
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6222 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6223 struct sk_buff *skb,
6224 gro_result_t ret)
6225 {
6226 switch (ret) {
6227 case GRO_NORMAL:
6228 case GRO_HELD:
6229 __skb_push(skb, ETH_HLEN);
6230 skb->protocol = eth_type_trans(skb, skb->dev);
6231 if (ret == GRO_NORMAL)
6232 gro_normal_one(napi, skb, 1);
6233 break;
6234
6235 case GRO_DROP:
6236 napi_reuse_skb(napi, skb);
6237 break;
6238
6239 case GRO_MERGED_FREE:
6240 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6241 napi_skb_free_stolen_head(skb);
6242 else
6243 napi_reuse_skb(napi, skb);
6244 break;
6245
6246 case GRO_MERGED:
6247 case GRO_CONSUMED:
6248 break;
6249 }
6250
6251 return ret;
6252 }
6253
6254 /* Upper GRO stack assumes network header starts at gro_offset=0
6255 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6256 * We copy ethernet header into skb->data to have a common layout.
6257 */
napi_frags_skb(struct napi_struct * napi)6258 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6259 {
6260 struct sk_buff *skb = napi->skb;
6261 const struct ethhdr *eth;
6262 unsigned int hlen = sizeof(*eth);
6263
6264 napi->skb = NULL;
6265
6266 skb_reset_mac_header(skb);
6267 skb_gro_reset_offset(skb, hlen);
6268
6269 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6270 eth = skb_gro_header_slow(skb, hlen, 0);
6271 if (unlikely(!eth)) {
6272 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6273 __func__, napi->dev->name);
6274 napi_reuse_skb(napi, skb);
6275 return NULL;
6276 }
6277 } else {
6278 eth = (const struct ethhdr *)skb->data;
6279 gro_pull_from_frag0(skb, hlen);
6280 NAPI_GRO_CB(skb)->frag0 += hlen;
6281 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6282 }
6283 __skb_pull(skb, hlen);
6284
6285 /*
6286 * This works because the only protocols we care about don't require
6287 * special handling.
6288 * We'll fix it up properly in napi_frags_finish()
6289 */
6290 skb->protocol = eth->h_proto;
6291
6292 return skb;
6293 }
6294
napi_gro_frags(struct napi_struct * napi)6295 gro_result_t napi_gro_frags(struct napi_struct *napi)
6296 {
6297 gro_result_t ret;
6298 struct sk_buff *skb = napi_frags_skb(napi);
6299
6300 if (!skb)
6301 return GRO_DROP;
6302
6303 trace_napi_gro_frags_entry(skb);
6304
6305 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6306 trace_napi_gro_frags_exit(ret);
6307
6308 return ret;
6309 }
6310 EXPORT_SYMBOL(napi_gro_frags);
6311
6312 /* Compute the checksum from gro_offset and return the folded value
6313 * after adding in any pseudo checksum.
6314 */
__skb_gro_checksum_complete(struct sk_buff * skb)6315 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6316 {
6317 __wsum wsum;
6318 __sum16 sum;
6319
6320 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6321
6322 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6323 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6324 /* See comments in __skb_checksum_complete(). */
6325 if (likely(!sum)) {
6326 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6327 !skb->csum_complete_sw)
6328 netdev_rx_csum_fault(skb->dev, skb);
6329 }
6330
6331 NAPI_GRO_CB(skb)->csum = wsum;
6332 NAPI_GRO_CB(skb)->csum_valid = 1;
6333
6334 return sum;
6335 }
6336 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6337
net_rps_send_ipi(struct softnet_data * remsd)6338 static void net_rps_send_ipi(struct softnet_data *remsd)
6339 {
6340 #ifdef CONFIG_RPS
6341 while (remsd) {
6342 struct softnet_data *next = remsd->rps_ipi_next;
6343
6344 if (cpu_online(remsd->cpu))
6345 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6346 remsd = next;
6347 }
6348 #endif
6349 }
6350
6351 /*
6352 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6353 * Note: called with local irq disabled, but exits with local irq enabled.
6354 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6355 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6356 {
6357 #ifdef CONFIG_RPS
6358 struct softnet_data *remsd = sd->rps_ipi_list;
6359
6360 if (remsd) {
6361 sd->rps_ipi_list = NULL;
6362
6363 local_irq_enable();
6364
6365 /* Send pending IPI's to kick RPS processing on remote cpus. */
6366 net_rps_send_ipi(remsd);
6367 } else
6368 #endif
6369 local_irq_enable();
6370 }
6371
sd_has_rps_ipi_waiting(struct softnet_data * sd)6372 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6373 {
6374 #ifdef CONFIG_RPS
6375 return sd->rps_ipi_list != NULL;
6376 #else
6377 return false;
6378 #endif
6379 }
6380
process_backlog(struct napi_struct * napi,int quota)6381 static int process_backlog(struct napi_struct *napi, int quota)
6382 {
6383 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6384 bool again = true;
6385 int work = 0;
6386
6387 /* Check if we have pending ipi, its better to send them now,
6388 * not waiting net_rx_action() end.
6389 */
6390 if (sd_has_rps_ipi_waiting(sd)) {
6391 local_irq_disable();
6392 net_rps_action_and_irq_enable(sd);
6393 }
6394
6395 napi->weight = READ_ONCE(dev_rx_weight);
6396 while (again) {
6397 struct sk_buff *skb;
6398
6399 while ((skb = __skb_dequeue(&sd->process_queue))) {
6400 rcu_read_lock();
6401 __netif_receive_skb(skb);
6402 rcu_read_unlock();
6403 input_queue_head_incr(sd);
6404 if (++work >= quota)
6405 return work;
6406
6407 }
6408
6409 local_irq_disable();
6410 rps_lock(sd);
6411 if (skb_queue_empty(&sd->input_pkt_queue)) {
6412 /*
6413 * Inline a custom version of __napi_complete().
6414 * only current cpu owns and manipulates this napi,
6415 * and NAPI_STATE_SCHED is the only possible flag set
6416 * on backlog.
6417 * We can use a plain write instead of clear_bit(),
6418 * and we dont need an smp_mb() memory barrier.
6419 */
6420 napi->state = 0;
6421 again = false;
6422 } else {
6423 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6424 &sd->process_queue);
6425 }
6426 rps_unlock(sd);
6427 local_irq_enable();
6428 }
6429
6430 return work;
6431 }
6432
6433 /**
6434 * __napi_schedule - schedule for receive
6435 * @n: entry to schedule
6436 *
6437 * The entry's receive function will be scheduled to run.
6438 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6439 */
__napi_schedule(struct napi_struct * n)6440 void __napi_schedule(struct napi_struct *n)
6441 {
6442 unsigned long flags;
6443
6444 local_irq_save(flags);
6445 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6446 local_irq_restore(flags);
6447 }
6448 EXPORT_SYMBOL(__napi_schedule);
6449
6450 /**
6451 * napi_schedule_prep - check if napi can be scheduled
6452 * @n: napi context
6453 *
6454 * Test if NAPI routine is already running, and if not mark
6455 * it as running. This is used as a condition variable to
6456 * insure only one NAPI poll instance runs. We also make
6457 * sure there is no pending NAPI disable.
6458 */
napi_schedule_prep(struct napi_struct * n)6459 bool napi_schedule_prep(struct napi_struct *n)
6460 {
6461 unsigned long val, new;
6462
6463 do {
6464 val = READ_ONCE(n->state);
6465 if (unlikely(val & NAPIF_STATE_DISABLE))
6466 return false;
6467 new = val | NAPIF_STATE_SCHED;
6468
6469 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6470 * This was suggested by Alexander Duyck, as compiler
6471 * emits better code than :
6472 * if (val & NAPIF_STATE_SCHED)
6473 * new |= NAPIF_STATE_MISSED;
6474 */
6475 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6476 NAPIF_STATE_MISSED;
6477 } while (cmpxchg(&n->state, val, new) != val);
6478
6479 return !(val & NAPIF_STATE_SCHED);
6480 }
6481 EXPORT_SYMBOL(napi_schedule_prep);
6482
6483 /**
6484 * __napi_schedule_irqoff - schedule for receive
6485 * @n: entry to schedule
6486 *
6487 * Variant of __napi_schedule() assuming hard irqs are masked.
6488 *
6489 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6490 * because the interrupt disabled assumption might not be true
6491 * due to force-threaded interrupts and spinlock substitution.
6492 */
__napi_schedule_irqoff(struct napi_struct * n)6493 void __napi_schedule_irqoff(struct napi_struct *n)
6494 {
6495 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6496 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6497 else
6498 __napi_schedule(n);
6499 }
6500 EXPORT_SYMBOL(__napi_schedule_irqoff);
6501
napi_complete_done(struct napi_struct * n,int work_done)6502 bool napi_complete_done(struct napi_struct *n, int work_done)
6503 {
6504 unsigned long flags, val, new, timeout = 0;
6505 bool ret = true;
6506
6507 /*
6508 * 1) Don't let napi dequeue from the cpu poll list
6509 * just in case its running on a different cpu.
6510 * 2) If we are busy polling, do nothing here, we have
6511 * the guarantee we will be called later.
6512 */
6513 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6514 NAPIF_STATE_IN_BUSY_POLL)))
6515 return false;
6516
6517 if (work_done) {
6518 if (n->gro_bitmask)
6519 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6520 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6521 }
6522 if (n->defer_hard_irqs_count > 0) {
6523 n->defer_hard_irqs_count--;
6524 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6525 if (timeout)
6526 ret = false;
6527 }
6528 if (n->gro_bitmask) {
6529 /* When the NAPI instance uses a timeout and keeps postponing
6530 * it, we need to bound somehow the time packets are kept in
6531 * the GRO layer
6532 */
6533 napi_gro_flush(n, !!timeout);
6534 }
6535
6536 gro_normal_list(n);
6537
6538 if (unlikely(!list_empty(&n->poll_list))) {
6539 /* If n->poll_list is not empty, we need to mask irqs */
6540 local_irq_save(flags);
6541 list_del_init(&n->poll_list);
6542 local_irq_restore(flags);
6543 }
6544
6545 do {
6546 val = READ_ONCE(n->state);
6547
6548 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6549
6550 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6551
6552 /* If STATE_MISSED was set, leave STATE_SCHED set,
6553 * because we will call napi->poll() one more time.
6554 * This C code was suggested by Alexander Duyck to help gcc.
6555 */
6556 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6557 NAPIF_STATE_SCHED;
6558 } while (cmpxchg(&n->state, val, new) != val);
6559
6560 if (unlikely(val & NAPIF_STATE_MISSED)) {
6561 __napi_schedule(n);
6562 return false;
6563 }
6564
6565 if (timeout)
6566 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6567 HRTIMER_MODE_REL_PINNED);
6568 return ret;
6569 }
6570 EXPORT_SYMBOL(napi_complete_done);
6571
6572 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6573 static struct napi_struct *napi_by_id(unsigned int napi_id)
6574 {
6575 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6576 struct napi_struct *napi;
6577
6578 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6579 if (napi->napi_id == napi_id)
6580 return napi;
6581
6582 return NULL;
6583 }
6584
6585 #if defined(CONFIG_NET_RX_BUSY_POLL)
6586
6587 #define BUSY_POLL_BUDGET 8
6588
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6589 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6590 {
6591 int rc;
6592
6593 /* Busy polling means there is a high chance device driver hard irq
6594 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6595 * set in napi_schedule_prep().
6596 * Since we are about to call napi->poll() once more, we can safely
6597 * clear NAPI_STATE_MISSED.
6598 *
6599 * Note: x86 could use a single "lock and ..." instruction
6600 * to perform these two clear_bit()
6601 */
6602 clear_bit(NAPI_STATE_MISSED, &napi->state);
6603 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6604
6605 local_bh_disable();
6606
6607 /* All we really want here is to re-enable device interrupts.
6608 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6609 */
6610 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6611 /* We can't gro_normal_list() here, because napi->poll() might have
6612 * rearmed the napi (napi_complete_done()) in which case it could
6613 * already be running on another CPU.
6614 */
6615 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6616 netpoll_poll_unlock(have_poll_lock);
6617 if (rc == BUSY_POLL_BUDGET) {
6618 /* As the whole budget was spent, we still own the napi so can
6619 * safely handle the rx_list.
6620 */
6621 gro_normal_list(napi);
6622 __napi_schedule(napi);
6623 }
6624 local_bh_enable();
6625 }
6626
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6627 void napi_busy_loop(unsigned int napi_id,
6628 bool (*loop_end)(void *, unsigned long),
6629 void *loop_end_arg)
6630 {
6631 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6632 int (*napi_poll)(struct napi_struct *napi, int budget);
6633 void *have_poll_lock = NULL;
6634 struct napi_struct *napi;
6635
6636 restart:
6637 napi_poll = NULL;
6638
6639 rcu_read_lock();
6640
6641 napi = napi_by_id(napi_id);
6642 if (!napi)
6643 goto out;
6644
6645 preempt_disable();
6646 for (;;) {
6647 int work = 0;
6648
6649 local_bh_disable();
6650 if (!napi_poll) {
6651 unsigned long val = READ_ONCE(napi->state);
6652
6653 /* If multiple threads are competing for this napi,
6654 * we avoid dirtying napi->state as much as we can.
6655 */
6656 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6657 NAPIF_STATE_IN_BUSY_POLL))
6658 goto count;
6659 if (cmpxchg(&napi->state, val,
6660 val | NAPIF_STATE_IN_BUSY_POLL |
6661 NAPIF_STATE_SCHED) != val)
6662 goto count;
6663 have_poll_lock = netpoll_poll_lock(napi);
6664 napi_poll = napi->poll;
6665 }
6666 work = napi_poll(napi, BUSY_POLL_BUDGET);
6667 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6668 gro_normal_list(napi);
6669 count:
6670 if (work > 0)
6671 __NET_ADD_STATS(dev_net(napi->dev),
6672 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6673 local_bh_enable();
6674
6675 if (!loop_end || loop_end(loop_end_arg, start_time))
6676 break;
6677
6678 if (unlikely(need_resched())) {
6679 if (napi_poll)
6680 busy_poll_stop(napi, have_poll_lock);
6681 preempt_enable();
6682 rcu_read_unlock();
6683 cond_resched();
6684 if (loop_end(loop_end_arg, start_time))
6685 return;
6686 goto restart;
6687 }
6688 cpu_relax();
6689 }
6690 if (napi_poll)
6691 busy_poll_stop(napi, have_poll_lock);
6692 preempt_enable();
6693 out:
6694 rcu_read_unlock();
6695 }
6696 EXPORT_SYMBOL(napi_busy_loop);
6697
6698 #endif /* CONFIG_NET_RX_BUSY_POLL */
6699
napi_hash_add(struct napi_struct * napi)6700 static void napi_hash_add(struct napi_struct *napi)
6701 {
6702 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6703 return;
6704
6705 spin_lock(&napi_hash_lock);
6706
6707 /* 0..NR_CPUS range is reserved for sender_cpu use */
6708 do {
6709 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6710 napi_gen_id = MIN_NAPI_ID;
6711 } while (napi_by_id(napi_gen_id));
6712 napi->napi_id = napi_gen_id;
6713
6714 hlist_add_head_rcu(&napi->napi_hash_node,
6715 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6716
6717 spin_unlock(&napi_hash_lock);
6718 }
6719
6720 /* Warning : caller is responsible to make sure rcu grace period
6721 * is respected before freeing memory containing @napi
6722 */
napi_hash_del(struct napi_struct * napi)6723 static void napi_hash_del(struct napi_struct *napi)
6724 {
6725 spin_lock(&napi_hash_lock);
6726
6727 hlist_del_init_rcu(&napi->napi_hash_node);
6728
6729 spin_unlock(&napi_hash_lock);
6730 }
6731
napi_watchdog(struct hrtimer * timer)6732 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6733 {
6734 struct napi_struct *napi;
6735
6736 napi = container_of(timer, struct napi_struct, timer);
6737
6738 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6739 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6740 */
6741 if (!napi_disable_pending(napi) &&
6742 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6743 __napi_schedule_irqoff(napi);
6744
6745 return HRTIMER_NORESTART;
6746 }
6747
init_gro_hash(struct napi_struct * napi)6748 static void init_gro_hash(struct napi_struct *napi)
6749 {
6750 int i;
6751
6752 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6753 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6754 napi->gro_hash[i].count = 0;
6755 }
6756 napi->gro_bitmask = 0;
6757 }
6758
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6759 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6760 int (*poll)(struct napi_struct *, int), int weight)
6761 {
6762 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6763 return;
6764
6765 INIT_LIST_HEAD(&napi->poll_list);
6766 INIT_HLIST_NODE(&napi->napi_hash_node);
6767 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6768 napi->timer.function = napi_watchdog;
6769 init_gro_hash(napi);
6770 napi->skb = NULL;
6771 INIT_LIST_HEAD(&napi->rx_list);
6772 napi->rx_count = 0;
6773 napi->poll = poll;
6774 if (weight > NAPI_POLL_WEIGHT)
6775 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6776 weight);
6777 napi->weight = weight;
6778 napi->dev = dev;
6779 #ifdef CONFIG_NETPOLL
6780 napi->poll_owner = -1;
6781 #endif
6782 set_bit(NAPI_STATE_SCHED, &napi->state);
6783 set_bit(NAPI_STATE_NPSVC, &napi->state);
6784 list_add_rcu(&napi->dev_list, &dev->napi_list);
6785 napi_hash_add(napi);
6786 }
6787 EXPORT_SYMBOL(netif_napi_add);
6788
napi_disable(struct napi_struct * n)6789 void napi_disable(struct napi_struct *n)
6790 {
6791 might_sleep();
6792 set_bit(NAPI_STATE_DISABLE, &n->state);
6793
6794 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6795 msleep(1);
6796 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6797 msleep(1);
6798
6799 hrtimer_cancel(&n->timer);
6800
6801 clear_bit(NAPI_STATE_DISABLE, &n->state);
6802 }
6803 EXPORT_SYMBOL(napi_disable);
6804
flush_gro_hash(struct napi_struct * napi)6805 static void flush_gro_hash(struct napi_struct *napi)
6806 {
6807 int i;
6808
6809 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6810 struct sk_buff *skb, *n;
6811
6812 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6813 kfree_skb(skb);
6814 napi->gro_hash[i].count = 0;
6815 }
6816 }
6817
6818 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6819 void __netif_napi_del(struct napi_struct *napi)
6820 {
6821 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6822 return;
6823
6824 napi_hash_del(napi);
6825 list_del_rcu(&napi->dev_list);
6826 napi_free_frags(napi);
6827
6828 flush_gro_hash(napi);
6829 napi->gro_bitmask = 0;
6830 }
6831 EXPORT_SYMBOL(__netif_napi_del);
6832
napi_poll(struct napi_struct * n,struct list_head * repoll)6833 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6834 {
6835 void *have;
6836 int work, weight;
6837
6838 list_del_init(&n->poll_list);
6839
6840 have = netpoll_poll_lock(n);
6841
6842 weight = n->weight;
6843
6844 /* This NAPI_STATE_SCHED test is for avoiding a race
6845 * with netpoll's poll_napi(). Only the entity which
6846 * obtains the lock and sees NAPI_STATE_SCHED set will
6847 * actually make the ->poll() call. Therefore we avoid
6848 * accidentally calling ->poll() when NAPI is not scheduled.
