1 /*
2 * drm_irq.c IRQ and vblank support
3 *
4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
5 * \author Gareth Hughes <gareth@valinux.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
30
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
38
39 #include "drm_internal.h"
40 #include "drm_trace.h"
41
42 /**
43 * DOC: vblank handling
44 *
45 * From the computer's perspective, every time the monitor displays
46 * a new frame the scanout engine has "scanned out" the display image
47 * from top to bottom, one row of pixels at a time. The current row
48 * of pixels is referred to as the current scanline.
49 *
50 * In addition to the display's visible area, there's usually a couple of
51 * extra scanlines which aren't actually displayed on the screen.
52 * These extra scanlines don't contain image data and are occasionally used
53 * for features like audio and infoframes. The region made up of these
54 * scanlines is referred to as the vertical blanking region, or vblank for
55 * short.
56 *
57 * For historical reference, the vertical blanking period was designed to
58 * give the electron gun (on CRTs) enough time to move back to the top of
59 * the screen to start scanning out the next frame. Similar for horizontal
60 * blanking periods. They were designed to give the electron gun enough
61 * time to move back to the other side of the screen to start scanning the
62 * next scanline.
63 *
64 * ::
65 *
66 *
67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
68 * top of | |
69 * display | |
70 * | New frame |
71 * | |
72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the
75 * | | frame as it
76 * | | travels down
77 * | | ("sacn out")
78 * | Old frame |
79 * | |
80 * | |
81 * | |
82 * | | physical
83 * | | bottom of
84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
89 * new frame
90 *
91 * "Physical top of display" is the reference point for the high-precision/
92 * corrected timestamp.
93 *
94 * On a lot of display hardware, programming needs to take effect during the
95 * vertical blanking period so that settings like gamma, the image buffer
96 * buffer to be scanned out, etc. can safely be changed without showing
97 * any visual artifacts on the screen. In some unforgiving hardware, some of
98 * this programming has to both start and end in the same vblank. To help
99 * with the timing of the hardware programming, an interrupt is usually
100 * available to notify the driver when it can start the updating of registers.
101 * The interrupt is in this context named the vblank interrupt.
102 *
103 * The vblank interrupt may be fired at different points depending on the
104 * hardware. Some hardware implementations will fire the interrupt when the
105 * new frame start, other implementations will fire the interrupt at different
106 * points in time.
107 *
108 * Vertical blanking plays a major role in graphics rendering. To achieve
109 * tear-free display, users must synchronize page flips and/or rendering to
110 * vertical blanking. The DRM API offers ioctls to perform page flips
111 * synchronized to vertical blanking and wait for vertical blanking.
112 *
113 * The DRM core handles most of the vertical blanking management logic, which
114 * involves filtering out spurious interrupts, keeping race-free blanking
115 * counters, coping with counter wrap-around and resets and keeping use counts.
116 * It relies on the driver to generate vertical blanking interrupts and
117 * optionally provide a hardware vertical blanking counter.
118 *
119 * Drivers must initialize the vertical blanking handling core with a call to
120 * drm_vblank_init(). Minimally, a driver needs to implement
121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
123 * support.
124 *
125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126 * themselves (for instance to handle page flipping operations). The DRM core
127 * maintains a vertical blanking use count to ensure that the interrupts are not
128 * disabled while a user still needs them. To increment the use count, drivers
129 * call drm_crtc_vblank_get() and release the vblank reference again with
130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131 * guaranteed to be enabled.
132 *
133 * On many hardware disabling the vblank interrupt cannot be done in a race-free
134 * manner, see &drm_driver.vblank_disable_immediate and
135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136 * vblanks after a timer has expired, which can be configured through the
137 * ``vblankoffdelay`` module parameter.
138 *
139 * Drivers for hardware without support for vertical-blanking interrupts
140 * must not call drm_vblank_init(). For such drivers, atomic helpers will
141 * automatically generate fake vblank events as part of the display update.
142 * This functionality also can be controlled by the driver by enabling and
143 * disabling struct drm_crtc_state.no_vblank.
144 */
145
146 /* Retry timestamp calculation up to 3 times to satisfy
147 * drm_timestamp_precision before giving up.
148 */
149 #define DRM_TIMESTAMP_MAXRETRIES 3
150
151 /* Threshold in nanoseconds for detection of redundant
152 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
153 */
154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
155
156 static bool
157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158 ktime_t *tvblank, bool in_vblank_irq);
159
160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
161
162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
163
164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
168
store_vblank(struct drm_device * dev,unsigned int pipe,u32 vblank_count_inc,ktime_t t_vblank,u32 last)169 static void store_vblank(struct drm_device *dev, unsigned int pipe,
170 u32 vblank_count_inc,
171 ktime_t t_vblank, u32 last)
172 {
173 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
174
175 assert_spin_locked(&dev->vblank_time_lock);
176
177 vblank->last = last;
178
179 write_seqlock(&vblank->seqlock);
180 vblank->time = t_vblank;
181 atomic64_add(vblank_count_inc, &vblank->count);
182 write_sequnlock(&vblank->seqlock);
183 }
184
drm_max_vblank_count(struct drm_device * dev,unsigned int pipe)185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
186 {
187 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
188
189 return vblank->max_vblank_count ?: dev->max_vblank_count;
190 }
191
192 /*
193 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
194 * if there is no useable hardware frame counter available.
195 */
drm_vblank_no_hw_counter(struct drm_device * dev,unsigned int pipe)196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
197 {
198 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
199 return 0;
200 }
201
__get_vblank_counter(struct drm_device * dev,unsigned int pipe)202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
203 {
204 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
205 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
206
207 if (drm_WARN_ON(dev, !crtc))
208 return 0;
209
210 if (crtc->funcs->get_vblank_counter)
211 return crtc->funcs->get_vblank_counter(crtc);
212 } else if (dev->driver->get_vblank_counter) {
213 return dev->driver->get_vblank_counter(dev, pipe);
214 }
215
216 return drm_vblank_no_hw_counter(dev, pipe);
217 }
218
219 /*
220 * Reset the stored timestamp for the current vblank count to correspond
221 * to the last vblank occurred.
222 *
223 * Only to be called from drm_crtc_vblank_on().
224 *
225 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
226 * device vblank fields.
227 */
drm_reset_vblank_timestamp(struct drm_device * dev,unsigned int pipe)228 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
229 {
230 u32 cur_vblank;
231 bool rc;
232 ktime_t t_vblank;
233 int count = DRM_TIMESTAMP_MAXRETRIES;
234
235 spin_lock(&dev->vblank_time_lock);
236
237 /*
238 * sample the current counter to avoid random jumps
239 * when drm_vblank_enable() applies the diff
240 */
241 do {
242 cur_vblank = __get_vblank_counter(dev, pipe);
243 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
244 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
245
246 /*
247 * Only reinitialize corresponding vblank timestamp if high-precision query
248 * available and didn't fail. Otherwise reinitialize delayed at next vblank
249 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
250 */
251 if (!rc)
252 t_vblank = 0;
253
254 /*
255 * +1 to make sure user will never see the same
256 * vblank counter value before and after a modeset
257 */
258 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
259
260 spin_unlock(&dev->vblank_time_lock);
261 }
262
263 /*
264 * Call back into the driver to update the appropriate vblank counter
265 * (specified by @pipe). Deal with wraparound, if it occurred, and
266 * update the last read value so we can deal with wraparound on the next
267 * call if necessary.
