1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/sysfs.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72 #include <trace/hooks/mm.h>
73 #include <trace/hooks/dtask.h>
74
75 /*
76 * The default value should be high enough to not crash a system that randomly
77 * crashes its kernel from time to time, but low enough to at least not permit
78 * overflowing 32-bit refcounts or the ldsem writer count.
79 */
80 static unsigned int oops_limit = 10000;
81
82 #ifdef CONFIG_SYSCTL
83 static struct ctl_table kern_exit_table[] = {
84 {
85 .procname = "oops_limit",
86 .data = &oops_limit,
87 .maxlen = sizeof(oops_limit),
88 .mode = 0644,
89 .proc_handler = proc_douintvec,
90 },
91 { }
92 };
93
kernel_exit_sysctls_init(void)94 static __init int kernel_exit_sysctls_init(void)
95 {
96 register_sysctl_init("kernel", kern_exit_table);
97 return 0;
98 }
99 late_initcall(kernel_exit_sysctls_init);
100 #endif
101
102 static atomic_t oops_count = ATOMIC_INIT(0);
103
104 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)105 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
106 char *page)
107 {
108 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
109 }
110
111 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
112
kernel_exit_sysfs_init(void)113 static __init int kernel_exit_sysfs_init(void)
114 {
115 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
116 return 0;
117 }
118 late_initcall(kernel_exit_sysfs_init);
119 #endif
120
__unhash_process(struct task_struct * p,bool group_dead)121 static void __unhash_process(struct task_struct *p, bool group_dead)
122 {
123 nr_threads--;
124 detach_pid(p, PIDTYPE_PID);
125 if (group_dead) {
126 detach_pid(p, PIDTYPE_TGID);
127 detach_pid(p, PIDTYPE_PGID);
128 detach_pid(p, PIDTYPE_SID);
129
130 list_del_rcu(&p->tasks);
131 list_del_init(&p->sibling);
132 __this_cpu_dec(process_counts);
133 }
134 list_del_rcu(&p->thread_group);
135 list_del_rcu(&p->thread_node);
136 }
137
138 /*
139 * This function expects the tasklist_lock write-locked.
140 */
__exit_signal(struct task_struct * tsk)141 static void __exit_signal(struct task_struct *tsk)
142 {
143 struct signal_struct *sig = tsk->signal;
144 bool group_dead = thread_group_leader(tsk);
145 struct sighand_struct *sighand;
146 struct tty_struct *tty;
147 u64 utime, stime;
148
149 sighand = rcu_dereference_check(tsk->sighand,
150 lockdep_tasklist_lock_is_held());
151 spin_lock(&sighand->siglock);
152
153 #ifdef CONFIG_POSIX_TIMERS
154 posix_cpu_timers_exit(tsk);
155 if (group_dead)
156 posix_cpu_timers_exit_group(tsk);
157 #endif
158
159 if (group_dead) {
160 tty = sig->tty;
161 sig->tty = NULL;
162 } else {
163 /*
164 * If there is any task waiting for the group exit
165 * then notify it:
166 */
167 if (sig->notify_count > 0 && !--sig->notify_count)
168 wake_up_process(sig->group_exit_task);
169
170 if (tsk == sig->curr_target)
171 sig->curr_target = next_thread(tsk);
172 }
173
174 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
175 sizeof(unsigned long long));
176
177 /*
178 * Accumulate here the counters for all threads as they die. We could
179 * skip the group leader because it is the last user of signal_struct,
180 * but we want to avoid the race with thread_group_cputime() which can
181 * see the empty ->thread_head list.
182 */
183 task_cputime(tsk, &utime, &stime);
184 write_seqlock(&sig->stats_lock);
185 sig->utime += utime;
186 sig->stime += stime;
187 sig->gtime += task_gtime(tsk);
188 sig->min_flt += tsk->min_flt;
189 sig->maj_flt += tsk->maj_flt;
190 sig->nvcsw += tsk->nvcsw;
191 sig->nivcsw += tsk->nivcsw;
192 sig->inblock += task_io_get_inblock(tsk);
193 sig->oublock += task_io_get_oublock(tsk);
194 task_io_accounting_add(&sig->ioac, &tsk->ioac);
195 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
196 sig->nr_threads--;
197 __unhash_process(tsk, group_dead);
198 write_sequnlock(&sig->stats_lock);
199
200 /*
201 * Do this under ->siglock, we can race with another thread
202 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
203 */
204 flush_sigqueue(&tsk->pending);
205 tsk->sighand = NULL;
206 spin_unlock(&sighand->siglock);
207
208 __cleanup_sighand(sighand);
209 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
210 if (group_dead) {
211 flush_sigqueue(&sig->shared_pending);
212 tty_kref_put(tty);
213 }
214 }
215
delayed_put_task_struct(struct rcu_head * rhp)216 static void delayed_put_task_struct(struct rcu_head *rhp)
217 {
218 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
219
220 perf_event_delayed_put(tsk);
221 trace_sched_process_free(tsk);
222 put_task_struct(tsk);
223 }
224
put_task_struct_rcu_user(struct task_struct * task)225 void put_task_struct_rcu_user(struct task_struct *task)
226 {
227 if (refcount_dec_and_test(&task->rcu_users))
228 call_rcu(&task->rcu, delayed_put_task_struct);
229 }
230
release_task(struct task_struct * p)231 void release_task(struct task_struct *p)
232 {
233 struct task_struct *leader;
234 struct pid *thread_pid;
235 int zap_leader;
236 repeat:
237 /* don't need to get the RCU readlock here - the process is dead and
238 * can't be modifying its own credentials. But shut RCU-lockdep up */
239 rcu_read_lock();
240 atomic_dec(&__task_cred(p)->user->processes);
241 rcu_read_unlock();
242
243 cgroup_release(p);
244
245 write_lock_irq(&tasklist_lock);
246 ptrace_release_task(p);
247 thread_pid = get_pid(p->thread_pid);
248 __exit_signal(p);
249
250 /*
251 * If we are the last non-leader member of the thread
252 * group, and the leader is zombie, then notify the
253 * group leader's parent process. (if it wants notification.)
254 */
255 zap_leader = 0;
256 leader = p->group_leader;
257 if (leader != p && thread_group_empty(leader)
258 && leader->exit_state == EXIT_ZOMBIE) {
259 /*
260 * If we were the last child thread and the leader has
261 * exited already, and the leader's parent ignores SIGCHLD,
262 * then we are the one who should release the leader.