6849 */
6850 work = 0;
6851 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6852 work = n->poll(n, weight);
6853 trace_napi_poll(n, work, weight);
6854 }
6855
6856 if (unlikely(work > weight))
6857 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6858 n->poll, work, weight);
6859
6860 if (likely(work < weight))
6861 goto out_unlock;
6862
6863 /* Drivers must not modify the NAPI state if they
6864 * consume the entire weight. In such cases this code
6865 * still "owns" the NAPI instance and therefore can
6866 * move the instance around on the list at-will.
6867 */
6868 if (unlikely(napi_disable_pending(n))) {
6869 napi_complete(n);
6870 goto out_unlock;
6871 }
6872
6873 if (n->gro_bitmask) {
6874 /* flush too old packets
6875 * If HZ < 1000, flush all packets.
6876 */
6877 napi_gro_flush(n, HZ >= 1000);
6878 }
6879
6880 gro_normal_list(n);
6881
6882 /* Some drivers may have called napi_schedule
6883 * prior to exhausting their budget.
6884 */
6885 if (unlikely(!list_empty(&n->poll_list))) {
6886 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6887 n->dev ? n->dev->name : "backlog");
6888 goto out_unlock;
6889 }
6890
6891 list_add_tail(&n->poll_list, repoll);
6892
6893 out_unlock:
6894 netpoll_poll_unlock(have);
6895
6896 return work;
6897 }
6898
net_rx_action(struct softirq_action * h)6899 static __latent_entropy void net_rx_action(struct softirq_action *h)
6900 {
6901 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6902 unsigned long time_limit = jiffies +
6903 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6904 int budget = READ_ONCE(netdev_budget);
6905 LIST_HEAD(list);
6906 LIST_HEAD(repoll);
6907
6908 local_irq_disable();
6909 list_splice_init(&sd->poll_list, &list);
6910 local_irq_enable();
6911
6912 for (;;) {
6913 struct napi_struct *n;
6914
6915 if (list_empty(&list)) {
6916 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6917 goto out;
6918 break;
6919 }
6920
6921 n = list_first_entry(&list, struct napi_struct, poll_list);
6922 budget -= napi_poll(n, &repoll);
6923
6924 /* If softirq window is exhausted then punt.
6925 * Allow this to run for 2 jiffies since which will allow
6926 * an average latency of 1.5/HZ.
6927 */
6928 if (unlikely(budget <= 0 ||
6929 time_after_eq(jiffies, time_limit))) {
6930 sd->time_squeeze++;
6931 break;
6932 }
6933 }
6934
6935 local_irq_disable();
6936
6937 list_splice_tail_init(&sd->poll_list, &list);
6938 list_splice_tail(&repoll, &list);
6939 list_splice(&list, &sd->poll_list);
6940 if (!list_empty(&sd->poll_list))
6941 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6942
6943 net_rps_action_and_irq_enable(sd);
6944 out:
6945 __kfree_skb_flush();
6946 }
6947
6948 struct netdev_adjacent {
6949 struct net_device *dev;
6950
6951 /* upper master flag, there can only be one master device per list */
6952 bool master;
6953
6954 /* lookup ignore flag */
6955 bool ignore;
6956
6957 /* counter for the number of times this device was added to us */
6958 u16 ref_nr;
6959
6960 /* private field for the users */
6961 void *private;
6962
6963 struct list_head list;
6964 struct rcu_head rcu;
6965 };
6966
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6967 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6968 struct list_head *adj_list)
6969 {
6970 struct netdev_adjacent *adj;
6971
6972 list_for_each_entry(adj, adj_list, list) {
6973 if (adj->dev == adj_dev)
6974 return adj;
6975 }
6976 return NULL;
6977 }
6978
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6979 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6980 struct netdev_nested_priv *priv)
6981 {
6982 struct net_device *dev = (struct net_device *)priv->data;
6983
6984 return upper_dev == dev;
6985 }
6986
6987 /**
6988 * netdev_has_upper_dev - Check if device is linked to an upper device
6989 * @dev: device
6990 * @upper_dev: upper device to check
6991 *
6992 * Find out if a device is linked to specified upper device and return true
6993 * in case it is. Note that this checks only immediate upper device,
6994 * not through a complete stack of devices. The caller must hold the RTNL lock.
6995 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6996 bool netdev_has_upper_dev(struct net_device *dev,
6997 struct net_device *upper_dev)
6998 {
6999 struct netdev_nested_priv priv = {
7000 .data = (void *)upper_dev,
7001 };
7002
7003 ASSERT_RTNL();
7004
7005 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7006 &priv);
7007 }
7008 EXPORT_SYMBOL(netdev_has_upper_dev);
7009
7010 /**
7011 * netdev_has_upper_dev_all - Check if device is linked to an upper device
7012 * @dev: device
7013 * @upper_dev: upper device to check
7014 *
7015 * Find out if a device is linked to specified upper device and return true
7016 * in case it is. Note that this checks the entire upper device chain.
7017 * The caller must hold rcu lock.
7018 */
7019
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7020 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7021 struct net_device *upper_dev)
7022 {
7023 struct netdev_nested_priv priv = {
7024 .data = (void *)upper_dev,
7025 };
7026
7027 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7028 &priv);
7029 }
7030 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7031
7032 /**
7033 * netdev_has_any_upper_dev - Check if device is linked to some device
7034 * @dev: device
7035 *
7036 * Find out if a device is linked to an upper device and return true in case
7037 * it is. The caller must hold the RTNL lock.
7038 */
netdev_has_any_upper_dev(struct net_device * dev)7039 bool netdev_has_any_upper_dev(struct net_device *dev)
7040 {
7041 ASSERT_RTNL();
7042
7043 return !list_empty(&dev->adj_list.upper);
7044 }
7045 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7046
7047 /**
7048 * netdev_master_upper_dev_get - Get master upper device
7049 * @dev: device
7050 *
7051 * Find a master upper device and return pointer to it or NULL in case
7052 * it's not there. The caller must hold the RTNL lock.
7053 */
netdev_master_upper_dev_get(struct net_device * dev)7054 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7055 {
7056 struct netdev_adjacent *upper;
7057
7058 ASSERT_RTNL();
7059
7060 if (list_empty(&dev->adj_list.upper))
7061 return NULL;
7062
7063 upper = list_first_entry(&dev->adj_list.upper,
7064 struct netdev_adjacent, list);
7065 if (likely(upper->master))
7066 return upper->dev;
7067 return NULL;
7068 }
7069 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7070
__netdev_master_upper_dev_get(struct net_device * dev)7071 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7072 {
7073 struct netdev_adjacent *upper;
7074
7075 ASSERT_RTNL();
7076
7077 if (list_empty(&dev->adj_list.upper))
7078 return NULL;
7079
7080 upper = list_first_entry(&dev->adj_list.upper,
7081 struct netdev_adjacent, list);
7082 if (likely(upper->master) && !upper->ignore)
7083 return upper->dev;
7084 return NULL;
7085 }
7086
7087 /**
7088 * netdev_has_any_lower_dev - Check if device is linked to some device
7089 * @dev: device
7090 *
7091 * Find out if a device is linked to a lower device and return true in case
7092 * it is. The caller must hold the RTNL lock.
7093 */
netdev_has_any_lower_dev(struct net_device * dev)7094 static bool netdev_has_any_lower_dev(struct net_device *dev)
7095 {
7096 ASSERT_RTNL();
7097
7098 return !list_empty(&dev->adj_list.lower);
7099 }
7100
netdev_adjacent_get_private(struct list_head * adj_list)7101 void *netdev_adjacent_get_private(struct list_head *adj_list)
7102 {
7103 struct netdev_adjacent *adj;
7104
7105 adj = list_entry(adj_list, struct netdev_adjacent, list);
7106
7107 return adj->private;
7108 }
7109 EXPORT_SYMBOL(netdev_adjacent_get_private);
7110
7111 /**
7112 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7113 * @dev: device
7114 * @iter: list_head ** of the current position
7115 *
7116 * Gets the next device from the dev's upper list, starting from iter
7117 * position. The caller must hold RCU read lock.
7118 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7119 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7120 struct list_head **iter)
7121 {
7122 struct netdev_adjacent *upper;
7123
7124 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7125
7126 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7127
7128 if (&upper->list == &dev->adj_list.upper)
7129 return NULL;
7130
7131 *iter = &upper->list;
7132
7133 return upper->dev;
7134 }
7135 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7136
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7137 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7138 struct list_head **iter,
7139 bool *ignore)
7140 {
7141 struct netdev_adjacent *upper;
7142
7143 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7144
7145 if (&upper->list == &dev->adj_list.upper)
7146 return NULL;
7147
7148 *iter = &upper->list;
7149 *ignore = upper->ignore;
7150
7151 return upper->dev;
7152 }
7153
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7154 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7155 struct list_head **iter)
7156 {
7157 struct netdev_adjacent *upper;
7158
7159 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7160
7161 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7162
7163 if (&upper->list == &dev->adj_list.upper)
7164 return NULL;
7165
7166 *iter = &upper->list;
7167
7168 return upper->dev;
7169 }
7170
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7171 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7172 int (*fn)(struct net_device *dev,
7173 struct netdev_nested_priv *priv),
7174 struct netdev_nested_priv *priv)
7175 {
7176 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7177 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7178 int ret, cur = 0;
7179 bool ignore;
7180
7181 now = dev;
7182 iter = &dev->adj_list.upper;
7183
7184 while (1) {
7185 if (now != dev) {
7186 ret = fn(now, priv);
7187 if (ret)
7188 return ret;
7189 }
7190
7191 next = NULL;
7192 while (1) {
7193 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7194 if (!udev)
7195 break;
7196 if (ignore)
7197 continue;
7198
7199 next = udev;
7200 niter = &udev->adj_list.upper;
7201 dev_stack[cur] = now;
7202 iter_stack[cur++] = iter;
7203 break;
7204 }
7205
7206 if (!next) {
7207 if (!cur)
7208 return 0;
7209 next = dev_stack[--cur];
7210 niter = iter_stack[cur];
7211 }
7212
7213 now = next;
7214 iter = niter;
7215 }
7216
7217 return 0;
7218 }
7219
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7220 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7221 int (*fn)(struct net_device *dev,
7222 struct netdev_nested_priv *priv),
7223 struct netdev_nested_priv *priv)
7224 {
7225 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227 int ret, cur = 0;
7228
7229 now = dev;
7230 iter = &dev->adj_list.upper;
7231
7232 while (1) {
7233 if (now != dev) {
7234 ret = fn(now, priv);
7235 if (ret)
7236 return ret;
7237 }
7238
7239 next = NULL;
7240 while (1) {
7241 udev = netdev_next_upper_dev_rcu(now, &iter);
7242 if (!udev)
7243 break;
7244
7245 next = udev;
7246 niter = &udev->adj_list.upper;
7247 dev_stack[cur] = now;
7248 iter_stack[cur++] = iter;
7249 break;
7250 }
7251
7252 if (!next) {
7253 if (!cur)
7254 return 0;
7255 next = dev_stack[--cur];
7256 niter = iter_stack[cur];
7257 }
7258
7259 now = next;
7260 iter = niter;
7261 }
7262
7263 return 0;
7264 }
7265 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7266
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7267 static bool __netdev_has_upper_dev(struct net_device *dev,
7268 struct net_device *upper_dev)
7269 {
7270 struct netdev_nested_priv priv = {
7271 .flags = 0,
7272 .data = (void *)upper_dev,
7273 };
7274
7275 ASSERT_RTNL();
7276
7277 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7278 &priv);
7279 }
7280
7281 /**
7282 * netdev_lower_get_next_private - Get the next ->private from the
7283 * lower neighbour list
7284 * @dev: device
7285 * @iter: list_head ** of the current position
7286 *
7287 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7288 * list, starting from iter position. The caller must hold either hold the
7289 * RTNL lock or its own locking that guarantees that the neighbour lower
7290 * list will remain unchanged.
7291 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7292 void *netdev_lower_get_next_private(struct net_device *dev,
7293 struct list_head **iter)
7294 {
7295 struct netdev_adjacent *lower;
7296
7297 lower = list_entry(*iter, struct netdev_adjacent, list);
7298
7299 if (&lower->list == &dev->adj_list.lower)
7300 return NULL;
7301
7302 *iter = lower->list.next;
7303
7304 return lower->private;
7305 }
7306 EXPORT_SYMBOL(netdev_lower_get_next_private);
7307
7308 /**
7309 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7310 * lower neighbour list, RCU
7311 * variant
7312 * @dev: device
7313 * @iter: list_head ** of the current position
7314 *
7315 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7316 * list, starting from iter position. The caller must hold RCU read lock.
7317 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7318 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7319 struct list_head **iter)
7320 {
7321 struct netdev_adjacent *lower;
7322
7323 WARN_ON_ONCE(!rcu_read_lock_held());
7324
7325 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7326
7327 if (&lower->list == &dev->adj_list.lower)
7328 return NULL;
7329
7330 *iter = &lower->list;
7331
7332 return lower->private;
7333 }
7334 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7335
7336 /**
7337 * netdev_lower_get_next - Get the next device from the lower neighbour
7338 * list
7339 * @dev: device
7340 * @iter: list_head ** of the current position
7341 *
7342 * Gets the next netdev_adjacent from the dev's lower neighbour
7343 * list, starting from iter position. The caller must hold RTNL lock or
7344 * its own locking that guarantees that the neighbour lower
7345 * list will remain unchanged.
7346 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7347 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7348 {
7349 struct netdev_adjacent *lower;
7350
7351 lower = list_entry(*iter, struct netdev_adjacent, list);
7352
7353 if (&lower->list == &dev->adj_list.lower)
7354 return NULL;
7355
7356 *iter = lower->list.next;
7357
7358 return lower->dev;
7359 }
7360 EXPORT_SYMBOL(netdev_lower_get_next);
7361
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7362 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7363 struct list_head **iter)
7364 {
7365 struct netdev_adjacent *lower;
7366
7367 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7368
7369 if (&lower->list == &dev->adj_list.lower)
7370 return NULL;
7371
7372 *iter = &lower->list;
7373
7374 return lower->dev;
7375 }
7376
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7377 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7378 struct list_head **iter,
7379 bool *ignore)
7380 {
7381 struct netdev_adjacent *lower;
7382
7383 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7384
7385 if (&lower->list == &dev->adj_list.lower)
7386 return NULL;
7387
7388 *iter = &lower->list;
7389 *ignore = lower->ignore;
7390
7391 return lower->dev;
7392 }
7393
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7394 int netdev_walk_all_lower_dev(struct net_device *dev,
7395 int (*fn)(struct net_device *dev,
7396 struct netdev_nested_priv *priv),
7397 struct netdev_nested_priv *priv)
7398 {
7399 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7400 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7401 int ret, cur = 0;
7402
7403 now = dev;
7404 iter = &dev->adj_list.lower;
7405
7406 while (1) {
7407 if (now != dev) {
7408 ret = fn(now, priv);
7409 if (ret)
7410 return ret;
7411 }
7412
7413 next = NULL;
7414 while (1) {
7415 ldev = netdev_next_lower_dev(now, &iter);
7416 if (!ldev)
7417 break;
7418
7419 next = ldev;
7420 niter = &ldev->adj_list.lower;
7421 dev_stack[cur] = now;
7422 iter_stack[cur++] = iter;
7423 break;
7424 }
7425
7426 if (!next) {
7427 if (!cur)
7428 return 0;
7429 next = dev_stack[--cur];
7430 niter = iter_stack[cur];
7431 }
7432
7433 now = next;
7434 iter = niter;
7435 }
7436
7437 return 0;
7438 }
7439 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7440
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7441 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7442 int (*fn)(struct net_device *dev,
7443 struct netdev_nested_priv *priv),
7444 struct netdev_nested_priv *priv)
7445 {
7446 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7447 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7448 int ret, cur = 0;
7449 bool ignore;
7450
7451 now = dev;
7452 iter = &dev->adj_list.lower;
7453
7454 while (1) {
7455 if (now != dev) {
7456 ret = fn(now, priv);
7457 if (ret)
7458 return ret;
7459 }
7460
7461 next = NULL;
7462 while (1) {
7463 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7464 if (!ldev)
7465 break;
7466 if (ignore)
7467 continue;
7468
7469 next = ldev;
7470 niter = &ldev->adj_list.lower;
7471 dev_stack[cur] = now;
7472 iter_stack[cur++] = iter;
7473 break;
7474 }
7475
7476 if (!next) {
7477 if (!cur)
7478 return 0;
7479 next = dev_stack[--cur];
7480 niter = iter_stack[cur];
7481 }
7482
7483 now = next;
7484 iter = niter;
7485 }
7486
7487 return 0;
7488 }
7489
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7490 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7491 struct list_head **iter)
7492 {
7493 struct netdev_adjacent *lower;
7494
7495 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7496 if (&lower->list == &dev->adj_list.lower)
7497 return NULL;
7498
7499 *iter = &lower->list;
7500
7501 return lower->dev;
7502 }
7503 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7504
__netdev_upper_depth(struct net_device * dev)7505 static u8 __netdev_upper_depth(struct net_device *dev)
7506 {
7507 struct net_device *udev;
7508 struct list_head *iter;
7509 u8 max_depth = 0;
7510 bool ignore;
7511
7512 for (iter = &dev->adj_list.upper,
7513 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7514 udev;
7515 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7516 if (ignore)
7517 continue;
7518 if (max_depth < udev->upper_level)
7519 max_depth = udev->upper_level;
7520 }
7521
7522 return max_depth;
7523 }
7524
__netdev_lower_depth(struct net_device * dev)7525 static u8 __netdev_lower_depth(struct net_device *dev)
7526 {
7527 struct net_device *ldev;
7528 struct list_head *iter;
7529 u8 max_depth = 0;
7530 bool ignore;
7531
7532 for (iter = &dev->adj_list.lower,
7533 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7534 ldev;
7535 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7536 if (ignore)
7537 continue;
7538 if (max_depth < ldev->lower_level)
7539 max_depth = ldev->lower_level;
7540 }
7541
7542 return max_depth;
7543 }
7544
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7545 static int __netdev_update_upper_level(struct net_device *dev,
7546 struct netdev_nested_priv *__unused)
7547 {
7548 dev->upper_level = __netdev_upper_depth(dev) + 1;
7549 return 0;
7550 }
7551
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7552 static int __netdev_update_lower_level(struct net_device *dev,
7553 struct netdev_nested_priv *priv)
7554 {
7555 dev->lower_level = __netdev_lower_depth(dev) + 1;
7556
7557 #ifdef CONFIG_LOCKDEP
7558 if (!priv)
7559 return 0;
7560
7561 if (priv->flags & NESTED_SYNC_IMM)
7562 dev->nested_level = dev->lower_level - 1;
7563 if (priv->flags & NESTED_SYNC_TODO)
7564 net_unlink_todo(dev);
7565 #endif
7566 return 0;
7567 }
7568
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7569 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7570 int (*fn)(struct net_device *dev,
7571 struct netdev_nested_priv *priv),
7572 struct netdev_nested_priv *priv)
7573 {
7574 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7575 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7576 int ret, cur = 0;
7577
7578 now = dev;
7579 iter = &dev->adj_list.lower;
7580
7581 while (1) {
7582 if (now != dev) {
7583 ret = fn(now, priv);
7584 if (ret)
7585 return ret;
7586 }
7587
7588 next = NULL;
7589 while (1) {
7590 ldev = netdev_next_lower_dev_rcu(now, &iter);
7591 if (!ldev)
7592 break;
7593
7594 next = ldev;
7595 niter = &ldev->adj_list.lower;
7596 dev_stack[cur] = now;
7597 iter_stack[cur++] = iter;
7598 break;
7599 }
7600
7601 if (!next) {
7602 if (!cur)
7603 return 0;
7604 next = dev_stack[--cur];
7605 niter = iter_stack[cur];
7606 }
7607
7608 now = next;
7609 iter = niter;
7610 }
7611
7612 return 0;
7613 }
7614 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7615
7616 /**
7617 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7618 * lower neighbour list, RCU
7619 * variant
7620 * @dev: device
7621 *
7622 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7623 * list. The caller must hold RCU read lock.