268 *
269 * Only necessary when going from off->on, to account for frames we
270 * didn't get an interrupt for.
271 *
272 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
273 * device vblank fields.
274 */
drm_update_vblank_count(struct drm_device * dev,unsigned int pipe,bool in_vblank_irq)275 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
276 bool in_vblank_irq)
277 {
278 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
279 u32 cur_vblank, diff;
280 bool rc;
281 ktime_t t_vblank;
282 int count = DRM_TIMESTAMP_MAXRETRIES;
283 int framedur_ns = vblank->framedur_ns;
284 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
285
286 /*
287 * Interrupts were disabled prior to this call, so deal with counter
288 * wrap if needed.
289 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
290 * here if the register is small or we had vblank interrupts off for
291 * a long time.
292 *
293 * We repeat the hardware vblank counter & timestamp query until
294 * we get consistent results. This to prevent races between gpu
295 * updating its hardware counter while we are retrieving the
296 * corresponding vblank timestamp.
297 */
298 do {
299 cur_vblank = __get_vblank_counter(dev, pipe);
300 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
301 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
302
303 if (max_vblank_count) {
304 /* trust the hw counter when it's around */
305 diff = (cur_vblank - vblank->last) & max_vblank_count;
306 } else if (rc && framedur_ns) {
307 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
308
309 /*
310 * Figure out how many vblanks we've missed based
311 * on the difference in the timestamps and the
312 * frame/field duration.
313 */
314
315 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
316 " diff_ns = %lld, framedur_ns = %d)\n",
317 pipe, (long long)diff_ns, framedur_ns);
318
319 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
320
321 if (diff == 0 && in_vblank_irq)
322 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
323 pipe);
324 } else {
325 /* some kind of default for drivers w/o accurate vbl timestamping */
326 diff = in_vblank_irq ? 1 : 0;
327 }
328
329 /*
330 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
331 * interval? If so then vblank irqs keep running and it will likely
332 * happen that the hardware vblank counter is not trustworthy as it
333 * might reset at some point in that interval and vblank timestamps
334 * are not trustworthy either in that interval. Iow. this can result
335 * in a bogus diff >> 1 which must be avoided as it would cause
336 * random large forward jumps of the software vblank counter.
337 */
338 if (diff > 1 && (vblank->inmodeset & 0x2)) {
339 drm_dbg_vbl(dev,
340 "clamping vblank bump to 1 on crtc %u: diffr=%u"
341 " due to pre-modeset.\n", pipe, diff);
342 diff = 1;
343 }
344
345 drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
346 " current=%llu, diff=%u, hw=%u hw_last=%u\n",
347 pipe, (unsigned long long)atomic64_read(&vblank->count),
348 diff, cur_vblank, vblank->last);
349
350 if (diff == 0) {
351 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
352 return;
353 }
354
355 /*
356 * Only reinitialize corresponding vblank timestamp if high-precision query
357 * available and didn't fail, or we were called from the vblank interrupt.
358 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
359 * for now, to mark the vblanktimestamp as invalid.
360 */
361 if (!rc && !in_vblank_irq)
362 t_vblank = 0;
363
364 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
365 }
366
drm_vblank_count(struct drm_device * dev,unsigned int pipe)367 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
368 {
369 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
370 u64 count;
371
372 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
373 return 0;
374
375 count = atomic64_read(&vblank->count);
376
377 /*
378 * This read barrier corresponds to the implicit write barrier of the
379 * write seqlock in store_vblank(). Note that this is the only place
380 * where we need an explicit barrier, since all other access goes
381 * through drm_vblank_count_and_time(), which already has the required
382 * read barrier curtesy of the read seqlock.
383 */
384 smp_rmb();
385
386 return count;
387 }
388
389 /**
390 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
391 * @crtc: which counter to retrieve
392 *
393 * This function is similar to drm_crtc_vblank_count() but this function
394 * interpolates to handle a race with vblank interrupts using the high precision
395 * timestamping support.
396 *
397 * This is mostly useful for hardware that can obtain the scanout position, but
398 * doesn't have a hardware frame counter.
399 */
drm_crtc_accurate_vblank_count(struct drm_crtc * crtc)400 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
401 {
402 struct drm_device *dev = crtc->dev;
403 unsigned int pipe = drm_crtc_index(crtc);
404 u64 vblank;
405 unsigned long flags;
406
407 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
408 !crtc->funcs->get_vblank_timestamp,
409 "This function requires support for accurate vblank timestamps.");
410
411 spin_lock_irqsave(&dev->vblank_time_lock, flags);
412
413 drm_update_vblank_count(dev, pipe, false);
414 vblank = drm_vblank_count(dev, pipe);
415
416 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
417
418 return vblank;
419 }
420 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
421
__disable_vblank(struct drm_device * dev,unsigned int pipe)422 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
423 {
424 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
425 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
426
427 if (drm_WARN_ON(dev, !crtc))
428 return;
429
430 if (crtc->funcs->disable_vblank)
431 crtc->funcs->disable_vblank(crtc);
432 } else {
433 dev->driver->disable_vblank(dev, pipe);
434 }
435 }
436
437 /*
438 * Disable vblank irq's on crtc, make sure that last vblank count
439 * of hardware and corresponding consistent software vblank counter
440 * are preserved, even if there are any spurious vblank irq's after
441 * disable.
442 */
drm_vblank_disable_and_save(struct drm_device * dev,unsigned int pipe)443 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
444 {
445 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
446 unsigned long irqflags;
447
448 assert_spin_locked(&dev->vbl_lock);
449
450 /* Prevent vblank irq processing while disabling vblank irqs,
451 * so no updates of timestamps or count can happen after we've
452 * disabled. Needed to prevent races in case of delayed irq's.
453 */
454 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
455
456 /*
457 * Update vblank count and disable vblank interrupts only if the
458 * interrupts were enabled. This avoids calling the ->disable_vblank()
459 * operation in atomic context with the hardware potentially runtime
460 * suspended.
