1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/devres.c - device resource management
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13
14 #include <asm/sections.h>
15
16 #include "base.h"
17
18 struct devres_node {
19 struct list_head entry;
20 dr_release_t release;
21 #ifdef CONFIG_DEBUG_DEVRES
22 const char *name;
23 size_t size;
24 #endif
25 };
26
27 struct devres {
28 struct devres_node node;
29 /*
30 * Some archs want to perform DMA into kmalloc caches
31 * and need a guaranteed alignment larger than
32 * the alignment of a 64-bit integer.
33 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
34 * buffer alignment as if it was allocated by plain kmalloc().
35 */
36 u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
37 };
38
39 struct devres_group {
40 struct devres_node node[2];
41 void *id;
42 int color;
43 /* -- 8 pointers */
44 };
45
46 #ifdef CONFIG_DEBUG_DEVRES
47 static int log_devres = 0;
48 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
49
set_node_dbginfo(struct devres_node * node,const char * name,size_t size)50 static void set_node_dbginfo(struct devres_node *node, const char *name,
51 size_t size)
52 {
53 node->name = name;
54 node->size = size;
55 }
56
devres_log(struct device * dev,struct devres_node * node,const char * op)57 static void devres_log(struct device *dev, struct devres_node *node,
58 const char *op)
59 {
60 if (unlikely(log_devres))
61 dev_err(dev, "DEVRES %3s %p %s (%lu bytes)\n",
62 op, node, node->name, (unsigned long)node->size);
63 }
64 #else /* CONFIG_DEBUG_DEVRES */
65 #define set_node_dbginfo(node, n, s) do {} while (0)
66 #define devres_log(dev, node, op) do {} while (0)
67 #endif /* CONFIG_DEBUG_DEVRES */
68
69 /*
70 * Release functions for devres group. These callbacks are used only
71 * for identification.
72 */
group_open_release(struct device * dev,void * res)73 static void group_open_release(struct device *dev, void *res)
74 {
75 /* noop */
76 }
77
group_close_release(struct device * dev,void * res)78 static void group_close_release(struct device *dev, void *res)
79 {
80 /* noop */
81 }
82
node_to_group(struct devres_node * node)83 static struct devres_group * node_to_group(struct devres_node *node)
84 {
85 if (node->release == &group_open_release)
86 return container_of(node, struct devres_group, node[0]);
87 if (node->release == &group_close_release)
88 return container_of(node, struct devres_group, node[1]);
89 return NULL;
90 }
91
check_dr_size(size_t size,size_t * tot_size)92 static bool check_dr_size(size_t size, size_t *tot_size)
93 {
94 /* We must catch any near-SIZE_MAX cases that could overflow. */
95 if (unlikely(check_add_overflow(sizeof(struct devres),
96 size, tot_size)))
97 return false;
98
99 return true;
100 }
101
alloc_dr(dr_release_t release,size_t size,gfp_t gfp,int nid)102 static __always_inline struct devres * alloc_dr(dr_release_t release,
103 size_t size, gfp_t gfp, int nid)
104 {
105 size_t tot_size;
106 struct devres *dr;
107
108 if (!check_dr_size(size, &tot_size))
109 return NULL;
110
111 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
112 if (unlikely(!dr))
113 return NULL;
114
115 memset(dr, 0, offsetof(struct devres, data));
116
117 INIT_LIST_HEAD(&dr->node.entry);
118 dr->node.release = release;
119 return dr;
120 }
121
add_dr(struct device * dev,struct devres_node * node)122 static void add_dr(struct device *dev, struct devres_node *node)
123 {
124 devres_log(dev, node, "ADD");
125 BUG_ON(!list_empty(&node->entry));
126 list_add_tail(&node->entry, &dev->devres_head);
127 }
128
replace_dr(struct device * dev,struct devres_node * old,struct devres_node * new)129 static void replace_dr(struct device *dev,
130 struct devres_node *old, struct devres_node *new)
131 {
132 devres_log(dev, old, "REPLACE");
133 BUG_ON(!list_empty(&new->entry));
134 list_replace(&old->entry, &new->entry);
135 }
136
137 #ifdef CONFIG_DEBUG_DEVRES
__devres_alloc_node(dr_release_t release,size_t size,gfp_t gfp,int nid,const char * name)138 void * __devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
139 const char *name)
140 {
141 struct devres *dr;
142
143 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
144 if (unlikely(!dr))
145 return NULL;
146 set_node_dbginfo(&dr->node, name, size);
147 return dr->data;
148 }
149 EXPORT_SYMBOL_GPL(__devres_alloc_node);
150 #else
151 /**
152 * devres_alloc - Allocate device resource data
153 * @release: Release function devres will be associated with
154 * @size: Allocation size
155 * @gfp: Allocation flags
156 * @nid: NUMA node
157 *
158 * Allocate devres of @size bytes. The allocated area is zeroed, then
159 * associated with @release. The returned pointer can be passed to
160 * other devres_*() functions.