263 */
264 zap_leader = do_notify_parent(leader, leader->exit_signal);
265 if (zap_leader)
266 leader->exit_state = EXIT_DEAD;
267 }
268
269 write_unlock_irq(&tasklist_lock);
270 seccomp_filter_release(p);
271 proc_flush_pid(thread_pid);
272 put_pid(thread_pid);
273 release_thread(p);
274 put_task_struct_rcu_user(p);
275
276 p = leader;
277 if (unlikely(zap_leader))
278 goto repeat;
279 }
280
rcuwait_wake_up(struct rcuwait * w)281 int rcuwait_wake_up(struct rcuwait *w)
282 {
283 int ret = 0;
284 struct task_struct *task;
285
286 rcu_read_lock();
287
288 /*
289 * Order condition vs @task, such that everything prior to the load
290 * of @task is visible. This is the condition as to why the user called
291 * rcuwait_wake() in the first place. Pairs with set_current_state()
292 * barrier (A) in rcuwait_wait_event().
293 *
294 * WAIT WAKE
295 * [S] tsk = current [S] cond = true
296 * MB (A) MB (B)
297 * [L] cond [L] tsk
298 */
299 smp_mb(); /* (B) */
300
301 task = rcu_dereference(w->task);
302 if (task)
303 ret = wake_up_process(task);
304 rcu_read_unlock();
305
306 return ret;
307 }
308 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
309
310 /*
311 * Determine if a process group is "orphaned", according to the POSIX
312 * definition in 2.2.2.52. Orphaned process groups are not to be affected
313 * by terminal-generated stop signals. Newly orphaned process groups are
314 * to receive a SIGHUP and a SIGCONT.
315 *
316 * "I ask you, have you ever known what it is to be an orphan?"
317 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)318 static int will_become_orphaned_pgrp(struct pid *pgrp,
319 struct task_struct *ignored_task)
320 {
321 struct task_struct *p;
322
323 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
324 if ((p == ignored_task) ||
325 (p->exit_state && thread_group_empty(p)) ||
326 is_global_init(p->real_parent))
327 continue;
328
329 if (task_pgrp(p->real_parent) != pgrp &&
330 task_session(p->real_parent) == task_session(p))
331 return 0;
332 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
333
334 return 1;
335 }
336
is_current_pgrp_orphaned(void)337 int is_current_pgrp_orphaned(void)
338 {
339 int retval;
340
341 read_lock(&tasklist_lock);
342 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
343 read_unlock(&tasklist_lock);
344
345 return retval;
346 }
347
has_stopped_jobs(struct pid * pgrp)348 static bool has_stopped_jobs(struct pid *pgrp)
349 {
350 struct task_struct *p;
351
352 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
353 if (p->signal->flags & SIGNAL_STOP_STOPPED)
354 return true;
355 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
356
357 return false;
358 }
359
360 /*
361 * Check to see if any process groups have become orphaned as
362 * a result of our exiting, and if they have any stopped jobs,
363 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
364 */
365 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)366 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
367 {
368 struct pid *pgrp = task_pgrp(tsk);
369 struct task_struct *ignored_task = tsk;
370
371 if (!parent)
372 /* exit: our father is in a different pgrp than
373 * we are and we were the only connection outside.
374 */
375 parent = tsk->real_parent;
376 else
377 /* reparent: our child is in a different pgrp than
378 * we are, and it was the only connection outside.
379 */
380 ignored_task = NULL;
381
382 if (task_pgrp(parent) != pgrp &&
383 task_session(parent) == task_session(tsk) &&
384 will_become_orphaned_pgrp(pgrp, ignored_task) &&
385 has_stopped_jobs(pgrp)) {
386 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
387 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
388 }
389 }
390
391 #ifdef CONFIG_MEMCG
392 /*
393 * A task is exiting. If it owned this mm, find a new owner for the mm.
394 */
mm_update_next_owner(struct mm_struct * mm)395 void mm_update_next_owner(struct mm_struct *mm)
396 {
397 struct task_struct *c, *g, *p = current;
398
399 retry:
400 /*
401 * If the exiting or execing task is not the owner, it's
402 * someone else's problem.
403 */
404 if (mm->owner != p)
405 return;
406 /*
407 * The current owner is exiting/execing and there are no other
408 * candidates. Do not leave the mm pointing to a possibly
409 * freed task structure.
410 */
411 if (atomic_read(&mm->mm_users) <= 1) {
412 WRITE_ONCE(mm->owner, NULL);
413 return;
414 }
415
416 read_lock(&tasklist_lock);
417 /*
418 * Search in the children
419 */
420 list_for_each_entry(c, &p->children, sibling) {
421 if (c->mm == mm)
422 goto assign_new_owner;
423 }
424
425 /*
426 * Search in the siblings
427 */
428 list_for_each_entry(c, &p->real_parent->children, sibling) {
429 if (c->mm == mm)
430 goto assign_new_owner;
431 }
432
433 /*
434 * Search through everything else, we should not get here often.
435 */
436 for_each_process(g) {
437 if (g->flags & PF_KTHREAD)
438 continue;
439 for_each_thread(g, c) {
440 if (c->mm == mm)
441 goto assign_new_owner;
442 if (c->mm)
443 break;
444 }
445 }
446 read_unlock(&tasklist_lock);
447 /*
448 * We found no owner yet mm_users > 1: this implies that we are
449 * most likely racing with swapoff (try_to_unuse()) or /proc or
450 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
451 */
452 WRITE_ONCE(mm->owner, NULL);
453 return;
454
455 assign_new_owner:
456 BUG_ON(c == p);
457 get_task_struct(c);
458 /*
459 * The task_lock protects c->mm from changing.
460 * We always want mm->owner->mm == mm
461 */
462 task_lock(c);
463 /*
464 * Delay read_unlock() till we have the task_lock()
465 * to ensure that c does not slip away underneath us
466 */
467 read_unlock(&tasklist_lock);
468 if (c->mm != mm) {
469 task_unlock(c);
470 put_task_struct(c);
471 goto retry;
472 }
473 WRITE_ONCE(mm->owner, c);
474 task_unlock(c);
475 put_task_struct(c);
476 }
477 #endif /* CONFIG_MEMCG */
478
479 /*
480 * Turn us into a lazy TLB process if we
481 * aren't already..
482 */
exit_mm(void)483 static void exit_mm(void)
484 {
485 struct mm_struct *mm = current->mm;
486 struct core_state *core_state;
487
488 exit_mm_release(current, mm);
489 if (!mm)
490 return;
491 sync_mm_rss(mm);
492 /*
493 * Serialize with any possible pending coredump.
494 * We must hold mmap_lock around checking core_state
495 * and clearing tsk->mm. The core-inducing thread
496 * will increment ->nr_threads for each thread in the
497 * group with ->mm != NULL.
498 */
499 mmap_read_lock(mm);
500 core_state = mm->core_state;
501 if (core_state) {
502 struct core_thread self;
503
504 mmap_read_unlock(mm);
505
506 self.task = current;
507 if (self.task->flags & PF_SIGNALED)
508 self.next = xchg(&core_state->dumper.next, &self);
509 else
510 self.task = NULL;
511 /*
512 * Implies mb(), the result of xchg() must be visible
513 * to core_state->dumper.