461 */
462 if (!vblank->enabled)
463 goto out;
464
465 /*
466 * Update the count and timestamp to maintain the
467 * appearance that the counter has been ticking all along until
468 * this time. This makes the count account for the entire time
469 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
470 */
471 drm_update_vblank_count(dev, pipe, false);
472 __disable_vblank(dev, pipe);
473 vblank->enabled = false;
474
475 out:
476 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
477 }
478
vblank_disable_fn(struct timer_list * t)479 static void vblank_disable_fn(struct timer_list *t)
480 {
481 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
482 struct drm_device *dev = vblank->dev;
483 unsigned int pipe = vblank->pipe;
484 unsigned long irqflags;
485
486 spin_lock_irqsave(&dev->vbl_lock, irqflags);
487 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
488 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
489 drm_vblank_disable_and_save(dev, pipe);
490 }
491 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
492 }
493
drm_vblank_init_release(struct drm_device * dev,void * ptr)494 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
495 {
496 struct drm_vblank_crtc *vblank = ptr;
497
498 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
499 drm_core_check_feature(dev, DRIVER_MODESET));
500
501 drm_vblank_destroy_worker(vblank);
502 del_timer_sync(&vblank->disable_timer);
503 }
504
505 /**
506 * drm_vblank_init - initialize vblank support
507 * @dev: DRM device
508 * @num_crtcs: number of CRTCs supported by @dev
509 *
510 * This function initializes vblank support for @num_crtcs display pipelines.
511 * Cleanup is handled automatically through a cleanup function added with
512 * drmm_add_action_or_reset().
513 *
514 * Returns:
515 * Zero on success or a negative error code on failure.
516 */
drm_vblank_init(struct drm_device * dev,unsigned int num_crtcs)517 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
518 {
519 int ret;
520 unsigned int i;
521
522 spin_lock_init(&dev->vbl_lock);
523 spin_lock_init(&dev->vblank_time_lock);
524
525 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
526 if (!dev->vblank)
527 return -ENOMEM;
528
529 dev->num_crtcs = num_crtcs;
530
531 for (i = 0; i < num_crtcs; i++) {
532 struct drm_vblank_crtc *vblank = &dev->vblank[i];
533
534 vblank->dev = dev;
535 vblank->pipe = i;
536 init_waitqueue_head(&vblank->queue);
537 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
538 seqlock_init(&vblank->seqlock);
539
540 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
541 vblank);
542 if (ret)
543 return ret;
544
545 ret = drm_vblank_worker_init(vblank);
546 if (ret)
547 return ret;
548 }
549
550 return 0;
551 }
552 EXPORT_SYMBOL(drm_vblank_init);
553
554 /**
555 * drm_dev_has_vblank - test if vblanking has been initialized for
556 * a device
557 * @dev: the device
558 *
559 * Drivers may call this function to test if vblank support is
560 * initialized for a device. For most hardware this means that vblanking
561 * can also be enabled.
562 *
563 * Atomic helpers use this function to initialize
564 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
565 *
566 * Returns:
567 * True if vblanking has been initialized for the given device, false
568 * otherwise.
569 */
drm_dev_has_vblank(const struct drm_device * dev)570 bool drm_dev_has_vblank(const struct drm_device *dev)
571 {
572 return dev->num_crtcs != 0;
573 }
574 EXPORT_SYMBOL(drm_dev_has_vblank);
575
576 /**
577 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
578 * @crtc: which CRTC's vblank waitqueue to retrieve
579 *
580 * This function returns a pointer to the vblank waitqueue for the CRTC.
581 * Drivers can use this to implement vblank waits using wait_event() and related
582 * functions.
583 */
drm_crtc_vblank_waitqueue(struct drm_crtc * crtc)584 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
585 {
586 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
587 }
588 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
589
590
591 /**
592 * drm_calc_timestamping_constants - calculate vblank timestamp constants
593 * @crtc: drm_crtc whose timestamp constants should be updated.
594 * @mode: display mode containing the scanout timings
595 *
596 * Calculate and store various constants which are later needed by vblank and
597 * swap-completion timestamping, e.g, by
598 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
599 * CRTC's true scanout timing, so they take things like panel scaling or
600 * other adjustments into account.
601 */
drm_calc_timestamping_constants(struct drm_crtc * crtc,const struct drm_display_mode * mode)602 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
603 const struct drm_display_mode *mode)
604 {
605 struct drm_device *dev = crtc->dev;
606 unsigned int pipe = drm_crtc_index(crtc);
607 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
608 int linedur_ns = 0, framedur_ns = 0;
609 int dotclock = mode->crtc_clock;
610
611 if (!drm_dev_has_vblank(dev))
612 return;
613
614 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
615 return;
616
617 /* Valid dotclock? */
618 if (dotclock > 0) {
619 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
620
621 /*
622 * Convert scanline length in pixels and video
623 * dot clock to line duration and frame duration
624 * in nanoseconds:
625 */
626 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
627 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
628
629 /*
630 * Fields of interlaced scanout modes are only half a frame duration.
631 */
632 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
633 framedur_ns /= 2;
634 } else {
635 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
636 crtc->base.id);
637 }
638
639 vblank->linedur_ns = linedur_ns;
640 vblank->framedur_ns = framedur_ns;
641 vblank->hwmode = *mode;
642
643 drm_dbg_core(dev,
644 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
645 crtc->base.id, mode->crtc_htotal,
646 mode->crtc_vtotal, mode->crtc_vdisplay);
647 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
648 crtc->base.id, dotclock, framedur_ns, linedur_ns);
649 }
650 EXPORT_SYMBOL(drm_calc_timestamping_constants);
651
652 /**
653 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
654 * timestamp helper
655 * @crtc: CRTC whose vblank timestamp to retrieve
656 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
657 * On return contains true maximum error of timestamp
658 * @vblank_time: Pointer to time which should receive the timestamp
659 * @in_vblank_irq:
660 * True when called from drm_crtc_handle_vblank(). Some drivers
661 * need to apply some workarounds for gpu-specific vblank irq quirks
662 * if flag is set.
663 * @get_scanout_position:
664 * Callback function to retrieve the scanout position. See
665 * @struct drm_crtc_helper_funcs.get_scanout_position.
666 *
667 * Implements calculation of exact vblank timestamps from given drm_display_mode
668 * timings and current video scanout position of a CRTC.
669 *
670 * The current implementation only handles standard video modes. For double scan
671 * and interlaced modes the driver is supposed to adjust the hardware mode
672 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
673 * match the scanout position reported.
674 *
675 * Note that atomic drivers must call drm_calc_timestamping_constants() before
676 * enabling a CRTC. The atomic helpers already take care of that in
677 * drm_atomic_helper_calc_timestamping_constants().
678 *
679 * Returns:
680 *
681 * Returns true on success, and false on failure, i.e. when no accurate
682 * timestamp could be acquired.