161 *
162 * RETURNS:
163 * Pointer to allocated devres on success, NULL on failure.
164 */
devres_alloc_node(dr_release_t release,size_t size,gfp_t gfp,int nid)165 void * devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid)
166 {
167 struct devres *dr;
168
169 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
170 if (unlikely(!dr))
171 return NULL;
172 return dr->data;
173 }
174 EXPORT_SYMBOL_GPL(devres_alloc_node);
175 #endif
176
177 /**
178 * devres_for_each_res - Resource iterator
179 * @dev: Device to iterate resource from
180 * @release: Look for resources associated with this release function
181 * @match: Match function (optional)
182 * @match_data: Data for the match function
183 * @fn: Function to be called for each matched resource.
184 * @data: Data for @fn, the 3rd parameter of @fn
185 *
186 * Call @fn for each devres of @dev which is associated with @release
187 * and for which @match returns 1.
188 *
189 * RETURNS:
190 * void
191 */
devres_for_each_res(struct device * dev,dr_release_t release,dr_match_t match,void * match_data,void (* fn)(struct device *,void *,void *),void * data)192 void devres_for_each_res(struct device *dev, dr_release_t release,
193 dr_match_t match, void *match_data,
194 void (*fn)(struct device *, void *, void *),
195 void *data)
196 {
197 struct devres_node *node;
198 struct devres_node *tmp;
199 unsigned long flags;
200
201 if (!fn)
202 return;
203
204 spin_lock_irqsave(&dev->devres_lock, flags);
205 list_for_each_entry_safe_reverse(node, tmp,
206 &dev->devres_head, entry) {
207 struct devres *dr = container_of(node, struct devres, node);
208
209 if (node->release != release)
210 continue;
211 if (match && !match(dev, dr->data, match_data))
212 continue;
213 fn(dev, dr->data, data);
214 }
215 spin_unlock_irqrestore(&dev->devres_lock, flags);
216 }
217 EXPORT_SYMBOL_GPL(devres_for_each_res);
218
219 /**
220 * devres_free - Free device resource data
221 * @res: Pointer to devres data to free
222 *
223 * Free devres created with devres_alloc().
224 */
devres_free(void * res)225 void devres_free(void *res)
226 {
227 if (res) {
228 struct devres *dr = container_of(res, struct devres, data);
229
230 BUG_ON(!list_empty(&dr->node.entry));
231 kfree(dr);
232 }
233 }
234 EXPORT_SYMBOL_GPL(devres_free);
235
236 /**
237 * devres_add - Register device resource
238 * @dev: Device to add resource to
239 * @res: Resource to register
240 *
241 * Register devres @res to @dev. @res should have been allocated
242 * using devres_alloc(). On driver detach, the associated release
243 * function will be invoked and devres will be freed automatically.
244 */
devres_add(struct device * dev,void * res)245 void devres_add(struct device *dev, void *res)
246 {
247 struct devres *dr = container_of(res, struct devres, data);
248 unsigned long flags;
249
250 spin_lock_irqsave(&dev->devres_lock, flags);
251 add_dr(dev, &dr->node);
252 spin_unlock_irqrestore(&dev->devres_lock, flags);
253 }
254 EXPORT_SYMBOL_GPL(devres_add);
255
find_dr(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)256 static struct devres *find_dr(struct device *dev, dr_release_t release,
257 dr_match_t match, void *match_data)
258 {
259 struct devres_node *node;
260
261 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
262 struct devres *dr = container_of(node, struct devres, node);
263
264 if (node->release != release)
265 continue;
266 if (match && !match(dev, dr->data, match_data))
267 continue;
268 return dr;
269 }
270
271 return NULL;
272 }
273
274 /**
275 * devres_find - Find device resource
276 * @dev: Device to lookup resource from
277 * @release: Look for resources associated with this release function
278 * @match: Match function (optional)
279 * @match_data: Data for the match function
280 *
281 * Find the latest devres of @dev which is associated with @release
282 * and for which @match returns 1. If @match is NULL, it's considered
283 * to match all.
284 *
285 * RETURNS:
286 * Pointer to found devres, NULL if not found.
287 */
devres_find(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)288 void * devres_find(struct device *dev, dr_release_t release,
289 dr_match_t match, void *match_data)
290 {
291 struct devres *dr;
292 unsigned long flags;
293
294 spin_lock_irqsave(&dev->devres_lock, flags);
295 dr = find_dr(dev, release, match, match_data);
296 spin_unlock_irqrestore(&dev->devres_lock, flags);
297
298 if (dr)
299 return dr->data;
300 return NULL;
301 }
302 EXPORT_SYMBOL_GPL(devres_find);
303
304 /**
305 * devres_get - Find devres, if non-existent, add one atomically
306 * @dev: Device to lookup or add devres for
307 * @new_res: Pointer to new initialized devres to add if not found
308 * @match: Match function (optional)
309 * @match_data: Data for the match function
310 *
311 * Find the latest devres of @dev which has the same release function
312 * as @new_res and for which @match return 1. If found, @new_res is
313 * freed; otherwise, @new_res is added atomically.