514 */
515 if (atomic_dec_and_test(&core_state->nr_threads))
516 complete(&core_state->startup);
517
518 for (;;) {
519 set_current_state(TASK_UNINTERRUPTIBLE);
520 if (!self.task) /* see coredump_finish() */
521 break;
522 freezable_schedule();
523 }
524 __set_current_state(TASK_RUNNING);
525 mmap_read_lock(mm);
526 }
527 mmgrab(mm);
528 BUG_ON(mm != current->active_mm);
529 /* more a memory barrier than a real lock */
530 task_lock(current);
531 current->mm = NULL;
532 mmap_read_unlock(mm);
533 enter_lazy_tlb(mm, current);
534 task_unlock(current);
535 mm_update_next_owner(mm);
536 trace_android_vh_exit_mm(mm);
537 mmput(mm);
538 if (test_thread_flag(TIF_MEMDIE))
539 exit_oom_victim();
540 }
541
find_alive_thread(struct task_struct * p)542 static struct task_struct *find_alive_thread(struct task_struct *p)
543 {
544 struct task_struct *t;
545
546 for_each_thread(p, t) {
547 if (!(t->flags & PF_EXITING))
548 return t;
549 }
550 return NULL;
551 }
552
find_child_reaper(struct task_struct * father,struct list_head * dead)553 static struct task_struct *find_child_reaper(struct task_struct *father,
554 struct list_head *dead)
555 __releases(&tasklist_lock)
556 __acquires(&tasklist_lock)
557 {
558 struct pid_namespace *pid_ns = task_active_pid_ns(father);
559 struct task_struct *reaper = pid_ns->child_reaper;
560 struct task_struct *p, *n;
561
562 if (likely(reaper != father))
563 return reaper;
564
565 reaper = find_alive_thread(father);
566 if (reaper) {
567 pid_ns->child_reaper = reaper;
568 return reaper;
569 }
570
571 write_unlock_irq(&tasklist_lock);
572
573 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
574 list_del_init(&p->ptrace_entry);
575 release_task(p);
576 }
577
578 zap_pid_ns_processes(pid_ns);
579 write_lock_irq(&tasklist_lock);
580
581 return father;
582 }
583
584 /*
585 * When we die, we re-parent all our children, and try to:
586 * 1. give them to another thread in our thread group, if such a member exists
587 * 2. give it to the first ancestor process which prctl'd itself as a
588 * child_subreaper for its children (like a service manager)
589 * 3. give it to the init process (PID 1) in our pid namespace
590 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)591 static struct task_struct *find_new_reaper(struct task_struct *father,
592 struct task_struct *child_reaper)
593 {
594 struct task_struct *thread, *reaper;
595
596 thread = find_alive_thread(father);
597 if (thread)
598 return thread;
599
600 if (father->signal->has_child_subreaper) {
601 unsigned int ns_level = task_pid(father)->level;
602 /*
603 * Find the first ->is_child_subreaper ancestor in our pid_ns.
604 * We can't check reaper != child_reaper to ensure we do not
605 * cross the namespaces, the exiting parent could be injected
606 * by setns() + fork().
607 * We check pid->level, this is slightly more efficient than
608 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
609 */
610 for (reaper = father->real_parent;
611 task_pid(reaper)->level == ns_level;
612 reaper = reaper->real_parent) {
613 if (reaper == &init_task)
614 break;
615 if (!reaper->signal->is_child_subreaper)
616 continue;
617 thread = find_alive_thread(reaper);
618 if (thread)
619 return thread;
620 }
621 }
622
623 return child_reaper;
624 }
625
626 /*
627 * Any that need to be release_task'd are put on the @dead list.
628 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)629 static void reparent_leader(struct task_struct *father, struct task_struct *p,
630 struct list_head *dead)
631 {
632 if (unlikely(p->exit_state == EXIT_DEAD))
633 return;
634
635 /* We don't want people slaying init. */
636 p->exit_signal = SIGCHLD;
637
638 /* If it has exited notify the new parent about this child's death. */
639 if (!p->ptrace &&
640 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
641 if (do_notify_parent(p, p->exit_signal)) {
642 p->exit_state = EXIT_DEAD;
643 list_add(&p->ptrace_entry, dead);
644 }
645 }
646
647 kill_orphaned_pgrp(p, father);
648 }
649
650 /*
651 * This does two things:
652 *
653 * A. Make init inherit all the child processes
654 * B. Check to see if any process groups have become orphaned
655 * as a result of our exiting, and if they have any stopped
656 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
657 */
forget_original_parent(struct task_struct * father,struct list_head * dead)658 static void forget_original_parent(struct task_struct *father,
659 struct list_head *dead)
660 {
661 struct task_struct *p, *t, *reaper;
662
663 if (unlikely(!list_empty(&father->ptraced)))
664 exit_ptrace(father, dead);
665
666 /* Can drop and reacquire tasklist_lock */
667 reaper = find_child_reaper(father, dead);
668 if (list_empty(&father->children))
669 return;
670
671 reaper = find_new_reaper(father, reaper);
672 list_for_each_entry(p, &father->children, sibling) {
673 for_each_thread(p, t) {
674 RCU_INIT_POINTER(t->real_parent, reaper);
675 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
676 if (likely(!t->ptrace))
677 t->parent = t->real_parent;
678 if (t->pdeath_signal)
679 group_send_sig_info(t->pdeath_signal,
680 SEND_SIG_NOINFO, t,
681 PIDTYPE_TGID);
682 }
683 /*
684 * If this is a threaded reparent there is no need to
685 * notify anyone anything has happened.
686 */
687 if (!same_thread_group(reaper, father))
688 reparent_leader(father, p, dead);
689 }
690 list_splice_tail_init(&father->children, &reaper->children);
691 }
692
693 /*
694 * Send signals to all our closest relatives so that they know
695 * to properly mourn us..
696 */
exit_notify(struct task_struct * tsk,int group_dead)697 static void exit_notify(struct task_struct *tsk, int group_dead)
698 {
699 bool autoreap;
700 struct task_struct *p, *n;
701 LIST_HEAD(dead);
702
703 write_lock_irq(&tasklist_lock);
704 forget_original_parent(tsk, &dead);
705
706 if (group_dead)
707 kill_orphaned_pgrp(tsk->group_leader, NULL);
708
709 tsk->exit_state = EXIT_ZOMBIE;
710 if (unlikely(tsk->ptrace)) {
711 int sig = thread_group_leader(tsk) &&
712 thread_group_empty(tsk) &&
713 !ptrace_reparented(tsk) ?
