1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018-2020 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20 * it for entirely different regions. In that case the arch code needs to
21 * override the variable below for dma-direct to work properly.
22 */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
phys_to_dma_direct(struct device * dev,phys_addr_t phys)25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 phys_addr_t phys)
27 {
28 if (force_dma_unencrypted(dev))
29 return phys_to_dma_unencrypted(dev, phys);
30 return phys_to_dma(dev, phys);
31 }
32
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)33 static inline struct page *dma_direct_to_page(struct device *dev,
34 dma_addr_t dma_addr)
35 {
36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
dma_direct_get_required_mask(struct device * dev)39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 u64 max_dma = phys_to_dma_direct(dev, phys);
43
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
dma_direct_optimal_gfp_mask(struct device * dev,u64 dma_mask,u64 * phys_limit)47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 u64 *phys_limit)
49 {
50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52 /*
53 * Optimistically try the zone that the physical address mask falls
54 * into first. If that returns memory that isn't actually addressable
55 * we will fallback to the next lower zone and try again.
56 *
57 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 * zones.
59 */
60 *phys_limit = dma_to_phys(dev, dma_limit);
61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 return GFP_DMA;
63 if (*phys_limit <= DMA_BIT_MASK(32) &&
64 !zone_dma32_are_empty())
65 return GFP_DMA32;
66 return 0;
67 }
68
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)69 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
70 {
71 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72
73 if (dma_addr == DMA_MAPPING_ERROR)
74 return false;
75 return dma_addr + size - 1 <=
76 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp)79 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
80 gfp_t gfp)
81 {
82 int node = dev_to_node(dev);
83 struct page *page = NULL;
84 u64 phys_limit;
85
86 WARN_ON_ONCE(!PAGE_ALIGNED(size));
87
88 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
89 &phys_limit);
90 page = dma_alloc_contiguous(dev, size, gfp);
91 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
92 dma_free_contiguous(dev, page, size);
93 page = NULL;
94 }
95 again:
96 if (!page)
97 page = alloc_pages_node(node, gfp, get_order(size));
98 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
99 dma_free_contiguous(dev, page, size);
100 page = NULL;
101
102 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
103 phys_limit < DMA_BIT_MASK(64) &&
104 !(gfp & (GFP_DMA32 | GFP_DMA)) &&
105 !zone_dma32_are_empty()) {
106 gfp |= GFP_DMA32;
107 goto again;
108 }
109
110 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
111 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
112 goto again;
113 }
114 }
115
116 return page;
117 }
118
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)119 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
120 dma_addr_t *dma_handle, gfp_t gfp)
121 {
122 struct page *page;
123 u64 phys_mask;
124 void *ret;
125
126 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
127 &phys_mask);
128 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
129 if (!page)
130 return NULL;
131 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
132 return ret;
133 }
134
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)135 void *dma_direct_alloc(struct device *dev, size_t size,
136 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
137 {
138 struct page *page;
139 void *ret;
140 int err;
141
142 size = PAGE_ALIGN(size);
143 if (attrs & DMA_ATTR_NO_WARN)
144 gfp |= __GFP_NOWARN;
145
146 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
147 !force_dma_unencrypted(dev)) {
148 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
149 if (!page)
150 return NULL;
151 /* remove any dirty cache lines on the kernel alias */
152 if (!PageHighMem(page))
153 arch_dma_prep_coherent(page, size);
154 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
155 /* return the page pointer as the opaque cookie */
156 return page;
157 }
158
159 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
160 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
161 !dev_is_dma_coherent(dev))
162 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
163
164 /*
165 * Remapping or decrypting memory may block. If either is required and
166 * we can't block, allocate the memory from the atomic pools.
167 */
168 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
169 !gfpflags_allow_blocking(gfp) &&
170 (force_dma_unencrypted(dev) ||
171 (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
172 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
173
174 /* we always manually zero the memory once we are done */
175 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
176 if (!page)
177 return NULL;
178
179 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
180 !dev_is_dma_coherent(dev)) ||
181 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
182 /* remove any dirty cache lines on the kernel alias */
183 arch_dma_prep_coherent(page, size);
184
185 /* create a coherent mapping */
186 ret = dma_common_contiguous_remap(page, size,
187 dma_pgprot(dev, PAGE_KERNEL, attrs),
188 __builtin_return_address(0));
189 if (!ret)
190 goto out_free_pages;
191 if (force_dma_unencrypted(dev)) {
192 err = set_memory_decrypted((unsigned long)ret,
193 PFN_UP(size));
194 if (err)
195 goto out_free_pages;
196 }
197 memset(ret, 0, size);
198 goto done;
199 }
200
201 if (PageHighMem(page)) {
202 /*
203 * Depending on the cma= arguments and per-arch setup
204 * dma_alloc_contiguous could return highmem pages.
