• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <linux/android_kabi.h>
16 #include <asm/page.h>
17 
18 /**
19  * typedef dma_cookie_t - an opaque DMA cookie
20  *
21  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
22  */
23 typedef s32 dma_cookie_t;
24 #define DMA_MIN_COOKIE	1
25 
dma_submit_error(dma_cookie_t cookie)26 static inline int dma_submit_error(dma_cookie_t cookie)
27 {
28 	return cookie < 0 ? cookie : 0;
29 }
30 
31 /**
32  * enum dma_status - DMA transaction status
33  * @DMA_COMPLETE: transaction completed
34  * @DMA_IN_PROGRESS: transaction not yet processed
35  * @DMA_PAUSED: transaction is paused
36  * @DMA_ERROR: transaction failed
37  */
38 enum dma_status {
39 	DMA_COMPLETE,
40 	DMA_IN_PROGRESS,
41 	DMA_PAUSED,
42 	DMA_ERROR,
43 	DMA_OUT_OF_ORDER,
44 };
45 
46 /**
47  * enum dma_transaction_type - DMA transaction types/indexes
48  *
49  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
50  * automatically set as dma devices are registered.
51  */
52 enum dma_transaction_type {
53 	DMA_MEMCPY,
54 	DMA_XOR,
55 	DMA_PQ,
56 	DMA_XOR_VAL,
57 	DMA_PQ_VAL,
58 	DMA_MEMSET,
59 	DMA_MEMSET_SG,
60 	DMA_INTERRUPT,
61 	DMA_PRIVATE,
62 	DMA_ASYNC_TX,
63 	DMA_SLAVE,
64 	DMA_CYCLIC,
65 	DMA_INTERLEAVE,
66 	DMA_COMPLETION_NO_ORDER,
67 	DMA_REPEAT,
68 	DMA_LOAD_EOT,
69 /* last transaction type for creation of the capabilities mask */
70 	DMA_TX_TYPE_END,
71 };
72 
73 /**
74  * enum dma_transfer_direction - dma transfer mode and direction indicator
75  * @DMA_MEM_TO_MEM: Async/Memcpy mode
76  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
77  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
78  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
79  */
80 enum dma_transfer_direction {
81 	DMA_MEM_TO_MEM,
82 	DMA_MEM_TO_DEV,
83 	DMA_DEV_TO_MEM,
84 	DMA_DEV_TO_DEV,
85 	DMA_TRANS_NONE,
86 };
87 
88 /**
89  * Interleaved Transfer Request
90  * ----------------------------
91  * A chunk is collection of contiguous bytes to be transferred.
92  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
93  * ICGs may or may not change between chunks.
94  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
95  *  that when repeated an integral number of times, specifies the transfer.
96  * A transfer template is specification of a Frame, the number of times
97  *  it is to be repeated and other per-transfer attributes.
98  *
99  * Practically, a client driver would have ready a template for each
100  *  type of transfer it is going to need during its lifetime and
101  *  set only 'src_start' and 'dst_start' before submitting the requests.
102  *
103  *
104  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
105  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
106  *
107  *    ==  Chunk size
108  *    ... ICG
109  */
110 
111 /**
112  * struct data_chunk - Element of scatter-gather list that makes a frame.
113  * @size: Number of bytes to read from source.
114  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
115  * @icg: Number of bytes to jump after last src/dst address of this
116  *	 chunk and before first src/dst address for next chunk.
117  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
118  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
119  * @dst_icg: Number of bytes to jump after last dst address of this
120  *	 chunk and before the first dst address for next chunk.
121  *	 Ignored if dst_inc is true and dst_sgl is false.
122  * @src_icg: Number of bytes to jump after last src address of this
123  *	 chunk and before the first src address for next chunk.
124  *	 Ignored if src_inc is true and src_sgl is false.
125  */
126 struct data_chunk {
127 	size_t size;
128 	size_t icg;
129 	size_t dst_icg;
130 	size_t src_icg;
131 };
132 
133 /**
134  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
135  *	 and attributes.
136  * @src_start: Bus address of source for the first chunk.
137  * @dst_start: Bus address of destination for the first chunk.
138  * @dir: Specifies the type of Source and Destination.
139  * @src_inc: If the source address increments after reading from it.
140  * @dst_inc: If the destination address increments after writing to it.
141  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
142  *		Otherwise, source is read contiguously (icg ignored).
143  *		Ignored if src_inc is false.
144  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
145  *		Otherwise, destination is filled contiguously (icg ignored).
146  *		Ignored if dst_inc is false.
147  * @numf: Number of frames in this template.
148  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
149  * @sgl: Array of {chunk,icg} pairs that make up a frame.
150  */
151 struct dma_interleaved_template {
152 	dma_addr_t src_start;
153 	dma_addr_t dst_start;
154 	enum dma_transfer_direction dir;
155 	bool src_inc;
156 	bool dst_inc;
157 	bool src_sgl;
158 	bool dst_sgl;
159 	size_t numf;
160 	size_t frame_size;
161 	struct data_chunk sgl[];
162 };
163 
164 /**
165  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
166  *  control completion, and communicate status.
167  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
168  *  this transaction
169  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
170  *  acknowledges receipt, i.e. has a chance to establish any dependency
171  *  chains
172  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
173  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
174  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
175  *  sources that were the result of a previous operation, in the case of a PQ
176  *  operation it continues the calculation with new sources
177  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
178  *  on the result of this operation
179  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
180  *  cleared or freed
181  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
182  *  data and the descriptor should be in different format from normal
183  *  data descriptors.
184  * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
185  *  repeated when it ends until a transaction is issued on the same channel
186  *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
187  *  interleaved transactions and is ignored for all other transaction types.
188  * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
189  *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
190  *  repeated transaction ends. Not setting this flag when the previously queued
191  *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
192  *  to never be processed and stay in the issued queue forever. The flag is
193  *  ignored if the previous transaction is not a repeated transaction.