7624 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7625 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7626 {
7627 struct netdev_adjacent *lower;
7628
7629 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7630 struct netdev_adjacent, list);
7631 if (lower)
7632 return lower->private;
7633 return NULL;
7634 }
7635 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7636
7637 /**
7638 * netdev_master_upper_dev_get_rcu - Get master upper device
7639 * @dev: device
7640 *
7641 * Find a master upper device and return pointer to it or NULL in case
7642 * it's not there. The caller must hold the RCU read lock.
7643 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7644 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7645 {
7646 struct netdev_adjacent *upper;
7647
7648 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7649 struct netdev_adjacent, list);
7650 if (upper && likely(upper->master))
7651 return upper->dev;
7652 return NULL;
7653 }
7654 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7655
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7656 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7657 struct net_device *adj_dev,
7658 struct list_head *dev_list)
7659 {
7660 char linkname[IFNAMSIZ+7];
7661
7662 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7663 "upper_%s" : "lower_%s", adj_dev->name);
7664 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7665 linkname);
7666 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7667 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7668 char *name,
7669 struct list_head *dev_list)
7670 {
7671 char linkname[IFNAMSIZ+7];
7672
7673 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7674 "upper_%s" : "lower_%s", name);
7675 sysfs_remove_link(&(dev->dev.kobj), linkname);
7676 }
7677
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7678 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7679 struct net_device *adj_dev,
7680 struct list_head *dev_list)
7681 {
7682 return (dev_list == &dev->adj_list.upper ||
7683 dev_list == &dev->adj_list.lower) &&
7684 net_eq(dev_net(dev), dev_net(adj_dev));
7685 }
7686
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7687 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7688 struct net_device *adj_dev,
7689 struct list_head *dev_list,
7690 void *private, bool master)
7691 {
7692 struct netdev_adjacent *adj;
7693 int ret;
7694
7695 adj = __netdev_find_adj(adj_dev, dev_list);
7696
7697 if (adj) {
7698 adj->ref_nr += 1;
7699 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7700 dev->name, adj_dev->name, adj->ref_nr);
7701
7702 return 0;
7703 }
7704
7705 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7706 if (!adj)
7707 return -ENOMEM;
7708
7709 adj->dev = adj_dev;
7710 adj->master = master;
7711 adj->ref_nr = 1;
7712 adj->private = private;
7713 adj->ignore = false;
7714 dev_hold(adj_dev);
7715
7716 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7717 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7718
7719 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7720 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7721 if (ret)
7722 goto free_adj;
7723 }
7724
7725 /* Ensure that master link is always the first item in list. */
7726 if (master) {
7727 ret = sysfs_create_link(&(dev->dev.kobj),
7728 &(adj_dev->dev.kobj), "master");
7729 if (ret)
7730 goto remove_symlinks;
7731
7732 list_add_rcu(&adj->list, dev_list);
7733 } else {
7734 list_add_tail_rcu(&adj->list, dev_list);
7735 }
7736
7737 return 0;
7738
7739 remove_symlinks:
7740 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7741 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7742 free_adj:
7743 kfree(adj);
7744 dev_put(adj_dev);
7745
7746 return ret;
7747 }
7748
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7749 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7750 struct net_device *adj_dev,
7751 u16 ref_nr,
7752 struct list_head *dev_list)
7753 {
7754 struct netdev_adjacent *adj;
7755
7756 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7757 dev->name, adj_dev->name, ref_nr);
7758
7759 adj = __netdev_find_adj(adj_dev, dev_list);
7760
7761 if (!adj) {
7762 pr_err("Adjacency does not exist for device %s from %s\n",
7763 dev->name, adj_dev->name);
7764 WARN_ON(1);
7765 return;
7766 }
7767
7768 if (adj->ref_nr > ref_nr) {
7769 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7770 dev->name, adj_dev->name, ref_nr,
7771 adj->ref_nr - ref_nr);
7772 adj->ref_nr -= ref_nr;
7773 return;
7774 }
7775
7776 if (adj->master)
7777 sysfs_remove_link(&(dev->dev.kobj), "master");
7778
7779 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7780 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7781
7782 list_del_rcu(&adj->list);
7783 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7784 adj_dev->name, dev->name, adj_dev->name);
7785 dev_put(adj_dev);
7786 kfree_rcu(adj, rcu);
7787 }
7788
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7789 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7790 struct net_device *upper_dev,
7791 struct list_head *up_list,
7792 struct list_head *down_list,
7793 void *private, bool master)
7794 {
7795 int ret;
7796
7797 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7798 private, master);
7799 if (ret)
7800 return ret;
7801
7802 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7803 private, false);
7804 if (ret) {
7805 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7806 return ret;
7807 }
7808
7809 return 0;
7810 }
7811
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7812 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7813 struct net_device *upper_dev,
7814 u16 ref_nr,
7815 struct list_head *up_list,
7816 struct list_head *down_list)
7817 {
7818 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7819 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7820 }
7821
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7822 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7823 struct net_device *upper_dev,
7824 void *private, bool master)
7825 {
7826 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7827 &dev->adj_list.upper,
7828 &upper_dev->adj_list.lower,
7829 private, master);
7830 }
7831
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7832 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7833 struct net_device *upper_dev)
7834 {
7835 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7836 &dev->adj_list.upper,
7837 &upper_dev->adj_list.lower);
7838 }
7839
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7840 static int __netdev_upper_dev_link(struct net_device *dev,
7841 struct net_device *upper_dev, bool master,
7842 void *upper_priv, void *upper_info,
7843 struct netdev_nested_priv *priv,
7844 struct netlink_ext_ack *extack)
7845 {
7846 struct netdev_notifier_changeupper_info changeupper_info = {
7847 .info = {
7848 .dev = dev,
7849 .extack = extack,
7850 },
7851 .upper_dev = upper_dev,
7852 .master = master,
7853 .linking = true,
7854 .upper_info = upper_info,
7855 };
7856 struct net_device *master_dev;
7857 int ret = 0;
7858
7859 ASSERT_RTNL();
7860
7861 if (dev == upper_dev)
7862 return -EBUSY;
7863
7864 /* To prevent loops, check if dev is not upper device to upper_dev. */
7865 if (__netdev_has_upper_dev(upper_dev, dev))
7866 return -EBUSY;
7867
7868 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7869 return -EMLINK;
7870
7871 if (!master) {
7872 if (__netdev_has_upper_dev(dev, upper_dev))
7873 return -EEXIST;
7874 } else {
7875 master_dev = __netdev_master_upper_dev_get(dev);
7876 if (master_dev)
7877 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7878 }
7879
7880 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7881 &changeupper_info.info);
7882 ret = notifier_to_errno(ret);
7883 if (ret)
7884 return ret;
7885
7886 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7887 master);
7888 if (ret)
7889 return ret;
7890
7891 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7892 &changeupper_info.info);
7893 ret = notifier_to_errno(ret);
7894 if (ret)
7895 goto rollback;
7896
7897 __netdev_update_upper_level(dev, NULL);
7898 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7899
7900 __netdev_update_lower_level(upper_dev, priv);
7901 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7902 priv);
7903
7904 return 0;
7905
7906 rollback:
7907 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7908
7909 return ret;
7910 }
7911
7912 /**
7913 * netdev_upper_dev_link - Add a link to the upper device
7914 * @dev: device
7915 * @upper_dev: new upper device
7916 * @extack: netlink extended ack
7917 *
7918 * Adds a link to device which is upper to this one. The caller must hold
7919 * the RTNL lock. On a failure a negative errno code is returned.
7920 * On success the reference counts are adjusted and the function
7921 * returns zero.
7922 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7923 int netdev_upper_dev_link(struct net_device *dev,
7924 struct net_device *upper_dev,
7925 struct netlink_ext_ack *extack)
7926 {
7927 struct netdev_nested_priv priv = {
7928 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7929 .data = NULL,
7930 };
7931
7932 return __netdev_upper_dev_link(dev, upper_dev, false,
7933 NULL, NULL, &priv, extack);
7934 }
7935 EXPORT_SYMBOL(netdev_upper_dev_link);
7936
7937 /**
7938 * netdev_master_upper_dev_link - Add a master link to the upper device
7939 * @dev: device
7940 * @upper_dev: new upper device
7941 * @upper_priv: upper device private
7942 * @upper_info: upper info to be passed down via notifier
7943 * @extack: netlink extended ack
7944 *
7945 * Adds a link to device which is upper to this one. In this case, only
7946 * one master upper device can be linked, although other non-master devices
7947 * might be linked as well. The caller must hold the RTNL lock.
7948 * On a failure a negative errno code is returned. On success the reference
7949 * counts are adjusted and the function returns zero.
7950 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7951 int netdev_master_upper_dev_link(struct net_device *dev,
7952 struct net_device *upper_dev,
7953 void *upper_priv, void *upper_info,
7954 struct netlink_ext_ack *extack)
7955 {
7956 struct netdev_nested_priv priv = {
7957 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7958 .data = NULL,
7959 };
7960
7961 return __netdev_upper_dev_link(dev, upper_dev, true,
7962 upper_priv, upper_info, &priv, extack);
7963 }
7964 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7965
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7966 static void __netdev_upper_dev_unlink(struct net_device *dev,
7967 struct net_device *upper_dev,
7968 struct netdev_nested_priv *priv)
7969 {
7970 struct netdev_notifier_changeupper_info changeupper_info = {
7971 .info = {
7972 .dev = dev,
7973 },
7974 .upper_dev = upper_dev,
7975 .linking = false,
7976 };
7977
7978 ASSERT_RTNL();
7979
7980 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7981
7982 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7983 &changeupper_info.info);
7984
7985 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7986
7987 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7988 &changeupper_info.info);
7989
7990 __netdev_update_upper_level(dev, NULL);
7991 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7992
7993 __netdev_update_lower_level(upper_dev, priv);
7994 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7995 priv);
7996 }
7997
7998 /**
7999 * netdev_upper_dev_unlink - Removes a link to upper device
8000 * @dev: device
8001 * @upper_dev: new upper device
8002 *
8003 * Removes a link to device which is upper to this one. The caller must hold
8004 * the RTNL lock.
8005 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8006 void netdev_upper_dev_unlink(struct net_device *dev,
8007 struct net_device *upper_dev)
8008 {
8009 struct netdev_nested_priv priv = {
8010 .flags = NESTED_SYNC_TODO,
8011 .data = NULL,
8012 };
8013
8014 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8015 }
8016 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8017
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8018 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8019 struct net_device *lower_dev,
8020 bool val)
8021 {
8022 struct netdev_adjacent *adj;
8023
8024 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8025 if (adj)
8026 adj->ignore = val;
8027
8028 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8029 if (adj)
8030 adj->ignore = val;
8031 }
8032
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8033 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8034 struct net_device *lower_dev)
8035 {
8036 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8037 }
8038
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8039 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8040 struct net_device *lower_dev)
8041 {
8042 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8043 }
8044
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8045 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8046 struct net_device *new_dev,
8047 struct net_device *dev,
8048 struct netlink_ext_ack *extack)
8049 {
8050 struct netdev_nested_priv priv = {
8051 .flags = 0,
8052 .data = NULL,
8053 };
8054 int err;
8055
8056 if (!new_dev)
8057 return 0;
8058
8059 if (old_dev && new_dev != old_dev)
8060 netdev_adjacent_dev_disable(dev, old_dev);
8061 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8062 extack);
8063 if (err) {
8064 if (old_dev && new_dev != old_dev)
8065 netdev_adjacent_dev_enable(dev, old_dev);
8066 return err;
8067 }
8068
8069 return 0;
8070 }
8071 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8072
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8073 void netdev_adjacent_change_commit(struct net_device *old_dev,
8074 struct net_device *new_dev,
8075 struct net_device *dev)
8076 {
8077 struct netdev_nested_priv priv = {
8078 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8079 .data = NULL,
8080 };
8081
8082 if (!new_dev || !old_dev)
8083 return;
8084
8085 if (new_dev == old_dev)
8086 return;
8087
8088 netdev_adjacent_dev_enable(dev, old_dev);
8089 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8090 }
8091 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8092
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8093 void netdev_adjacent_change_abort(struct net_device *old_dev,
8094 struct net_device *new_dev,
8095 struct net_device *dev)
8096 {
8097 struct netdev_nested_priv priv = {
8098 .flags = 0,
8099 .data = NULL,
8100 };
8101
8102 if (!new_dev)
8103 return;
8104
8105 if (old_dev && new_dev != old_dev)
8106 netdev_adjacent_dev_enable(dev, old_dev);
8107
8108 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8109 }
8110 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8111
8112 /**
8113 * netdev_bonding_info_change - Dispatch event about slave change
8114 * @dev: device
8115 * @bonding_info: info to dispatch
8116 *
8117 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8118 * The caller must hold the RTNL lock.
8119 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8120 void netdev_bonding_info_change(struct net_device *dev,
8121 struct netdev_bonding_info *bonding_info)
8122 {
8123 struct netdev_notifier_bonding_info info = {
8124 .info.dev = dev,
8125 };
8126
8127 memcpy(&info.bonding_info, bonding_info,
8128 sizeof(struct netdev_bonding_info));
8129 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8130 &info.info);
8131 }
8132 EXPORT_SYMBOL(netdev_bonding_info_change);
8133
8134 /**
8135 * netdev_get_xmit_slave - Get the xmit slave of master device
8136 * @dev: device
8137 * @skb: The packet
8138 * @all_slaves: assume all the slaves are active
8139 *
8140 * The reference counters are not incremented so the caller must be
8141 * careful with locks. The caller must hold RCU lock.
8142 * %NULL is returned if no slave is found.
8143 */
8144
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8145 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8146 struct sk_buff *skb,
8147 bool all_slaves)
8148 {
8149 const struct net_device_ops *ops = dev->netdev_ops;
8150
8151 if (!ops->ndo_get_xmit_slave)
8152 return NULL;
8153 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8154 }
8155 EXPORT_SYMBOL(netdev_get_xmit_slave);
8156
netdev_adjacent_add_links(struct net_device * dev)8157 static void netdev_adjacent_add_links(struct net_device *dev)
8158 {
8159 struct netdev_adjacent *iter;
8160
8161 struct net *net = dev_net(dev);
8162
8163 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8164 if (!net_eq(net, dev_net(iter->dev)))
8165 continue;
8166 netdev_adjacent_sysfs_add(iter->dev, dev,
8167 &iter->dev->adj_list.lower);
8168 netdev_adjacent_sysfs_add(dev, iter->dev,
8169 &dev->adj_list.upper);
8170 }
8171
8172 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8173 if (!net_eq(net, dev_net(iter->dev)))
8174 continue;
8175 netdev_adjacent_sysfs_add(iter->dev, dev,
8176 &iter->dev->adj_list.upper);
8177 netdev_adjacent_sysfs_add(dev, iter->dev,
8178 &dev->adj_list.lower);
8179 }
8180 }
8181
netdev_adjacent_del_links(struct net_device * dev)8182 static void netdev_adjacent_del_links(struct net_device *dev)
8183 {
8184 struct netdev_adjacent *iter;
8185
8186 struct net *net = dev_net(dev);
8187
8188 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8189 if (!net_eq(net, dev_net(iter->dev)))
8190 continue;
8191 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8192 &iter->dev->adj_list.lower);
8193 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8194 &dev->adj_list.upper);
8195 }
8196
8197 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8198 if (!net_eq(net, dev_net(iter->dev)))
8199 continue;
8200 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8201 &iter->dev->adj_list.upper);
8202 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8203 &dev->adj_list.lower);
8204 }
8205 }
8206
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8207 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8208 {
8209 struct netdev_adjacent *iter;
8210
8211 struct net *net = dev_net(dev);
8212
8213 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8214 if (!net_eq(net, dev_net(iter->dev)))
8215 continue;
8216 netdev_adjacent_sysfs_del(iter->dev, oldname,
8217 &iter->dev->adj_list.lower);
8218 netdev_adjacent_sysfs_add(iter->dev, dev,
8219 &iter->dev->adj_list.lower);
8220 }
8221
8222 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8223 if (!net_eq(net, dev_net(iter->dev)))
8224 continue;
8225 netdev_adjacent_sysfs_del(iter->dev, oldname,
8226 &iter->dev->adj_list.upper);
8227 netdev_adjacent_sysfs_add(iter->dev, dev,
8228 &iter->dev->adj_list.upper);
8229 }
8230 }
8231
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8232 void *netdev_lower_dev_get_private(struct net_device *dev,
8233 struct net_device *lower_dev)
8234 {
8235 struct netdev_adjacent *lower;
8236
8237 if (!lower_dev)
8238 return NULL;
8239 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8240 if (!lower)
8241 return NULL;
8242
8243 return lower->private;
8244 }
8245 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8246
8247
8248 /**
8249 * netdev_lower_change - Dispatch event about lower device state change
8250 * @lower_dev: device
8251 * @lower_state_info: state to dispatch
8252 *
8253 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8254 * The caller must hold the RTNL lock.