683 */
684 bool
drm_crtc_vblank_helper_get_vblank_timestamp_internal(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq,drm_vblank_get_scanout_position_func get_scanout_position)685 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
686 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
687 bool in_vblank_irq,
688 drm_vblank_get_scanout_position_func get_scanout_position)
689 {
690 struct drm_device *dev = crtc->dev;
691 unsigned int pipe = crtc->index;
692 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
693 struct timespec64 ts_etime, ts_vblank_time;
694 ktime_t stime, etime;
695 bool vbl_status;
696 const struct drm_display_mode *mode;
697 int vpos, hpos, i;
698 int delta_ns, duration_ns;
699
700 if (pipe >= dev->num_crtcs) {
701 drm_err(dev, "Invalid crtc %u\n", pipe);
702 return false;
703 }
704
705 /* Scanout position query not supported? Should not happen. */
706 if (!get_scanout_position) {
707 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
708 return false;
709 }
710
711 if (drm_drv_uses_atomic_modeset(dev))
712 mode = &vblank->hwmode;
713 else
714 mode = &crtc->hwmode;
715
716 /* If mode timing undefined, just return as no-op:
717 * Happens during initial modesetting of a crtc.
718 */
719 if (mode->crtc_clock == 0) {
720 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
721 pipe);
722 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
723 return false;
724 }
725
726 /* Get current scanout position with system timestamp.
727 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
728 * if single query takes longer than max_error nanoseconds.
729 *
730 * This guarantees a tight bound on maximum error if
731 * code gets preempted or delayed for some reason.
732 */
733 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
734 /*
735 * Get vertical and horizontal scanout position vpos, hpos,
736 * and bounding timestamps stime, etime, pre/post query.
737 */
738 vbl_status = get_scanout_position(crtc, in_vblank_irq,
739 &vpos, &hpos,
740 &stime, &etime,
741 mode);
742
743 /* Return as no-op if scanout query unsupported or failed. */
744 if (!vbl_status) {
745 drm_dbg_core(dev,
746 "crtc %u : scanoutpos query failed.\n",
747 pipe);
748 return false;
749 }
750
751 /* Compute uncertainty in timestamp of scanout position query. */
752 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
753
754 /* Accept result with < max_error nsecs timing uncertainty. */
755 if (duration_ns <= *max_error)
756 break;
757 }
758
759 /* Noisy system timing? */
760 if (i == DRM_TIMESTAMP_MAXRETRIES) {
761 drm_dbg_core(dev,
762 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
763 pipe, duration_ns / 1000, *max_error / 1000, i);
764 }
765
766 /* Return upper bound of timestamp precision error. */
767 *max_error = duration_ns;
768
769 /* Convert scanout position into elapsed time at raw_time query
770 * since start of scanout at first display scanline. delta_ns
771 * can be negative if start of scanout hasn't happened yet.
772 */
773 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
774 mode->crtc_clock);
775
776 /* Subtract time delta from raw timestamp to get final
777 * vblank_time timestamp for end of vblank.
778 */
779 *vblank_time = ktime_sub_ns(etime, delta_ns);
780
781 if (!drm_debug_enabled(DRM_UT_VBL))
782 return true;
783
784 ts_etime = ktime_to_timespec64(etime);
785 ts_vblank_time = ktime_to_timespec64(*vblank_time);
786
787 drm_dbg_vbl(dev,
788 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
789 pipe, hpos, vpos,
790 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
791 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
792 duration_ns / 1000, i);
793
794 return true;
795 }
796 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
797
798 /**
799 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
800 * helper
801 * @crtc: CRTC whose vblank timestamp to retrieve
802 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
803 * On return contains true maximum error of timestamp
804 * @vblank_time: Pointer to time which should receive the timestamp
805 * @in_vblank_irq:
806 * True when called from drm_crtc_handle_vblank(). Some drivers
807 * need to apply some workarounds for gpu-specific vblank irq quirks
808 * if flag is set.
809 *
810 * Implements calculation of exact vblank timestamps from given drm_display_mode
811 * timings and current video scanout position of a CRTC. This can be directly
812 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
813 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
814 *
815 * The current implementation only handles standard video modes. For double scan
816 * and interlaced modes the driver is supposed to adjust the hardware mode
817 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
818 * match the scanout position reported.
819 *
820 * Note that atomic drivers must call drm_calc_timestamping_constants() before
821 * enabling a CRTC. The atomic helpers already take care of that in
822 * drm_atomic_helper_calc_timestamping_constants().
823 *
824 * Returns:
825 *
826 * Returns true on success, and false on failure, i.e. when no accurate
827 * timestamp could be acquired.
828 */
drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)829 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
830 int *max_error,
831 ktime_t *vblank_time,
832 bool in_vblank_irq)
833 {
834 return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
835 crtc, max_error, vblank_time, in_vblank_irq,
836 crtc->helper_private->get_scanout_position);
837 }
838 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
839
840 /**
841 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
842 * vblank interval
843 * @dev: DRM device
844 * @pipe: index of CRTC whose vblank timestamp to retrieve
845 * @tvblank: Pointer to target time which should receive the timestamp
846 * @in_vblank_irq:
847 * True when called from drm_crtc_handle_vblank(). Some drivers
848 * need to apply some workarounds for gpu-specific vblank irq quirks
849 * if flag is set.
850 *
851 * Fetches the system timestamp corresponding to the time of the most recent
852 * vblank interval on specified CRTC. May call into kms-driver to
853 * compute the timestamp with a high-precision GPU specific method.
854 *
855 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
856 * call, i.e., it isn't very precisely locked to the true vblank.
857 *
858 * Returns:
859 * True if timestamp is considered to be very precise, false otherwise.
860 */
861 static bool
drm_get_last_vbltimestamp(struct drm_device * dev,unsigned int pipe,ktime_t * tvblank,bool in_vblank_irq)862 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
863 ktime_t *tvblank, bool in_vblank_irq)
864 {
865 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
866 bool ret = false;
867
868 /* Define requested maximum error on timestamps (nanoseconds). */
869 int max_error = (int) drm_timestamp_precision * 1000;
870
871 /* Query driver if possible and precision timestamping enabled. */
872 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
873 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
874
875 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
876 tvblank, in_vblank_irq);
877 }
878
879 /* GPU high precision timestamp query unsupported or failed.
880 * Return current monotonic/gettimeofday timestamp as best estimate.
881 */
882 if (!ret)
883 *tvblank = ktime_get();
884
885 return ret;
886 }
887
888 /**
889 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
890 * @crtc: which counter to retrieve
891 *
892 * Fetches the "cooked" vblank count value that represents the number of
893 * vblank events since the system was booted, including lost events due to
894 * modesetting activity. Note that this timer isn't correct against a racing
895 * vblank interrupt (since it only reports the software vblank counter), see
896 * drm_crtc_accurate_vblank_count() for such use-cases.
897 *
898 * Note that for a given vblank counter value drm_crtc_handle_vblank()
899 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
900 * provide a barrier: Any writes done before calling
901 * drm_crtc_handle_vblank() will be visible to callers of the later
902 * functions, iff the vblank count is the same or a later one.
903 *
904 * See also &drm_vblank_crtc.count.