314 *
315 * RETURNS:
316 * Pointer to found or added devres.
317 */
devres_get(struct device * dev,void * new_res,dr_match_t match,void * match_data)318 void * devres_get(struct device *dev, void *new_res,
319 dr_match_t match, void *match_data)
320 {
321 struct devres *new_dr = container_of(new_res, struct devres, data);
322 struct devres *dr;
323 unsigned long flags;
324
325 spin_lock_irqsave(&dev->devres_lock, flags);
326 dr = find_dr(dev, new_dr->node.release, match, match_data);
327 if (!dr) {
328 add_dr(dev, &new_dr->node);
329 dr = new_dr;
330 new_res = NULL;
331 }
332 spin_unlock_irqrestore(&dev->devres_lock, flags);
333 devres_free(new_res);
334
335 return dr->data;
336 }
337 EXPORT_SYMBOL_GPL(devres_get);
338
339 /**
340 * devres_remove - Find a device resource and remove it
341 * @dev: Device to find resource from
342 * @release: Look for resources associated with this release function
343 * @match: Match function (optional)
344 * @match_data: Data for the match function
345 *
346 * Find the latest devres of @dev associated with @release and for
347 * which @match returns 1. If @match is NULL, it's considered to
348 * match all. If found, the resource is removed atomically and
349 * returned.
350 *
351 * RETURNS:
352 * Pointer to removed devres on success, NULL if not found.
353 */
devres_remove(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)354 void * devres_remove(struct device *dev, dr_release_t release,
355 dr_match_t match, void *match_data)
356 {
357 struct devres *dr;
358 unsigned long flags;
359
360 spin_lock_irqsave(&dev->devres_lock, flags);
361 dr = find_dr(dev, release, match, match_data);
362 if (dr) {
363 list_del_init(&dr->node.entry);
364 devres_log(dev, &dr->node, "REM");
365 }
366 spin_unlock_irqrestore(&dev->devres_lock, flags);
367
368 if (dr)
369 return dr->data;
370 return NULL;
371 }
372 EXPORT_SYMBOL_GPL(devres_remove);
373
374 /**
375 * devres_destroy - Find a device resource and destroy it
376 * @dev: Device to find resource from
377 * @release: Look for resources associated with this release function
378 * @match: Match function (optional)
379 * @match_data: Data for the match function
380 *
381 * Find the latest devres of @dev associated with @release and for
382 * which @match returns 1. If @match is NULL, it's considered to
383 * match all. If found, the resource is removed atomically and freed.
384 *
385 * Note that the release function for the resource will not be called,
386 * only the devres-allocated data will be freed. The caller becomes
387 * responsible for freeing any other data.
388 *
389 * RETURNS:
390 * 0 if devres is found and freed, -ENOENT if not found.
391 */
devres_destroy(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)392 int devres_destroy(struct device *dev, dr_release_t release,
393 dr_match_t match, void *match_data)
394 {
395 void *res;
396
397 res = devres_remove(dev, release, match, match_data);
398 if (unlikely(!res))
399 return -ENOENT;
400
401 devres_free(res);
402 return 0;
403 }
404 EXPORT_SYMBOL_GPL(devres_destroy);
405
406
407 /**
408 * devres_release - Find a device resource and destroy it, calling release
409 * @dev: Device to find resource from
410 * @release: Look for resources associated with this release function
411 * @match: Match function (optional)
412 * @match_data: Data for the match function
413 *
414 * Find the latest devres of @dev associated with @release and for
415 * which @match returns 1. If @match is NULL, it's considered to
416 * match all. If found, the resource is removed atomically, the
417 * release function called and the resource freed.
418 *
419 * RETURNS:
420 * 0 if devres is found and freed, -ENOENT if not found.
421 */
devres_release(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)422 int devres_release(struct device *dev, dr_release_t release,
423 dr_match_t match, void *match_data)
424 {
425 void *res;
426
427 res = devres_remove(dev, release, match, match_data);
428 if (unlikely(!res))
429 return -ENOENT;
430
431 (*release)(dev, res);
432 devres_free(res);
433 return 0;
434 }
435 EXPORT_SYMBOL_GPL(devres_release);
436
remove_nodes(struct device * dev,struct list_head * first,struct list_head * end,struct list_head * todo)437 static int remove_nodes(struct device *dev,
438 struct list_head *first, struct list_head *end,
439 struct list_head *todo)
440 {
441 int cnt = 0, nr_groups = 0;
442 struct list_head *cur;
443
444 /* First pass - move normal devres entries to @todo and clear
445 * devres_group colors.