8255 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8256 void netdev_lower_state_changed(struct net_device *lower_dev,
8257 void *lower_state_info)
8258 {
8259 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8260 .info.dev = lower_dev,
8261 };
8262
8263 ASSERT_RTNL();
8264 changelowerstate_info.lower_state_info = lower_state_info;
8265 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8266 &changelowerstate_info.info);
8267 }
8268 EXPORT_SYMBOL(netdev_lower_state_changed);
8269
dev_change_rx_flags(struct net_device * dev,int flags)8270 static void dev_change_rx_flags(struct net_device *dev, int flags)
8271 {
8272 const struct net_device_ops *ops = dev->netdev_ops;
8273
8274 if (ops->ndo_change_rx_flags)
8275 ops->ndo_change_rx_flags(dev, flags);
8276 }
8277
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8278 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8279 {
8280 unsigned int old_flags = dev->flags;
8281 kuid_t uid;
8282 kgid_t gid;
8283
8284 ASSERT_RTNL();
8285
8286 dev->flags |= IFF_PROMISC;
8287 dev->promiscuity += inc;
8288 if (dev->promiscuity == 0) {
8289 /*
8290 * Avoid overflow.
8291 * If inc causes overflow, untouch promisc and return error.
8292 */
8293 if (inc < 0)
8294 dev->flags &= ~IFF_PROMISC;
8295 else {
8296 dev->promiscuity -= inc;
8297 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8298 dev->name);
8299 return -EOVERFLOW;
8300 }
8301 }
8302 if (dev->flags != old_flags) {
8303 pr_info("device %s %s promiscuous mode\n",
8304 dev->name,
8305 dev->flags & IFF_PROMISC ? "entered" : "left");
8306 if (audit_enabled) {
8307 current_uid_gid(&uid, &gid);
8308 audit_log(audit_context(), GFP_ATOMIC,
8309 AUDIT_ANOM_PROMISCUOUS,
8310 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8311 dev->name, (dev->flags & IFF_PROMISC),
8312 (old_flags & IFF_PROMISC),
8313 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8314 from_kuid(&init_user_ns, uid),
8315 from_kgid(&init_user_ns, gid),
8316 audit_get_sessionid(current));
8317 }
8318
8319 dev_change_rx_flags(dev, IFF_PROMISC);
8320 }
8321 if (notify)
8322 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8323 return 0;
8324 }
8325
8326 /**
8327 * dev_set_promiscuity - update promiscuity count on a device
8328 * @dev: device
8329 * @inc: modifier
8330 *
8331 * Add or remove promiscuity from a device. While the count in the device
8332 * remains above zero the interface remains promiscuous. Once it hits zero
8333 * the device reverts back to normal filtering operation. A negative inc
8334 * value is used to drop promiscuity on the device.
8335 * Return 0 if successful or a negative errno code on error.
8336 */
dev_set_promiscuity(struct net_device * dev,int inc)8337 int dev_set_promiscuity(struct net_device *dev, int inc)
8338 {
8339 unsigned int old_flags = dev->flags;
8340 int err;
8341
8342 err = __dev_set_promiscuity(dev, inc, true);
8343 if (err < 0)
8344 return err;
8345 if (dev->flags != old_flags)
8346 dev_set_rx_mode(dev);
8347 return err;
8348 }
8349 EXPORT_SYMBOL(dev_set_promiscuity);
8350
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8351 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8352 {
8353 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8354
8355 ASSERT_RTNL();
8356
8357 dev->flags |= IFF_ALLMULTI;
8358 dev->allmulti += inc;
8359 if (dev->allmulti == 0) {
8360 /*
8361 * Avoid overflow.
8362 * If inc causes overflow, untouch allmulti and return error.
8363 */
8364 if (inc < 0)
8365 dev->flags &= ~IFF_ALLMULTI;
8366 else {
8367 dev->allmulti -= inc;
8368 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8369 dev->name);
8370 return -EOVERFLOW;
8371 }
8372 }
8373 if (dev->flags ^ old_flags) {
8374 dev_change_rx_flags(dev, IFF_ALLMULTI);
8375 dev_set_rx_mode(dev);
8376 if (notify)
8377 __dev_notify_flags(dev, old_flags,
8378 dev->gflags ^ old_gflags);
8379 }
8380 return 0;
8381 }
8382
8383 /**
8384 * dev_set_allmulti - update allmulti count on a device
8385 * @dev: device
8386 * @inc: modifier
8387 *
8388 * Add or remove reception of all multicast frames to a device. While the
8389 * count in the device remains above zero the interface remains listening
8390 * to all interfaces. Once it hits zero the device reverts back to normal
8391 * filtering operation. A negative @inc value is used to drop the counter
8392 * when releasing a resource needing all multicasts.
8393 * Return 0 if successful or a negative errno code on error.
8394 */
8395
dev_set_allmulti(struct net_device * dev,int inc)8396 int dev_set_allmulti(struct net_device *dev, int inc)
8397 {
8398 return __dev_set_allmulti(dev, inc, true);
8399 }
8400 EXPORT_SYMBOL(dev_set_allmulti);
8401
8402 /*
8403 * Upload unicast and multicast address lists to device and
8404 * configure RX filtering. When the device doesn't support unicast
8405 * filtering it is put in promiscuous mode while unicast addresses
8406 * are present.
8407 */
__dev_set_rx_mode(struct net_device * dev)8408 void __dev_set_rx_mode(struct net_device *dev)
8409 {
8410 const struct net_device_ops *ops = dev->netdev_ops;
8411
8412 /* dev_open will call this function so the list will stay sane. */
8413 if (!(dev->flags&IFF_UP))
8414 return;
8415
8416 if (!netif_device_present(dev))
8417 return;
8418
8419 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8420 /* Unicast addresses changes may only happen under the rtnl,
8421 * therefore calling __dev_set_promiscuity here is safe.
8422 */
8423 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8424 __dev_set_promiscuity(dev, 1, false);
8425 dev->uc_promisc = true;
8426 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8427 __dev_set_promiscuity(dev, -1, false);
8428 dev->uc_promisc = false;
8429 }
8430 }
8431
8432 if (ops->ndo_set_rx_mode)
8433 ops->ndo_set_rx_mode(dev);
8434 }
8435
dev_set_rx_mode(struct net_device * dev)8436 void dev_set_rx_mode(struct net_device *dev)
8437 {
8438 netif_addr_lock_bh(dev);
8439 __dev_set_rx_mode(dev);
8440 netif_addr_unlock_bh(dev);
8441 }
8442
8443 /**
8444 * dev_get_flags - get flags reported to userspace
8445 * @dev: device
8446 *
8447 * Get the combination of flag bits exported through APIs to userspace.
8448 */
dev_get_flags(const struct net_device * dev)8449 unsigned int dev_get_flags(const struct net_device *dev)
8450 {
8451 unsigned int flags;
8452
8453 flags = (dev->flags & ~(IFF_PROMISC |
8454 IFF_ALLMULTI |
8455 IFF_RUNNING |
8456 IFF_LOWER_UP |
8457 IFF_DORMANT)) |
8458 (dev->gflags & (IFF_PROMISC |
8459 IFF_ALLMULTI));
8460
8461 if (netif_running(dev)) {
8462 if (netif_oper_up(dev))
8463 flags |= IFF_RUNNING;
8464 if (netif_carrier_ok(dev))
8465 flags |= IFF_LOWER_UP;
8466 if (netif_dormant(dev))
8467 flags |= IFF_DORMANT;
8468 }
8469
8470 return flags;
8471 }
8472 EXPORT_SYMBOL(dev_get_flags);
8473
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8474 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8475 struct netlink_ext_ack *extack)
8476 {
8477 unsigned int old_flags = dev->flags;
8478 int ret;
8479
8480 ASSERT_RTNL();
8481
8482 /*
8483 * Set the flags on our device.
8484 */
8485
8486 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8487 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8488 IFF_AUTOMEDIA)) |
8489 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8490 IFF_ALLMULTI));
8491
8492 /*
8493 * Load in the correct multicast list now the flags have changed.
8494 */
8495
8496 if ((old_flags ^ flags) & IFF_MULTICAST)
8497 dev_change_rx_flags(dev, IFF_MULTICAST);
8498
8499 dev_set_rx_mode(dev);
8500
8501 /*
8502 * Have we downed the interface. We handle IFF_UP ourselves
8503 * according to user attempts to set it, rather than blindly
8504 * setting it.
8505 */
8506
8507 ret = 0;
8508 if ((old_flags ^ flags) & IFF_UP) {
8509 if (old_flags & IFF_UP)
8510 __dev_close(dev);
8511 else
8512 ret = __dev_open(dev, extack);
8513 }
8514
8515 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8516 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8517 unsigned int old_flags = dev->flags;
8518
8519 dev->gflags ^= IFF_PROMISC;
8520
8521 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8522 if (dev->flags != old_flags)
8523 dev_set_rx_mode(dev);
8524 }
8525
8526 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8527 * is important. Some (broken) drivers set IFF_PROMISC, when
8528 * IFF_ALLMULTI is requested not asking us and not reporting.
8529 */
8530 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8531 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8532
8533 dev->gflags ^= IFF_ALLMULTI;
8534 __dev_set_allmulti(dev, inc, false);
8535 }
8536
8537 return ret;
8538 }
8539
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8540 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8541 unsigned int gchanges)
8542 {
8543 unsigned int changes = dev->flags ^ old_flags;
8544
8545 if (gchanges)
8546 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8547
8548 if (changes & IFF_UP) {
8549 if (dev->flags & IFF_UP)
8550 call_netdevice_notifiers(NETDEV_UP, dev);
8551 else
8552 call_netdevice_notifiers(NETDEV_DOWN, dev);
8553 }
8554
8555 if (dev->flags & IFF_UP &&
8556 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8557 struct netdev_notifier_change_info change_info = {
8558 .info = {
8559 .dev = dev,
8560 },
8561 .flags_changed = changes,
8562 };
8563
8564 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8565 }
8566 }
8567
8568 /**
8569 * dev_change_flags - change device settings
8570 * @dev: device
8571 * @flags: device state flags
8572 * @extack: netlink extended ack
8573 *
8574 * Change settings on device based state flags. The flags are
8575 * in the userspace exported format.
8576 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8577 int dev_change_flags(struct net_device *dev, unsigned int flags,
8578 struct netlink_ext_ack *extack)
8579 {
8580 int ret;
8581 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8582
8583 ret = __dev_change_flags(dev, flags, extack);
8584 if (ret < 0)
8585 return ret;
8586
8587 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8588 __dev_notify_flags(dev, old_flags, changes);
8589 return ret;
8590 }
8591 EXPORT_SYMBOL(dev_change_flags);
8592
__dev_set_mtu(struct net_device * dev,int new_mtu)8593 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8594 {
8595 const struct net_device_ops *ops = dev->netdev_ops;
8596
8597 if (ops->ndo_change_mtu)
8598 return ops->ndo_change_mtu(dev, new_mtu);
8599
8600 /* Pairs with all the lockless reads of dev->mtu in the stack */
8601 WRITE_ONCE(dev->mtu, new_mtu);
8602 return 0;
8603 }
8604 EXPORT_SYMBOL(__dev_set_mtu);
8605
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8606 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8607 struct netlink_ext_ack *extack)
8608 {
8609 /* MTU must be positive, and in range */
8610 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8611 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8612 return -EINVAL;
8613 }
8614
8615 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8616 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8617 return -EINVAL;
8618 }
8619 return 0;
8620 }
8621
8622 /**
8623 * dev_set_mtu_ext - Change maximum transfer unit
8624 * @dev: device
8625 * @new_mtu: new transfer unit
8626 * @extack: netlink extended ack
8627 *
8628 * Change the maximum transfer size of the network device.
8629 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8630 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8631 struct netlink_ext_ack *extack)
8632 {
8633 int err, orig_mtu;
8634
8635 if (new_mtu == dev->mtu)
8636 return 0;
8637
8638 err = dev_validate_mtu(dev, new_mtu, extack);
8639 if (err)
8640 return err;
8641
8642 if (!netif_device_present(dev))
8643 return -ENODEV;
8644
8645 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8646 err = notifier_to_errno(err);
8647 if (err)
8648 return err;
8649
8650 orig_mtu = dev->mtu;
8651 err = __dev_set_mtu(dev, new_mtu);
8652
8653 if (!err) {
8654 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8655 orig_mtu);
8656 err = notifier_to_errno(err);
8657 if (err) {
8658 /* setting mtu back and notifying everyone again,
8659 * so that they have a chance to revert changes.
8660 */
8661 __dev_set_mtu(dev, orig_mtu);
8662 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8663 new_mtu);
8664 }
8665 }
8666 return err;
8667 }
8668
dev_set_mtu(struct net_device * dev,int new_mtu)8669 int dev_set_mtu(struct net_device *dev, int new_mtu)
8670 {
8671 struct netlink_ext_ack extack;
8672 int err;
8673
8674 memset(&extack, 0, sizeof(extack));
8675 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8676 if (err && extack._msg)
8677 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8678 return err;
8679 }
8680 EXPORT_SYMBOL(dev_set_mtu);
8681
8682 /**
8683 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8684 * @dev: device
8685 * @new_len: new tx queue length
8686 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8687 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8688 {
8689 unsigned int orig_len = dev->tx_queue_len;
8690 int res;
8691
8692 if (new_len != (unsigned int)new_len)
8693 return -ERANGE;
8694
8695 if (new_len != orig_len) {
8696 dev->tx_queue_len = new_len;
8697 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8698 res = notifier_to_errno(res);
8699 if (res)
8700 goto err_rollback;
8701 res = dev_qdisc_change_tx_queue_len(dev);
8702 if (res)
8703 goto err_rollback;
8704 }
8705
8706 return 0;
8707
8708 err_rollback:
8709 netdev_err(dev, "refused to change device tx_queue_len\n");
8710 dev->tx_queue_len = orig_len;
8711 return res;
8712 }
8713
8714 /**
8715 * dev_set_group - Change group this device belongs to
8716 * @dev: device
8717 * @new_group: group this device should belong to
8718 */
dev_set_group(struct net_device * dev,int new_group)8719 void dev_set_group(struct net_device *dev, int new_group)
8720 {
8721 dev->group = new_group;
8722 }
8723 EXPORT_SYMBOL(dev_set_group);
8724
8725 /**
8726 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8727 * @dev: device
8728 * @addr: new address
8729 * @extack: netlink extended ack
8730 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8731 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8732 struct netlink_ext_ack *extack)
8733 {
8734 struct netdev_notifier_pre_changeaddr_info info = {
8735 .info.dev = dev,
8736 .info.extack = extack,
8737 .dev_addr = addr,
8738 };
8739 int rc;
8740
8741 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8742 return notifier_to_errno(rc);
8743 }
8744 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8745
8746 /**
8747 * dev_set_mac_address - Change Media Access Control Address
8748 * @dev: device
8749 * @sa: new address
8750 * @extack: netlink extended ack
8751 *
8752 * Change the hardware (MAC) address of the device
8753 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8754 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8755 struct netlink_ext_ack *extack)
8756 {
8757 const struct net_device_ops *ops = dev->netdev_ops;
8758 int err;
8759
8760 if (!ops->ndo_set_mac_address)
8761 return -EOPNOTSUPP;
8762 if (sa->sa_family != dev->type)
8763 return -EINVAL;
8764 if (!netif_device_present(dev))
8765 return -ENODEV;
8766 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8767 if (err)
8768 return err;
8769 err = ops->ndo_set_mac_address(dev, sa);
8770 if (err)
8771 return err;
8772 dev->addr_assign_type = NET_ADDR_SET;
8773 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8774 add_device_randomness(dev->dev_addr, dev->addr_len);
8775 return 0;
8776 }
8777 EXPORT_SYMBOL(dev_set_mac_address);
8778
8779 static DECLARE_RWSEM(dev_addr_sem);
8780
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8781 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8782 struct netlink_ext_ack *extack)
8783 {
8784 int ret;
8785
8786 down_write(&dev_addr_sem);
8787 ret = dev_set_mac_address(dev, sa, extack);
8788 up_write(&dev_addr_sem);
8789 return ret;
8790 }
8791 EXPORT_SYMBOL(dev_set_mac_address_user);
8792
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8793 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8794 {
8795 size_t size = sizeof(sa->sa_data);
8796 struct net_device *dev;
8797 int ret = 0;
8798
8799 down_read(&dev_addr_sem);
8800 rcu_read_lock();
8801
8802 dev = dev_get_by_name_rcu(net, dev_name);
8803 if (!dev) {
8804 ret = -ENODEV;
8805 goto unlock;
8806 }
8807 if (!dev->addr_len)
8808 memset(sa->sa_data, 0, size);
8809 else
8810 memcpy(sa->sa_data, dev->dev_addr,
8811 min_t(size_t, size, dev->addr_len));
8812 sa->sa_family = dev->type;
8813
8814 unlock:
8815 rcu_read_unlock();
8816 up_read(&dev_addr_sem);
8817 return ret;
8818 }
8819 EXPORT_SYMBOL(dev_get_mac_address);
8820
8821 /**
8822 * dev_change_carrier - Change device carrier
8823 * @dev: device
8824 * @new_carrier: new value
8825 *
8826 * Change device carrier
8827 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8828 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8829 {
8830 const struct net_device_ops *ops = dev->netdev_ops;
8831
8832 if (!ops->ndo_change_carrier)
8833 return -EOPNOTSUPP;
8834 if (!netif_device_present(dev))
8835 return -ENODEV;
8836 return ops->ndo_change_carrier(dev, new_carrier);
8837 }
8838 EXPORT_SYMBOL(dev_change_carrier);
8839
8840 /**
8841 * dev_get_phys_port_id - Get device physical port ID
8842 * @dev: device
8843 * @ppid: port ID
8844 *
8845 * Get device physical port ID
8846 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8847 int dev_get_phys_port_id(struct net_device *dev,
8848 struct netdev_phys_item_id *ppid)
8849 {
8850 const struct net_device_ops *ops = dev->netdev_ops;
8851
8852 if (!ops->ndo_get_phys_port_id)
8853 return -EOPNOTSUPP;
8854 return ops->ndo_get_phys_port_id(dev, ppid);
8855 }
8856 EXPORT_SYMBOL(dev_get_phys_port_id);
8857
8858 /**
8859 * dev_get_phys_port_name - Get device physical port name
8860 * @dev: device
8861 * @name: port name
8862 * @len: limit of bytes to copy to name
8863 *
8864 * Get device physical port name
8865 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8866 int dev_get_phys_port_name(struct net_device *dev,
8867 char *name, size_t len)
8868 {
8869 const struct net_device_ops *ops = dev->netdev_ops;
8870 int err;
8871
8872 if (ops->ndo_get_phys_port_name) {
8873 err = ops->ndo_get_phys_port_name(dev, name, len);
8874 if (err != -EOPNOTSUPP)
8875 return err;
8876 }
8877 return devlink_compat_phys_port_name_get(dev, name, len);
8878 }
8879 EXPORT_SYMBOL(dev_get_phys_port_name);
8880
8881 /**
8882 * dev_get_port_parent_id - Get the device's port parent identifier
8883 * @dev: network device
8884 * @ppid: pointer to a storage for the port's parent identifier
8885 * @recurse: allow/disallow recursion to lower devices
8886 *
8887 * Get the devices's port parent identifier
8888 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8889 int dev_get_port_parent_id(struct net_device *dev,
8890 struct netdev_phys_item_id *ppid,
8891 bool recurse)
8892 {
8893 const struct net_device_ops *ops = dev->netdev_ops;
8894 struct netdev_phys_item_id first = { };
8895 struct net_device *lower_dev;
8896 struct list_head *iter;
8897 int err;
8898
8899 if (ops->ndo_get_port_parent_id) {
8900 err = ops->ndo_get_port_parent_id(dev, ppid);
8901 if (err != -EOPNOTSUPP)
8902 return err;
8903 }
8904
8905 err = devlink_compat_switch_id_get(dev, ppid);
8906 if (!err || err != -EOPNOTSUPP)
8907 return err;
8908
8909 if (!recurse)
8910 return -EOPNOTSUPP;
8911
8912 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8913 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8914 if (err)
8915 break;
8916 if (!first.id_len)
8917 first = *ppid;
8918 else if (memcmp(&first, ppid, sizeof(*ppid)))
8919 return -EOPNOTSUPP;
8920 }
8921
8922 return err;
8923 }
8924 EXPORT_SYMBOL(dev_get_port_parent_id);
8925
8926 /**
8927 * netdev_port_same_parent_id - Indicate if two network devices have
8928 * the same port parent identifier
8929 * @a: first network device
8930 * @b: second network device
8931 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8932 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8933 {
8934 struct netdev_phys_item_id a_id = { };
8935 struct netdev_phys_item_id b_id = { };
8936
8937 if (dev_get_port_parent_id(a, &a_id, true) ||
8938 dev_get_port_parent_id(b, &b_id, true))
8939 return false;
8940
8941 return netdev_phys_item_id_same(&a_id, &b_id);
8942 }
8943 EXPORT_SYMBOL(netdev_port_same_parent_id);
8944
8945 /**
8946 * dev_change_proto_down - update protocol port state information
8947 * @dev: device
8948 * @proto_down: new value
8949 *
8950 * This info can be used by switch drivers to set the phys state of the
8951 * port.