905 *
906 * Returns:
907 * The software vblank counter.
908 */
drm_crtc_vblank_count(struct drm_crtc * crtc)909 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
910 {
911 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
912 }
913 EXPORT_SYMBOL(drm_crtc_vblank_count);
914
915 /**
916 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
917 * system timestamp corresponding to that vblank counter value.
918 * @dev: DRM device
919 * @pipe: index of CRTC whose counter to retrieve
920 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
921 *
922 * Fetches the "cooked" vblank count value that represents the number of
923 * vblank events since the system was booted, including lost events due to
924 * modesetting activity. Returns corresponding system timestamp of the time
925 * of the vblank interval that corresponds to the current vblank counter value.
926 *
927 * This is the legacy version of drm_crtc_vblank_count_and_time().
928 */
drm_vblank_count_and_time(struct drm_device * dev,unsigned int pipe,ktime_t * vblanktime)929 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
930 ktime_t *vblanktime)
931 {
932 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
933 u64 vblank_count;
934 unsigned int seq;
935
936 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
937 *vblanktime = 0;
938 return 0;
939 }
940
941 do {
942 seq = read_seqbegin(&vblank->seqlock);
943 vblank_count = atomic64_read(&vblank->count);
944 *vblanktime = vblank->time;
945 } while (read_seqretry(&vblank->seqlock, seq));
946
947 return vblank_count;
948 }
949
950 /**
951 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
952 * and the system timestamp corresponding to that vblank counter value
953 * @crtc: which counter to retrieve
954 * @vblanktime: Pointer to time to receive the vblank timestamp.
955 *
956 * Fetches the "cooked" vblank count value that represents the number of
957 * vblank events since the system was booted, including lost events due to
958 * modesetting activity. Returns corresponding system timestamp of the time
959 * of the vblank interval that corresponds to the current vblank counter value.
960 *
961 * Note that for a given vblank counter value drm_crtc_handle_vblank()
962 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
963 * provide a barrier: Any writes done before calling
964 * drm_crtc_handle_vblank() will be visible to callers of the later
965 * functions, iff the vblank count is the same or a later one.
966 *
967 * See also &drm_vblank_crtc.count.
968 */
drm_crtc_vblank_count_and_time(struct drm_crtc * crtc,ktime_t * vblanktime)969 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
970 ktime_t *vblanktime)
971 {
972 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
973 vblanktime);
974 }
975 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
976
send_vblank_event(struct drm_device * dev,struct drm_pending_vblank_event * e,u64 seq,ktime_t now)977 static void send_vblank_event(struct drm_device *dev,
978 struct drm_pending_vblank_event *e,
979 u64 seq, ktime_t now)
980 {
981 struct timespec64 tv;
982
983 switch (e->event.base.type) {
984 case DRM_EVENT_VBLANK:
985 case DRM_EVENT_FLIP_COMPLETE:
986 tv = ktime_to_timespec64(now);
987 e->event.vbl.sequence = seq;
988 /*
989 * e->event is a user space structure, with hardcoded unsigned
990 * 32-bit seconds/microseconds. This is safe as we always use
991 * monotonic timestamps since linux-4.15
992 */
993 e->event.vbl.tv_sec = tv.tv_sec;
994 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
995 break;
996 case DRM_EVENT_CRTC_SEQUENCE:
997 if (seq)
998 e->event.seq.sequence = seq;
999 e->event.seq.time_ns = ktime_to_ns(now);
1000 break;
1001 }
1002 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1003 /*
1004 * Use the same timestamp for any associated fence signal to avoid
1005 * mismatch in timestamps for vsync & fence events triggered by the
1006 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1007 * retire-fence timestamp to match exactly with HW vsync as it uses it
1008 * for its software vsync modeling.
1009 */
1010 drm_send_event_timestamp_locked(dev, &e->base, now);
1011 }
1012
1013 /**
1014 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1015 * @crtc: the source CRTC of the vblank event
1016 * @e: the event to send
1017 *
1018 * A lot of drivers need to generate vblank events for the very next vblank
1019 * interrupt. For example when the page flip interrupt happens when the page
1020 * flip gets armed, but not when it actually executes within the next vblank
1021 * period. This helper function implements exactly the required vblank arming
1022 * behaviour.
1023 *
1024 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1025 * atomic commit must ensure that the next vblank happens at exactly the same
1026 * time as the atomic commit is committed to the hardware. This function itself
1027 * does **not** protect against the next vblank interrupt racing with either this
1028 * function call or the atomic commit operation. A possible sequence could be:
1029 *
1030 * 1. Driver commits new hardware state into vblank-synchronized registers.
1031 * 2. A vblank happens, committing the hardware state. Also the corresponding
1032 * vblank interrupt is fired off and fully processed by the interrupt
1033 * handler.
1034 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1035 * 4. The event is only send out for the next vblank, which is wrong.
1036 *
1037 * An equivalent race can happen when the driver calls
1038 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1039 *
1040 * The only way to make this work safely is to prevent the vblank from firing
1041 * (and the hardware from committing anything else) until the entire atomic
1042 * commit sequence has run to completion. If the hardware does not have such a
1043 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1044 * Instead drivers need to manually send out the event from their interrupt
1045 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1046 * possible race with the hardware committing the atomic update.
1047 *
1048 * Caller must hold a vblank reference for the event @e acquired by a
1049 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1050 */
drm_crtc_arm_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1051 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1052 struct drm_pending_vblank_event *e)
1053 {
1054 struct drm_device *dev = crtc->dev;
1055 unsigned int pipe = drm_crtc_index(crtc);
1056
1057 assert_spin_locked(&dev->event_lock);
1058
1059 e->pipe = pipe;
1060 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1061 list_add_tail(&e->base.link, &dev->vblank_event_list);
1062 }
1063 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1064
1065 /**
1066 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1067 * @crtc: the source CRTC of the vblank event
1068 * @e: the event to send
1069 *
1070 * Updates sequence # and timestamp on event for the most recently processed
1071 * vblank, and sends it to userspace. Caller must hold event lock.
1072 *
1073 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1074 * situation, especially to send out events for atomic commit operations.
1075 */
drm_crtc_send_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)1076 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1077 struct drm_pending_vblank_event *e)
1078 {
1079 struct drm_device *dev = crtc->dev;
1080 u64 seq;
1081 unsigned int pipe = drm_crtc_index(crtc);
1082 ktime_t now;
1083
1084 if (drm_dev_has_vblank(dev)) {
1085 seq = drm_vblank_count_and_time(dev, pipe, &now);
1086 } else {
1087 seq = 0;
1088
1089 now = ktime_get();
1090 }
1091 e->pipe = pipe;
1092 send_vblank_event(dev, e, seq, now);
1093 }
1094 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1095
__enable_vblank(struct drm_device * dev,unsigned int pipe)1096 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1097 {
1098 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1099 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1100
1101 if (drm_WARN_ON(dev, !crtc))
1102 return 0;
1103
1104 if (crtc->funcs->enable_vblank)
1105 return crtc->funcs->enable_vblank(crtc);
1106 } else if (dev->driver->enable_vblank) {
1107 return dev->driver->enable_vblank(dev, pipe);
1108 }
1109
1110 return -EINVAL;
1111 }
1112
drm_vblank_enable(struct drm_device * dev,unsigned int pipe)1113 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1114 {
1115 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1116 int ret = 0;
1117
1118 assert_spin_locked(&dev->vbl_lock);
1119
1120 spin_lock(&dev->vblank_time_lock);
1121
1122 if (!vblank->enabled) {
1123 /*
1124 * Enable vblank irqs under vblank_time_lock protection.