205 * Without remapping there is no way to return them here,
206 * so log an error and fail.
207 */
208 dev_info(dev, "Rejecting highmem page from CMA.\n");
209 goto out_free_pages;
210 }
211
212 ret = page_address(page);
213 if (force_dma_unencrypted(dev)) {
214 err = set_memory_decrypted((unsigned long)ret,
215 PFN_UP(size));
216 if (err)
217 goto out_free_pages;
218 }
219
220 memset(ret, 0, size);
221
222 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
223 !dev_is_dma_coherent(dev)) {
224 arch_dma_prep_coherent(page, size);
225 ret = arch_dma_set_uncached(ret, size);
226 if (IS_ERR(ret))
227 goto out_encrypt_pages;
228 }
229 done:
230 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
231 return ret;
232
233 out_encrypt_pages:
234 if (force_dma_unencrypted(dev)) {
235 err = set_memory_encrypted((unsigned long)page_address(page),
236 PFN_UP(size));
237 /* If memory cannot be re-encrypted, it must be leaked */
238 if (err)
239 return NULL;
240 }
241 out_free_pages:
242 dma_free_contiguous(dev, page, size);
243 return NULL;
244 }
245
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)246 void dma_direct_free(struct device *dev, size_t size,
247 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
248 {
249 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
250 !force_dma_unencrypted(dev)) {
251 /* cpu_addr is a struct page cookie, not a kernel address */
252 dma_free_contiguous(dev, cpu_addr, size);
253 return;
254 }
255
256 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
257 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
258 !dev_is_dma_coherent(dev)) {
259 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
260 return;
261 }
262
263 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
264 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
265 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
266 return;
267
268 if (force_dma_unencrypted(dev))
269 set_memory_encrypted((unsigned long)cpu_addr, PFN_UP(size));
270
271 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
272 vunmap(cpu_addr);
273 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
274 arch_dma_clear_uncached(cpu_addr, size);
275
276 dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
277 }
278
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)279 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
280 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
281 {
282 struct page *page;
283 void *ret;
284
285 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
286 force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
287 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
288
289 page = __dma_direct_alloc_pages(dev, size, gfp);
290 if (!page)
291 return NULL;
292 if (PageHighMem(page)) {
293 /*
294 * Depending on the cma= arguments and per-arch setup
295 * dma_alloc_contiguous could return highmem pages.
296 * Without remapping there is no way to return them here,
297 * so log an error and fail.
298 */
299 dev_info(dev, "Rejecting highmem page from CMA.\n");
300 goto out_free_pages;
301 }
302
303 ret = page_address(page);
304 if (force_dma_unencrypted(dev)) {
305 if (set_memory_decrypted((unsigned long)ret, PFN_UP(size)))
306 goto out_free_pages;
307 }
308 memset(ret, 0, size);
309 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
310 return page;
311 out_free_pages:
312 dma_free_contiguous(dev, page, size);
313 return NULL;
314 }
315
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)316 void dma_direct_free_pages(struct device *dev, size_t size,
317 struct page *page, dma_addr_t dma_addr,
318 enum dma_data_direction dir)
319 {
320 void *vaddr = page_address(page);
321
322 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
323 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
324 dma_free_from_pool(dev, vaddr, size))
325 return;
326
327 if (force_dma_unencrypted(dev))
328 set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
329
330 dma_free_contiguous(dev, page, size);
331 }
332
333 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
334 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)335 void dma_direct_sync_sg_for_device(struct device *dev,
336 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
337 {
338 struct scatterlist *sg;
339 int i;
340
341 for_each_sg(sgl, sg, nents, i) {
342 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
343
344 if (unlikely(is_swiotlb_buffer(paddr)))
345 swiotlb_tbl_sync_single(dev, paddr, sg->length,
346 dir, SYNC_FOR_DEVICE);
347
348 if (!dev_is_dma_coherent(dev))
349 arch_sync_dma_for_device(paddr, sg->length,
350 dir);
351 }
352 }
353 #endif
354
355 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
356 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
357 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)358 void dma_direct_sync_sg_for_cpu(struct device *dev,
359 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
360 {
361 struct scatterlist *sg;
362 int i;
363
364 for_each_sg(sgl, sg, nents, i) {
365 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
366
367 if (!dev_is_dma_coherent(dev))
368 arch_sync_dma_for_cpu(paddr, sg->length, dir);
369
370 if (unlikely(is_swiotlb_buffer(paddr)))
371 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
372 SYNC_FOR_CPU);
373
374 if (dir == DMA_FROM_DEVICE)
375 arch_dma_mark_clean(paddr, sg->length);
376 }
377
378 if (!dev_is_dma_coherent(dev))
379 arch_sync_dma_for_cpu_all();
380 }
381
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)382 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