194  */
195 enum dma_ctrl_flags {
196 	DMA_PREP_INTERRUPT = (1 << 0),
197 	DMA_CTRL_ACK = (1 << 1),
198 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
199 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
200 	DMA_PREP_CONTINUE = (1 << 4),
201 	DMA_PREP_FENCE = (1 << 5),
202 	DMA_CTRL_REUSE = (1 << 6),
203 	DMA_PREP_CMD = (1 << 7),
204 	DMA_PREP_REPEAT = (1 << 8),
205 	DMA_PREP_LOAD_EOT = (1 << 9),
206 };
207 
208 /**
209  * enum sum_check_bits - bit position of pq_check_flags
210  */
211 enum sum_check_bits {
212 	SUM_CHECK_P = 0,
213 	SUM_CHECK_Q = 1,
214 };
215 
216 /**
217  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
218  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
219  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
220  */
221 enum sum_check_flags {
222 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
223 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
224 };
225 
226 
227 /**
228  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
229  * See linux/cpumask.h
230  */
231 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
232 
233 /**
234  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
235  * @memcpy_count: transaction counter
236  * @bytes_transferred: byte counter
237  */
238 
239 /**
240  * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
241  * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
242  *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
243  *  helper) to the descriptor.
244  *
245  * Client drivers interested to use this mode can follow:
246  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
247  *   1. prepare the descriptor (dmaengine_prep_*)
248  *	construct the metadata in the client's buffer
249  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
250  *	descriptor
251  *   3. submit the transfer
252  * - DMA_DEV_TO_MEM:
253  *   1. prepare the descriptor (dmaengine_prep_*)
254  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
255  *	descriptor
256  *   3. submit the transfer
257  *   4. when the transfer is completed, the metadata should be available in the
258  *	attached buffer
259  *
260  * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
261  *  driver. The client driver can ask for the pointer, maximum size and the
262  *  currently used size of the metadata and can directly update or read it.
263  *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
264  *  provided as helper functions.
265  *
266  *  Note: the metadata area for the descriptor is no longer valid after the
267  *  transfer has been completed (valid up to the point when the completion
268  *  callback returns if used).
269  *
270  * Client drivers interested to use this mode can follow:
271  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
272  *   1. prepare the descriptor (dmaengine_prep_*)
273  *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
274  *	metadata area
275  *   3. update the metadata at the pointer
276  *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
277  *	of data the client has placed into the metadata buffer
278  *   5. submit the transfer
279  * - DMA_DEV_TO_MEM:
280  *   1. prepare the descriptor (dmaengine_prep_*)
281  *   2. submit the transfer
282  *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
283  *	pointer to the engine's metadata area
284  *   4. Read out the metadata from the pointer
285  *
286  * Note: the two mode is not compatible and clients must use one mode for a
287  * descriptor.
288  */
289 enum dma_desc_metadata_mode {
290 	DESC_METADATA_NONE = 0,
291 	DESC_METADATA_CLIENT = BIT(0),
292 	DESC_METADATA_ENGINE = BIT(1),
293 };
294 
295 struct dma_chan_percpu {
296 	/* stats */
297 	unsigned long memcpy_count;
298 	unsigned long bytes_transferred;
299 };
300 
301 /**
302  * struct dma_router - DMA router structure
303  * @dev: pointer to the DMA router device
304  * @route_free: function to be called when the route can be disconnected
305  */
306 struct dma_router {
307 	struct device *dev;
308 	void (*route_free)(struct device *dev, void *route_data);
309 };
310 
311 /**
312  * struct dma_chan - devices supply DMA channels, clients use them
313  * @device: ptr to the dma device who supplies this channel, always !%NULL
314  * @slave: ptr to the device using this channel
315  * @cookie: last cookie value returned to client
316  * @completed_cookie: last completed cookie for this channel
317  * @chan_id: channel ID for sysfs
318  * @dev: class device for sysfs
319  * @name: backlink name for sysfs
320  * @dbg_client_name: slave name for debugfs in format:
321  *	dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
322  * @device_node: used to add this to the device chan list
323  * @local: per-cpu pointer to a struct dma_chan_percpu
324  * @client_count: how many clients are using this channel
325  * @table_count: number of appearances in the mem-to-mem allocation table
326  * @router: pointer to the DMA router structure
327  * @route_data: channel specific data for the router
328  * @private: private data for certain client-channel associations
329  */
330 struct dma_chan {
331 	struct dma_device *device;
332 	struct device *slave;
333 	dma_cookie_t cookie;
334 	dma_cookie_t completed_cookie;
335 
336 	/* sysfs */
337 	int chan_id;
338 	struct dma_chan_dev *dev;
339 	const char *name;
340 #ifdef CONFIG_DEBUG_FS
341 	char *dbg_client_name;
342 #endif
343 
344 	struct list_head device_node;
345 	struct dma_chan_percpu __percpu *local;
346 	int client_count;
347 	int table_count;
348 
349 	/* DMA router */
350 	struct dma_router *router;
351 	void *route_data;
352 
353 	void *private;
354 };
355 
356 /**
357  * struct dma_chan_dev - relate sysfs device node to backing channel device
358  * @chan: driver channel device
359  * @device: sysfs device
360  * @dev_id: parent dma_device dev_id
361  */
362 struct dma_chan_dev {
363 	struct dma_chan *chan;
364 	struct device device;
365 	int dev_id;
366 };
367 
368 /**
369  * enum dma_slave_buswidth - defines bus width of the DMA slave
370  * device, source or target buses
371  */
372 enum dma_slave_buswidth {
373 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
374 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
375 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
376 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
377 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
378 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
379 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
380 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
381 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
382 };
383 
384 /**
385  * struct dma_slave_config - dma slave channel runtime config
386  * @direction: whether the data shall go in or out on this slave
387  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
388  * legal values. DEPRECATED, drivers should use the direction argument
389  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
390  * the dir field in the dma_interleaved_template structure.
391  * @src_addr: this is the physical address where DMA slave data
392  * should be read (RX), if the source is memory this argument is
393  * ignored.
394  * @dst_addr: this is the physical address where DMA slave data
395  * should be written (TX), if the source is memory this argument
396  * is ignored.
397  * @src_addr_width: this is the width in bytes of the source (RX)
398  * register where DMA data shall be read. If the source
399  * is memory this may be ignored depending on architecture.
400  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
401  * @dst_addr_width: same as src_addr_width but for destination
402  * target (TX) mutatis mutandis.
403  * @src_maxburst: the maximum number of words (note: words, as in
404  * units of the src_addr_width member, not bytes) that can be sent
405  * in one burst to the device. Typically something like half the
406  * FIFO depth on I/O peripherals so you don't overflow it. This
407  * may or may not be applicable on memory sources.
408  * @dst_maxburst: same as src_maxburst but for destination target
409  * mutatis mutandis.
410  * @src_port_window_size: The length of the register area in words the data need
411  * to be accessed on the device side. It is only used for devices which is using
412  * an area instead of a single register to receive the data. Typically the DMA
413  * loops in this area in order to transfer the data.
414  * @dst_port_window_size: same as src_port_window_size but for the destination
415  * port.