446 */
447 cur = first;
448 while (cur != end) {
449 struct devres_node *node;
450 struct devres_group *grp;
451
452 node = list_entry(cur, struct devres_node, entry);
453 cur = cur->next;
454
455 grp = node_to_group(node);
456 if (grp) {
457 /* clear color of group markers in the first pass */
458 grp->color = 0;
459 nr_groups++;
460 } else {
461 /* regular devres entry */
462 if (&node->entry == first)
463 first = first->next;
464 list_move_tail(&node->entry, todo);
465 cnt++;
466 }
467 }
468
469 if (!nr_groups)
470 return cnt;
471
472 /* Second pass - Scan groups and color them. A group gets
473 * color value of two iff the group is wholly contained in
474 * [cur, end). That is, for a closed group, both opening and
475 * closing markers should be in the range, while just the
476 * opening marker is enough for an open group.
477 */
478 cur = first;
479 while (cur != end) {
480 struct devres_node *node;
481 struct devres_group *grp;
482
483 node = list_entry(cur, struct devres_node, entry);
484 cur = cur->next;
485
486 grp = node_to_group(node);
487 BUG_ON(!grp || list_empty(&grp->node[0].entry));
488
489 grp->color++;
490 if (list_empty(&grp->node[1].entry))
491 grp->color++;
492
493 BUG_ON(grp->color <= 0 || grp->color > 2);
494 if (grp->color == 2) {
495 /* No need to update cur or end. The removed
496 * nodes are always before both.
497 */
498 list_move_tail(&grp->node[0].entry, todo);
499 list_del_init(&grp->node[1].entry);
500 }
501 }
502
503 return cnt;
504 }
505
release_nodes(struct device * dev,struct list_head * first,struct list_head * end,unsigned long flags)506 static int release_nodes(struct device *dev, struct list_head *first,
507 struct list_head *end, unsigned long flags)
508 __releases(&dev->devres_lock)
509 {
510 LIST_HEAD(todo);
511 int cnt;
512 struct devres *dr, *tmp;
513
514 cnt = remove_nodes(dev, first, end, &todo);
515
516 spin_unlock_irqrestore(&dev->devres_lock, flags);
517
518 /* Release. Note that both devres and devres_group are
519 * handled as devres in the following loop. This is safe.
520 */
521 list_for_each_entry_safe_reverse(dr, tmp, &todo, node.entry) {
522 devres_log(dev, &dr->node, "REL");
523 dr->node.release(dev, dr->data);
524 kfree(dr);
525 }
526
527 return cnt;
528 }
529
530 /**
531 * devres_release_all - Release all managed resources
532 * @dev: Device to release resources for
533 *
534 * Release all resources associated with @dev. This function is
535 * called on driver detach.
536 */
devres_release_all(struct device * dev)537 int devres_release_all(struct device *dev)
538 {
539 unsigned long flags;
540
541 /* Looks like an uninitialized device structure */
542 if (WARN_ON(dev->devres_head.next == NULL))
543 return -ENODEV;
544 spin_lock_irqsave(&dev->devres_lock, flags);
545 return release_nodes(dev, dev->devres_head.next, &dev->devres_head,
546 flags);
547 }
548
549 /**
550 * devres_open_group - Open a new devres group
551 * @dev: Device to open devres group for
552 * @id: Separator ID
553 * @gfp: Allocation flags
554 *
555 * Open a new devres group for @dev with @id. For @id, using a
556 * pointer to an object which won't be used for another group is
557 * recommended. If @id is NULL, address-wise unique ID is created.
558 *
559 * RETURNS:
560 * ID of the new group, NULL on failure.
561 */
devres_open_group(struct device * dev,void * id,gfp_t gfp)562 void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
563 {
564 struct devres_group *grp;
565 unsigned long flags;
566
567 grp = kmalloc(sizeof(*grp), gfp);
568 if (unlikely(!grp))
569 return NULL;
570
571 grp->node[0].release = &group_open_release;
572 grp->node[1].release = &group_close_release;
573 INIT_LIST_HEAD(&grp->node[0].entry);
574 INIT_LIST_HEAD(&grp->node[1].entry);
575 set_node_dbginfo(&grp->node[0], "grp<", 0);
576 set_node_dbginfo(&grp->node[1], "grp>", 0);
577 grp->id = grp;
578 if (id)
579 grp->id = id;
580
581 spin_lock_irqsave(&dev->devres_lock, flags);
582 add_dr(dev, &grp->node[0]);
583 spin_unlock_irqrestore(&dev->devres_lock, flags);
584 return grp->id;
585 }
586 EXPORT_SYMBOL_GPL(devres_open_group);
587
588 /* Find devres group with ID @id. If @id is NULL, look for the latest. */
find_group(struct device * dev,void * id)589 static struct devres_group * find_group(struct device *dev, void *id)
590 {
591 struct devres_node *node;
592
593 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
594 struct devres_group *grp;
595
596 if (node->release != &group_open_release)
597 continue;
598
599 grp = container_of(node, struct devres_group, node[0]);
600
601 if (id) {
602 if (grp->id == id)
603 return grp;
604 } else if (list_empty(&grp->node[1].entry))
605 return grp;
606 }
607
608 return NULL;
609 }
610
611 /**
612 * devres_close_group - Close a devres group
613 * @dev: Device to close devres group for
614 * @id: ID of target group, can be NULL
615 *
616 * Close the group identified by @id. If @id is NULL, the latest open
617 * group is selected.