8952 */
dev_change_proto_down(struct net_device * dev,bool proto_down)8953 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8954 {
8955 const struct net_device_ops *ops = dev->netdev_ops;
8956
8957 if (!ops->ndo_change_proto_down)
8958 return -EOPNOTSUPP;
8959 if (!netif_device_present(dev))
8960 return -ENODEV;
8961 return ops->ndo_change_proto_down(dev, proto_down);
8962 }
8963 EXPORT_SYMBOL(dev_change_proto_down);
8964
8965 /**
8966 * dev_change_proto_down_generic - generic implementation for
8967 * ndo_change_proto_down that sets carrier according to
8968 * proto_down.
8969 *
8970 * @dev: device
8971 * @proto_down: new value
8972 */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8973 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8974 {
8975 if (proto_down)
8976 netif_carrier_off(dev);
8977 else
8978 netif_carrier_on(dev);
8979 dev->proto_down = proto_down;
8980 return 0;
8981 }
8982 EXPORT_SYMBOL(dev_change_proto_down_generic);
8983
8984 /**
8985 * dev_change_proto_down_reason - proto down reason
8986 *
8987 * @dev: device
8988 * @mask: proto down mask
8989 * @value: proto down value
8990 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8991 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8992 u32 value)
8993 {
8994 int b;
8995
8996 if (!mask) {
8997 dev->proto_down_reason = value;
8998 } else {
8999 for_each_set_bit(b, &mask, 32) {
9000 if (value & (1 << b))
9001 dev->proto_down_reason |= BIT(b);
9002 else
9003 dev->proto_down_reason &= ~BIT(b);
9004 }
9005 }
9006 }
9007 EXPORT_SYMBOL(dev_change_proto_down_reason);
9008
9009 struct bpf_xdp_link {
9010 struct bpf_link link;
9011 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9012 int flags;
9013 };
9014
dev_xdp_mode(struct net_device * dev,u32 flags)9015 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9016 {
9017 if (flags & XDP_FLAGS_HW_MODE)
9018 return XDP_MODE_HW;
9019 if (flags & XDP_FLAGS_DRV_MODE)
9020 return XDP_MODE_DRV;
9021 if (flags & XDP_FLAGS_SKB_MODE)
9022 return XDP_MODE_SKB;
9023 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9024 }
9025
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9026 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9027 {
9028 switch (mode) {
9029 case XDP_MODE_SKB:
9030 return generic_xdp_install;
9031 case XDP_MODE_DRV:
9032 case XDP_MODE_HW:
9033 return dev->netdev_ops->ndo_bpf;
9034 default:
9035 return NULL;
9036 };
9037 }
9038
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9039 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9040 enum bpf_xdp_mode mode)
9041 {
9042 return dev->xdp_state[mode].link;
9043 }
9044
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9045 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9046 enum bpf_xdp_mode mode)
9047 {
9048 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9049
9050 if (link)
9051 return link->link.prog;
9052 return dev->xdp_state[mode].prog;
9053 }
9054
dev_xdp_prog_count(struct net_device * dev)9055 static u8 dev_xdp_prog_count(struct net_device *dev)
9056 {
9057 u8 count = 0;
9058 int i;
9059
9060 for (i = 0; i < __MAX_XDP_MODE; i++)
9061 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9062 count++;
9063 return count;
9064 }
9065
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9066 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9067 {
9068 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9069
9070 return prog ? prog->aux->id : 0;
9071 }
9072
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9073 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9074 struct bpf_xdp_link *link)
9075 {
9076 dev->xdp_state[mode].link = link;
9077 dev->xdp_state[mode].prog = NULL;
9078 }
9079
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9080 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9081 struct bpf_prog *prog)
9082 {
9083 dev->xdp_state[mode].link = NULL;
9084 dev->xdp_state[mode].prog = prog;
9085 }
9086
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9087 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9088 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9089 u32 flags, struct bpf_prog *prog)
9090 {
9091 struct netdev_bpf xdp;
9092 int err;
9093
9094 memset(&xdp, 0, sizeof(xdp));
9095 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9096 xdp.extack = extack;
9097 xdp.flags = flags;
9098 xdp.prog = prog;
9099
9100 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9101 * "moved" into driver), so they don't increment it on their own, but
9102 * they do decrement refcnt when program is detached or replaced.
9103 * Given net_device also owns link/prog, we need to bump refcnt here
9104 * to prevent drivers from underflowing it.
9105 */
9106 if (prog)
9107 bpf_prog_inc(prog);
9108 err = bpf_op(dev, &xdp);
9109 if (err) {
9110 if (prog)
9111 bpf_prog_put(prog);
9112 return err;
9113 }
9114
9115 if (mode != XDP_MODE_HW)
9116 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9117
9118 return 0;
9119 }
9120
dev_xdp_uninstall(struct net_device * dev)9121 static void dev_xdp_uninstall(struct net_device *dev)
9122 {
9123 struct bpf_xdp_link *link;
9124 struct bpf_prog *prog;
9125 enum bpf_xdp_mode mode;
9126 bpf_op_t bpf_op;
9127
9128 ASSERT_RTNL();
9129
9130 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9131 prog = dev_xdp_prog(dev, mode);
9132 if (!prog)
9133 continue;
9134
9135 bpf_op = dev_xdp_bpf_op(dev, mode);
9136 if (!bpf_op)
9137 continue;
9138
9139 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9140
9141 /* auto-detach link from net device */
9142 link = dev_xdp_link(dev, mode);
9143 if (link)
9144 link->dev = NULL;
9145 else
9146 bpf_prog_put(prog);
9147
9148 dev_xdp_set_link(dev, mode, NULL);
9149 }
9150 }
9151
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9152 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9153 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9154 struct bpf_prog *old_prog, u32 flags)
9155 {
9156 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9157 struct bpf_prog *cur_prog;
9158 enum bpf_xdp_mode mode;
9159 bpf_op_t bpf_op;
9160 int err;
9161
9162 ASSERT_RTNL();
9163
9164 /* either link or prog attachment, never both */
9165 if (link && (new_prog || old_prog))
9166 return -EINVAL;
9167 /* link supports only XDP mode flags */
9168 if (link && (flags & ~XDP_FLAGS_MODES)) {
9169 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9170 return -EINVAL;
9171 }
9172 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9173 if (num_modes > 1) {
9174 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9175 return -EINVAL;
9176 }
9177 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9178 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9179 NL_SET_ERR_MSG(extack,
9180 "More than one program loaded, unset mode is ambiguous");
9181 return -EINVAL;
9182 }
9183 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9184 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9185 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9186 return -EINVAL;
9187 }
9188
9189 mode = dev_xdp_mode(dev, flags);
9190 /* can't replace attached link */
9191 if (dev_xdp_link(dev, mode)) {
9192 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9193 return -EBUSY;
9194 }
9195
9196 cur_prog = dev_xdp_prog(dev, mode);
9197 /* can't replace attached prog with link */
9198 if (link && cur_prog) {
9199 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9200 return -EBUSY;
9201 }
9202 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9203 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9204 return -EEXIST;
9205 }
9206
9207 /* put effective new program into new_prog */
9208 if (link)
9209 new_prog = link->link.prog;
9210
9211 if (new_prog) {
9212 bool offload = mode == XDP_MODE_HW;
9213 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9214 ? XDP_MODE_DRV : XDP_MODE_SKB;
9215
9216 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9217 NL_SET_ERR_MSG(extack, "XDP program already attached");
9218 return -EBUSY;
9219 }
9220 if (!offload && dev_xdp_prog(dev, other_mode)) {
9221 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9222 return -EEXIST;
9223 }
9224 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9225 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9226 return -EINVAL;
9227 }
9228 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9229 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9230 return -EINVAL;
9231 }
9232 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9233 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9234 return -EINVAL;
9235 }
9236 }
9237
9238 /* don't call drivers if the effective program didn't change */
9239 if (new_prog != cur_prog) {
9240 bpf_op = dev_xdp_bpf_op(dev, mode);
9241 if (!bpf_op) {
9242 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9243 return -EOPNOTSUPP;
9244 }
9245
9246 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9247 if (err)
9248 return err;
9249 }
9250
9251 if (link)
9252 dev_xdp_set_link(dev, mode, link);
9253 else
9254 dev_xdp_set_prog(dev, mode, new_prog);
9255 if (cur_prog)
9256 bpf_prog_put(cur_prog);
9257
9258 return 0;
9259 }
9260
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9261 static int dev_xdp_attach_link(struct net_device *dev,
9262 struct netlink_ext_ack *extack,
9263 struct bpf_xdp_link *link)
9264 {
9265 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9266 }
9267
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9268 static int dev_xdp_detach_link(struct net_device *dev,
9269 struct netlink_ext_ack *extack,
9270 struct bpf_xdp_link *link)
9271 {
9272 enum bpf_xdp_mode mode;
9273 bpf_op_t bpf_op;
9274
9275 ASSERT_RTNL();
9276
9277 mode = dev_xdp_mode(dev, link->flags);
9278 if (dev_xdp_link(dev, mode) != link)
9279 return -EINVAL;
9280
9281 bpf_op = dev_xdp_bpf_op(dev, mode);
9282 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9283 dev_xdp_set_link(dev, mode, NULL);
9284 return 0;
9285 }
9286
bpf_xdp_link_release(struct bpf_link * link)9287 static void bpf_xdp_link_release(struct bpf_link *link)
9288 {
9289 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9290
9291 rtnl_lock();
9292
9293 /* if racing with net_device's tear down, xdp_link->dev might be
9294 * already NULL, in which case link was already auto-detached
9295 */
9296 if (xdp_link->dev) {
9297 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9298 xdp_link->dev = NULL;
9299 }
9300
9301 rtnl_unlock();
9302 }
9303
bpf_xdp_link_detach(struct bpf_link * link)9304 static int bpf_xdp_link_detach(struct bpf_link *link)
9305 {
9306 bpf_xdp_link_release(link);
9307 return 0;
9308 }
9309
bpf_xdp_link_dealloc(struct bpf_link * link)9310 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9311 {
9312 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9313
9314 kfree(xdp_link);
9315 }
9316
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9317 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9318 struct seq_file *seq)
9319 {
9320 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9321 u32 ifindex = 0;
9322
9323 rtnl_lock();
9324 if (xdp_link->dev)
9325 ifindex = xdp_link->dev->ifindex;
9326 rtnl_unlock();
9327
9328 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9329 }
9330
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9331 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9332 struct bpf_link_info *info)
9333 {
9334 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9335 u32 ifindex = 0;
9336
9337 rtnl_lock();
9338 if (xdp_link->dev)
9339 ifindex = xdp_link->dev->ifindex;
9340 rtnl_unlock();
9341
9342 info->xdp.ifindex = ifindex;
9343 return 0;
9344 }
9345
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9346 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9347 struct bpf_prog *old_prog)
9348 {
9349 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9350 enum bpf_xdp_mode mode;
9351 bpf_op_t bpf_op;
9352 int err = 0;
9353
9354 rtnl_lock();
9355
9356 /* link might have been auto-released already, so fail */
9357 if (!xdp_link->dev) {
9358 err = -ENOLINK;
9359 goto out_unlock;
9360 }
9361
9362 if (old_prog && link->prog != old_prog) {
9363 err = -EPERM;
9364 goto out_unlock;
9365 }
9366 old_prog = link->prog;
9367 if (old_prog->type != new_prog->type ||
9368 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9369 err = -EINVAL;
9370 goto out_unlock;
9371 }
9372
9373 if (old_prog == new_prog) {
9374 /* no-op, don't disturb drivers */
9375 bpf_prog_put(new_prog);
9376 goto out_unlock;
9377 }
9378
9379 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9380 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9381 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9382 xdp_link->flags, new_prog);
9383 if (err)
9384 goto out_unlock;
9385
9386 old_prog = xchg(&link->prog, new_prog);
9387 bpf_prog_put(old_prog);
9388
9389 out_unlock:
9390 rtnl_unlock();
9391 return err;
9392 }
9393
9394 static const struct bpf_link_ops bpf_xdp_link_lops = {
9395 .release = bpf_xdp_link_release,
9396 .dealloc = bpf_xdp_link_dealloc,
9397 .detach = bpf_xdp_link_detach,
9398 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9399 .fill_link_info = bpf_xdp_link_fill_link_info,
9400 .update_prog = bpf_xdp_link_update,
9401 };
9402
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9403 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9404 {
9405 struct net *net = current->nsproxy->net_ns;
9406 struct bpf_link_primer link_primer;
9407 struct bpf_xdp_link *link;
9408 struct net_device *dev;
9409 int err, fd;
9410
9411 rtnl_lock();
9412 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9413 if (!dev) {
9414 rtnl_unlock();
9415 return -EINVAL;
9416 }
9417
9418 link = kzalloc(sizeof(*link), GFP_USER);
9419 if (!link) {
9420 err = -ENOMEM;
9421 goto unlock;
9422 }
9423
9424 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9425 link->dev = dev;
9426 link->flags = attr->link_create.flags;
9427
9428 err = bpf_link_prime(&link->link, &link_primer);
9429 if (err) {
9430 kfree(link);
9431 goto unlock;
9432 }
9433
9434 err = dev_xdp_attach_link(dev, NULL, link);
9435 rtnl_unlock();
9436
9437 if (err) {
9438 link->dev = NULL;
9439 bpf_link_cleanup(&link_primer);
9440 goto out_put_dev;
9441 }
9442
9443 fd = bpf_link_settle(&link_primer);
9444 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9445 dev_put(dev);
9446 return fd;
9447
9448 unlock:
9449 rtnl_unlock();
9450
9451 out_put_dev:
9452 dev_put(dev);
9453 return err;
9454 }
9455
9456 /**
9457 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9458 * @dev: device
9459 * @extack: netlink extended ack
9460 * @fd: new program fd or negative value to clear
9461 * @expected_fd: old program fd that userspace expects to replace or clear
9462 * @flags: xdp-related flags
9463 *
9464 * Set or clear a bpf program for a device
9465 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9466 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9467 int fd, int expected_fd, u32 flags)
9468 {
9469 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9470 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9471 int err;
9472
9473 ASSERT_RTNL();
9474
9475 if (fd >= 0) {
9476 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9477 mode != XDP_MODE_SKB);
9478 if (IS_ERR(new_prog))
9479 return PTR_ERR(new_prog);
9480 }
9481
9482 if (expected_fd >= 0) {
9483 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9484 mode != XDP_MODE_SKB);
9485 if (IS_ERR(old_prog)) {
9486 err = PTR_ERR(old_prog);
9487 old_prog = NULL;
9488 goto err_out;
9489 }
9490 }
9491
9492 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9493
9494 err_out:
9495 if (err && new_prog)
9496 bpf_prog_put(new_prog);
9497 if (old_prog)
9498 bpf_prog_put(old_prog);
9499 return err;
9500 }
9501
9502 /**
9503 * dev_new_index - allocate an ifindex
9504 * @net: the applicable net namespace
9505 *
9506 * Returns a suitable unique value for a new device interface
9507 * number. The caller must hold the rtnl semaphore or the
9508 * dev_base_lock to be sure it remains unique.