416  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
417  * with 'true' if peripheral should be flow controller. Direction will be
418  * selected at Runtime.
419  * @slave_id: Slave requester id. Only valid for slave channels. The dma
420  * slave peripheral will have unique id as dma requester which need to be
421  * pass as slave config.
422  * @peripheral_config: peripheral configuration for programming peripheral
423  * for dmaengine transfer
424  * @peripheral_size: peripheral configuration buffer size
425  *
426  * This struct is passed in as configuration data to a DMA engine
427  * in order to set up a certain channel for DMA transport at runtime.
428  * The DMA device/engine has to provide support for an additional
429  * callback in the dma_device structure, device_config and this struct
430  * will then be passed in as an argument to the function.
431  *
432  * The rationale for adding configuration information to this struct is as
433  * follows: if it is likely that more than one DMA slave controllers in
434  * the world will support the configuration option, then make it generic.
435  * If not: if it is fixed so that it be sent in static from the platform
436  * data, then prefer to do that.
437  */
438 struct dma_slave_config {
439 	enum dma_transfer_direction direction;
440 	phys_addr_t src_addr;
441 	phys_addr_t dst_addr;
442 	enum dma_slave_buswidth src_addr_width;
443 	enum dma_slave_buswidth dst_addr_width;
444 	u32 src_maxburst;
445 	u32 dst_maxburst;
446 	u32 src_port_window_size;
447 	u32 dst_port_window_size;
448 	bool device_fc;
449 	unsigned int slave_id;
450 	void *peripheral_config;
451 	size_t peripheral_size;
452 };
453 
454 /**
455  * enum dma_residue_granularity - Granularity of the reported transfer residue
456  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
457  *  DMA channel is only able to tell whether a descriptor has been completed or
458  *  not, which means residue reporting is not supported by this channel. The
459  *  residue field of the dma_tx_state field will always be 0.
460  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
461  *  completed segment of the transfer (For cyclic transfers this is after each
462  *  period). This is typically implemented by having the hardware generate an
463  *  interrupt after each transferred segment and then the drivers updates the
464  *  outstanding residue by the size of the segment. Another possibility is if
465  *  the hardware supports scatter-gather and the segment descriptor has a field
466  *  which gets set after the segment has been completed. The driver then counts
467  *  the number of segments without the flag set to compute the residue.
468  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
469  *  burst. This is typically only supported if the hardware has a progress
470  *  register of some sort (E.g. a register with the current read/write address
471  *  or a register with the amount of bursts/beats/bytes that have been
472  *  transferred or still need to be transferred).
473  */
474 enum dma_residue_granularity {
475 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
476 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
477 	DMA_RESIDUE_GRANULARITY_BURST = 2,
478 };
479 
480 /**
481  * struct dma_slave_caps - expose capabilities of a slave channel only
482  * @src_addr_widths: bit mask of src addr widths the channel supports.
483  *	Width is specified in bytes, e.g. for a channel supporting
484  *	a width of 4 the mask should have BIT(4) set.
485  * @dst_addr_widths: bit mask of dst addr widths the channel supports
486  * @directions: bit mask of slave directions the channel supports.
487  *	Since the enum dma_transfer_direction is not defined as bit flag for
488  *	each type, the dma controller should set BIT(<TYPE>) and same
489  *	should be checked by controller as well
490  * @min_burst: min burst capability per-transfer
491  * @max_burst: max burst capability per-transfer
492  * @max_sg_burst: max number of SG list entries executed in a single burst
493  *	DMA tansaction with no software intervention for reinitialization.
494  *	Zero value means unlimited number of entries.
495  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
496  *	       for resume later)
497  * @cmd_resume: true, if resume is supported
498  * @cmd_terminate: true, if terminate cmd is supported
499  * @residue_granularity: granularity of the reported transfer residue
500  * @descriptor_reuse: if a descriptor can be reused by client and
501  * resubmitted multiple times
502  */
503 struct dma_slave_caps {
504 	u32 src_addr_widths;
505 	u32 dst_addr_widths;
506 	u32 directions;
507 	u32 min_burst;
508 	u32 max_burst;
509 	u32 max_sg_burst;
510 	bool cmd_pause;
511 	bool cmd_resume;
512 	bool cmd_terminate;
513 	enum dma_residue_granularity residue_granularity;
514 	bool descriptor_reuse;
515 };
516 
dma_chan_name(struct dma_chan * chan)517 static inline const char *dma_chan_name(struct dma_chan *chan)
518 {
519 	return dev_name(&chan->dev->device);
520 }
521 
522 void dma_chan_cleanup(struct kref *kref);
523 
524 /**
525  * typedef dma_filter_fn - callback filter for dma_request_channel
526  * @chan: channel to be reviewed
527  * @filter_param: opaque parameter passed through dma_request_channel
528  *
529  * When this optional parameter is specified in a call to dma_request_channel a
530  * suitable channel is passed to this routine for further dispositioning before
531  * being returned.  Where 'suitable' indicates a non-busy channel that
532  * satisfies the given capability mask.  It returns 'true' to indicate that the
533  * channel is suitable.