1125 * All vblank count & timestamp updates are held off
1126 * until we are done reinitializing master counter and
1127 * timestamps. Filtercode in drm_handle_vblank() will
1128 * prevent double-accounting of same vblank interval.
1129 */
1130 ret = __enable_vblank(dev, pipe);
1131 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1132 pipe, ret);
1133 if (ret) {
1134 atomic_dec(&vblank->refcount);
1135 } else {
1136 drm_update_vblank_count(dev, pipe, 0);
1137 /* drm_update_vblank_count() includes a wmb so we just
1138 * need to ensure that the compiler emits the write
1139 * to mark the vblank as enabled after the call
1140 * to drm_update_vblank_count().
1141 */
1142 WRITE_ONCE(vblank->enabled, true);
1143 }
1144 }
1145
1146 spin_unlock(&dev->vblank_time_lock);
1147
1148 return ret;
1149 }
1150
drm_vblank_get(struct drm_device * dev,unsigned int pipe)1151 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1152 {
1153 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1154 unsigned long irqflags;
1155 int ret = 0;
1156
1157 if (!drm_dev_has_vblank(dev))
1158 return -EINVAL;
1159
1160 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1161 return -EINVAL;
1162
1163 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1164 /* Going from 0->1 means we have to enable interrupts again */
1165 if (atomic_add_return(1, &vblank->refcount) == 1) {
1166 ret = drm_vblank_enable(dev, pipe);
1167 } else {
1168 if (!vblank->enabled) {
1169 atomic_dec(&vblank->refcount);
1170 ret = -EINVAL;
1171 }
1172 }
1173 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1174
1175 return ret;
1176 }
1177
1178 /**
1179 * drm_crtc_vblank_get - get a reference count on vblank events
1180 * @crtc: which CRTC to own
1181 *
1182 * Acquire a reference count on vblank events to avoid having them disabled
1183 * while in use.
1184 *
1185 * Returns:
1186 * Zero on success or a negative error code on failure.
1187 */
drm_crtc_vblank_get(struct drm_crtc * crtc)1188 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1189 {
1190 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1191 }
1192 EXPORT_SYMBOL(drm_crtc_vblank_get);
1193
drm_vblank_put(struct drm_device * dev,unsigned int pipe)1194 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1195 {
1196 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1197
1198 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1199 return;
1200
1201 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1202 return;
1203
1204 /* Last user schedules interrupt disable */
1205 if (atomic_dec_and_test(&vblank->refcount)) {
1206 if (drm_vblank_offdelay == 0)
1207 return;
1208 else if (drm_vblank_offdelay < 0)
1209 vblank_disable_fn(&vblank->disable_timer);
1210 else if (!dev->vblank_disable_immediate)
1211 mod_timer(&vblank->disable_timer,
1212 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1213 }
1214 }
1215
1216 /**
1217 * drm_crtc_vblank_put - give up ownership of vblank events
1218 * @crtc: which counter to give up
1219 *
1220 * Release ownership of a given vblank counter, turning off interrupts
1221 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1222 */
drm_crtc_vblank_put(struct drm_crtc * crtc)1223 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1224 {
1225 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1226 }
1227 EXPORT_SYMBOL(drm_crtc_vblank_put);
1228
1229 /**
1230 * drm_wait_one_vblank - wait for one vblank
1231 * @dev: DRM device
1232 * @pipe: CRTC index
1233 *
1234 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1235 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1236 * due to lack of driver support or because the crtc is off.
1237 *
1238 * This is the legacy version of drm_crtc_wait_one_vblank().
1239 */
drm_wait_one_vblank(struct drm_device * dev,unsigned int pipe)1240 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1241 {
1242 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1243 int ret;
1244 u64 last;
1245
1246 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1247 return;
1248
1249 ret = drm_vblank_get(dev, pipe);
1250 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1251 pipe, ret))
1252 return;
1253
1254 last = drm_vblank_count(dev, pipe);
1255
1256 ret = wait_event_timeout(vblank->queue,
1257 last != drm_vblank_count(dev, pipe),
1258 msecs_to_jiffies(100));
1259
1260 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1261
1262 drm_vblank_put(dev, pipe);
1263 }
1264 EXPORT_SYMBOL(drm_wait_one_vblank);
1265
1266 /**
1267 * drm_crtc_wait_one_vblank - wait for one vblank
1268 * @crtc: DRM crtc
1269 *
1270 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1271 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1272 * due to lack of driver support or because the crtc is off.
1273 */
drm_crtc_wait_one_vblank(struct drm_crtc * crtc)1274 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1275 {
1276 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1277 }
1278 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1279
1280 /**
1281 * drm_crtc_vblank_off - disable vblank events on a CRTC
1282 * @crtc: CRTC in question
1283 *
1284 * Drivers can use this function to shut down the vblank interrupt handling when
1285 * disabling a crtc. This function ensures that the latest vblank frame count is
1286 * stored so that drm_vblank_on can restore it again.
1287 *
1288 * Drivers must use this function when the hardware vblank counter can get
1289 * reset, e.g. when suspending or disabling the @crtc in general.
1290 */
drm_crtc_vblank_off(struct drm_crtc * crtc)1291 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1292 {
1293 struct drm_device *dev = crtc->dev;
1294 unsigned int pipe = drm_crtc_index(crtc);
1295 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1296 struct drm_pending_vblank_event *e, *t;
1297 ktime_t now;
1298 u64 seq;
1299
1300 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1301 return;
1302
1303 /*
1304 * Grab event_lock early to prevent vblank work from being scheduled
1305 * while we're in the middle of shutting down vblank interrupts
1306 */
1307 spin_lock_irq(&dev->event_lock);
1308
1309 spin_lock(&dev->vbl_lock);
1310 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1311 pipe, vblank->enabled, vblank->inmodeset);
1312
1313 /* Avoid redundant vblank disables without previous
1314 * drm_crtc_vblank_on(). */
1315 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1316 drm_vblank_disable_and_save(dev, pipe);
1317
1318 wake_up(&vblank->queue);
1319
1320 /*
1321 * Prevent subsequent drm_vblank_get() from re-enabling
1322 * the vblank interrupt by bumping the refcount.