618 */
devres_close_group(struct device * dev,void * id)619 void devres_close_group(struct device *dev, void *id)
620 {
621 struct devres_group *grp;
622 unsigned long flags;
623
624 spin_lock_irqsave(&dev->devres_lock, flags);
625
626 grp = find_group(dev, id);
627 if (grp)
628 add_dr(dev, &grp->node[1]);
629 else
630 WARN_ON(1);
631
632 spin_unlock_irqrestore(&dev->devres_lock, flags);
633 }
634 EXPORT_SYMBOL_GPL(devres_close_group);
635
636 /**
637 * devres_remove_group - Remove a devres group
638 * @dev: Device to remove group for
639 * @id: ID of target group, can be NULL
640 *
641 * Remove the group identified by @id. If @id is NULL, the latest
642 * open group is selected. Note that removing a group doesn't affect
643 * any other resources.
644 */
devres_remove_group(struct device * dev,void * id)645 void devres_remove_group(struct device *dev, void *id)
646 {
647 struct devres_group *grp;
648 unsigned long flags;
649
650 spin_lock_irqsave(&dev->devres_lock, flags);
651
652 grp = find_group(dev, id);
653 if (grp) {
654 list_del_init(&grp->node[0].entry);
655 list_del_init(&grp->node[1].entry);
656 devres_log(dev, &grp->node[0], "REM");
657 } else
658 WARN_ON(1);
659
660 spin_unlock_irqrestore(&dev->devres_lock, flags);
661
662 kfree(grp);
663 }
664 EXPORT_SYMBOL_GPL(devres_remove_group);
665
666 /**
667 * devres_release_group - Release resources in a devres group
668 * @dev: Device to release group for
669 * @id: ID of target group, can be NULL
670 *
671 * Release all resources in the group identified by @id. If @id is
672 * NULL, the latest open group is selected. The selected group and
673 * groups properly nested inside the selected group are removed.
674 *
675 * RETURNS:
676 * The number of released non-group resources.
677 */
devres_release_group(struct device * dev,void * id)678 int devres_release_group(struct device *dev, void *id)
679 {
680 struct devres_group *grp;
681 unsigned long flags;
682 int cnt = 0;
683
684 spin_lock_irqsave(&dev->devres_lock, flags);
685
686 grp = find_group(dev, id);
687 if (grp) {
688 struct list_head *first = &grp->node[0].entry;
689 struct list_head *end = &dev->devres_head;
690
691 if (!list_empty(&grp->node[1].entry))
692 end = grp->node[1].entry.next;
693
694 cnt = release_nodes(dev, first, end, flags);
695 } else {
696 WARN_ON(1);
697 spin_unlock_irqrestore(&dev->devres_lock, flags);
698 }
699
700 return cnt;
701 }
702 EXPORT_SYMBOL_GPL(devres_release_group);
703
704 /*
705 * Custom devres actions allow inserting a simple function call
706 * into the teadown sequence.
707 */
708
709 struct action_devres {
710 void *data;
711 void (*action)(void *);
712 };
713
devm_action_match(struct device * dev,void * res,void * p)714 static int devm_action_match(struct device *dev, void *res, void *p)
715 {
716 struct action_devres *devres = res;
717 struct action_devres *target = p;
718
719 return devres->action == target->action &&
720 devres->data == target->data;
721 }
722
devm_action_release(struct device * dev,void * res)723 static void devm_action_release(struct device *dev, void *res)
724 {
725 struct action_devres *devres = res;
726
727 devres->action(devres->data);
728 }
729
730 /**
731 * devm_add_action() - add a custom action to list of managed resources
732 * @dev: Device that owns the action
733 * @action: Function that should be called
734 * @data: Pointer to data passed to @action implementation
735 *
736 * This adds a custom action to the list of managed resources so that
737 * it gets executed as part of standard resource unwinding.
738 */
devm_add_action(struct device * dev,void (* action)(void *),void * data)739 int devm_add_action(struct device *dev, void (*action)(void *), void *data)
740 {
741 struct action_devres *devres;
742
743 devres = devres_alloc(devm_action_release,
744 sizeof(struct action_devres), GFP_KERNEL);
745 if (!devres)
746 return -ENOMEM;
747
748 devres->data = data;
749 devres->action = action;
750
751 devres_add(dev, devres);
752 return 0;
753 }
754 EXPORT_SYMBOL_GPL(devm_add_action);
755
756 /**
757 * devm_remove_action() - removes previously added custom action
758 * @dev: Device that owns the action
759 * @action: Function implementing the action
760 * @data: Pointer to data passed to @action implementation
761 *
762 * Removes instance of @action previously added by devm_add_action().
763 * Both action and data should match one of the existing entries.