534  */
535 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
536 
537 typedef void (*dma_async_tx_callback)(void *dma_async_param);
538 
539 enum dmaengine_tx_result {
540 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
541 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
542 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
543 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
544 };
545 
546 struct dmaengine_result {
547 	enum dmaengine_tx_result result;
548 	u32 residue;
549 };
550 
551 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
552 				const struct dmaengine_result *result);
553 
554 struct dmaengine_unmap_data {
555 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
556 	u16 map_cnt;
557 #else
558 	u8 map_cnt;
559 #endif
560 	u8 to_cnt;
561 	u8 from_cnt;
562 	u8 bidi_cnt;
563 	struct device *dev;
564 	struct kref kref;
565 	size_t len;
566 	dma_addr_t addr[];
567 };
568 
569 struct dma_async_tx_descriptor;
570 
571 struct dma_descriptor_metadata_ops {
572 	int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
573 		      size_t len);
574 
575 	void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
576 			 size_t *payload_len, size_t *max_len);
577 	int (*set_len)(struct dma_async_tx_descriptor *desc,
578 		       size_t payload_len);
579 };
580 
581 /**
582  * struct dma_async_tx_descriptor - async transaction descriptor
583  * ---dma generic offload fields---
584  * @cookie: tracking cookie for this transaction, set to -EBUSY if
585  *	this tx is sitting on a dependency list
586  * @flags: flags to augment operation preparation, control completion, and
587  *	communicate status
588  * @phys: physical address of the descriptor
589  * @chan: target channel for this operation
590  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
591  * descriptor pending. To be pushed on .issue_pending() call
592  * @callback: routine to call after this operation is complete
593  * @callback_param: general parameter to pass to the callback routine
594  * @desc_metadata_mode: core managed metadata mode to protect mixed use of
595  *	DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
596  *	DESC_METADATA_NONE
597  * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
598  *	DMA driver if metadata mode is supported with the descriptor
599  * ---async_tx api specific fields---
600  * @next: at completion submit this descriptor
601  * @parent: pointer to the next level up in the dependency chain
602  * @lock: protect the parent and next pointers
603  */
604 struct dma_async_tx_descriptor {
605 	dma_cookie_t cookie;
606 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
607 	dma_addr_t phys;
608 	struct dma_chan *chan;
609 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
610 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
611 	dma_async_tx_callback callback;
612 	dma_async_tx_callback_result callback_result;
613 	void *callback_param;
614 	struct dmaengine_unmap_data *unmap;
615 	enum dma_desc_metadata_mode desc_metadata_mode;
616 	struct dma_descriptor_metadata_ops *metadata_ops;
617 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
618 	struct dma_async_tx_descriptor *next;
619 	struct dma_async_tx_descriptor *parent;
620 	spinlock_t lock;
621 #endif
622 };
623 
624 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)625 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
626 				 struct dmaengine_unmap_data *unmap)
627 {
628 	kref_get(&unmap->kref);
629 	tx->unmap = unmap;
630 }
631 
632 struct dmaengine_unmap_data *
633 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
634 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
635 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)636 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
637 				 struct dmaengine_unmap_data *unmap)
638 {
639 }
640 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)641 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
642 {
643 	return NULL;
644 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)645 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
646 {
647 }
648 #endif
649 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)650 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
651 {
652 	if (!tx->unmap)
653 		return;
654 
655 	dmaengine_unmap_put(tx->unmap);
656 	tx->unmap = NULL;
657 }
658 
659 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)660 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
661 {
662 }
txd_unlock(struct dma_async_tx_descriptor * txd)663 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
664 {
665 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)666 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
667 {
668 	BUG();
669 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)670 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
671 {
672 }
txd_clear_next(struct dma_async_tx_descriptor * txd)673 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
674 {
675 }
txd_next(struct dma_async_tx_descriptor * txd)676 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
677 {
678 	return NULL;
679 }
txd_parent(struct dma_async_tx_descriptor * txd)680 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
681 {
682 	return NULL;
683 }
684 
685 #else
txd_lock(struct dma_async_tx_descriptor * txd)686 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
687 {
688 	spin_lock_bh(&txd->lock);
689 }
txd_unlock(struct dma_async_tx_descriptor * txd)690 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
691 {
692 	spin_unlock_bh(&txd->lock);
693 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)694 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
695 {
696 	txd->next = next;
697 	next->parent = txd;
698 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)699 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
700 {
701 	txd->parent = NULL;
702 }
txd_clear_next(struct dma_async_tx_descriptor * txd)703 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
704 {
705 	txd->next = NULL;
706 }
txd_parent(struct dma_async_tx_descriptor * txd)707 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
708 {
709 	return txd->parent;
710 }
txd_next(struct dma_async_tx_descriptor * txd)711 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
712 {
713 	return txd->next;
714 }
715 #endif
716 
717 /**
718  * struct dma_tx_state - filled in to report the status of
719  * a transfer.
720  * @last: last completed DMA cookie
721  * @used: last issued DMA cookie (i.e. the one in progress)
722  * @residue: the remaining number of bytes left to transmit
723  *	on the selected transfer for states DMA_IN_PROGRESS and
724  *	DMA_PAUSED if this is implemented in the driver, else 0
725  * @in_flight_bytes: amount of data in bytes cached by the DMA.
726  */
727 struct dma_tx_state {
728 	dma_cookie_t last;
729 	dma_cookie_t used;
730 	u32 residue;
731 	u32 in_flight_bytes;
732 };
733 
734 /**
735  * enum dmaengine_alignment - defines alignment of the DMA async tx
736  * buffers
737  */
738 enum dmaengine_alignment {
739 	DMAENGINE_ALIGN_1_BYTE = 0,
740 	DMAENGINE_ALIGN_2_BYTES = 1,
741 	DMAENGINE_ALIGN_4_BYTES = 2,
742 	DMAENGINE_ALIGN_8_BYTES = 3,
743 	DMAENGINE_ALIGN_16_BYTES = 4,
744 	DMAENGINE_ALIGN_32_BYTES = 5,
745 	DMAENGINE_ALIGN_64_BYTES = 6,
746 };
747 
748 /**
749  * struct dma_slave_map - associates slave device and it's slave channel with
750  * parameter to be used by a filter function
751  * @devname: name of the device
752  * @slave: slave channel name
753  * @param: opaque parameter to pass to struct dma_filter.fn
754  */
755 struct dma_slave_map {
756 	const char *devname;
757 	const char *slave;
758 	void *param;
759 };
760 
761 /**
762  * struct dma_filter - information for slave device/channel to filter_fn/param
763  * mapping
764  * @fn: filter function callback
765  * @mapcnt: number of slave device/channel in the map
766  * @map: array of channel to filter mapping data
767  */
768 struct dma_filter {
769 	dma_filter_fn fn;
770 	int mapcnt;
771 	const struct dma_slave_map *map;
772 };
773 
774 /**
775  * struct dma_device - info on the entity supplying DMA services
776  * @chancnt: how many DMA channels are supported
777  * @privatecnt: how many DMA channels are requested by dma_request_channel
778  * @channels: the list of struct dma_chan
779  * @global_node: list_head for global dma_device_list
780  * @filter: information for device/slave to filter function/param mapping
781  * @cap_mask: one or more dma_capability flags
782  * @desc_metadata_modes: supported metadata modes by the DMA device
783  * @max_xor: maximum number of xor sources, 0 if no capability
784  * @max_pq: maximum number of PQ sources and PQ-continue capability
785  * @copy_align: alignment shift for memcpy operations
786  * @xor_align: alignment shift for xor operations
787  * @pq_align: alignment shift for pq operations
788  * @fill_align: alignment shift for memset operations
789  * @dev_id: unique device ID
790  * @dev: struct device reference for dma mapping api
791  * @owner: owner module (automatically set based on the provided dev)
792  * @src_addr_widths: bit mask of src addr widths the device supports
793  *	Width is specified in bytes, e.g. for a device supporting
794  *	a width of 4 the mask should have BIT(4) set.