714 tsk->exit_signal : SIGCHLD;
715 autoreap = do_notify_parent(tsk, sig);
716 } else if (thread_group_leader(tsk)) {
717 autoreap = thread_group_empty(tsk) &&
718 do_notify_parent(tsk, tsk->exit_signal);
719 } else {
720 autoreap = true;
721 }
722
723 if (autoreap) {
724 tsk->exit_state = EXIT_DEAD;
725 list_add(&tsk->ptrace_entry, &dead);
726 }
727
728 /* mt-exec, de_thread() is waiting for group leader */
729 if (unlikely(tsk->signal->notify_count < 0))
730 wake_up_process(tsk->signal->group_exit_task);
731 write_unlock_irq(&tasklist_lock);
732
733 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
734 list_del_init(&p->ptrace_entry);
735 release_task(p);
736 }
737 }
738
739 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)740 static void check_stack_usage(void)
741 {
742 static DEFINE_SPINLOCK(low_water_lock);
743 static int lowest_to_date = THREAD_SIZE;
744 unsigned long free;
745
746 free = stack_not_used(current);
747
748 if (free >= lowest_to_date)
749 return;
750
751 spin_lock(&low_water_lock);
752 if (free < lowest_to_date) {
753 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
754 current->comm, task_pid_nr(current), free);
755 lowest_to_date = free;
756 }
757 spin_unlock(&low_water_lock);
758 }
759 #else
check_stack_usage(void)760 static inline void check_stack_usage(void) {}
761 #endif
762
do_exit(long code)763 void __noreturn do_exit(long code)
764 {
765 struct task_struct *tsk = current;
766 int group_dead;
767
768 /*
769 * We can get here from a kernel oops, sometimes with preemption off.
770 * Start by checking for critical errors.
771 * Then fix up important state like USER_DS and preemption.
772 * Then do everything else.
773 */
774
775 WARN_ON(blk_needs_flush_plug(tsk));
776
777 if (unlikely(in_interrupt()))
778 panic("Aiee, killing interrupt handler!");
779 if (unlikely(!tsk->pid))
780 panic("Attempted to kill the idle task!");
781
782 /*
783 * If do_exit is called because this processes oopsed, it's possible
784 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
785 * continuing. Amongst other possible reasons, this is to prevent
786 * mm_release()->clear_child_tid() from writing to a user-controlled
787 * kernel address.
788 */
789 force_uaccess_begin();
790
791 if (unlikely(in_atomic())) {
792 pr_info("note: %s[%d] exited with preempt_count %d\n",
793 current->comm, task_pid_nr(current),
794 preempt_count());
795 preempt_count_set(PREEMPT_ENABLED);
796 }
797
798 profile_task_exit(tsk);
799 kcov_task_exit(tsk);
800
801 ptrace_event(PTRACE_EVENT_EXIT, code);
802
803 validate_creds_for_do_exit(tsk);
804
805 /*
806 * We're taking recursive faults here in do_exit. Safest is to just
807 * leave this task alone and wait for reboot.
808 */
809 if (unlikely(tsk->flags & PF_EXITING)) {
810 pr_alert("Fixing recursive fault but reboot is needed!\n");
811 futex_exit_recursive(tsk);
812 set_current_state(TASK_UNINTERRUPTIBLE);
813 schedule();
814 }
815
816 io_uring_files_cancel();
817 exit_signals(tsk); /* sets PF_EXITING */
818
819 /* sync mm's RSS info before statistics gathering */
820 if (tsk->mm)
821 sync_mm_rss(tsk->mm);
822 acct_update_integrals(tsk);
823 group_dead = atomic_dec_and_test(&tsk->signal->live);
824 trace_android_vh_exit_check(current, code, group_dead);
825 if (group_dead) {
826 /*
827 * If the last thread of global init has exited, panic
828 * immediately to get a useable coredump.
829 */
830 if (unlikely(is_global_init(tsk)))
831 panic("Attempted to kill init! exitcode=0x%08x\n",
832 tsk->signal->group_exit_code ?: (int)code);
833
834 #ifdef CONFIG_POSIX_TIMERS
835 hrtimer_cancel(&tsk->signal->real_timer);
836 exit_itimers(tsk);
837 #endif
838 if (tsk->mm)
839 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
840 }
841 acct_collect(code, group_dead);
842 if (group_dead)
843 tty_audit_exit();
844 audit_free(tsk);
845
846 tsk->exit_code = code;
847 taskstats_exit(tsk, group_dead);
848
849 exit_mm();
850
851 if (group_dead)
852 acct_process();
853 trace_sched_process_exit(tsk);
854
855 exit_sem(tsk);
856 exit_shm(tsk);
857 exit_files(tsk);
858 exit_fs(tsk);
859 if (group_dead)
860 disassociate_ctty(1);
861 exit_task_namespaces(tsk);
862 exit_task_work(tsk);
863 exit_thread(tsk);
864
865 /*
866 * Flush inherited counters to the parent - before the parent
867 * gets woken up by child-exit notifications.
868 *
869 * because of cgroup mode, must be called before cgroup_exit()
870 */
871 perf_event_exit_task(tsk);
872
873 sched_autogroup_exit_task(tsk);
874 cgroup_exit(tsk);
875
876 /*
877 * FIXME: do that only when needed, using sched_exit tracepoint
878 */
879 flush_ptrace_hw_breakpoint(tsk);
880
881 exit_tasks_rcu_start();
882 exit_notify(tsk, group_dead);
883 proc_exit_connector(tsk);
884 mpol_put_task_policy(tsk);
885 #ifdef CONFIG_FUTEX
886 if (unlikely(current->pi_state_cache))
887 kfree(current->pi_state_cache);
888 #endif
889 /*
890 * Make sure we are holding no locks:
891 */
892 debug_check_no_locks_held();
893
894 if (tsk->io_context)
895 exit_io_context(tsk);
896
897 if (tsk->splice_pipe)
898 free_pipe_info(tsk->splice_pipe);
899
900 if (tsk->task_frag.page)
901 put_page(tsk->task_frag.page);
902
903 validate_creds_for_do_exit(tsk);
904
905 check_stack_usage();
906 preempt_disable();
907 if (tsk->nr_dirtied)
908 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
909 exit_rcu();
910 exit_tasks_rcu_finish();
911
912 lockdep_free_task(tsk);
913 do_task_dead();
914 }
915 EXPORT_SYMBOL_GPL(do_exit);
916
make_task_dead(int signr)917 void __noreturn make_task_dead(int signr)
918 {
919 /*
920 * Take the task off the cpu after something catastrophic has
921 * happened.
922 */
923 unsigned int limit;
924
925 /*
926 * Every time the system oopses, if the oops happens while a reference
927 * to an object was held, the reference leaks.
928 * If the oops doesn't also leak memory, repeated oopsing can cause
929 * reference counters to wrap around (if they're not using refcount_t).
930 * This means that repeated oopsing can make unexploitable-looking bugs
931 * exploitable through repeated oopsing.
932 * To make sure this can't happen, place an upper bound on how often the
933 * kernel may oops without panic().