9509 */
dev_new_index(struct net * net)9510 static int dev_new_index(struct net *net)
9511 {
9512 int ifindex = net->ifindex;
9513
9514 for (;;) {
9515 if (++ifindex <= 0)
9516 ifindex = 1;
9517 if (!__dev_get_by_index(net, ifindex))
9518 return net->ifindex = ifindex;
9519 }
9520 }
9521
9522 /* Delayed registration/unregisteration */
9523 static LIST_HEAD(net_todo_list);
9524 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9525
net_set_todo(struct net_device * dev)9526 static void net_set_todo(struct net_device *dev)
9527 {
9528 list_add_tail(&dev->todo_list, &net_todo_list);
9529 dev_net(dev)->dev_unreg_count++;
9530 }
9531
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9532 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9533 struct net_device *upper, netdev_features_t features)
9534 {
9535 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9536 netdev_features_t feature;
9537 int feature_bit;
9538
9539 for_each_netdev_feature(upper_disables, feature_bit) {
9540 feature = __NETIF_F_BIT(feature_bit);
9541 if (!(upper->wanted_features & feature)
9542 && (features & feature)) {
9543 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9544 &feature, upper->name);
9545 features &= ~feature;
9546 }
9547 }
9548
9549 return features;
9550 }
9551
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9552 static void netdev_sync_lower_features(struct net_device *upper,
9553 struct net_device *lower, netdev_features_t features)
9554 {
9555 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9556 netdev_features_t feature;
9557 int feature_bit;
9558
9559 for_each_netdev_feature(upper_disables, feature_bit) {
9560 feature = __NETIF_F_BIT(feature_bit);
9561 if (!(features & feature) && (lower->features & feature)) {
9562 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9563 &feature, lower->name);
9564 lower->wanted_features &= ~feature;
9565 __netdev_update_features(lower);
9566
9567 if (unlikely(lower->features & feature))
9568 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9569 &feature, lower->name);
9570 else
9571 netdev_features_change(lower);
9572 }
9573 }
9574 }
9575
netdev_fix_features(struct net_device * dev,netdev_features_t features)9576 static netdev_features_t netdev_fix_features(struct net_device *dev,
9577 netdev_features_t features)
9578 {
9579 /* Fix illegal checksum combinations */
9580 if ((features & NETIF_F_HW_CSUM) &&
9581 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9582 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9583 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9584 }
9585
9586 /* TSO requires that SG is present as well. */
9587 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9588 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9589 features &= ~NETIF_F_ALL_TSO;
9590 }
9591
9592 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9593 !(features & NETIF_F_IP_CSUM)) {
9594 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9595 features &= ~NETIF_F_TSO;
9596 features &= ~NETIF_F_TSO_ECN;
9597 }
9598
9599 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9600 !(features & NETIF_F_IPV6_CSUM)) {
9601 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9602 features &= ~NETIF_F_TSO6;
9603 }
9604
9605 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9606 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9607 features &= ~NETIF_F_TSO_MANGLEID;
9608
9609 /* TSO ECN requires that TSO is present as well. */
9610 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9611 features &= ~NETIF_F_TSO_ECN;
9612
9613 /* Software GSO depends on SG. */
9614 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9615 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9616 features &= ~NETIF_F_GSO;
9617 }
9618
9619 /* GSO partial features require GSO partial be set */
9620 if ((features & dev->gso_partial_features) &&
9621 !(features & NETIF_F_GSO_PARTIAL)) {
9622 netdev_dbg(dev,
9623 "Dropping partially supported GSO features since no GSO partial.\n");
9624 features &= ~dev->gso_partial_features;
9625 }
9626
9627 if (!(features & NETIF_F_RXCSUM)) {
9628 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9629 * successfully merged by hardware must also have the
9630 * checksum verified by hardware. If the user does not
9631 * want to enable RXCSUM, logically, we should disable GRO_HW.
9632 */
9633 if (features & NETIF_F_GRO_HW) {
9634 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9635 features &= ~NETIF_F_GRO_HW;
9636 }
9637 }
9638
9639 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9640 if (features & NETIF_F_RXFCS) {
9641 if (features & NETIF_F_LRO) {
9642 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9643 features &= ~NETIF_F_LRO;
9644 }
9645
9646 if (features & NETIF_F_GRO_HW) {
9647 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9648 features &= ~NETIF_F_GRO_HW;
9649 }
9650 }
9651
9652 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9653 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9654 features &= ~NETIF_F_HW_TLS_RX;
9655 }
9656
9657 return features;
9658 }
9659
__netdev_update_features(struct net_device * dev)9660 int __netdev_update_features(struct net_device *dev)
9661 {
9662 struct net_device *upper, *lower;
9663 netdev_features_t features;
9664 struct list_head *iter;
9665 int err = -1;
9666
9667 ASSERT_RTNL();
9668
9669 features = netdev_get_wanted_features(dev);
9670
9671 if (dev->netdev_ops->ndo_fix_features)
9672 features = dev->netdev_ops->ndo_fix_features(dev, features);
9673
9674 /* driver might be less strict about feature dependencies */
9675 features = netdev_fix_features(dev, features);
9676
9677 /* some features can't be enabled if they're off on an upper device */
9678 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9679 features = netdev_sync_upper_features(dev, upper, features);
9680
9681 if (dev->features == features)
9682 goto sync_lower;
9683
9684 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9685 &dev->features, &features);
9686
9687 if (dev->netdev_ops->ndo_set_features)
9688 err = dev->netdev_ops->ndo_set_features(dev, features);
9689 else
9690 err = 0;
9691
9692 if (unlikely(err < 0)) {
9693 netdev_err(dev,
9694 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9695 err, &features, &dev->features);
9696 /* return non-0 since some features might have changed and
9697 * it's better to fire a spurious notification than miss it
9698 */
9699 return -1;
9700 }
9701
9702 sync_lower:
9703 /* some features must be disabled on lower devices when disabled
9704 * on an upper device (think: bonding master or bridge)
9705 */
9706 netdev_for_each_lower_dev(dev, lower, iter)
9707 netdev_sync_lower_features(dev, lower, features);
9708
9709 if (!err) {
9710 netdev_features_t diff = features ^ dev->features;
9711
9712 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9713 /* udp_tunnel_{get,drop}_rx_info both need
9714 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9715 * device, or they won't do anything.
9716 * Thus we need to update dev->features
9717 * *before* calling udp_tunnel_get_rx_info,
9718 * but *after* calling udp_tunnel_drop_rx_info.
9719 */
9720 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9721 dev->features = features;
9722 udp_tunnel_get_rx_info(dev);
9723 } else {
9724 udp_tunnel_drop_rx_info(dev);
9725 }
9726 }
9727
9728 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9729 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9730 dev->features = features;
9731 err |= vlan_get_rx_ctag_filter_info(dev);
9732 } else {
9733 vlan_drop_rx_ctag_filter_info(dev);
9734 }
9735 }
9736
9737 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9738 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9739 dev->features = features;
9740 err |= vlan_get_rx_stag_filter_info(dev);
9741 } else {
9742 vlan_drop_rx_stag_filter_info(dev);
9743 }
9744 }
9745
9746 dev->features = features;
9747 }
9748
9749 return err < 0 ? 0 : 1;
9750 }
9751
9752 /**
9753 * netdev_update_features - recalculate device features
9754 * @dev: the device to check
9755 *
9756 * Recalculate dev->features set and send notifications if it
9757 * has changed. Should be called after driver or hardware dependent
9758 * conditions might have changed that influence the features.
9759 */
netdev_update_features(struct net_device * dev)9760 void netdev_update_features(struct net_device *dev)
9761 {
9762 if (__netdev_update_features(dev))
9763 netdev_features_change(dev);
9764 }
9765 EXPORT_SYMBOL(netdev_update_features);
9766
9767 /**
9768 * netdev_change_features - recalculate device features
9769 * @dev: the device to check
9770 *
9771 * Recalculate dev->features set and send notifications even
9772 * if they have not changed. Should be called instead of
9773 * netdev_update_features() if also dev->vlan_features might
9774 * have changed to allow the changes to be propagated to stacked
9775 * VLAN devices.
9776 */
netdev_change_features(struct net_device * dev)9777 void netdev_change_features(struct net_device *dev)
9778 {
9779 __netdev_update_features(dev);
9780 netdev_features_change(dev);
9781 }
9782 EXPORT_SYMBOL(netdev_change_features);
9783
9784 /**
9785 * netif_stacked_transfer_operstate - transfer operstate
9786 * @rootdev: the root or lower level device to transfer state from
9787 * @dev: the device to transfer operstate to
9788 *
9789 * Transfer operational state from root to device. This is normally
9790 * called when a stacking relationship exists between the root
9791 * device and the device(a leaf device).
9792 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9793 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9794 struct net_device *dev)
9795 {
9796 if (rootdev->operstate == IF_OPER_DORMANT)
9797 netif_dormant_on(dev);
9798 else
9799 netif_dormant_off(dev);
9800
9801 if (rootdev->operstate == IF_OPER_TESTING)
9802 netif_testing_on(dev);
9803 else
9804 netif_testing_off(dev);
9805
9806 if (netif_carrier_ok(rootdev))
9807 netif_carrier_on(dev);
9808 else
9809 netif_carrier_off(dev);
9810 }
9811 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9812
netif_alloc_rx_queues(struct net_device * dev)9813 static int netif_alloc_rx_queues(struct net_device *dev)
9814 {
9815 unsigned int i, count = dev->num_rx_queues;
9816 struct netdev_rx_queue *rx;
9817 size_t sz = count * sizeof(*rx);
9818 int err = 0;
9819
9820 BUG_ON(count < 1);
9821
9822 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9823 if (!rx)
9824 return -ENOMEM;
9825
9826 dev->_rx = rx;
9827
9828 for (i = 0; i < count; i++) {
9829 rx[i].dev = dev;
9830
9831 /* XDP RX-queue setup */
9832 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9833 if (err < 0)
9834 goto err_rxq_info;
9835 }
9836 return 0;
9837
9838 err_rxq_info:
9839 /* Rollback successful reg's and free other resources */
9840 while (i--)
9841 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9842 kvfree(dev->_rx);
9843 dev->_rx = NULL;
9844 return err;
9845 }
9846
netif_free_rx_queues(struct net_device * dev)9847 static void netif_free_rx_queues(struct net_device *dev)
9848 {
9849 unsigned int i, count = dev->num_rx_queues;
9850
9851 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9852 if (!dev->_rx)
9853 return;
9854
9855 for (i = 0; i < count; i++)
9856 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9857
9858 kvfree(dev->_rx);
9859 }
9860
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9861 static void netdev_init_one_queue(struct net_device *dev,
9862 struct netdev_queue *queue, void *_unused)
9863 {
9864 /* Initialize queue lock */
9865 spin_lock_init(&queue->_xmit_lock);
9866 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9867 queue->xmit_lock_owner = -1;
9868 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9869 queue->dev = dev;
9870 #ifdef CONFIG_BQL
9871 dql_init(&queue->dql, HZ);
9872 #endif
9873 }
9874
netif_free_tx_queues(struct net_device * dev)9875 static void netif_free_tx_queues(struct net_device *dev)
9876 {
9877 kvfree(dev->_tx);
9878 }
9879
netif_alloc_netdev_queues(struct net_device * dev)9880 static int netif_alloc_netdev_queues(struct net_device *dev)
9881 {
9882 unsigned int count = dev->num_tx_queues;
9883 struct netdev_queue *tx;
9884 size_t sz = count * sizeof(*tx);
9885
9886 if (count < 1 || count > 0xffff)
9887 return -EINVAL;
9888
9889 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9890 if (!tx)
9891 return -ENOMEM;
9892
9893 dev->_tx = tx;
9894
9895 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9896 spin_lock_init(&dev->tx_global_lock);
9897
9898 return 0;
9899 }
9900
netif_tx_stop_all_queues(struct net_device * dev)9901 void netif_tx_stop_all_queues(struct net_device *dev)
9902 {
9903 unsigned int i;
9904
9905 for (i = 0; i < dev->num_tx_queues; i++) {
9906 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9907
9908 netif_tx_stop_queue(txq);
9909 }
9910 }
9911 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9912
9913 /**
9914 * register_netdevice - register a network device
9915 * @dev: device to register
9916 *
9917 * Take a completed network device structure and add it to the kernel
9918 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9919 * chain. 0 is returned on success. A negative errno code is returned
9920 * on a failure to set up the device, or if the name is a duplicate.
9921 *
9922 * Callers must hold the rtnl semaphore. You may want
9923 * register_netdev() instead of this.
9924 *
9925 * BUGS:
9926 * The locking appears insufficient to guarantee two parallel registers
9927 * will not get the same name.
9928 */
9929
register_netdevice(struct net_device * dev)9930 int register_netdevice(struct net_device *dev)
9931 {
9932 int ret;
9933 struct net *net = dev_net(dev);
9934
9935 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9936 NETDEV_FEATURE_COUNT);
9937 BUG_ON(dev_boot_phase);
9938 ASSERT_RTNL();
9939
9940 might_sleep();
9941
9942 /* When net_device's are persistent, this will be fatal. */
9943 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9944 BUG_ON(!net);
9945
9946 ret = ethtool_check_ops(dev->ethtool_ops);
9947 if (ret)
9948 return ret;
9949
9950 spin_lock_init(&dev->addr_list_lock);
9951 netdev_set_addr_lockdep_class(dev);
9952
9953 ret = dev_get_valid_name(net, dev, dev->name);
9954 if (ret < 0)
9955 goto out;
9956
9957 ret = -ENOMEM;
9958 dev->name_node = netdev_name_node_head_alloc(dev);
9959 if (!dev->name_node)
9960 goto out;
9961
9962 /* Init, if this function is available */
9963 if (dev->netdev_ops->ndo_init) {
9964 ret = dev->netdev_ops->ndo_init(dev);
9965 if (ret) {
9966 if (ret > 0)
9967 ret = -EIO;
9968 goto err_free_name;
9969 }
9970 }
9971
9972 if (((dev->hw_features | dev->features) &
9973 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9974 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9975 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9976 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9977 ret = -EINVAL;
9978 goto err_uninit;
9979 }
9980
9981 ret = -EBUSY;
9982 if (!dev->ifindex)
9983 dev->ifindex = dev_new_index(net);
9984 else if (__dev_get_by_index(net, dev->ifindex))
9985 goto err_uninit;
9986
9987 /* Transfer changeable features to wanted_features and enable
9988 * software offloads (GSO and GRO).
9989 */
9990 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9991 dev->features |= NETIF_F_SOFT_FEATURES;
9992
9993 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9994 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9995 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9996 }
9997
9998 dev->wanted_features = dev->features & dev->hw_features;
9999
10000 if (!(dev->flags & IFF_LOOPBACK))
10001 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10002
10003 /* If IPv4 TCP segmentation offload is supported we should also
10004 * allow the device to enable segmenting the frame with the option
10005 * of ignoring a static IP ID value. This doesn't enable the
10006 * feature itself but allows the user to enable it later.
10007 */
10008 if (dev->hw_features & NETIF_F_TSO)
10009 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10010 if (dev->vlan_features & NETIF_F_TSO)
10011 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10012 if (dev->mpls_features & NETIF_F_TSO)
10013 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10014 if (dev->hw_enc_features & NETIF_F_TSO)
10015 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10016
10017 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10018 */
10019 dev->vlan_features |= NETIF_F_HIGHDMA;
10020
10021 /* Make NETIF_F_SG inheritable to tunnel devices.
10022 */
10023 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10024
10025 /* Make NETIF_F_SG inheritable to MPLS.
10026 */
10027 dev->mpls_features |= NETIF_F_SG;
10028
10029 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10030 ret = notifier_to_errno(ret);
10031 if (ret)
10032 goto err_uninit;
10033
10034 ret = netdev_register_kobject(dev);
10035 if (ret) {
10036 dev->reg_state = NETREG_UNREGISTERED;
10037 goto err_uninit;
10038 }
10039 dev->reg_state = NETREG_REGISTERED;
10040
10041 __netdev_update_features(dev);
10042
10043 /*
10044 * Default initial state at registry is that the
10045 * device is present.
10046 */
10047
10048 set_bit(__LINK_STATE_PRESENT, &dev->state);
10049
10050 linkwatch_init_dev(dev);
10051
10052 dev_init_scheduler(dev);
10053 dev_hold(dev);
10054 list_netdevice(dev);
10055 add_device_randomness(dev->dev_addr, dev->addr_len);
10056
10057 /* If the device has permanent device address, driver should
10058 * set dev_addr and also addr_assign_type should be set to
10059 * NET_ADDR_PERM (default value).
10060 */
10061 if (dev->addr_assign_type == NET_ADDR_PERM)
10062 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10063
10064 /* Notify protocols, that a new device appeared. */
10065 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10066 ret = notifier_to_errno(ret);
10067 if (ret) {
10068 /* Expect explicit free_netdev() on failure */
10069 dev->needs_free_netdev = false;
10070 unregister_netdevice_queue(dev, NULL);
10071 goto out;
10072 }
10073 /*
10074 * Prevent userspace races by waiting until the network
10075 * device is fully setup before sending notifications.
10076 */
10077 if (!dev->rtnl_link_ops ||
10078 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10079 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10080
10081 out:
10082 return ret;
10083
10084 err_uninit:
10085 if (dev->netdev_ops->ndo_uninit)
10086 dev->netdev_ops->ndo_uninit(dev);
10087 if (dev->priv_destructor)
10088 dev->priv_destructor(dev);
10089 err_free_name:
10090 netdev_name_node_free(dev->name_node);
10091 goto out;
10092 }
10093 EXPORT_SYMBOL(register_netdevice);
10094
10095 /**
10096 * init_dummy_netdev - init a dummy network device for NAPI
10097 * @dev: device to init
10098 *
10099 * This takes a network device structure and initialize the minimum
10100 * amount of fields so it can be used to schedule NAPI polls without
10101 * registering a full blown interface. This is to be used by drivers
10102 * that need to tie several hardware interfaces to a single NAPI
10103 * poll scheduler due to HW limitations.
10104 */
init_dummy_netdev(struct net_device * dev)10105 int init_dummy_netdev(struct net_device *dev)
10106 {
10107 /* Clear everything. Note we don't initialize spinlocks
10108 * are they aren't supposed to be taken by any of the
10109 * NAPI code and this dummy netdev is supposed to be
10110 * only ever used for NAPI polls
10111 */
10112 memset(dev, 0, sizeof(struct net_device));
10113
10114 /* make sure we BUG if trying to hit standard
10115 * register/unregister code path
10116 */
10117 dev->reg_state = NETREG_DUMMY;
10118
10119 /* NAPI wants this */
10120 INIT_LIST_HEAD(&dev->napi_list);
10121
10122 /* a dummy interface is started by default */
10123 set_bit(__LINK_STATE_PRESENT, &dev->state);
10124 set_bit(__LINK_STATE_START, &dev->state);
10125
10126 /* napi_busy_loop stats accounting wants this */
10127 dev_net_set(dev, &init_net);
10128
10129 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10130 * because users of this 'device' dont need to change
10131 * its refcount.
10132 */
10133
10134 return 0;
10135 }
10136 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10137
10138
10139 /**
10140 * register_netdev - register a network device
10141 * @dev: device to register
10142 *
10143 * Take a completed network device structure and add it to the kernel
10144 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10145 * chain. 0 is returned on success. A negative errno code is returned
10146 * on a failure to set up the device, or if the name is a duplicate.
10147 *
10148 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10149 * and expands the device name if you passed a format string to
10150 * alloc_netdev.
10151 */
register_netdev(struct net_device * dev)10152 int register_netdev(struct net_device *dev)
10153 {
10154 int err;
10155
10156 if (rtnl_lock_killable())
10157 return -EINTR;
10158 err = register_netdevice(dev);
10159 rtnl_unlock();
10160 return err;
10161 }
10162 EXPORT_SYMBOL(register_netdev);
10163
netdev_refcnt_read(const struct net_device * dev)10164 int netdev_refcnt_read(const struct net_device *dev)
10165 {
10166 int i, refcnt = 0;
10167
10168 for_each_possible_cpu(i)
10169 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10170 return refcnt;
10171 }
10172 EXPORT_SYMBOL(netdev_refcnt_read);
10173
10174 #define WAIT_REFS_MIN_MSECS 1
10175 #define WAIT_REFS_MAX_MSECS 250
10176 /**
10177 * netdev_wait_allrefs - wait until all references are gone.