795  * @dst_addr_widths: bit mask of dst addr widths the device supports
796  * @directions: bit mask of slave directions the device supports.
797  *	Since the enum dma_transfer_direction is not defined as bit flag for
798  *	each type, the dma controller should set BIT(<TYPE>) and same
799  *	should be checked by controller as well
800  * @min_burst: min burst capability per-transfer
801  * @max_burst: max burst capability per-transfer
802  * @max_sg_burst: max number of SG list entries executed in a single burst
803  *	DMA tansaction with no software intervention for reinitialization.
804  *	Zero value means unlimited number of entries.
805  * @residue_granularity: granularity of the transfer residue reported
806  *	by tx_status
807  * @device_alloc_chan_resources: allocate resources and return the
808  *	number of allocated descriptors
809  * @device_free_chan_resources: release DMA channel's resources
810  * @device_prep_dma_memcpy: prepares a memcpy operation
811  * @device_prep_dma_xor: prepares a xor operation
812  * @device_prep_dma_xor_val: prepares a xor validation operation
813  * @device_prep_dma_pq: prepares a pq operation
814  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
815  * @device_prep_dma_memset: prepares a memset operation
816  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
817  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
818  * @device_prep_slave_sg: prepares a slave dma operation
819  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
820  *	The function takes a buffer of size buf_len. The callback function will
821  *	be called after period_len bytes have been transferred.
822  * @device_prep_interleaved_dma: Transfer expression in a generic way.
823  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
824  * @device_caps: May be used to override the generic DMA slave capabilities
825  *	with per-channel specific ones
826  * @device_config: Pushes a new configuration to a channel, return 0 or an error
827  *	code
828  * @device_pause: Pauses any transfer happening on a channel. Returns
829  *	0 or an error code
830  * @device_resume: Resumes any transfer on a channel previously
831  *	paused. Returns 0 or an error code
832  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
833  *	or an error code
834  * @device_synchronize: Synchronizes the termination of a transfers to the
835  *  current context.
836  * @device_tx_status: poll for transaction completion, the optional
837  *	txstate parameter can be supplied with a pointer to get a
838  *	struct with auxiliary transfer status information, otherwise the call
839  *	will just return a simple status code
840  * @device_issue_pending: push pending transactions to hardware
841  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
842  * @device_release: called sometime atfer dma_async_device_unregister() is
843  *     called and there are no further references to this structure. This
844  *     must be implemented to free resources however many existing drivers
845  *     do not and are therefore not safe to unbind while in use.
846  * @dbg_summary_show: optional routine to show contents in debugfs; default code
847  *     will be used when this is omitted, but custom code can show extra,
848  *     controller specific information.
849  */
850 struct dma_device {
851 	struct kref ref;
852 	unsigned int chancnt;
853 	unsigned int privatecnt;
854 	struct list_head channels;
855 	struct list_head global_node;
856 	struct dma_filter filter;
857 	dma_cap_mask_t  cap_mask;
858 	enum dma_desc_metadata_mode desc_metadata_modes;
859 	unsigned short max_xor;
860 	unsigned short max_pq;
861 	enum dmaengine_alignment copy_align;
862 	enum dmaengine_alignment xor_align;
863 	enum dmaengine_alignment pq_align;
864 	enum dmaengine_alignment fill_align;
865 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
866 
867 	int dev_id;
868 	struct device *dev;
869 	struct module *owner;
870 	struct ida chan_ida;
871 	struct mutex chan_mutex;	/* to protect chan_ida */
872 
873 	u32 src_addr_widths;
874 	u32 dst_addr_widths;
875 	u32 directions;
876 	u32 min_burst;
877 	u32 max_burst;
878 	u32 max_sg_burst;
879 	bool descriptor_reuse;
880 	enum dma_residue_granularity residue_granularity;
881 
882 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
883 	void (*device_free_chan_resources)(struct dma_chan *chan);
884 
885 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
886 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
887 		size_t len, unsigned long flags);
888 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
889 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
890 		unsigned int src_cnt, size_t len, unsigned long flags);
891 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
892 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
893 		size_t len, enum sum_check_flags *result, unsigned long flags);
894 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
895 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
896 		unsigned int src_cnt, const unsigned char *scf,
897 		size_t len, unsigned long flags);
898 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
899 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
900 		unsigned int src_cnt, const unsigned char *scf, size_t len,
901 		enum sum_check_flags *pqres, unsigned long flags);
902 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
903 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
904 		unsigned long flags);
905 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
906 		struct dma_chan *chan, struct scatterlist *sg,
907 		unsigned int nents, int value, unsigned long flags);
908 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
909 		struct dma_chan *chan, unsigned long flags);
910 
911 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
912 		struct dma_chan *chan, struct scatterlist *sgl,
913 		unsigned int sg_len, enum dma_transfer_direction direction,
914 		unsigned long flags, void *context);
915 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
916 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
917 		size_t period_len, enum dma_transfer_direction direction,
918 		unsigned long flags);
919 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
920 		struct dma_chan *chan, struct dma_interleaved_template *xt,
921 		unsigned long flags);
922 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
923 		struct dma_chan *chan, dma_addr_t dst, u64 data,
924 		unsigned long flags);
925 
926 	void (*device_caps)(struct dma_chan *chan,
927 			    struct dma_slave_caps *caps);
928 	int (*device_config)(struct dma_chan *chan,
929 			     struct dma_slave_config *config);
930 	int (*device_pause)(struct dma_chan *chan);
931 	int (*device_resume)(struct dma_chan *chan);
932 	int (*device_terminate_all)(struct dma_chan *chan);
933 	void (*device_synchronize)(struct dma_chan *chan);
934 
935 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
936 					    dma_cookie_t cookie,
937 					    struct dma_tx_state *txstate);
938 	void (*device_issue_pending)(struct dma_chan *chan);
939 	void (*device_release)(struct dma_device *dev);
940 	/* debugfs support */
941 #ifdef CONFIG_DEBUG_FS
942 	void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
943 	struct dentry *dbg_dev_root;
944 #endif
945 
946 	ANDROID_KABI_RESERVE(1);
947 	ANDROID_KABI_RESERVE(2);
948 	ANDROID_KABI_RESERVE(3);
949 	ANDROID_KABI_RESERVE(4);
950 };
951 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)952 static inline int dmaengine_slave_config(struct dma_chan *chan,
953 					  struct dma_slave_config *config)
954 {
955 	if (chan->device->device_config)
956 		return chan->device->device_config(chan, config);
957 
958 	return -ENOSYS;
959 }
960 
is_slave_direction(enum dma_transfer_direction direction)961 static inline bool is_slave_direction(enum dma_transfer_direction direction)
962 {
963 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) ||
964 	       (direction == DMA_DEV_TO_DEV);
965 }
966 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)967 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