1323 */
1324 if (!vblank->inmodeset) {
1325 atomic_inc(&vblank->refcount);
1326 vblank->inmodeset = 1;
1327 }
1328 spin_unlock(&dev->vbl_lock);
1329
1330 /* Send any queued vblank events, lest the natives grow disquiet */
1331 seq = drm_vblank_count_and_time(dev, pipe, &now);
1332
1333 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1334 if (e->pipe != pipe)
1335 continue;
1336 drm_dbg_core(dev, "Sending premature vblank event on disable: "
1337 "wanted %llu, current %llu\n",
1338 e->sequence, seq);
1339 list_del(&e->base.link);
1340 drm_vblank_put(dev, pipe);
1341 send_vblank_event(dev, e, seq, now);
1342 }
1343
1344 /* Cancel any leftover pending vblank work */
1345 drm_vblank_cancel_pending_works(vblank);
1346
1347 spin_unlock_irq(&dev->event_lock);
1348
1349 /* Will be reset by the modeset helpers when re-enabling the crtc by
1350 * calling drm_calc_timestamping_constants(). */
1351 vblank->hwmode.crtc_clock = 0;
1352
1353 /* Wait for any vblank work that's still executing to finish */
1354 drm_vblank_flush_worker(vblank);
1355 }
1356 EXPORT_SYMBOL(drm_crtc_vblank_off);
1357
1358 /**
1359 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1360 * @crtc: CRTC in question
1361 *
1362 * Drivers can use this function to reset the vblank state to off at load time.
1363 * Drivers should use this together with the drm_crtc_vblank_off() and
1364 * drm_crtc_vblank_on() functions. The difference compared to
1365 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1366 * and hence doesn't need to call any driver hooks.
1367 *
1368 * This is useful for recovering driver state e.g. on driver load, or on resume.
1369 */
drm_crtc_vblank_reset(struct drm_crtc * crtc)1370 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1371 {
1372 struct drm_device *dev = crtc->dev;
1373 unsigned int pipe = drm_crtc_index(crtc);
1374 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1375
1376 spin_lock_irq(&dev->vbl_lock);
1377 /*
1378 * Prevent subsequent drm_vblank_get() from enabling the vblank
1379 * interrupt by bumping the refcount.
1380 */
1381 if (!vblank->inmodeset) {
1382 atomic_inc(&vblank->refcount);
1383 vblank->inmodeset = 1;
1384 }
1385 spin_unlock_irq(&dev->vbl_lock);
1386
1387 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1388 drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1389 }
1390 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1391
1392 /**
1393 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1394 * @crtc: CRTC in question
1395 * @max_vblank_count: max hardware vblank counter value
1396 *
1397 * Update the maximum hardware vblank counter value for @crtc
1398 * at runtime. Useful for hardware where the operation of the
1399 * hardware vblank counter depends on the currently active
1400 * display configuration.
1401 *
1402 * For example, if the hardware vblank counter does not work
1403 * when a specific connector is active the maximum can be set
1404 * to zero. And when that specific connector isn't active the
1405 * maximum can again be set to the appropriate non-zero value.
1406 *
1407 * If used, must be called before drm_vblank_on().
1408 */
drm_crtc_set_max_vblank_count(struct drm_crtc * crtc,u32 max_vblank_count)1409 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1410 u32 max_vblank_count)
1411 {
1412 struct drm_device *dev = crtc->dev;
1413 unsigned int pipe = drm_crtc_index(crtc);
1414 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1415
1416 drm_WARN_ON(dev, dev->max_vblank_count);
1417 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1418
1419 vblank->max_vblank_count = max_vblank_count;
1420 }
1421 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1422
1423 /**
1424 * drm_crtc_vblank_on - enable vblank events on a CRTC
1425 * @crtc: CRTC in question
1426 *
1427 * This functions restores the vblank interrupt state captured with
1428 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1429 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1430 * unbalanced and so can also be unconditionally called in driver load code to
1431 * reflect the current hardware state of the crtc.
1432 */
drm_crtc_vblank_on(struct drm_crtc * crtc)1433 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1434 {
1435 struct drm_device *dev = crtc->dev;
1436 unsigned int pipe = drm_crtc_index(crtc);
1437 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1438
1439 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1440 return;
1441
1442 spin_lock_irq(&dev->vbl_lock);
1443 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1444 pipe, vblank->enabled, vblank->inmodeset);
1445
1446 /* Drop our private "prevent drm_vblank_get" refcount */
1447 if (vblank->inmodeset) {
1448 atomic_dec(&vblank->refcount);
1449 vblank->inmodeset = 0;
1450 }
1451
1452 drm_reset_vblank_timestamp(dev, pipe);
1453
1454 /*
1455 * re-enable interrupts if there are users left, or the
1456 * user wishes vblank interrupts to be enabled all the time.
1457 */
1458 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1459 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1460 spin_unlock_irq(&dev->vbl_lock);
1461 }
1462 EXPORT_SYMBOL(drm_crtc_vblank_on);
1463
1464 /**
1465 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1466 * @dev: DRM device
1467 * @pipe: CRTC index
1468 *
1469 * Power manamement features can cause frame counter resets between vblank
1470 * disable and enable. Drivers can use this function in their
1471 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1472 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1473 * vblank counter.
1474 *
1475 * This function is the legacy version of drm_crtc_vblank_restore().
1476 */
drm_vblank_restore(struct drm_device * dev,unsigned int pipe)1477 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1478 {
1479 ktime_t t_vblank;
1480 struct drm_vblank_crtc *vblank;
1481 int framedur_ns;
1482 u64 diff_ns;
1483 u32 cur_vblank, diff = 1;
1484 int count = DRM_TIMESTAMP_MAXRETRIES;
1485
1486 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1487 return;
1488
1489 assert_spin_locked(&dev->vbl_lock);
1490 assert_spin_locked(&dev->vblank_time_lock);
1491
1492 vblank = &dev->vblank[pipe];
1493 drm_WARN_ONCE(dev,
1494 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1495 "Cannot compute missed vblanks without frame duration\n");
1496 framedur_ns = vblank->framedur_ns;
1497
1498 do {
1499 cur_vblank = __get_vblank_counter(dev, pipe);
1500 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1501 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1502
1503 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1504 if (framedur_ns)
1505 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1506
1507
1508 drm_dbg_vbl(dev,
1509 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1510 diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1511 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1512 }
1513 EXPORT_SYMBOL(drm_vblank_restore);
1514
1515 /**
1516 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1517 * @crtc: CRTC in question
1518 *
1519 * Power manamement features can cause frame counter resets between vblank
1520 * disable and enable. Drivers can use this function in their
1521 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1522 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1523 * vblank counter.
