• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
phys_to_dma_direct(struct device * dev,phys_addr_t phys)25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
dma_direct_get_required_mask(struct device * dev)39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
dma_direct_optimal_gfp_mask(struct device * dev,u64 dma_mask,u64 * phys_limit)47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 				  u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51 
52 	/*
53 	 * Optimistically try the zone that the physical address mask falls
54 	 * into first.  If that returns memory that isn't actually addressable
55 	 * we will fallback to the next lower zone and try again.
56 	 *
57 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 	 * zones.
59 	 */
60 	*phys_limit = dma_to_phys(dev, dma_limit);
61 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 		return GFP_DMA;
63 	if (*phys_limit <= DMA_BIT_MASK(32) &&
64 		!zone_dma32_are_empty())
65 		return GFP_DMA32;
66 	return 0;
67 }
68 
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)69 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
70 {
71 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72 
73 	if (dma_addr == DMA_MAPPING_ERROR)
74 		return false;
75 	return dma_addr + size - 1 <=
76 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78 
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp)79 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
80 		gfp_t gfp)
81 {
82 	int node = dev_to_node(dev);
83 	struct page *page = NULL;
84 	u64 phys_limit;
85 
86 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
87 
88 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
89 					   &phys_limit);
90 	page = dma_alloc_contiguous(dev, size, gfp);
91 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
92 		dma_free_contiguous(dev, page, size);
93 		page = NULL;
94 	}
95 again:
96 	if (!page)
97 		page = alloc_pages_node(node, gfp, get_order(size));
98 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
99 		dma_free_contiguous(dev, page, size);
100 		page = NULL;
101 
102 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
103 		    phys_limit < DMA_BIT_MASK(64) &&
104 		    !(gfp & (GFP_DMA32 | GFP_DMA)) &&
105 		    !zone_dma32_are_empty()) {
106 			gfp |= GFP_DMA32;
107 			goto again;
108 		}
109 
110 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
111 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
112 			goto again;
113 		}
114 	}
115 
116 	return page;
117 }
118 
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)119 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
120 		dma_addr_t *dma_handle, gfp_t gfp)
121 {
122 	struct page *page;
123 	u64 phys_mask;
124 	void *ret;
125 
126 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
127 					   &phys_mask);
128 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
129 	if (!page)
130 		return NULL;
131 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
132 	return ret;
133 }
134 
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)135 void *dma_direct_alloc(struct device *dev, size_t size,
136 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
137 {
138 	struct page *page;
139 	void *ret;
140 	int err;
141 
142 	size = PAGE_ALIGN(size);
143 	if (attrs & DMA_ATTR_NO_WARN)
144 		gfp |= __GFP_NOWARN;
145 
146 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
147 	    !force_dma_unencrypted(dev)) {
148 		page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
149 		if (!page)
150 			return NULL;
151 		/* remove any dirty cache lines on the kernel alias */
152 		if (!PageHighMem(page))
153 			arch_dma_prep_coherent(page, size);
154 		*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
155 		/* return the page pointer as the opaque cookie */
156 		return page;
157 	}
158 
159 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
160 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
161 	    !dev_is_dma_coherent(dev))
162 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
163 
164 	/*
165 	 * Remapping or decrypting memory may block. If either is required and
166 	 * we can't block, allocate the memory from the atomic pools.
167 	 */
168 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
169 	    !gfpflags_allow_blocking(gfp) &&
170 	    (force_dma_unencrypted(dev) ||
171 	     (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
172 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
173 
174 	/* we always manually zero the memory once we are done */
175 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
176 	if (!page)
177 		return NULL;
178 
179 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
180 	     !dev_is_dma_coherent(dev)) ||
181 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
182 		/* remove any dirty cache lines on the kernel alias */
183 		arch_dma_prep_coherent(page, size);
184 
185 		/* create a coherent mapping */
186 		ret = dma_common_contiguous_remap(page, size,
187 				dma_pgprot(dev, PAGE_KERNEL, attrs),
188 				__builtin_return_address(0));
189 		if (!ret)
190 			goto out_free_pages;
191 		if (force_dma_unencrypted(dev)) {
192 			err = set_memory_decrypted((unsigned long)ret,
193 						   PFN_UP(size));
194 			if (err)
195 				goto out_free_pages;
196 		}
197 		memset(ret, 0, size);
198 		goto done;
199 	}
200 
201 	if (PageHighMem(page)) {
202 		/*
203 		 * Depending on the cma= arguments and per-arch setup
204 		 * dma_alloc_contiguous could return highmem pages.
205 		 * Without remapping there is no way to return them here,
206 		 * so log an error and fail.