968 	struct dma_chan *chan, dma_addr_t buf, size_t len,
969 	enum dma_transfer_direction dir, unsigned long flags)
970 {
971 	struct scatterlist sg;
972 	sg_init_table(&sg, 1);
973 	sg_dma_address(&sg) = buf;
974 	sg_dma_len(&sg) = len;
975 
976 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
977 		return NULL;
978 
979 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
980 						  dir, flags, NULL);
981 }
982 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)983 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
984 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
985 	enum dma_transfer_direction dir, unsigned long flags)
986 {
987 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
988 		return NULL;
989 
990 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
991 						  dir, flags, NULL);
992 }
993 
994 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
995 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)996 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
997 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
998 	enum dma_transfer_direction dir, unsigned long flags,
999 	struct rio_dma_ext *rio_ext)
1000 {
1001 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1002 		return NULL;
1003 
1004 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1005 						  dir, flags, rio_ext);
1006 }
1007 #endif
1008 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1009 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1010 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1011 		size_t period_len, enum dma_transfer_direction dir,
1012 		unsigned long flags)
1013 {
1014 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1015 		return NULL;
1016 
1017 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1018 						period_len, dir, flags);
1019 }
1020 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1021 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1022 		struct dma_chan *chan, struct dma_interleaved_template *xt,
1023 		unsigned long flags)
1024 {
1025 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1026 		return NULL;
1027 	if (flags & DMA_PREP_REPEAT &&
1028 	    !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1029 		return NULL;
1030 
1031 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1032 }
1033 
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1034 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1035 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1036 		unsigned long flags)
1037 {
1038 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1039 		return NULL;
1040 
1041 	return chan->device->device_prep_dma_memset(chan, dest, value,
1042 						    len, flags);
1043 }
1044 
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1045 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1046 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1047 		size_t len, unsigned long flags)
1048 {
1049 	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1050 		return NULL;
1051 
1052 	return chan->device->device_prep_dma_memcpy(chan, dest, src,
1053 						    len, flags);
1054 }
1055 
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1056 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1057 		enum dma_desc_metadata_mode mode)
1058 {
1059 	if (!chan)
1060 		return false;
1061 
1062 	return !!(chan->device->desc_metadata_modes & mode);
1063 }
1064 
1065 #ifdef CONFIG_DMA_ENGINE
1066 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1067 				   void *data, size_t len);
1068 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1069 				      size_t *payload_len, size_t *max_len);
1070 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1071 				    size_t payload_len);
1072 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1073 static inline int dmaengine_desc_attach_metadata(
1074 		struct dma_async_tx_descriptor *desc, void *data, size_t len)
1075 {
1076 	return -EINVAL;
1077 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1078 static inline void *dmaengine_desc_get_metadata_ptr(
1079 		struct dma_async_tx_descriptor *desc, size_t *payload_len,
1080 		size_t *max_len)
1081 {
1082 	return NULL;
1083 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1084 static inline int dmaengine_desc_set_metadata_len(
1085 		struct dma_async_tx_descriptor *desc, size_t payload_len)
1086 {
1087 	return -EINVAL;
1088 }
1089 #endif /* CONFIG_DMA_ENGINE */
1090 
1091 /**
1092  * dmaengine_terminate_all() - Terminate all active DMA transfers
1093  * @chan: The channel for which to terminate the transfers
1094  *
1095  * This function is DEPRECATED use either dmaengine_terminate_sync() or
1096  * dmaengine_terminate_async() instead.
1097  */
dmaengine_terminate_all(struct dma_chan * chan)1098 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1099 {
1100 	if (chan->device->device_terminate_all)
1101 		return chan->device->device_terminate_all(chan);
1102 
1103 	return -ENOSYS;
1104 }
1105 
1106 /**
1107  * dmaengine_terminate_async() - Terminate all active DMA transfers
1108  * @chan: The channel for which to terminate the transfers
1109  *
1110  * Calling this function will terminate all active and pending descriptors
1111  * that have previously been submitted to the channel. It is not guaranteed
1112  * though that the transfer for the active descriptor has stopped when the
1113  * function returns. Furthermore it is possible the complete callback of a
1114  * submitted transfer is still running when this function returns.
1115  *
1116  * dmaengine_synchronize() needs to be called before it is safe to free
1117  * any memory that is accessed by previously submitted descriptors or before
1118  * freeing any resources accessed from within the completion callback of any
1119  * previously submitted descriptors.
1120  *
1121  * This function can be called from atomic context as well as from within a
1122  * complete callback of a descriptor submitted on the same channel.
1123  *
1124  * If none of the two conditions above apply consider using
1125  * dmaengine_terminate_sync() instead.
1126  */
dmaengine_terminate_async(struct dma_chan * chan)1127 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1128 {
1129 	if (chan->device->device_terminate_all)
1130 		return chan->device->device_terminate_all(chan);
1131 
1132 	return -EINVAL;
1133 }
1134 
1135 /**
1136  * dmaengine_synchronize() - Synchronize DMA channel termination
1137  * @chan: The channel to synchronize
1138  *
1139  * Synchronizes to the DMA channel termination to the current context. When this
1140  * function returns it is guaranteed that all transfers for previously issued
1141  * descriptors have stopped and it is safe to free the memory associated
1142  * with them. Furthermore it is guaranteed that all complete callback functions
1143  * for a previously submitted descriptor have finished running and it is safe to
1144  * free resources accessed from within the complete callbacks.
1145  *
1146  * The behavior of this function is undefined if dma_async_issue_pending() has
1147  * been called between dmaengine_terminate_async() and this function.
1148  *
1149  * This function must only be called from non-atomic context and must not be
1150  * called from within a complete callback of a descriptor submitted on the same
1151  * channel.
1152  */
dmaengine_synchronize(struct dma_chan * chan)1153 static inline void dmaengine_synchronize(struct dma_chan *chan)
1154 {
1155 	might_sleep();
1156 
1157 	if (chan->device->device_synchronize)
1158 		chan->device->device_synchronize(chan);
1159 }
1160 
1161 /**
1162  * dmaengine_terminate_sync() - Terminate all active DMA transfers
1163  * @chan: The channel for which to terminate the transfers
1164  *
1165  * Calling this function will terminate all active and pending transfers
1166  * that have previously been submitted to the channel. It is similar to
1167  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1168  * stopped and that all complete callbacks have finished running when the
1169  * function returns.