934 */
935 limit = READ_ONCE(oops_limit);
936 if (atomic_inc_return(&oops_count) >= limit && limit)
937 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
938
939 do_exit(signr);
940 }
941
complete_and_exit(struct completion * comp,long code)942 void complete_and_exit(struct completion *comp, long code)
943 {
944 if (comp)
945 complete(comp);
946
947 do_exit(code);
948 }
949 EXPORT_SYMBOL(complete_and_exit);
950
SYSCALL_DEFINE1(exit,int,error_code)951 SYSCALL_DEFINE1(exit, int, error_code)
952 {
953 do_exit((error_code&0xff)<<8);
954 }
955
956 /*
957 * Take down every thread in the group. This is called by fatal signals
958 * as well as by sys_exit_group (below).
959 */
960 void
do_group_exit(int exit_code)961 do_group_exit(int exit_code)
962 {
963 struct signal_struct *sig = current->signal;
964
965 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
966
967 if (signal_group_exit(sig))
968 exit_code = sig->group_exit_code;
969 else if (!thread_group_empty(current)) {
970 struct sighand_struct *const sighand = current->sighand;
971
972 spin_lock_irq(&sighand->siglock);
973 if (signal_group_exit(sig))
974 /* Another thread got here before we took the lock. */
975 exit_code = sig->group_exit_code;
976 else {
977 sig->group_exit_code = exit_code;
978 sig->flags = SIGNAL_GROUP_EXIT;
979 zap_other_threads(current);
980 }
981 spin_unlock_irq(&sighand->siglock);
982 }
983
984 do_exit(exit_code);
985 /* NOTREACHED */
986 }
987
988 /*
989 * this kills every thread in the thread group. Note that any externally
990 * wait4()-ing process will get the correct exit code - even if this
991 * thread is not the thread group leader.
992 */
SYSCALL_DEFINE1(exit_group,int,error_code)993 SYSCALL_DEFINE1(exit_group, int, error_code)
994 {
995 do_group_exit((error_code & 0xff) << 8);
996 /* NOTREACHED */
997 return 0;
998 }
999
1000 struct waitid_info {
1001 pid_t pid;
1002 uid_t uid;
1003 int status;
1004 int cause;
1005 };
1006
1007 struct wait_opts {
1008 enum pid_type wo_type;
1009 int wo_flags;
1010 struct pid *wo_pid;
1011
1012 struct waitid_info *wo_info;
1013 int wo_stat;
1014 struct rusage *wo_rusage;
1015
1016 wait_queue_entry_t child_wait;
1017 int notask_error;
1018 };
1019
eligible_pid(struct wait_opts * wo,struct task_struct * p)1020 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1021 {
1022 return wo->wo_type == PIDTYPE_MAX ||
1023 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1024 }
1025
1026 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1027 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1028 {
1029 if (!eligible_pid(wo, p))
1030 return 0;
1031
1032 /*
1033 * Wait for all children (clone and not) if __WALL is set or
1034 * if it is traced by us.
1035 */
1036 if (ptrace || (wo->wo_flags & __WALL))
1037 return 1;
1038
1039 /*
1040 * Otherwise, wait for clone children *only* if __WCLONE is set;
1041 * otherwise, wait for non-clone children *only*.
1042 *
1043 * Note: a "clone" child here is one that reports to its parent
1044 * using a signal other than SIGCHLD, or a non-leader thread which
1045 * we can only see if it is traced by us.
1046 */
1047 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1048 return 0;
1049
1050 return 1;
1051 }
1052
1053 /*
1054 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1055 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1056 * the lock and this task is uninteresting. If we return nonzero, we have
1057 * released the lock and the system call should return.
1058 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1059 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1060 {
1061 int state, status;
1062 pid_t pid = task_pid_vnr(p);
1063 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1064 struct waitid_info *infop;
1065
1066 if (!likely(wo->wo_flags & WEXITED))
1067 return 0;
1068
1069 if (unlikely(wo->wo_flags & WNOWAIT)) {
1070 status = p->exit_code;
1071 get_task_struct(p);
1072 read_unlock(&tasklist_lock);
1073 sched_annotate_sleep();
1074 if (wo->wo_rusage)
1075 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1076 put_task_struct(p);
1077 goto out_info;
1078 }
1079 /*
1080 * Move the task's state to DEAD/TRACE, only one thread can do this.
1081 */
1082 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1083 EXIT_TRACE : EXIT_DEAD;
1084 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1085 return 0;
1086 /*
1087 * We own this thread, nobody else can reap it.
1088 */
1089 read_unlock(&tasklist_lock);
1090 sched_annotate_sleep();
1091
1092 /*
1093 * Check thread_group_leader() to exclude the traced sub-threads.
1094 */
1095 if (state == EXIT_DEAD && thread_group_leader(p)) {
1096 struct signal_struct *sig = p->signal;
1097 struct signal_struct *psig = current->signal;
1098 unsigned long maxrss;
1099 u64 tgutime, tgstime;
1100
1101 /*
1102 * The resource counters for the group leader are in its
1103 * own task_struct. Those for dead threads in the group
1104 * are in its signal_struct, as are those for the child
1105 * processes it has previously reaped. All these
1106 * accumulate in the parent's signal_struct c* fields.
1107 *
1108 * We don't bother to take a lock here to protect these
1109 * p->signal fields because the whole thread group is dead
1110 * and nobody can change them.
1111 *
1112 * psig->stats_lock also protects us from our sub-theads
1113 * which can reap other children at the same time. Until
1114 * we change k_getrusage()-like users to rely on this lock
1115 * we have to take ->siglock as well.
1116 *
1117 * We use thread_group_cputime_adjusted() to get times for
1118 * the thread group, which consolidates times for all threads
1119 * in the group including the group leader.