207 		 */
208 		dev_info(dev, "Rejecting highmem page from CMA.\n");
209 		goto out_free_pages;
210 	}
211 
212 	ret = page_address(page);
213 	if (force_dma_unencrypted(dev)) {
214 		err = set_memory_decrypted((unsigned long)ret,
215 					   PFN_UP(size));
216 		if (err)
217 			goto out_free_pages;
218 	}
219 
220 	memset(ret, 0, size);
221 
222 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
223 	    !dev_is_dma_coherent(dev)) {
224 		arch_dma_prep_coherent(page, size);
225 		ret = arch_dma_set_uncached(ret, size);
226 		if (IS_ERR(ret))
227 			goto out_encrypt_pages;
228 	}
229 done:
230 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
231 	return ret;
232 
233 out_encrypt_pages:
234 	if (force_dma_unencrypted(dev)) {
235 		err = set_memory_encrypted((unsigned long)page_address(page),
236 					   PFN_UP(size));
237 		/* If memory cannot be re-encrypted, it must be leaked */
238 		if (err)
239 			return NULL;
240 	}
241 out_free_pages:
242 	dma_free_contiguous(dev, page, size);
243 	return NULL;
244 }
245 
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)246 void dma_direct_free(struct device *dev, size_t size,
247 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
248 {
249 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
250 	    !force_dma_unencrypted(dev)) {
251 		/* cpu_addr is a struct page cookie, not a kernel address */
252 		dma_free_contiguous(dev, cpu_addr, size);
253 		return;
254 	}
255 
256 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
257 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
258 	    !dev_is_dma_coherent(dev)) {
259 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
260 		return;
261 	}
262 
263 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
264 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
265 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
266 		return;
267 
268 	if (force_dma_unencrypted(dev))
269 		set_memory_encrypted((unsigned long)cpu_addr, PFN_UP(size));
270 
271 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
272 		vunmap(cpu_addr);
273 	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
274 		arch_dma_clear_uncached(cpu_addr, size);
275 
276 	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
277 }
278 
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)279 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
280 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
281 {
282 	struct page *page;
283 	void *ret;
284 
285 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
286 	    force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
287 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
288 
289 	page = __dma_direct_alloc_pages(dev, size, gfp);
290 	if (!page)
291 		return NULL;
292 	if (PageHighMem(page)) {
293 		/*
294 		 * Depending on the cma= arguments and per-arch setup
295 		 * dma_alloc_contiguous could return highmem pages.
296 		 * Without remapping there is no way to return them here,
297 		 * so log an error and fail.
298 		 */
299 		dev_info(dev, "Rejecting highmem page from CMA.\n");
300 		goto out_free_pages;
301 	}
302 
303 	ret = page_address(page);
304 	if (force_dma_unencrypted(dev)) {
305 		if (set_memory_decrypted((unsigned long)ret, PFN_UP(size)))
306 			goto out_free_pages;
307 	}
308 	memset(ret, 0, size);
309 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
310 	return page;
311 out_free_pages:
312 	dma_free_contiguous(dev, page, size);
313 	return NULL;
314 }
315 
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)316 void dma_direct_free_pages(struct device *dev, size_t size,
317 		struct page *page, dma_addr_t dma_addr,
318 		enum dma_data_direction dir)
319 {
320 	void *vaddr = page_address(page);
321 
322 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
323 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
324 	    dma_free_from_pool(dev, vaddr, size))
325 		return;
326 
327 	if (force_dma_unencrypted(dev))
328 		set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
329 
330 	dma_free_contiguous(dev, page, size);
331 }
332 
333 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
334     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)335 void dma_direct_sync_sg_for_device(struct device *dev,
336 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
337 {
338 	struct scatterlist *sg;
339 	int i;
340 
341 	for_each_sg(sgl, sg, nents, i) {
342 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
343 
344 		if (unlikely(is_swiotlb_buffer(paddr)))
345 			swiotlb_tbl_sync_single(dev, paddr, sg->length,
346 					dir, SYNC_FOR_DEVICE);
347 
348 		if (!dev_is_dma_coherent(dev))
349 			arch_sync_dma_for_device(paddr, sg->length,
350 					dir);
351 	}
352 }
353 #endif
354 
355 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
356     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
357     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)358 void dma_direct_sync_sg_for_cpu(struct device *dev,
359 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
360 {
361 	struct scatterlist *sg;
362 	int i;
363 
364 	for_each_sg(sgl, sg, nents, i) {
365 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
366 
367 		if (!dev_is_dma_coherent(dev))
368 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
369 
370 		if (unlikely(is_swiotlb_buffer(paddr)))
371 			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
372 					SYNC_FOR_CPU);
373 
374 		if (dir == DMA_FROM_DEVICE)
375 			arch_dma_mark_clean(paddr, sg->length);
376 	}
377 
378 	if (!dev_is_dma_coherent(dev))
379 		arch_sync_dma_for_cpu_all();
380 }
381 
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)382 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