764 */
devm_remove_action(struct device * dev,void (* action)(void *),void * data)765 void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
766 {
767 struct action_devres devres = {
768 .data = data,
769 .action = action,
770 };
771
772 WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
773 &devres));
774 }
775 EXPORT_SYMBOL_GPL(devm_remove_action);
776
777 /**
778 * devm_release_action() - release previously added custom action
779 * @dev: Device that owns the action
780 * @action: Function implementing the action
781 * @data: Pointer to data passed to @action implementation
782 *
783 * Releases and removes instance of @action previously added by
784 * devm_add_action(). Both action and data should match one of the
785 * existing entries.
786 */
devm_release_action(struct device * dev,void (* action)(void *),void * data)787 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
788 {
789 struct action_devres devres = {
790 .data = data,
791 .action = action,
792 };
793
794 WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
795 &devres));
796
797 }
798 EXPORT_SYMBOL_GPL(devm_release_action);
799
800 /*
801 * Managed kmalloc/kfree
802 */
devm_kmalloc_release(struct device * dev,void * res)803 static void devm_kmalloc_release(struct device *dev, void *res)
804 {
805 /* noop */
806 }
807
devm_kmalloc_match(struct device * dev,void * res,void * data)808 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
809 {
810 return res == data;
811 }
812
813 /**
814 * devm_kmalloc - Resource-managed kmalloc
815 * @dev: Device to allocate memory for
816 * @size: Allocation size
817 * @gfp: Allocation gfp flags
818 *
819 * Managed kmalloc. Memory allocated with this function is
820 * automatically freed on driver detach. Like all other devres
821 * resources, guaranteed alignment is unsigned long long.
822 *
823 * RETURNS:
824 * Pointer to allocated memory on success, NULL on failure.
825 */
devm_kmalloc(struct device * dev,size_t size,gfp_t gfp)826 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
827 {
828 struct devres *dr;
829
830 if (unlikely(!size))
831 return ZERO_SIZE_PTR;
832
833 /* use raw alloc_dr for kmalloc caller tracing */
834 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
835 if (unlikely(!dr))
836 return NULL;
837
838 /*
839 * This is named devm_kzalloc_release for historical reasons
840 * The initial implementation did not support kmalloc, only kzalloc
841 */
842 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
843 devres_add(dev, dr->data);
844 return dr->data;
845 }
846 EXPORT_SYMBOL_GPL(devm_kmalloc);
847
848 /**
849 * devm_krealloc - Resource-managed krealloc()
850 * @dev: Device to re-allocate memory for
851 * @ptr: Pointer to the memory chunk to re-allocate
852 * @new_size: New allocation size
853 * @gfp: Allocation gfp flags
854 *
855 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
856 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
857 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
858 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
859 * change the order in which the release callback for the re-alloc'ed devres
860 * will be called (except when falling back to devm_kmalloc() or when freeing
861 * resources when new_size is zero). The contents of the memory are preserved
862 * up to the lesser of new and old sizes.
863 */
devm_krealloc(struct device * dev,void * ptr,size_t new_size,gfp_t gfp)864 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
865 {
866 size_t total_new_size, total_old_size;
867 struct devres *old_dr, *new_dr;
868 unsigned long flags;
869
870 if (unlikely(!new_size)) {
871 devm_kfree(dev, ptr);
872 return ZERO_SIZE_PTR;
873 }
874
875 if (unlikely(ZERO_OR_NULL_PTR(ptr)))
876 return devm_kmalloc(dev, new_size, gfp);
877
878 if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
879 /*
880 * We cannot reliably realloc a const string returned by
881 * devm_kstrdup_const().
882 */
883 return NULL;
884
885 if (!check_dr_size(new_size, &total_new_size))
886 return NULL;
887
888 total_old_size = ksize(container_of(ptr, struct devres, data));
889 if (total_old_size == 0) {
890 WARN(1, "Pointer doesn't point to dynamically allocated memory.");
891 return NULL;
892 }
893
894 /*
895 * If new size is smaller or equal to the actual number of bytes
896 * allocated previously - just return the same pointer.
897 */
898 if (total_new_size <= total_old_size)
899 return ptr;
900
901 /*
902 * Otherwise: allocate new, larger chunk. We need to allocate before
903 * taking the lock as most probably the caller uses GFP_KERNEL.
904 */
905 new_dr = alloc_dr(devm_kmalloc_release,
906 total_new_size, gfp, dev_to_node(dev));
907 if (!new_dr)
908 return NULL;
909
910 /*
911 * The spinlock protects the linked list against concurrent
912 * modifications but not the resource itself.
913 */
914 spin_lock_irqsave(&dev->devres_lock, flags);
915
916 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
917 if (!old_dr) {
918 spin_unlock_irqrestore(&dev->devres_lock, flags);
919 kfree(new_dr);
920 WARN(1, "Memory chunk not managed or managed by a different device.");
921 return NULL;
922 }
923
924 replace_dr(dev, &old_dr->node, &new_dr->node);
925
926 spin_unlock_irqrestore(&dev->devres_lock, flags);
927
928 /*
929 * We can copy the memory contents after releasing the lock as we're
930 * no longer modyfing the list links.