1120 */
1121 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1122 spin_lock_irq(¤t->sighand->siglock);
1123 write_seqlock(&psig->stats_lock);
1124 psig->cutime += tgutime + sig->cutime;
1125 psig->cstime += tgstime + sig->cstime;
1126 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1127 psig->cmin_flt +=
1128 p->min_flt + sig->min_flt + sig->cmin_flt;
1129 psig->cmaj_flt +=
1130 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1131 psig->cnvcsw +=
1132 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1133 psig->cnivcsw +=
1134 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1135 psig->cinblock +=
1136 task_io_get_inblock(p) +
1137 sig->inblock + sig->cinblock;
1138 psig->coublock +=
1139 task_io_get_oublock(p) +
1140 sig->oublock + sig->coublock;
1141 maxrss = max(sig->maxrss, sig->cmaxrss);
1142 if (psig->cmaxrss < maxrss)
1143 psig->cmaxrss = maxrss;
1144 task_io_accounting_add(&psig->ioac, &p->ioac);
1145 task_io_accounting_add(&psig->ioac, &sig->ioac);
1146 write_sequnlock(&psig->stats_lock);
1147 spin_unlock_irq(¤t->sighand->siglock);
1148 }
1149
1150 if (wo->wo_rusage)
1151 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1152 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1153 ? p->signal->group_exit_code : p->exit_code;
1154 wo->wo_stat = status;
1155
1156 if (state == EXIT_TRACE) {
1157 write_lock_irq(&tasklist_lock);
1158 /* We dropped tasklist, ptracer could die and untrace */
1159 ptrace_unlink(p);
1160
1161 /* If parent wants a zombie, don't release it now */
1162 state = EXIT_ZOMBIE;
1163 if (do_notify_parent(p, p->exit_signal))
1164 state = EXIT_DEAD;
1165 p->exit_state = state;
1166 write_unlock_irq(&tasklist_lock);
1167 }
1168 if (state == EXIT_DEAD)
1169 release_task(p);
1170
1171 out_info:
1172 infop = wo->wo_info;
1173 if (infop) {
1174 if ((status & 0x7f) == 0) {
1175 infop->cause = CLD_EXITED;
1176 infop->status = status >> 8;
1177 } else {
1178 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1179 infop->status = status & 0x7f;
1180 }
1181 infop->pid = pid;
1182 infop->uid = uid;
1183 }
1184
1185 return pid;
1186 }
1187
task_stopped_code(struct task_struct * p,bool ptrace)1188 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1189 {
1190 if (ptrace) {
1191 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1192 return &p->exit_code;
1193 } else {
1194 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1195 return &p->signal->group_exit_code;
1196 }
1197 return NULL;
1198 }
1199
1200 /**
1201 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1202 * @wo: wait options
1203 * @ptrace: is the wait for ptrace
1204 * @p: task to wait for
1205 *
1206 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1207 *
1208 * CONTEXT:
1209 * read_lock(&tasklist_lock), which is released if return value is
1210 * non-zero. Also, grabs and releases @p->sighand->siglock.
1211 *
1212 * RETURNS:
1213 * 0 if wait condition didn't exist and search for other wait conditions
1214 * should continue. Non-zero return, -errno on failure and @p's pid on
1215 * success, implies that tasklist_lock is released and wait condition
1216 * search should terminate.
1217 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1218 static int wait_task_stopped(struct wait_opts *wo,
1219 int ptrace, struct task_struct *p)
1220 {
1221 struct waitid_info *infop;
1222 int exit_code, *p_code, why;
1223 uid_t uid = 0; /* unneeded, required by compiler */
1224 pid_t pid;
1225
1226 /*
1227 * Traditionally we see ptrace'd stopped tasks regardless of options.
1228 */
1229 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1230 return 0;
1231
1232 if (!task_stopped_code(p, ptrace))
1233 return 0;
1234
1235 exit_code = 0;
1236 spin_lock_irq(&p->sighand->siglock);
1237
1238 p_code = task_stopped_code(p, ptrace);
1239 if (unlikely(!p_code))
1240 goto unlock_sig;
1241
1242 exit_code = *p_code;
1243 if (!exit_code)
1244 goto unlock_sig;
1245
1246 if (!unlikely(wo->wo_flags & WNOWAIT))
1247 *p_code = 0;
1248
1249 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1250 unlock_sig:
1251 spin_unlock_irq(&p->sighand->siglock);
1252 if (!exit_code)
1253 return 0;
1254
1255 /*
1256 * Now we are pretty sure this task is interesting.
1257 * Make sure it doesn't get reaped out from under us while we
1258 * give up the lock and then examine it below. We don't want to
1259 * keep holding onto the tasklist_lock while we call getrusage and
1260 * possibly take page faults for user memory.
1261 */
1262 get_task_struct(p);
1263 pid = task_pid_vnr(p);
1264 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1265 read_unlock(&tasklist_lock);
1266 sched_annotate_sleep();
1267 if (wo->wo_rusage)
1268 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1269 put_task_struct(p);
1270
1271 if (likely(!(wo->wo_flags & WNOWAIT)))
1272 wo->wo_stat = (exit_code << 8) | 0x7f;
1273
1274 infop = wo->wo_info;
1275 if (infop) {
1276 infop->cause = why;
1277 infop->status = exit_code;
1278 infop->pid = pid;
1279 infop->uid = uid;
1280 }
1281 return pid;
1282 }
1283
1284 /*
1285 * Handle do_wait work for one task in a live, non-stopped state.
1286 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1287 * the lock and this task is uninteresting. If we return nonzero, we have
1288 * released the lock and the system call should return.
1289 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1290 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1291 {
1292 struct waitid_info *infop;
1293 pid_t pid;
1294 uid_t uid;
1295
1296 if (!unlikely(wo->wo_flags & WCONTINUED))
1297 return 0;
1298
1299 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1300 return 0;
1301
1302 spin_lock_irq(&p->sighand->siglock);
1303 /* Re-check with the lock held. */
1304 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1305 spin_unlock_irq(&p->sighand->siglock);
1306 return 0;
1307 }
1308 if (!unlikely(wo->wo_flags & WNOWAIT))
1309 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1310 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1311 spin_unlock_irq(&p->sighand->siglock);
1312
1313 pid = task_pid_vnr(p);
1314 get_task_struct(p);
1315 read_unlock(&tasklist_lock);
1316 sched_annotate_sleep();
1317 if (wo->wo_rusage)
1318 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1319 put_task_struct(p);
1320
1321 infop = wo->wo_info;
1322 if (!infop) {
1323 wo->wo_stat = 0xffff;
1324 } else {
1325 infop->cause = CLD_CONTINUED;
1326 infop->pid = pid;
1327 infop->uid = uid;
1328 infop->status = SIGCONT;
1329 }
1330 return pid;
1331 }
1332
1333 /*
1334 * Consider @p for a wait by @parent.
1335 *
1336 * -ECHILD should be in ->notask_error before the first call.
1337 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1338 * Returns zero if the search for a child should continue;
1339 * then ->notask_error is 0 if @p is an eligible child,
1340 * or still -ECHILD.
1341 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1342 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1343 struct task_struct *p)
1344 {
1345 /*
1346 * We can race with wait_task_zombie() from another thread.
1347 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1348 * can't confuse the checks below.
1349 */
1350 int exit_state = READ_ONCE(p->exit_state);
1351 int ret;
1352
1353 if (unlikely(exit_state == EXIT_DEAD))
1354 return 0;
1355
1356 ret = eligible_child(wo, ptrace, p);
1357 if (!ret)
1358 return ret;
1359
1360 if (unlikely(exit_state == EXIT_TRACE)) {
1361 /*
1362 * ptrace == 0 means we are the natural parent. In this case
1363 * we should clear notask_error, debugger will notify us.
1364 */
1365 if (likely(!ptrace))
1366 wo->notask_error = 0;
1367 return 0;
1368 }
1369
1370 if (likely(!ptrace) && unlikely(p->ptrace)) {
1371 /*
1372 * If it is traced by its real parent's group, just pretend
1373 * the caller is ptrace_do_wait() and reap this child if it
1374 * is zombie.