10178 * @dev: target net_device
10179 *
10180 * This is called when unregistering network devices.
10181 *
10182 * Any protocol or device that holds a reference should register
10183 * for netdevice notification, and cleanup and put back the
10184 * reference if they receive an UNREGISTER event.
10185 * We can get stuck here if buggy protocols don't correctly
10186 * call dev_put.
10187 */
netdev_wait_allrefs(struct net_device * dev)10188 static void netdev_wait_allrefs(struct net_device *dev)
10189 {
10190 unsigned long rebroadcast_time, warning_time;
10191 int wait = 0, refcnt;
10192
10193 linkwatch_forget_dev(dev);
10194
10195 rebroadcast_time = warning_time = jiffies;
10196 refcnt = netdev_refcnt_read(dev);
10197
10198 while (refcnt != 0) {
10199 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10200 rtnl_lock();
10201
10202 /* Rebroadcast unregister notification */
10203 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10204
10205 __rtnl_unlock();
10206 rcu_barrier();
10207 rtnl_lock();
10208
10209 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10210 &dev->state)) {
10211 /* We must not have linkwatch events
10212 * pending on unregister. If this
10213 * happens, we simply run the queue
10214 * unscheduled, resulting in a noop
10215 * for this device.
10216 */
10217 linkwatch_run_queue();
10218 }
10219
10220 __rtnl_unlock();
10221
10222 rebroadcast_time = jiffies;
10223 }
10224
10225 if (!wait) {
10226 rcu_barrier();
10227 wait = WAIT_REFS_MIN_MSECS;
10228 } else {
10229 msleep(wait);
10230 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10231 }
10232
10233 refcnt = netdev_refcnt_read(dev);
10234
10235 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10236 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10237 dev->name, refcnt);
10238 warning_time = jiffies;
10239 }
10240 }
10241 }
10242
10243 /* The sequence is:
10244 *
10245 * rtnl_lock();
10246 * ...
10247 * register_netdevice(x1);
10248 * register_netdevice(x2);
10249 * ...
10250 * unregister_netdevice(y1);
10251 * unregister_netdevice(y2);
10252 * ...
10253 * rtnl_unlock();
10254 * free_netdev(y1);
10255 * free_netdev(y2);
10256 *
10257 * We are invoked by rtnl_unlock().
10258 * This allows us to deal with problems:
10259 * 1) We can delete sysfs objects which invoke hotplug
10260 * without deadlocking with linkwatch via keventd.
10261 * 2) Since we run with the RTNL semaphore not held, we can sleep
10262 * safely in order to wait for the netdev refcnt to drop to zero.
10263 *
10264 * We must not return until all unregister events added during
10265 * the interval the lock was held have been completed.
10266 */
netdev_run_todo(void)10267 void netdev_run_todo(void)
10268 {
10269 struct list_head list;
10270 #ifdef CONFIG_LOCKDEP
10271 struct list_head unlink_list;
10272
10273 list_replace_init(&net_unlink_list, &unlink_list);
10274
10275 while (!list_empty(&unlink_list)) {
10276 struct net_device *dev = list_first_entry(&unlink_list,
10277 struct net_device,
10278 unlink_list);
10279 list_del_init(&dev->unlink_list);
10280 dev->nested_level = dev->lower_level - 1;
10281 }
10282 #endif
10283
10284 /* Snapshot list, allow later requests */
10285 list_replace_init(&net_todo_list, &list);
10286
10287 __rtnl_unlock();
10288
10289
10290 /* Wait for rcu callbacks to finish before next phase */
10291 if (!list_empty(&list))
10292 rcu_barrier();
10293
10294 while (!list_empty(&list)) {
10295 struct net_device *dev
10296 = list_first_entry(&list, struct net_device, todo_list);
10297 list_del(&dev->todo_list);
10298
10299 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10300 pr_err("network todo '%s' but state %d\n",
10301 dev->name, dev->reg_state);
10302 dump_stack();
10303 continue;
10304 }
10305
10306 dev->reg_state = NETREG_UNREGISTERED;
10307
10308 netdev_wait_allrefs(dev);
10309
10310 /* paranoia */
10311 BUG_ON(netdev_refcnt_read(dev));
10312 BUG_ON(!list_empty(&dev->ptype_all));
10313 BUG_ON(!list_empty(&dev->ptype_specific));
10314 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10315 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10316
10317 if (dev->priv_destructor)
10318 dev->priv_destructor(dev);
10319 if (dev->needs_free_netdev)
10320 free_netdev(dev);
10321
10322 /* Report a network device has been unregistered */
10323 rtnl_lock();
10324 dev_net(dev)->dev_unreg_count--;
10325 __rtnl_unlock();
10326 wake_up(&netdev_unregistering_wq);
10327
10328 /* Free network device */
10329 kobject_put(&dev->dev.kobj);
10330 }
10331 }
10332
10333 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10334 * all the same fields in the same order as net_device_stats, with only
10335 * the type differing, but rtnl_link_stats64 may have additional fields
10336 * at the end for newer counters.
10337 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10338 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10339 const struct net_device_stats *netdev_stats)
10340 {
10341 #if BITS_PER_LONG == 64
10342 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10343 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10344 /* zero out counters that only exist in rtnl_link_stats64 */
10345 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10346 sizeof(*stats64) - sizeof(*netdev_stats));
10347 #else
10348 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10349 const unsigned long *src = (const unsigned long *)netdev_stats;
10350 u64 *dst = (u64 *)stats64;
10351
10352 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10353 for (i = 0; i < n; i++)
10354 dst[i] = src[i];
10355 /* zero out counters that only exist in rtnl_link_stats64 */
10356 memset((char *)stats64 + n * sizeof(u64), 0,
10357 sizeof(*stats64) - n * sizeof(u64));
10358 #endif
10359 }
10360 EXPORT_SYMBOL(netdev_stats_to_stats64);
10361
10362 /**
10363 * dev_get_stats - get network device statistics
10364 * @dev: device to get statistics from
10365 * @storage: place to store stats
10366 *
10367 * Get network statistics from device. Return @storage.
10368 * The device driver may provide its own method by setting
10369 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10370 * otherwise the internal statistics structure is used.
10371 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10372 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10373 struct rtnl_link_stats64 *storage)
10374 {
10375 const struct net_device_ops *ops = dev->netdev_ops;
10376
10377 if (ops->ndo_get_stats64) {
10378 memset(storage, 0, sizeof(*storage));
10379 ops->ndo_get_stats64(dev, storage);
10380 } else if (ops->ndo_get_stats) {
10381 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10382 } else {
10383 netdev_stats_to_stats64(storage, &dev->stats);
10384 }
10385 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10386 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10387 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10388 return storage;
10389 }
10390 EXPORT_SYMBOL(dev_get_stats);
10391
10392 /**
10393 * dev_fetch_sw_netstats - get per-cpu network device statistics
10394 * @s: place to store stats
10395 * @netstats: per-cpu network stats to read from
10396 *
10397 * Read per-cpu network statistics and populate the related fields in @s.
10398 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10399 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10400 const struct pcpu_sw_netstats __percpu *netstats)
10401 {
10402 int cpu;
10403
10404 for_each_possible_cpu(cpu) {
10405 const struct pcpu_sw_netstats *stats;
10406 struct pcpu_sw_netstats tmp;
10407 unsigned int start;
10408
10409 stats = per_cpu_ptr(netstats, cpu);
10410 do {
10411 start = u64_stats_fetch_begin_irq(&stats->syncp);
10412 tmp.rx_packets = stats->rx_packets;
10413 tmp.rx_bytes = stats->rx_bytes;
10414 tmp.tx_packets = stats->tx_packets;
10415 tmp.tx_bytes = stats->tx_bytes;
10416 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10417
10418 s->rx_packets += tmp.rx_packets;
10419 s->rx_bytes += tmp.rx_bytes;
10420 s->tx_packets += tmp.tx_packets;
10421 s->tx_bytes += tmp.tx_bytes;
10422 }
10423 }
10424 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10425
dev_ingress_queue_create(struct net_device * dev)10426 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10427 {
10428 struct netdev_queue *queue = dev_ingress_queue(dev);
10429
10430 #ifdef CONFIG_NET_CLS_ACT
10431 if (queue)
10432 return queue;
10433 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10434 if (!queue)
10435 return NULL;
10436 netdev_init_one_queue(dev, queue, NULL);
10437 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10438 queue->qdisc_sleeping = &noop_qdisc;
10439 rcu_assign_pointer(dev->ingress_queue, queue);
10440 #endif
10441 return queue;
10442 }
10443
10444 static const struct ethtool_ops default_ethtool_ops;
10445
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10446 void netdev_set_default_ethtool_ops(struct net_device *dev,
10447 const struct ethtool_ops *ops)
10448 {
10449 if (dev->ethtool_ops == &default_ethtool_ops)
10450 dev->ethtool_ops = ops;
10451 }
10452 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10453
netdev_freemem(struct net_device * dev)10454 void netdev_freemem(struct net_device *dev)
10455 {
10456 char *addr = (char *)dev - dev->padded;
10457
10458 kvfree(addr);
10459 }
10460
10461 /**
10462 * alloc_netdev_mqs - allocate network device
10463 * @sizeof_priv: size of private data to allocate space for
10464 * @name: device name format string
10465 * @name_assign_type: origin of device name
10466 * @setup: callback to initialize device
10467 * @txqs: the number of TX subqueues to allocate
10468 * @rxqs: the number of RX subqueues to allocate
10469 *
10470 * Allocates a struct net_device with private data area for driver use
10471 * and performs basic initialization. Also allocates subqueue structs
10472 * for each queue on the device.
10473 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10474 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10475 unsigned char name_assign_type,
10476 void (*setup)(struct net_device *),
10477 unsigned int txqs, unsigned int rxqs)
10478 {
10479 struct net_device *dev;
10480 unsigned int alloc_size;
10481 struct net_device *p;
10482
10483 BUG_ON(strlen(name) >= sizeof(dev->name));
10484
10485 if (txqs < 1) {
10486 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10487 return NULL;
10488 }
10489
10490 if (rxqs < 1) {
10491 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10492 return NULL;
10493 }
10494
10495 alloc_size = sizeof(struct net_device);
10496 if (sizeof_priv) {
10497 /* ensure 32-byte alignment of private area */
10498 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10499 alloc_size += sizeof_priv;
10500 }
10501 /* ensure 32-byte alignment of whole construct */
10502 alloc_size += NETDEV_ALIGN - 1;
10503
10504 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10505 if (!p)
10506 return NULL;
10507
10508 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10509 dev->padded = (char *)dev - (char *)p;
10510
10511 dev->pcpu_refcnt = alloc_percpu(int);
10512 if (!dev->pcpu_refcnt)
10513 goto free_dev;
10514
10515 if (dev_addr_init(dev))
10516 goto free_pcpu;
10517
10518 dev_mc_init(dev);
10519 dev_uc_init(dev);
10520
10521 dev_net_set(dev, &init_net);
10522
10523 dev->gso_max_size = GSO_MAX_SIZE;
10524 dev->gso_max_segs = GSO_MAX_SEGS;
10525 dev->upper_level = 1;
10526 dev->lower_level = 1;
10527 #ifdef CONFIG_LOCKDEP
10528 dev->nested_level = 0;
10529 INIT_LIST_HEAD(&dev->unlink_list);
10530 #endif
10531
10532 INIT_LIST_HEAD(&dev->napi_list);
10533 INIT_LIST_HEAD(&dev->unreg_list);
10534 INIT_LIST_HEAD(&dev->close_list);
10535 INIT_LIST_HEAD(&dev->link_watch_list);
10536 INIT_LIST_HEAD(&dev->adj_list.upper);
10537 INIT_LIST_HEAD(&dev->adj_list.lower);
10538 INIT_LIST_HEAD(&dev->ptype_all);
10539 INIT_LIST_HEAD(&dev->ptype_specific);
10540 INIT_LIST_HEAD(&dev->net_notifier_list);
10541 #ifdef CONFIG_NET_SCHED
10542 hash_init(dev->qdisc_hash);
10543 #endif
10544 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10545 setup(dev);
10546
10547 if (!dev->tx_queue_len) {
10548 dev->priv_flags |= IFF_NO_QUEUE;
10549 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10550 }
10551
10552 dev->num_tx_queues = txqs;
10553 dev->real_num_tx_queues = txqs;
10554 if (netif_alloc_netdev_queues(dev))
10555 goto free_all;
10556
10557 dev->num_rx_queues = rxqs;
10558 dev->real_num_rx_queues = rxqs;
10559 if (netif_alloc_rx_queues(dev))
10560 goto free_all;
10561
10562 strcpy(dev->name, name);
10563 dev->name_assign_type = name_assign_type;
10564 dev->group = INIT_NETDEV_GROUP;
10565 if (!dev->ethtool_ops)
10566 dev->ethtool_ops = &default_ethtool_ops;
10567
10568 nf_hook_ingress_init(dev);
10569
10570 return dev;
10571
10572 free_all:
10573 free_netdev(dev);
10574 return NULL;
10575
10576 free_pcpu:
10577 free_percpu(dev->pcpu_refcnt);
10578 free_dev:
10579 netdev_freemem(dev);
10580 return NULL;
10581 }
10582 EXPORT_SYMBOL(alloc_netdev_mqs);
10583
10584 /**
10585 * free_netdev - free network device
10586 * @dev: device
10587 *
10588 * This function does the last stage of destroying an allocated device
10589 * interface. The reference to the device object is released. If this
10590 * is the last reference then it will be freed.Must be called in process
10591 * context.
10592 */
free_netdev(struct net_device * dev)10593 void free_netdev(struct net_device *dev)
10594 {
10595 struct napi_struct *p, *n;
10596
10597 might_sleep();
10598
10599 /* When called immediately after register_netdevice() failed the unwind
10600 * handling may still be dismantling the device. Handle that case by
10601 * deferring the free.
10602 */
10603 if (dev->reg_state == NETREG_UNREGISTERING) {
10604 ASSERT_RTNL();
10605 dev->needs_free_netdev = true;
10606 return;
10607 }
10608
10609 netif_free_tx_queues(dev);
10610 netif_free_rx_queues(dev);
10611
10612 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10613
10614 /* Flush device addresses */
10615 dev_addr_flush(dev);
10616
10617 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10618 netif_napi_del(p);
10619
10620 free_percpu(dev->pcpu_refcnt);
10621 dev->pcpu_refcnt = NULL;
10622 free_percpu(dev->xdp_bulkq);
10623 dev->xdp_bulkq = NULL;
10624
10625 /* Compatibility with error handling in drivers */
10626 if (dev->reg_state == NETREG_UNINITIALIZED) {
10627 netdev_freemem(dev);
10628 return;
10629 }
10630
10631 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10632 dev->reg_state = NETREG_RELEASED;
10633
10634 /* will free via device release */
10635 put_device(&dev->dev);
10636 }
10637 EXPORT_SYMBOL(free_netdev);
10638
10639 /**
10640 * synchronize_net - Synchronize with packet receive processing
10641 *
10642 * Wait for packets currently being received to be done.
10643 * Does not block later packets from starting.
10644 */
synchronize_net(void)10645 void synchronize_net(void)
10646 {
10647 might_sleep();
10648 if (rtnl_is_locked())
10649 synchronize_rcu_expedited();
10650 else
10651 synchronize_rcu();
10652 }
10653 EXPORT_SYMBOL(synchronize_net);
10654
10655 /**
10656 * unregister_netdevice_queue - remove device from the kernel
10657 * @dev: device
10658 * @head: list
10659 *
10660 * This function shuts down a device interface and removes it
10661 * from the kernel tables.
10662 * If head not NULL, device is queued to be unregistered later.
10663 *
10664 * Callers must hold the rtnl semaphore. You may want
10665 * unregister_netdev() instead of this.
10666 */
10667
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10668 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10669 {
10670 ASSERT_RTNL();
10671
10672 if (head) {
10673 list_move_tail(&dev->unreg_list, head);
10674 } else {
10675 LIST_HEAD(single);
10676
10677 list_add(&dev->unreg_list, &single);
10678 unregister_netdevice_many(&single);
10679 }
10680 }
10681 EXPORT_SYMBOL(unregister_netdevice_queue);
10682
10683 /**
10684 * unregister_netdevice_many - unregister many devices
10685 * @head: list of devices
10686 *
10687 * Note: As most callers use a stack allocated list_head,
10688 * we force a list_del() to make sure stack wont be corrupted later.
10689 */
unregister_netdevice_many(struct list_head * head)10690 void unregister_netdevice_many(struct list_head *head)
10691 {
10692 struct net_device *dev, *tmp;
10693 LIST_HEAD(close_head);
10694
10695 BUG_ON(dev_boot_phase);
10696 ASSERT_RTNL();
10697
10698 if (list_empty(head))
10699 return;
10700
10701 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10702 /* Some devices call without registering
10703 * for initialization unwind. Remove those
10704 * devices and proceed with the remaining.
10705 */
10706 if (dev->reg_state == NETREG_UNINITIALIZED) {
10707 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10708 dev->name, dev);
10709
10710 WARN_ON(1);
10711 list_del(&dev->unreg_list);
10712 continue;
10713 }
10714 dev->dismantle = true;
10715 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10716 }
10717
10718 /* If device is running, close it first. */
10719 list_for_each_entry(dev, head, unreg_list)
10720 list_add_tail(&dev->close_list, &close_head);
10721 dev_close_many(&close_head, true);
10722
10723 list_for_each_entry(dev, head, unreg_list) {
10724 /* And unlink it from device chain. */
10725 unlist_netdevice(dev);
10726
10727 dev->reg_state = NETREG_UNREGISTERING;
10728 }
10729 flush_all_backlogs();
10730
10731 synchronize_net();
10732
10733 list_for_each_entry(dev, head, unreg_list) {
10734 struct sk_buff *skb = NULL;
10735
10736 /* Shutdown queueing discipline. */
10737 dev_shutdown(dev);
10738
10739 dev_xdp_uninstall(dev);
10740
10741 /* Notify protocols, that we are about to destroy
10742 * this device. They should clean all the things.