1170  *
1171  * This function must only be called from non-atomic context and must not be
1172  * called from within a complete callback of a descriptor submitted on the same
1173  * channel.
1174  */
dmaengine_terminate_sync(struct dma_chan * chan)1175 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1176 {
1177 	int ret;
1178 
1179 	ret = dmaengine_terminate_async(chan);
1180 	if (ret)
1181 		return ret;
1182 
1183 	dmaengine_synchronize(chan);
1184 
1185 	return 0;
1186 }
1187 
dmaengine_pause(struct dma_chan * chan)1188 static inline int dmaengine_pause(struct dma_chan *chan)
1189 {
1190 	if (chan->device->device_pause)
1191 		return chan->device->device_pause(chan);
1192 
1193 	return -ENOSYS;
1194 }
1195 
dmaengine_resume(struct dma_chan * chan)1196 static inline int dmaengine_resume(struct dma_chan *chan)
1197 {
1198 	if (chan->device->device_resume)
1199 		return chan->device->device_resume(chan);
1200 
1201 	return -ENOSYS;
1202 }
1203 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1204 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1205 	dma_cookie_t cookie, struct dma_tx_state *state)
1206 {
1207 	return chan->device->device_tx_status(chan, cookie, state);
1208 }
1209 
dmaengine_submit(struct dma_async_tx_descriptor * desc)1210 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1211 {
1212 	return desc->tx_submit(desc);
1213 }
1214 
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1215 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1216 					 size_t off1, size_t off2, size_t len)
1217 {
1218 	return !(((1 << align) - 1) & (off1 | off2 | len));
1219 }
1220 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1221 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1222 				       size_t off2, size_t len)
1223 {
1224 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1225 }
1226 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1227 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1228 				      size_t off2, size_t len)
1229 {
1230 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1231 }
1232 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1233 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1234 				     size_t off2, size_t len)
1235 {
1236 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1237 }
1238 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1239 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1240 				       size_t off2, size_t len)
1241 {
1242 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1243 }
1244 
1245 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1246 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1247 {
1248 	dma->max_pq = maxpq;
1249 	if (has_pq_continue)
1250 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1251 }
1252 
dmaf_continue(enum dma_ctrl_flags flags)1253 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1254 {
1255 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1256 }
1257 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1258 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1259 {
1260 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1261 
1262 	return (flags & mask) == mask;
1263 }
1264 
dma_dev_has_pq_continue(struct dma_device * dma)1265 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1266 {
1267 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1268 }
1269 
dma_dev_to_maxpq(struct dma_device * dma)1270 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1271 {
1272 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1273 }
1274 
1275 /* dma_maxpq - reduce maxpq in the face of continued operations
1276  * @dma - dma device with PQ capability
1277  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1278  *
1279  * When an engine does not support native continuation we need 3 extra
1280  * source slots to reuse P and Q with the following coefficients:
1281  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1282  * 2/ {01} * Q : use Q to continue Q' calculation
1283  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1284  *
1285  * In the case where P is disabled we only need 1 extra source:
1286  * 1/ {01} * Q : use Q to continue Q' calculation
1287  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1288 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1289 {
1290 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1291 		return dma_dev_to_maxpq(dma);
1292 	if (dmaf_p_disabled_continue(flags))
1293 		return dma_dev_to_maxpq(dma) - 1;
1294 	if (dmaf_continue(flags))
1295 		return dma_dev_to_maxpq(dma) - 3;
1296 	BUG();
1297 }
1298 
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1299 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1300 				      size_t dir_icg)
1301 {
1302 	if (inc) {
1303 		if (dir_icg)
1304 			return dir_icg;
1305 		if (sgl)
1306 			return icg;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1312 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1313 					   struct data_chunk *chunk)
1314 {
1315 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1316 				 chunk->icg, chunk->dst_icg);
1317 }
1318 
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1319 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1320 					   struct data_chunk *chunk)
1321 {
1322 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1323 				 chunk->icg, chunk->src_icg);
1324 }
1325 
1326 /* --- public DMA engine API --- */
1327 
1328 #ifdef CONFIG_DMA_ENGINE
1329 void dmaengine_get(void);
1330 void dmaengine_put(void);
1331 #else
dmaengine_get(void)1332 static inline void dmaengine_get(void)
1333 {
1334 }
dmaengine_put(void)1335 static inline void dmaengine_put(void)
1336 {
1337 }
1338 #endif
1339 
1340 #ifdef CONFIG_ASYNC_TX_DMA
1341 #define async_dmaengine_get()	dmaengine_get()
1342 #define async_dmaengine_put()	dmaengine_put()
1343 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1344 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1345 #else
1346 #define async_dma_find_channel(type) dma_find_channel(type)
1347 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1348 #else
async_dmaengine_get(void)1349 static inline void async_dmaengine_get(void)
1350 {
1351 }
async_dmaengine_put(void)1352 static inline void async_dmaengine_put(void)
1353 {
1354 }
1355 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1356 async_dma_find_channel(enum dma_transaction_type type)
1357 {
1358 	return NULL;
1359 }
1360 #endif /* CONFIG_ASYNC_TX_DMA */
1361 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1362 				  struct dma_chan *chan);
1363 
async_tx_ack(struct dma_async_tx_descriptor * tx)1364 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1365 {
1366 	tx->flags |= DMA_CTRL_ACK;
1367 }
1368 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1369 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1370 {
1371 	tx->flags &= ~DMA_CTRL_ACK;
1372 }
1373 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1374 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1375 {
1376 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1377 }
1378 
1379 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1380 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1381 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1382 {
1383 	set_bit(tx_type, dstp->bits);
1384 }
1385 
1386 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1387 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1388 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1389 {
1390 	clear_bit(tx_type, dstp->bits);
1391 }
1392 
1393 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1394 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1395 {
1396 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1397 }
1398 
1399 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1400 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1401 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1402 {
1403 	return test_bit(tx_type, srcp->bits);
1404 }
1405 
1406 #define for_each_dma_cap_mask(cap, mask) \
1407 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1408 
1409 /**
1410  * dma_async_issue_pending - flush pending transactions to HW
1411  * @chan: target DMA channel
1412  *
1413  * This allows drivers to push copies to HW in batches,
1414  * reducing MMIO writes where possible.