383 int nents, enum dma_data_direction dir, unsigned long attrs)
384 {
385 struct scatterlist *sg;
386 int i;
387
388 for_each_sg(sgl, sg, nents, i)
389 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
390 attrs);
391 }
392 #endif
393
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)394 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
395 enum dma_data_direction dir, unsigned long attrs)
396 {
397 int i;
398 struct scatterlist *sg;
399
400 for_each_sg(sgl, sg, nents, i) {
401 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
402 sg->offset, sg->length, dir, attrs);
403 if (sg->dma_address == DMA_MAPPING_ERROR)
404 goto out_unmap;
405 sg_dma_len(sg) = sg->length;
406 }
407
408 return nents;
409
410 out_unmap:
411 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
412 return 0;
413 }
414
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)415 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
416 size_t size, enum dma_data_direction dir, unsigned long attrs)
417 {
418 dma_addr_t dma_addr = paddr;
419
420 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
421 dev_err_once(dev,
422 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
423 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
424 WARN_ON_ONCE(1);
425 return DMA_MAPPING_ERROR;
426 }
427
428 return dma_addr;
429 }
430
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)431 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
432 void *cpu_addr, dma_addr_t dma_addr, size_t size,
433 unsigned long attrs)
434 {
435 struct page *page = dma_direct_to_page(dev, dma_addr);
436 int ret;
437
438 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
439 if (!ret)
440 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
441 return ret;
442 }
443
dma_direct_can_mmap(struct device * dev)444 bool dma_direct_can_mmap(struct device *dev)
445 {
446 return dev_is_dma_coherent(dev) ||
447 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
448 }
449
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)450 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
451 void *cpu_addr, dma_addr_t dma_addr, size_t size,
452 unsigned long attrs)
453 {
454 unsigned long user_count = vma_pages(vma);
455 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
456 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
457 int ret = -ENXIO;
458
459 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
460
461 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
462 return ret;
463
464 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
465 return -ENXIO;
466 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
467 user_count << PAGE_SHIFT, vma->vm_page_prot);
468 }
469
dma_direct_supported(struct device * dev,u64 mask)470 int dma_direct_supported(struct device *dev, u64 mask)
471 {
472 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
473
474 /*
475 * Because 32-bit DMA masks are so common we expect every architecture
476 * to be able to satisfy them - either by not supporting more physical
477 * memory, or by providing a ZONE_DMA32. If neither is the case, the
478 * architecture needs to use an IOMMU instead of the direct mapping.
479 */
480 if (mask >= DMA_BIT_MASK(32))
481 return 1;
482
483 /*
484 * This check needs to be against the actual bit mask value, so use
485 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
486 * part of the check.
487 */
488 if (IS_ENABLED(CONFIG_ZONE_DMA))
489 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
490 return mask >= phys_to_dma_unencrypted(dev, min_mask);
491 }
492
dma_direct_max_mapping_size(struct device * dev)493 size_t dma_direct_max_mapping_size(struct device *dev)
494 {
495 /* If SWIOTLB is active, use its maximum mapping size */
496 if (is_swiotlb_active() &&
497 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
498 return swiotlb_max_mapping_size(dev);
499 return SIZE_MAX;
500 }
501
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)502 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
503 {
504 return !dev_is_dma_coherent(dev) ||
505 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
506 }
507
508 /**
509 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
510 * @dev: device pointer; needed to "own" the alloced memory.
511 * @cpu_start: beginning of memory region covered by this offset.
512 * @dma_start: beginning of DMA/PCI region covered by this offset.
513 * @size: size of the region.
514 *
515 * This is for the simple case of a uniform offset which cannot
516 * be discovered by "dma-ranges".
517 *
518 * It returns -ENOMEM if out of memory, -EINVAL if a map
519 * already exists, 0 otherwise.
520 *
521 * Note: any call to this from a driver is a bug. The mapping needs
522 * to be described by the device tree or other firmware interfaces.
523 */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)524 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
525 dma_addr_t dma_start, u64 size)
526 {
527 struct bus_dma_region *map;
528 u64 offset = (u64)cpu_start - (u64)dma_start;
529
530 if (dev->dma_range_map) {
531 dev_err(dev, "attempt to add DMA range to existing map\n");
532 return -EINVAL;
533 }
534
535 if (!offset)
536 return 0;
537
538 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
539 if (!map)
540 return -ENOMEM;
541 map[0].cpu_start = cpu_start;
542 map[0].dma_start = dma_start;
543 map[0].offset = offset;
544 map[0].size = size;
545 dev->dma_range_map = map;
546 return 0;
547 }
548 EXPORT_SYMBOL_GPL(dma_direct_set_offset);
549