1375 *
1376 * This also hides group stop state from real parent; otherwise
1377 * a single stop can be reported twice as group and ptrace stop.
1378 * If a ptracer wants to distinguish these two events for its
1379 * own children it should create a separate process which takes
1380 * the role of real parent.
1381 */
1382 if (!ptrace_reparented(p))
1383 ptrace = 1;
1384 }
1385
1386 /* slay zombie? */
1387 if (exit_state == EXIT_ZOMBIE) {
1388 /* we don't reap group leaders with subthreads */
1389 if (!delay_group_leader(p)) {
1390 /*
1391 * A zombie ptracee is only visible to its ptracer.
1392 * Notification and reaping will be cascaded to the
1393 * real parent when the ptracer detaches.
1394 */
1395 if (unlikely(ptrace) || likely(!p->ptrace))
1396 return wait_task_zombie(wo, p);
1397 }
1398
1399 /*
1400 * Allow access to stopped/continued state via zombie by
1401 * falling through. Clearing of notask_error is complex.
1402 *
1403 * When !@ptrace:
1404 *
1405 * If WEXITED is set, notask_error should naturally be
1406 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1407 * so, if there are live subthreads, there are events to
1408 * wait for. If all subthreads are dead, it's still safe
1409 * to clear - this function will be called again in finite
1410 * amount time once all the subthreads are released and
1411 * will then return without clearing.
1412 *
1413 * When @ptrace:
1414 *
1415 * Stopped state is per-task and thus can't change once the
1416 * target task dies. Only continued and exited can happen.
1417 * Clear notask_error if WCONTINUED | WEXITED.
1418 */
1419 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1420 wo->notask_error = 0;
1421 } else {
1422 /*
1423 * @p is alive and it's gonna stop, continue or exit, so
1424 * there always is something to wait for.
1425 */
1426 wo->notask_error = 0;
1427 }
1428
1429 /*
1430 * Wait for stopped. Depending on @ptrace, different stopped state
1431 * is used and the two don't interact with each other.
1432 */
1433 ret = wait_task_stopped(wo, ptrace, p);
1434 if (ret)
1435 return ret;
1436
1437 /*
1438 * Wait for continued. There's only one continued state and the
1439 * ptracer can consume it which can confuse the real parent. Don't
1440 * use WCONTINUED from ptracer. You don't need or want it.
1441 */
1442 return wait_task_continued(wo, p);
1443 }
1444
1445 /*
1446 * Do the work of do_wait() for one thread in the group, @tsk.
1447 *
1448 * -ECHILD should be in ->notask_error before the first call.
1449 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1450 * Returns zero if the search for a child should continue; then
1451 * ->notask_error is 0 if there were any eligible children,
1452 * or still -ECHILD.
1453 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1454 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1455 {
1456 struct task_struct *p;
1457
1458 list_for_each_entry(p, &tsk->children, sibling) {
1459 int ret = wait_consider_task(wo, 0, p);
1460
1461 if (ret)
1462 return ret;
1463 }
1464
1465 return 0;
1466 }
1467
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1468 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1469 {
1470 struct task_struct *p;
1471
1472 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1473 int ret = wait_consider_task(wo, 1, p);
1474
1475 if (ret)
1476 return ret;
1477 }
1478
1479 return 0;
1480 }
1481
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1482 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1483 int sync, void *key)
1484 {
1485 struct wait_opts *wo = container_of(wait, struct wait_opts,
1486 child_wait);
1487 struct task_struct *p = key;
1488
1489 if (!eligible_pid(wo, p))
1490 return 0;
1491
1492 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1493 return 0;
1494
1495 return default_wake_function(wait, mode, sync, key);
1496 }
1497
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1498 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1499 {
1500 __wake_up_sync_key(&parent->signal->wait_chldexit,
1501 TASK_INTERRUPTIBLE, p);
1502 }
1503
do_wait(struct wait_opts * wo)1504 static long do_wait(struct wait_opts *wo)
1505 {
1506 struct task_struct *tsk;
1507 int retval;
1508
1509 trace_sched_process_wait(wo->wo_pid);
1510
1511 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1512 wo->child_wait.private = current;
1513 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1514 repeat:
1515 /*
1516 * If there is nothing that can match our criteria, just get out.
1517 * We will clear ->notask_error to zero if we see any child that
1518 * might later match our criteria, even if we are not able to reap
1519 * it yet.
1520 */
1521 wo->notask_error = -ECHILD;
1522 if ((wo->wo_type < PIDTYPE_MAX) &&
1523 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1524 goto notask;
1525
1526 set_current_state(TASK_INTERRUPTIBLE);
1527 read_lock(&tasklist_lock);
1528 tsk = current;
1529 do {
1530 retval = do_wait_thread(wo, tsk);
1531 if (retval)
1532 goto end;
1533
1534 retval = ptrace_do_wait(wo, tsk);
1535 if (retval)
1536 goto end;
1537
1538 if (wo->wo_flags & __WNOTHREAD)
1539 break;
1540 } while_each_thread(current, tsk);
1541 read_unlock(&tasklist_lock);
1542
1543 notask:
1544 retval = wo->notask_error;
1545 if (!retval && !(wo->wo_flags & WNOHANG)) {
1546 retval = -ERESTARTSYS;
1547 if (!signal_pending(current)) {
1548 schedule();
1549 goto repeat;
1550 }
1551 }
1552 end:
1553 __set_current_state(TASK_RUNNING);
1554 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1555 return retval;
1556 }
1557
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1558 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1559 int options, struct rusage *ru)
1560 {
1561 struct wait_opts wo;
1562 struct pid *pid = NULL;
1563 enum pid_type type;
1564 long ret;
1565 unsigned int f_flags = 0;
1566
1567 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1568 __WNOTHREAD|__WCLONE|__WALL))
1569 return -EINVAL;
1570 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1571 return -EINVAL;
1572
1573 switch (which) {
1574 case P_ALL:
1575 type = PIDTYPE_MAX;
1576 break;
1577 case P_PID:
1578 type = PIDTYPE_PID;
1579 if (upid <= 0)
1580 return -EINVAL;
1581
1582 pid = find_get_pid(upid);
1583 break;
1584 case P_PGID:
1585 type = PIDTYPE_PGID;
1586 if (upid < 0)
1587 return -EINVAL;
1588
1589 if (upid)
1590 pid = find_get_pid(upid);
1591 else
1592 pid = get_task_pid(current, PIDTYPE_PGID);
1593 break;
1594 case P_PIDFD:
1595 type = PIDTYPE_PID;
1596 if (upid < 0)
1597 return -EINVAL;
1598
1599 pid = pidfd_get_pid(upid, &f_flags);
1600 if (IS_ERR(pid))
1601 return PTR_ERR(pid);
1602
1603 break;
1604 default:
1605 return -EINVAL;
1606 }
1607
1608 wo.wo_type = type;
1609 wo.wo_pid = pid;
1610 wo.wo_flags = options;
1611 wo.wo_info = infop;
1612 wo.wo_rusage = ru;
1613 if (f_flags & O_NONBLOCK)
1614 wo.wo_flags |= WNOHANG;
1615
1616 ret = do_wait(&wo);
1617 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1618 ret = -EAGAIN;
1619
1620 put_pid(pid);
1621 return ret;
1622 }
1623
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1624 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1625 infop, int, options, struct rusage __user *, ru)
1626 {
1627 struct rusage r;
1628 struct waitid_info info = {.status = 0};
1629 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1630 int signo = 0;
1631
1632 if (err > 0) {
1633 signo = SIGCHLD;
1634 err = 0;
1635 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1636 return -EFAULT;
1637 }
1638 if (!infop)
1639 return err;
1640
1641 if (!user_write_access_begin(infop, sizeof(*infop)))
1642 return -EFAULT;
1643
1644 unsafe_put_user(signo, &infop->si_signo, Efault);
1645 unsafe_put_user(0, &infop->si_errno, Efault);
1646 unsafe_put_user(info.cause, &infop->si_code, Efault);
1647 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1648 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1649 unsafe_put_user(info.status, &infop->si_status, Efault);
1650 user_write_access_end();
1651 return err;
1652 Efault:
1653 user_write_access_end();
1654 return -EFAULT;
1655 }
1656
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1657 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1658 struct rusage *ru)
1659 {
1660 struct wait_opts wo;
1661 struct pid *pid = NULL;
1662 enum pid_type type;
1663 long ret;
1664
1665 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1666 __WNOTHREAD|__WCLONE|__WALL))
1667 return -EINVAL;
1668
1669 /* -INT_MIN is not defined */
1670 if (upid == INT_MIN)
1671 return -ESRCH;
1672
1673 if (upid == -1)
1674 type = PIDTYPE_MAX;
1675 else if (upid < 0) {
1676 type = PIDTYPE_PGID;
1677 pid = find_get_pid(-upid);
1678 } else if (upid == 0) {
1679 type = PIDTYPE_PGID;
1680 pid = get_task_pid(current, PIDTYPE_PGID);
1681 } else /* upid > 0 */ {
1682 type = PIDTYPE_PID;
1683 pid = find_get_pid(upid);
1684 }
1685
1686 wo.wo_type = type;
1687 wo.wo_pid = pid;
1688 wo.wo_flags = options | WEXITED;
1689 wo.wo_info = NULL;
1690 wo.wo_stat = 0;
1691 wo.wo_rusage = ru;
1692 ret = do_wait(&wo);
1693 put_pid(pid);
1694 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1695 ret = -EFAULT;
1696
1697 return ret;
1698 }
1699
kernel_wait(pid_t pid,int * stat)1700 int kernel_wait(pid_t pid, int *stat)
1701 {
1702 struct wait_opts wo = {
1703 .wo_type = PIDTYPE_PID,
1704 .wo_pid = find_get_pid(pid),
1705 .wo_flags = WEXITED,
1706 };
1707 int ret;
1708
1709 ret = do_wait(&wo);
1710 if (ret > 0 && wo.wo_stat)
1711 *stat = wo.wo_stat;
1712 put_pid(wo.wo_pid);
1713 return ret;
1714 }
1715
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1716 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1717 int, options, struct rusage __user *, ru)
1718 {
1719 struct rusage r;
1720 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1721
1722 if (err > 0) {
1723 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1724 return -EFAULT;
1725 }
1726 return err;
1727 }
1728
1729 #ifdef __ARCH_WANT_SYS_WAITPID
1730
1731 /*
1732 * sys_waitpid() remains for compatibility. waitpid() should be
1733 * implemented by calling sys_wait4() from libc.a.
1734 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1735 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1736 {
1737 return kernel_wait4(pid, stat_addr, options, NULL);
1738 }
1739
1740 #endif
1741
1742 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1743 COMPAT_SYSCALL_DEFINE4(wait4,
1744 compat_pid_t, pid,
1745 compat_uint_t __user *, stat_addr,
1746 int, options,
1747 struct compat_rusage __user *, ru)
1748 {
1749 struct rusage r;
1750 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1751 if (err > 0) {
1752 if (ru && put_compat_rusage(&r, ru))
1753 return -EFAULT;
1754 }
1755 return err;
1756 }
1757
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1758 COMPAT_SYSCALL_DEFINE5(waitid,
1759 int, which, compat_pid_t, pid,
1760 struct compat_siginfo __user *, infop, int, options,
1761 struct compat_rusage __user *, uru)
1762 {
1763 struct rusage ru;
1764 struct waitid_info info = {.status = 0};
1765 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1766 int signo = 0;
1767 if (err > 0) {
1768 signo = SIGCHLD;
1769 err = 0;
1770 if (uru) {
1771 /* kernel_waitid() overwrites everything in ru */
1772 if (COMPAT_USE_64BIT_TIME)
1773 err = copy_to_user(uru, &ru, sizeof(ru));
1774 else
1775 err = put_compat_rusage(&ru, uru);
1776 if (err)
1777 return -EFAULT;
1778 }
1779 }
1780
1781 if (!infop)
1782 return err;
1783
1784 if (!user_write_access_begin(infop, sizeof(*infop)))
1785 return -EFAULT;
1786
1787 unsafe_put_user(signo, &infop->si_signo, Efault);
1788 unsafe_put_user(0, &infop->si_errno, Efault);
1789 unsafe_put_user(info.cause, &infop->si_code, Efault);
1790 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1791 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1792 unsafe_put_user(info.status, &infop->si_status, Efault);
1793 user_write_access_end();
1794 return err;
1795 Efault:
1796 user_write_access_end();
1797 return -EFAULT;
1798 }
1799 #endif
1800
1801 /**
1802 * thread_group_exited - check that a thread group has exited
1803 * @pid: tgid of thread group to be checked.
1804 *
1805 * Test if the thread group represented by tgid has exited (all
1806 * threads are zombies, dead or completely gone).
1807 *
1808 * Return: true if the thread group has exited. false otherwise.
1809 */
thread_group_exited(struct pid * pid)1810 bool thread_group_exited(struct pid *pid)
1811 {
1812 struct task_struct *task;
1813 bool exited;
1814
1815 rcu_read_lock();
1816 task = pid_task(pid, PIDTYPE_PID);
1817 exited = !task ||
1818 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1819 rcu_read_unlock();
1820
1821 return exited;
1822 }
1823 EXPORT_SYMBOL(thread_group_exited);
1824
abort(void)1825 __weak void abort(void)
1826 {
1827 BUG();
1828
1829 /* if that doesn't kill us, halt */
1830 panic("Oops failed to kill thread");
1831 }
1832 EXPORT_SYMBOL(abort);
1833