383 		int nents, enum dma_data_direction dir, unsigned long attrs)
384 {
385 	struct scatterlist *sg;
386 	int i;
387 
388 	for_each_sg(sgl, sg, nents, i)
389 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
390 			     attrs);
391 }
392 #endif
393 
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)394 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
395 		enum dma_data_direction dir, unsigned long attrs)
396 {
397 	int i;
398 	struct scatterlist *sg;
399 
400 	for_each_sg(sgl, sg, nents, i) {
401 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
402 				sg->offset, sg->length, dir, attrs);
403 		if (sg->dma_address == DMA_MAPPING_ERROR)
404 			goto out_unmap;
405 		sg_dma_len(sg) = sg->length;
406 	}
407 
408 	return nents;
409 
410 out_unmap:
411 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
412 	return 0;
413 }
414 
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)415 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
416 		size_t size, enum dma_data_direction dir, unsigned long attrs)
417 {
418 	dma_addr_t dma_addr = paddr;
419 
420 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
421 		dev_err_once(dev,
422 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
423 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
424 		WARN_ON_ONCE(1);
425 		return DMA_MAPPING_ERROR;
426 	}
427 
428 	return dma_addr;
429 }
430 
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)431 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
432 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
433 		unsigned long attrs)
434 {
435 	struct page *page = dma_direct_to_page(dev, dma_addr);
436 	int ret;
437 
438 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
439 	if (!ret)
440 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
441 	return ret;
442 }
443 
dma_direct_can_mmap(struct device * dev)444 bool dma_direct_can_mmap(struct device *dev)
445 {
446 	return dev_is_dma_coherent(dev) ||
447 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
448 }
449 
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)450 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
451 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
452 		unsigned long attrs)
453 {
454 	unsigned long user_count = vma_pages(vma);
455 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
456 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
457 	int ret = -ENXIO;
458 
459 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
460 
461 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
462 		return ret;
463 
464 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
465 		return -ENXIO;
466 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
467 			user_count << PAGE_SHIFT, vma->vm_page_prot);
468 }
469 
dma_direct_supported(struct device * dev,u64 mask)470 int dma_direct_supported(struct device *dev, u64 mask)
471 {
472 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
473 
474 	/*
475 	 * Because 32-bit DMA masks are so common we expect every architecture
476 	 * to be able to satisfy them - either by not supporting more physical
477 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
478 	 * architecture needs to use an IOMMU instead of the direct mapping.
479 	 */
480 	if (mask >= DMA_BIT_MASK(32))
481 		return 1;
482 
483 	/*
484 	 * This check needs to be against the actual bit mask value, so use
485 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
486 	 * part of the check.
487 	 */
488 	if (IS_ENABLED(CONFIG_ZONE_DMA))
489 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
490 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
491 }
492 
dma_direct_max_mapping_size(struct device * dev)493 size_t dma_direct_max_mapping_size(struct device *dev)
494 {
495 	/* If SWIOTLB is active, use its maximum mapping size */
496 	if (is_swiotlb_active() &&
497 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
498 		return swiotlb_max_mapping_size(dev);
499 	return SIZE_MAX;
500 }
501 
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)502 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
503 {
504 	return !dev_is_dma_coherent(dev) ||
505 		is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
506 }
507 
508 /**
509  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
510  * @dev:	device pointer; needed to "own" the alloced memory.
511  * @cpu_start:  beginning of memory region covered by this offset.
512  * @dma_start:  beginning of DMA/PCI region covered by this offset.
513  * @size:	size of the region.
514  *
515  * This is for the simple case of a uniform offset which cannot
516  * be discovered by "dma-ranges".
517  *
518  * It returns -ENOMEM if out of memory, -EINVAL if a map
519  * already exists, 0 otherwise.
520  *
521  * Note: any call to this from a driver is a bug.  The mapping needs
522  * to be described by the device tree or other firmware interfaces.
523  */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)524 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
525 			 dma_addr_t dma_start, u64 size)
526 {
527 	struct bus_dma_region *map;
528 	u64 offset = (u64)cpu_start - (u64)dma_start;
529 
530 	if (dev->dma_range_map) {
531 		dev_err(dev, "attempt to add DMA range to existing map\n");
532 		return -EINVAL;
533 	}
534 
535 	if (!offset)
536 		return 0;
537 
538 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
539 	if (!map)
540 		return -ENOMEM;
541 	map[0].cpu_start = cpu_start;
542 	map[0].dma_start = dma_start;
543 	map[0].offset = offset;
544 	map[0].size = size;
545 	dev->dma_range_map = map;
546 	return 0;
547 }
548 EXPORT_SYMBOL_GPL(dma_direct_set_offset);
549