931 */
932 memcpy(new_dr->data, old_dr->data,
933 total_old_size - offsetof(struct devres, data));
934 /*
935 * Same for releasing the old devres - it's now been removed from the
936 * list. This is also the reason why we must not use devm_kfree() - the
937 * links are no longer valid.
938 */
939 kfree(old_dr);
940
941 return new_dr->data;
942 }
943 EXPORT_SYMBOL_GPL(devm_krealloc);
944
945 /**
946 * devm_kstrdup - Allocate resource managed space and
947 * copy an existing string into that.
948 * @dev: Device to allocate memory for
949 * @s: the string to duplicate
950 * @gfp: the GFP mask used in the devm_kmalloc() call when
951 * allocating memory
952 * RETURNS:
953 * Pointer to allocated string on success, NULL on failure.
954 */
devm_kstrdup(struct device * dev,const char * s,gfp_t gfp)955 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
956 {
957 size_t size;
958 char *buf;
959
960 if (!s)
961 return NULL;
962
963 size = strlen(s) + 1;
964 buf = devm_kmalloc(dev, size, gfp);
965 if (buf)
966 memcpy(buf, s, size);
967 return buf;
968 }
969 EXPORT_SYMBOL_GPL(devm_kstrdup);
970
971 /**
972 * devm_kstrdup_const - resource managed conditional string duplication
973 * @dev: device for which to duplicate the string
974 * @s: the string to duplicate
975 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
976 *
977 * Strings allocated by devm_kstrdup_const will be automatically freed when
978 * the associated device is detached.
979 *
980 * RETURNS:
981 * Source string if it is in .rodata section otherwise it falls back to
982 * devm_kstrdup.
983 */
devm_kstrdup_const(struct device * dev,const char * s,gfp_t gfp)984 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
985 {
986 if (is_kernel_rodata((unsigned long)s))
987 return s;
988
989 return devm_kstrdup(dev, s, gfp);
990 }
991 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
992
993 /**
994 * devm_kvasprintf - Allocate resource managed space and format a string
995 * into that.
996 * @dev: Device to allocate memory for
997 * @gfp: the GFP mask used in the devm_kmalloc() call when
998 * allocating memory
999 * @fmt: The printf()-style format string
1000 * @ap: Arguments for the format string
1001 * RETURNS:
1002 * Pointer to allocated string on success, NULL on failure.
1003 */
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)1004 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1005 va_list ap)
1006 {
1007 unsigned int len;
1008 char *p;
1009 va_list aq;
1010
1011 va_copy(aq, ap);
1012 len = vsnprintf(NULL, 0, fmt, aq);
1013 va_end(aq);
1014
1015 p = devm_kmalloc(dev, len+1, gfp);
1016 if (!p)
1017 return NULL;
1018
1019 vsnprintf(p, len+1, fmt, ap);
1020
1021 return p;
1022 }
1023 EXPORT_SYMBOL(devm_kvasprintf);
1024
1025 /**
1026 * devm_kasprintf - Allocate resource managed space and format a string
1027 * into that.
1028 * @dev: Device to allocate memory for
1029 * @gfp: the GFP mask used in the devm_kmalloc() call when
1030 * allocating memory
1031 * @fmt: The printf()-style format string
1032 * @...: Arguments for the format string
1033 * RETURNS:
1034 * Pointer to allocated string on success, NULL on failure.
1035 */
devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1036 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1037 {
1038 va_list ap;
1039 char *p;
1040
1041 va_start(ap, fmt);
1042 p = devm_kvasprintf(dev, gfp, fmt, ap);
1043 va_end(ap);
1044
1045 return p;
1046 }
1047 EXPORT_SYMBOL_GPL(devm_kasprintf);
1048
1049 /**
1050 * devm_kfree - Resource-managed kfree
1051 * @dev: Device this memory belongs to
1052 * @p: Memory to free
1053 *
1054 * Free memory allocated with devm_kmalloc().
1055 */
devm_kfree(struct device * dev,const void * p)1056 void devm_kfree(struct device *dev, const void *p)
1057 {
1058 int rc;
1059
1060 /*
1061 * Special cases: pointer to a string in .rodata returned by
1062 * devm_kstrdup_const() or NULL/ZERO ptr.