1415  */
dma_async_issue_pending(struct dma_chan * chan)1416 static inline void dma_async_issue_pending(struct dma_chan *chan)
1417 {
1418 	chan->device->device_issue_pending(chan);
1419 }
1420 
1421 /**
1422  * dma_async_is_tx_complete - poll for transaction completion
1423  * @chan: DMA channel
1424  * @cookie: transaction identifier to check status of
1425  * @last: returns last completed cookie, can be NULL
1426  * @used: returns last issued cookie, can be NULL
1427  *
1428  * If @last and @used are passed in, upon return they reflect the driver
1429  * internal state and can be used with dma_async_is_complete() to check
1430  * the status of multiple cookies without re-checking hardware state.
1431  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1432 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1433 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1434 {
1435 	struct dma_tx_state state;
1436 	enum dma_status status;
1437 
1438 	status = chan->device->device_tx_status(chan, cookie, &state);
1439 	if (last)
1440 		*last = state.last;
1441 	if (used)
1442 		*used = state.used;
1443 	return status;
1444 }
1445 
1446 /**
1447  * dma_async_is_complete - test a cookie against chan state
1448  * @cookie: transaction identifier to test status of
1449  * @last_complete: last know completed transaction
1450  * @last_used: last cookie value handed out
1451  *
1452  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1453  * the test logic is separated for lightweight testing of multiple cookies
1454  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1455 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1456 			dma_cookie_t last_complete, dma_cookie_t last_used)
1457 {
1458 	if (last_complete <= last_used) {
1459 		if ((cookie <= last_complete) || (cookie > last_used))
1460 			return DMA_COMPLETE;
1461 	} else {
1462 		if ((cookie <= last_complete) && (cookie > last_used))
1463 			return DMA_COMPLETE;
1464 	}
1465 	return DMA_IN_PROGRESS;
1466 }
1467 
1468 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1469 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1470 {
1471 	if (!st)
1472 		return;
1473 
1474 	st->last = last;
1475 	st->used = used;
1476 	st->residue = residue;
1477 }
1478 
1479 #ifdef CONFIG_DMA_ENGINE
1480 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1481 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1482 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1483 void dma_issue_pending_all(void);
1484 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1485 				       dma_filter_fn fn, void *fn_param,
1486 				       struct device_node *np);
1487 
1488 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1489 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1490 
1491 void dma_release_channel(struct dma_chan *chan);
1492 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1493 #else
dma_find_channel(enum dma_transaction_type tx_type)1494 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1495 {
1496 	return NULL;
1497 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1498 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1499 {
1500 	return DMA_COMPLETE;
1501 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1502 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1503 {
1504 	return DMA_COMPLETE;
1505 }
dma_issue_pending_all(void)1506 static inline void dma_issue_pending_all(void)
1507 {
1508 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1509 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1510 						     dma_filter_fn fn,
1511 						     void *fn_param,
1512 						     struct device_node *np)
1513 {
1514 	return NULL;
1515 }
dma_request_chan(struct device * dev,const char * name)1516 static inline struct dma_chan *dma_request_chan(struct device *dev,
1517 						const char *name)
1518 {
1519 	return ERR_PTR(-ENODEV);
1520 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1521 static inline struct dma_chan *dma_request_chan_by_mask(
1522 						const dma_cap_mask_t *mask)
1523 {
1524 	return ERR_PTR(-ENODEV);
1525 }
dma_release_channel(struct dma_chan * chan)1526 static inline void dma_release_channel(struct dma_chan *chan)
1527 {
1528 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1529 static inline int dma_get_slave_caps(struct dma_chan *chan,
1530 				     struct dma_slave_caps *caps)
1531 {
1532 	return -ENXIO;
1533 }
1534 #endif
1535 
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1536 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1537 {
1538 	struct dma_slave_caps caps;
1539 	int ret;
1540 
1541 	ret = dma_get_slave_caps(tx->chan, &caps);
1542 	if (ret)
1543 		return ret;
1544 
1545 	if (!caps.descriptor_reuse)
1546 		return -EPERM;
1547 
1548 	tx->flags |= DMA_CTRL_REUSE;
1549 	return 0;
1550 }
1551 
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1552 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1553 {
1554 	tx->flags &= ~DMA_CTRL_REUSE;
1555 }
1556 
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1557 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1558 {
1559 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1560 }
1561 
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1562 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1563 {
1564 	/* this is supported for reusable desc, so check that */
1565 	if (!dmaengine_desc_test_reuse(desc))
1566 		return -EPERM;
1567 
1568 	return desc->desc_free(desc);
1569 }
1570 
1571 /* --- DMA device --- */
1572 
1573 int dma_async_device_register(struct dma_device *device);
1574 int dmaenginem_async_device_register(struct dma_device *device);
1575 void dma_async_device_unregister(struct dma_device *device);
1576 int dma_async_device_channel_register(struct dma_device *device,
1577 				      struct dma_chan *chan);
1578 void dma_async_device_channel_unregister(struct dma_device *device,
1579 					 struct dma_chan *chan);
1580 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1581 #define dma_request_channel(mask, x, y) \
1582 	__dma_request_channel(&(mask), x, y, NULL)
1583 
1584 /* Deprecated, please use dma_request_chan() directly */
1585 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1586 dma_request_slave_channel(struct device *dev, const char *name)
1587 {
1588 	struct dma_chan *ch = dma_request_chan(dev, name);
1589 
1590 	return IS_ERR(ch) ? NULL : ch;
1591 }
1592 
1593 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1594 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1595 				  dma_filter_fn fn, void *fn_param,
1596 				  struct device *dev, const char *name)
1597 {
1598 	struct dma_chan *chan;
1599 
1600 	chan = dma_request_slave_channel(dev, name);
1601 	if (chan)
1602 		return chan;
1603 
1604 	if (!fn || !fn_param)
1605 		return NULL;
1606 
1607 	return __dma_request_channel(&mask, fn, fn_param, NULL);
1608 }
1609 
1610 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1611 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1612 {
1613 	switch (dir) {
1614 	case DMA_DEV_TO_MEM:
1615 		return "DEV_TO_MEM";
1616 	case DMA_MEM_TO_DEV:
1617 		return "MEM_TO_DEV";
1618 	case DMA_MEM_TO_MEM:
1619 		return "MEM_TO_MEM";
1620 	case DMA_DEV_TO_DEV:
1621 		return "DEV_TO_DEV";
1622 	default:
1623 		return "invalid";
1624 	}
1625 }
1626 #endif /* DMAENGINE_H */
1627