10743 */
10744 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10745
10746 if (!dev->rtnl_link_ops ||
10747 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10748 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10749 GFP_KERNEL, NULL, 0);
10750
10751 /*
10752 * Flush the unicast and multicast chains
10753 */
10754 dev_uc_flush(dev);
10755 dev_mc_flush(dev);
10756
10757 netdev_name_node_alt_flush(dev);
10758 netdev_name_node_free(dev->name_node);
10759
10760 if (dev->netdev_ops->ndo_uninit)
10761 dev->netdev_ops->ndo_uninit(dev);
10762
10763 if (skb)
10764 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10765
10766 /* Notifier chain MUST detach us all upper devices. */
10767 WARN_ON(netdev_has_any_upper_dev(dev));
10768 WARN_ON(netdev_has_any_lower_dev(dev));
10769
10770 /* Remove entries from kobject tree */
10771 netdev_unregister_kobject(dev);
10772 #ifdef CONFIG_XPS
10773 /* Remove XPS queueing entries */
10774 netif_reset_xps_queues_gt(dev, 0);
10775 #endif
10776 }
10777
10778 synchronize_net();
10779
10780 list_for_each_entry(dev, head, unreg_list) {
10781 dev_put(dev);
10782 net_set_todo(dev);
10783 }
10784
10785 list_del(head);
10786 }
10787 EXPORT_SYMBOL(unregister_netdevice_many);
10788
10789 /**
10790 * unregister_netdev - remove device from the kernel
10791 * @dev: device
10792 *
10793 * This function shuts down a device interface and removes it
10794 * from the kernel tables.
10795 *
10796 * This is just a wrapper for unregister_netdevice that takes
10797 * the rtnl semaphore. In general you want to use this and not
10798 * unregister_netdevice.
10799 */
unregister_netdev(struct net_device * dev)10800 void unregister_netdev(struct net_device *dev)
10801 {
10802 rtnl_lock();
10803 unregister_netdevice(dev);
10804 rtnl_unlock();
10805 }
10806 EXPORT_SYMBOL(unregister_netdev);
10807
10808 /**
10809 * dev_change_net_namespace - move device to different nethost namespace
10810 * @dev: device
10811 * @net: network namespace
10812 * @pat: If not NULL name pattern to try if the current device name
10813 * is already taken in the destination network namespace.
10814 *
10815 * This function shuts down a device interface and moves it
10816 * to a new network namespace. On success 0 is returned, on
10817 * a failure a netagive errno code is returned.
10818 *
10819 * Callers must hold the rtnl semaphore.
10820 */
10821
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10822 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10823 {
10824 struct net *net_old = dev_net(dev);
10825 int err, new_nsid, new_ifindex;
10826
10827 ASSERT_RTNL();
10828
10829 /* Don't allow namespace local devices to be moved. */
10830 err = -EINVAL;
10831 if (dev->features & NETIF_F_NETNS_LOCAL)
10832 goto out;
10833
10834 /* Ensure the device has been registrered */
10835 if (dev->reg_state != NETREG_REGISTERED)
10836 goto out;
10837
10838 /* Get out if there is nothing todo */
10839 err = 0;
10840 if (net_eq(net_old, net))
10841 goto out;
10842
10843 /* Pick the destination device name, and ensure
10844 * we can use it in the destination network namespace.
10845 */
10846 err = -EEXIST;
10847 if (__dev_get_by_name(net, dev->name)) {
10848 /* We get here if we can't use the current device name */
10849 if (!pat)
10850 goto out;
10851 err = dev_get_valid_name(net, dev, pat);
10852 if (err < 0)
10853 goto out;
10854 }
10855
10856 /*
10857 * And now a mini version of register_netdevice unregister_netdevice.
10858 */
10859
10860 /* If device is running close it first. */
10861 dev_close(dev);
10862
10863 /* And unlink it from device chain */
10864 unlist_netdevice(dev);
10865
10866 synchronize_net();
10867
10868 /* Shutdown queueing discipline. */
10869 dev_shutdown(dev);
10870
10871 /* Notify protocols, that we are about to destroy
10872 * this device. They should clean all the things.
10873 *
10874 * Note that dev->reg_state stays at NETREG_REGISTERED.
10875 * This is wanted because this way 8021q and macvlan know
10876 * the device is just moving and can keep their slaves up.
10877 */
10878 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10879 rcu_barrier();
10880
10881 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10882 /* If there is an ifindex conflict assign a new one */
10883 if (__dev_get_by_index(net, dev->ifindex))
10884 new_ifindex = dev_new_index(net);
10885 else
10886 new_ifindex = dev->ifindex;
10887
10888 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10889 new_ifindex);
10890
10891 /*
10892 * Flush the unicast and multicast chains
10893 */
10894 dev_uc_flush(dev);
10895 dev_mc_flush(dev);
10896
10897 /* Send a netdev-removed uevent to the old namespace */
10898 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10899 netdev_adjacent_del_links(dev);
10900
10901 /* Move per-net netdevice notifiers that are following the netdevice */
10902 move_netdevice_notifiers_dev_net(dev, net);
10903
10904 /* Actually switch the network namespace */
10905 dev_net_set(dev, net);
10906 dev->ifindex = new_ifindex;
10907
10908 /* Send a netdev-add uevent to the new namespace */
10909 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10910 netdev_adjacent_add_links(dev);
10911
10912 /* Fixup kobjects */
10913 err = device_rename(&dev->dev, dev->name);
10914 WARN_ON(err);
10915
10916 /* Adapt owner in case owning user namespace of target network
10917 * namespace is different from the original one.
10918 */
10919 err = netdev_change_owner(dev, net_old, net);
10920 WARN_ON(err);
10921
10922 /* Add the device back in the hashes */
10923 list_netdevice(dev);
10924
10925 /* Notify protocols, that a new device appeared. */
10926 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10927
10928 /*
10929 * Prevent userspace races by waiting until the network
10930 * device is fully setup before sending notifications.
10931 */
10932 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10933
10934 synchronize_net();
10935 err = 0;
10936 out:
10937 return err;
10938 }
10939 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10940
dev_cpu_dead(unsigned int oldcpu)10941 static int dev_cpu_dead(unsigned int oldcpu)
10942 {
10943 struct sk_buff **list_skb;
10944 struct sk_buff *skb;
10945 unsigned int cpu;
10946 struct softnet_data *sd, *oldsd, *remsd = NULL;
10947
10948 local_irq_disable();
10949 cpu = smp_processor_id();
10950 sd = &per_cpu(softnet_data, cpu);
10951 oldsd = &per_cpu(softnet_data, oldcpu);
10952
10953 /* Find end of our completion_queue. */
10954 list_skb = &sd->completion_queue;
10955 while (*list_skb)
10956 list_skb = &(*list_skb)->next;
10957 /* Append completion queue from offline CPU. */
10958 *list_skb = oldsd->completion_queue;
10959 oldsd->completion_queue = NULL;
10960
10961 /* Append output queue from offline CPU. */
10962 if (oldsd->output_queue) {
10963 *sd->output_queue_tailp = oldsd->output_queue;
10964 sd->output_queue_tailp = oldsd->output_queue_tailp;
10965 oldsd->output_queue = NULL;
10966 oldsd->output_queue_tailp = &oldsd->output_queue;
10967 }
10968 /* Append NAPI poll list from offline CPU, with one exception :
10969 * process_backlog() must be called by cpu owning percpu backlog.
10970 * We properly handle process_queue & input_pkt_queue later.
10971 */
10972 while (!list_empty(&oldsd->poll_list)) {
10973 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10974 struct napi_struct,
10975 poll_list);
10976
10977 list_del_init(&napi->poll_list);
10978 if (napi->poll == process_backlog)
10979 napi->state = 0;
10980 else
10981 ____napi_schedule(sd, napi);
10982 }
10983
10984 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10985 local_irq_enable();
10986
10987 #ifdef CONFIG_RPS
10988 remsd = oldsd->rps_ipi_list;
10989 oldsd->rps_ipi_list = NULL;
10990 #endif
10991 /* send out pending IPI's on offline CPU */
10992 net_rps_send_ipi(remsd);
10993
10994 /* Process offline CPU's input_pkt_queue */
10995 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10996 netif_rx_ni(skb);
10997 input_queue_head_incr(oldsd);
10998 }
10999 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11000 netif_rx_ni(skb);
11001 input_queue_head_incr(oldsd);
11002 }
11003
11004 return 0;
11005 }
11006
11007 /**
11008 * netdev_increment_features - increment feature set by one
11009 * @all: current feature set
11010 * @one: new feature set
11011 * @mask: mask feature set
11012 *
11013 * Computes a new feature set after adding a device with feature set
11014 * @one to the master device with current feature set @all. Will not
11015 * enable anything that is off in @mask. Returns the new feature set.
11016 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11017 netdev_features_t netdev_increment_features(netdev_features_t all,
11018 netdev_features_t one, netdev_features_t mask)
11019 {
11020 if (mask & NETIF_F_HW_CSUM)
11021 mask |= NETIF_F_CSUM_MASK;
11022 mask |= NETIF_F_VLAN_CHALLENGED;
11023
11024 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11025 all &= one | ~NETIF_F_ALL_FOR_ALL;
11026
11027 /* If one device supports hw checksumming, set for all. */
11028 if (all & NETIF_F_HW_CSUM)
11029 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11030
11031 return all;
11032 }
11033 EXPORT_SYMBOL(netdev_increment_features);
11034
netdev_create_hash(void)11035 static struct hlist_head * __net_init netdev_create_hash(void)
11036 {
11037 int i;
11038 struct hlist_head *hash;
11039
11040 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11041 if (hash != NULL)
11042 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11043 INIT_HLIST_HEAD(&hash[i]);
11044
11045 return hash;
11046 }
11047
11048 /* Initialize per network namespace state */
netdev_init(struct net * net)11049 static int __net_init netdev_init(struct net *net)
11050 {
11051 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11052 8 * sizeof_field(struct napi_struct, gro_bitmask));
11053
11054 if (net != &init_net)
11055 INIT_LIST_HEAD(&net->dev_base_head);
11056
11057 net->dev_name_head = netdev_create_hash();
11058 if (net->dev_name_head == NULL)
11059 goto err_name;
11060
11061 net->dev_index_head = netdev_create_hash();
11062 if (net->dev_index_head == NULL)
11063 goto err_idx;
11064
11065 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11066
11067 return 0;
11068
11069 err_idx:
11070 kfree(net->dev_name_head);
11071 err_name:
11072 return -ENOMEM;
11073 }
11074
11075 /**
11076 * netdev_drivername - network driver for the device
11077 * @dev: network device
11078 *
11079 * Determine network driver for device.
11080 */
netdev_drivername(const struct net_device * dev)11081 const char *netdev_drivername(const struct net_device *dev)
11082 {
11083 const struct device_driver *driver;
11084 const struct device *parent;
11085 const char *empty = "";
11086
11087 parent = dev->dev.parent;
11088 if (!parent)
11089 return empty;
11090
11091 driver = parent->driver;
11092 if (driver && driver->name)
11093 return driver->name;
11094 return empty;
11095 }
11096
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11097 static void __netdev_printk(const char *level, const struct net_device *dev,
11098 struct va_format *vaf)
11099 {
11100 if (dev && dev->dev.parent) {
11101 dev_printk_emit(level[1] - '0',
11102 dev->dev.parent,
11103 "%s %s %s%s: %pV",
11104 dev_driver_string(dev->dev.parent),
11105 dev_name(dev->dev.parent),
11106 netdev_name(dev), netdev_reg_state(dev),
11107 vaf);
11108 } else if (dev) {
11109 printk("%s%s%s: %pV",
11110 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11111 } else {
11112 printk("%s(NULL net_device): %pV", level, vaf);
11113 }
11114 }
11115
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11116 void netdev_printk(const char *level, const struct net_device *dev,
11117 const char *format, ...)
11118 {
11119 struct va_format vaf;
11120 va_list args;
11121
11122 va_start(args, format);
11123
11124 vaf.fmt = format;
11125 vaf.va = &args;
11126
11127 __netdev_printk(level, dev, &vaf);
11128
11129 va_end(args);
11130 }
11131 EXPORT_SYMBOL(netdev_printk);
11132
11133 #define define_netdev_printk_level(func, level) \
11134 void func(const struct net_device *dev, const char *fmt, ...) \
11135 { \
11136 struct va_format vaf; \
11137 va_list args; \
11138 \
11139 va_start(args, fmt); \
11140 \
11141 vaf.fmt = fmt; \
11142 vaf.va = &args; \
11143 \
11144 __netdev_printk(level, dev, &vaf); \
11145 \
11146 va_end(args); \
11147 } \
11148 EXPORT_SYMBOL(func);
11149
11150 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11151 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11152 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11153 define_netdev_printk_level(netdev_err, KERN_ERR);
11154 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11155 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11156 define_netdev_printk_level(netdev_info, KERN_INFO);
11157
netdev_exit(struct net * net)11158 static void __net_exit netdev_exit(struct net *net)
11159 {
11160 kfree(net->dev_name_head);
11161 kfree(net->dev_index_head);
11162 if (net != &init_net)
11163 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11164 }
11165
11166 static struct pernet_operations __net_initdata netdev_net_ops = {
11167 .init = netdev_init,
11168 .exit = netdev_exit,
11169 };
11170
default_device_exit(struct net * net)11171 static void __net_exit default_device_exit(struct net *net)
11172 {
11173 struct net_device *dev, *aux;
11174 /*
11175 * Push all migratable network devices back to the
11176 * initial network namespace
11177 */
11178 rtnl_lock();
11179 for_each_netdev_safe(net, dev, aux) {
11180 int err;
11181 char fb_name[IFNAMSIZ];
11182
11183 /* Ignore unmoveable devices (i.e. loopback) */
11184 if (dev->features & NETIF_F_NETNS_LOCAL)
11185 continue;
11186
11187 /* Leave virtual devices for the generic cleanup */
11188 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11189 continue;
11190
11191 /* Push remaining network devices to init_net */
11192 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11193 if (__dev_get_by_name(&init_net, fb_name))
11194 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11195 err = dev_change_net_namespace(dev, &init_net, fb_name);
11196 if (err) {
11197 pr_emerg("%s: failed to move %s to init_net: %d\n",
11198 __func__, dev->name, err);
11199 BUG();
11200 }
11201 }
11202 rtnl_unlock();
11203 }
11204
rtnl_lock_unregistering(struct list_head * net_list)11205 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11206 {
11207 /* Return with the rtnl_lock held when there are no network
11208 * devices unregistering in any network namespace in net_list.
11209 */
11210 struct net *net;
11211 bool unregistering;
11212 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11213
11214 add_wait_queue(&netdev_unregistering_wq, &wait);
11215 for (;;) {
11216 unregistering = false;
11217 rtnl_lock();
11218 list_for_each_entry(net, net_list, exit_list) {
11219 if (net->dev_unreg_count > 0) {
11220 unregistering = true;
11221 break;
11222 }
11223 }
11224 if (!unregistering)
11225 break;
11226 __rtnl_unlock();
11227
11228 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11229 }
11230 remove_wait_queue(&netdev_unregistering_wq, &wait);
11231 }
11232
default_device_exit_batch(struct list_head * net_list)11233 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11234 {
11235 /* At exit all network devices most be removed from a network
11236 * namespace. Do this in the reverse order of registration.
11237 * Do this across as many network namespaces as possible to
11238 * improve batching efficiency.
11239 */
11240 struct net_device *dev;
11241 struct net *net;
11242 LIST_HEAD(dev_kill_list);
11243
11244 /* To prevent network device cleanup code from dereferencing
11245 * loopback devices or network devices that have been freed
11246 * wait here for all pending unregistrations to complete,
11247 * before unregistring the loopback device and allowing the
11248 * network namespace be freed.
11249 *
11250 * The netdev todo list containing all network devices
11251 * unregistrations that happen in default_device_exit_batch
11252 * will run in the rtnl_unlock() at the end of
11253 * default_device_exit_batch.
11254 */
11255 rtnl_lock_unregistering(net_list);
11256 list_for_each_entry(net, net_list, exit_list) {
11257 for_each_netdev_reverse(net, dev) {
11258 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11259 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11260 else
11261 unregister_netdevice_queue(dev, &dev_kill_list);
11262 }
11263 }
11264 unregister_netdevice_many(&dev_kill_list);
11265 rtnl_unlock();
11266 }
11267
11268 static struct pernet_operations __net_initdata default_device_ops = {
11269 .exit = default_device_exit,
11270 .exit_batch = default_device_exit_batch,
11271 };
11272
11273 /*
11274 * Initialize the DEV module. At boot time this walks the device list and
11275 * unhooks any devices that fail to initialise (normally hardware not
11276 * present) and leaves us with a valid list of present and active devices.
11277 *
11278 */
11279
11280 /*
11281 * This is called single threaded during boot, so no need
11282 * to take the rtnl semaphore.
11283 */
net_dev_init(void)11284 static int __init net_dev_init(void)
11285 {
11286 int i, rc = -ENOMEM;
11287
11288 BUG_ON(!dev_boot_phase);
11289
11290 if (dev_proc_init())
11291 goto out;
11292
11293 if (netdev_kobject_init())
11294 goto out;
11295
11296 INIT_LIST_HEAD(&ptype_all);
11297 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11298 INIT_LIST_HEAD(&ptype_base[i]);
11299
11300 INIT_LIST_HEAD(&offload_base);
11301
11302 if (register_pernet_subsys(&netdev_net_ops))
11303 goto out;
11304
11305 /*
11306 * Initialise the packet receive queues.
11307 */
11308
11309 for_each_possible_cpu(i) {
11310 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11311 struct softnet_data *sd = &per_cpu(softnet_data, i);
11312
11313 INIT_WORK(flush, flush_backlog);
11314
11315 skb_queue_head_init(&sd->input_pkt_queue);
11316 skb_queue_head_init(&sd->process_queue);
11317 #ifdef CONFIG_XFRM_OFFLOAD
11318 skb_queue_head_init(&sd->xfrm_backlog);
11319 #endif
11320 INIT_LIST_HEAD(&sd->poll_list);
11321 sd->output_queue_tailp = &sd->output_queue;
11322 #ifdef CONFIG_RPS
11323 sd->csd.func = rps_trigger_softirq;
11324 sd->csd.info = sd;
11325 sd->cpu = i;
11326 #endif
11327
11328 init_gro_hash(&sd->backlog);
11329 sd->backlog.poll = process_backlog;
11330 sd->backlog.weight = weight_p;
11331 }
11332
11333 dev_boot_phase = 0;
11334
11335 /* The loopback device is special if any other network devices
11336 * is present in a network namespace the loopback device must
11337 * be present. Since we now dynamically allocate and free the
11338 * loopback device ensure this invariant is maintained by
11339 * keeping the loopback device as the first device on the
11340 * list of network devices. Ensuring the loopback devices
11341 * is the first device that appears and the last network device
11342 * that disappears.
11343 */
11344 if (register_pernet_device(&loopback_net_ops))
11345 goto out;
11346
11347 if (register_pernet_device(&default_device_ops))
11348 goto out;
11349
11350 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11351 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11352
11353 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11354 NULL, dev_cpu_dead);
11355 WARN_ON(rc < 0);
11356 rc = 0;
11357 out:
11358 return rc;
11359 }
11360
11361 subsys_initcall(net_dev_init);
11362