1063 */
1064 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1065 return;
1066
1067 rc = devres_destroy(dev, devm_kmalloc_release,
1068 devm_kmalloc_match, (void *)p);
1069 WARN_ON(rc);
1070 }
1071 EXPORT_SYMBOL_GPL(devm_kfree);
1072
1073 /**
1074 * devm_kmemdup - Resource-managed kmemdup
1075 * @dev: Device this memory belongs to
1076 * @src: Memory region to duplicate
1077 * @len: Memory region length
1078 * @gfp: GFP mask to use
1079 *
1080 * Duplicate region of a memory using resource managed kmalloc
1081 */
devm_kmemdup(struct device * dev,const void * src,size_t len,gfp_t gfp)1082 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1083 {
1084 void *p;
1085
1086 p = devm_kmalloc(dev, len, gfp);
1087 if (p)
1088 memcpy(p, src, len);
1089
1090 return p;
1091 }
1092 EXPORT_SYMBOL_GPL(devm_kmemdup);
1093
1094 struct pages_devres {
1095 unsigned long addr;
1096 unsigned int order;
1097 };
1098
devm_pages_match(struct device * dev,void * res,void * p)1099 static int devm_pages_match(struct device *dev, void *res, void *p)
1100 {
1101 struct pages_devres *devres = res;
1102 struct pages_devres *target = p;
1103
1104 return devres->addr == target->addr;
1105 }
1106
devm_pages_release(struct device * dev,void * res)1107 static void devm_pages_release(struct device *dev, void *res)
1108 {
1109 struct pages_devres *devres = res;
1110
1111 free_pages(devres->addr, devres->order);
1112 }
1113
1114 /**
1115 * devm_get_free_pages - Resource-managed __get_free_pages
1116 * @dev: Device to allocate memory for
1117 * @gfp_mask: Allocation gfp flags
1118 * @order: Allocation size is (1 << order) pages
1119 *
1120 * Managed get_free_pages. Memory allocated with this function is
1121 * automatically freed on driver detach.
1122 *
1123 * RETURNS:
1124 * Address of allocated memory on success, 0 on failure.
1125 */
1126
devm_get_free_pages(struct device * dev,gfp_t gfp_mask,unsigned int order)1127 unsigned long devm_get_free_pages(struct device *dev,
1128 gfp_t gfp_mask, unsigned int order)
1129 {
1130 struct pages_devres *devres;
1131 unsigned long addr;
1132
1133 addr = __get_free_pages(gfp_mask, order);
1134
1135 if (unlikely(!addr))
1136 return 0;
1137
1138 devres = devres_alloc(devm_pages_release,
1139 sizeof(struct pages_devres), GFP_KERNEL);
1140 if (unlikely(!devres)) {
1141 free_pages(addr, order);
1142 return 0;
1143 }
1144
1145 devres->addr = addr;
1146 devres->order = order;
1147
1148 devres_add(dev, devres);
1149 return addr;
1150 }
1151 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1152
1153 /**
1154 * devm_free_pages - Resource-managed free_pages
1155 * @dev: Device this memory belongs to
1156 * @addr: Memory to free
1157 *
1158 * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1159 * there is no need to supply the @order.
1160 */
devm_free_pages(struct device * dev,unsigned long addr)1161 void devm_free_pages(struct device *dev, unsigned long addr)
1162 {
1163 struct pages_devres devres = { .addr = addr };
1164
1165 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1166 &devres));
1167 }
1168 EXPORT_SYMBOL_GPL(devm_free_pages);
1169
devm_percpu_release(struct device * dev,void * pdata)1170 static void devm_percpu_release(struct device *dev, void *pdata)
1171 {
1172 void __percpu *p;
1173
1174 p = *(void __percpu **)pdata;
1175 free_percpu(p);
1176 }
1177
devm_percpu_match(struct device * dev,void * data,void * p)1178 static int devm_percpu_match(struct device *dev, void *data, void *p)
1179 {
1180 struct devres *devr = container_of(data, struct devres, data);
1181
1182 return *(void **)devr->data == p;
1183 }
1184
1185 /**
1186 * __devm_alloc_percpu - Resource-managed alloc_percpu
1187 * @dev: Device to allocate per-cpu memory for
1188 * @size: Size of per-cpu memory to allocate
1189 * @align: Alignment of per-cpu memory to allocate
1190 *
1191 * Managed alloc_percpu. Per-cpu memory allocated with this function is
1192 * automatically freed on driver detach.
1193 *
1194 * RETURNS:
1195 * Pointer to allocated memory on success, NULL on failure.
1196 */
__devm_alloc_percpu(struct device * dev,size_t size,size_t align)1197 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1198 size_t align)
1199 {
1200 void *p;
1201 void __percpu *pcpu;
1202
1203 pcpu = __alloc_percpu(size, align);
1204 if (!pcpu)
1205 return NULL;
1206
1207 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1208 if (!p) {
1209 free_percpu(pcpu);
1210 return NULL;
1211 }
1212
1213 *(void __percpu **)p = pcpu;
1214
1215 devres_add(dev, p);
1216
1217 return pcpu;
1218 }
1219 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1220
1221 /**
1222 * devm_free_percpu - Resource-managed free_percpu
1223 * @dev: Device this memory belongs to
1224 * @pdata: Per-cpu memory to free
1225 *
1226 * Free memory allocated with devm_alloc_percpu().
1227 */
devm_free_percpu(struct device * dev,void __percpu * pdata)1228 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1229 {
1230 WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1231 (void *)pdata));
1232 }
1233 EXPORT_SYMBOL_GPL(devm_free_percpu);
1234