1524 */
drm_crtc_vblank_restore(struct drm_crtc * crtc)1525 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1526 {
1527 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1528 }
1529 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1530
drm_legacy_vblank_pre_modeset(struct drm_device * dev,unsigned int pipe)1531 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1532 unsigned int pipe)
1533 {
1534 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1535
1536 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1537 if (!drm_dev_has_vblank(dev))
1538 return;
1539
1540 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1541 return;
1542
1543 /*
1544 * To avoid all the problems that might happen if interrupts
1545 * were enabled/disabled around or between these calls, we just
1546 * have the kernel take a reference on the CRTC (just once though
1547 * to avoid corrupting the count if multiple, mismatch calls occur),
1548 * so that interrupts remain enabled in the interim.
1549 */
1550 if (!vblank->inmodeset) {
1551 vblank->inmodeset = 0x1;
1552 if (drm_vblank_get(dev, pipe) == 0)
1553 vblank->inmodeset |= 0x2;
1554 }
1555 }
1556
drm_legacy_vblank_post_modeset(struct drm_device * dev,unsigned int pipe)1557 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1558 unsigned int pipe)
1559 {
1560 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1561
1562 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1563 if (!drm_dev_has_vblank(dev))
1564 return;
1565
1566 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1567 return;
1568
1569 if (vblank->inmodeset) {
1570 spin_lock_irq(&dev->vbl_lock);
1571 drm_reset_vblank_timestamp(dev, pipe);
1572 spin_unlock_irq(&dev->vbl_lock);
1573
1574 if (vblank->inmodeset & 0x2)
1575 drm_vblank_put(dev, pipe);
1576
1577 vblank->inmodeset = 0;
1578 }
1579 }
1580
drm_legacy_modeset_ctl_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1581 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1582 struct drm_file *file_priv)
1583 {
1584 struct drm_modeset_ctl *modeset = data;
1585 unsigned int pipe;
1586
1587 /* If drm_vblank_init() hasn't been called yet, just no-op */
1588 if (!drm_dev_has_vblank(dev))
1589 return 0;
1590
1591 /* KMS drivers handle this internally */
1592 if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1593 return 0;
1594
1595 pipe = modeset->crtc;
1596 if (pipe >= dev->num_crtcs)
1597 return -EINVAL;
1598
1599 switch (modeset->cmd) {
1600 case _DRM_PRE_MODESET:
1601 drm_legacy_vblank_pre_modeset(dev, pipe);
1602 break;
1603 case _DRM_POST_MODESET:
1604 drm_legacy_vblank_post_modeset(dev, pipe);
1605 break;
1606 default:
1607 return -EINVAL;
1608 }
1609
1610 return 0;
1611 }
1612
drm_queue_vblank_event(struct drm_device * dev,unsigned int pipe,u64 req_seq,union drm_wait_vblank * vblwait,struct drm_file * file_priv)1613 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1614 u64 req_seq,
1615 union drm_wait_vblank *vblwait,
1616 struct drm_file *file_priv)
1617 {
1618 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1619 struct drm_pending_vblank_event *e;
1620 ktime_t now;
1621 u64 seq;
1622 int ret;
1623
1624 e = kzalloc(sizeof(*e), GFP_KERNEL);
1625 if (e == NULL) {
1626 ret = -ENOMEM;
1627 goto err_put;
1628 }
1629
1630 e->pipe = pipe;
1631 e->event.base.type = DRM_EVENT_VBLANK;
1632 e->event.base.length = sizeof(e->event.vbl);
1633 e->event.vbl.user_data = vblwait->request.signal;
1634 e->event.vbl.crtc_id = 0;
1635 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1636 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1637
1638 if (crtc)
1639 e->event.vbl.crtc_id = crtc->base.id;
1640 }
1641
1642 spin_lock_irq(&dev->event_lock);
1643
1644 /*
1645 * drm_crtc_vblank_off() might have been called after we called
1646 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1647 * vblank disable, so no need for further locking. The reference from
1648 * drm_vblank_get() protects against vblank disable from another source.
1649 */
1650 if (!READ_ONCE(vblank->enabled)) {
1651 ret = -EINVAL;
1652 goto err_unlock;
1653 }
1654
1655 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1656 &e->event.base);
1657
1658 if (ret)
1659 goto err_unlock;
1660
1661 seq = drm_vblank_count_and_time(dev, pipe, &now);
1662
1663 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1664 req_seq, seq, pipe);
1665
1666 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1667
1668 e->sequence = req_seq;
1669 if (drm_vblank_passed(seq, req_seq)) {
1670 drm_vblank_put(dev, pipe);
1671 send_vblank_event(dev, e, seq, now);
1672 vblwait->reply.sequence = seq;
1673 } else {
1674 /* drm_handle_vblank_events will call drm_vblank_put */
1675 list_add_tail(&e->base.link, &dev->vblank_event_list);
1676 vblwait->reply.sequence = req_seq;
1677 }
1678
1679 spin_unlock_irq(&dev->event_lock);
1680
1681 return 0;
1682
1683 err_unlock:
1684 spin_unlock_irq(&dev->event_lock);
1685 kfree(e);
1686 err_put:
1687 drm_vblank_put(dev, pipe);
1688 return ret;
1689 }
1690
drm_wait_vblank_is_query(union drm_wait_vblank * vblwait)1691 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1692 {
1693 if (vblwait->request.sequence)
1694 return false;
1695
1696 return _DRM_VBLANK_RELATIVE ==
1697 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1698 _DRM_VBLANK_EVENT |
1699 _DRM_VBLANK_NEXTONMISS));
1700 }
1701
1702 /*
1703 * Widen a 32-bit param to 64-bits.
1704 *
1705 * \param narrow 32-bit value (missing upper 32 bits)
1706 * \param near 64-bit value that should be 'close' to near
1707 *
1708 * This function returns a 64-bit value using the lower 32-bits from
1709 * 'narrow' and constructing the upper 32-bits so that the result is
1710 * as close as possible to 'near'.
1711 */
1712
widen_32_to_64(u32 narrow,u64 near)1713 static u64 widen_32_to_64(u32 narrow, u64 near)
1714 {
1715 return near + (s32) (narrow - near);
1716 }
1717
drm_wait_vblank_reply(struct drm_device * dev,unsigned int pipe,struct drm_wait_vblank_reply * reply)1718 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1719 struct drm_wait_vblank_reply *reply)
1720 {
1721 ktime_t now;
1722 struct timespec64 ts;
1723
1724 /*
1725 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1726 * to store the seconds. This is safe as we always use monotonic
1727 * timestamps since linux-4.15.
1728 */
1729 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1730 ts = ktime_to_timespec64(now);
1731 reply->tval_sec = (u32)ts.tv_sec;
1732 reply->tval_usec = ts.tv_nsec / 1000;
1733 }
1734
drm_wait_vblank_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1735 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1736 struct drm_file *file_priv)
1737 {
1738 struct drm_crtc *crtc;
1739 struct drm_vblank_crtc *vblank;
1740 union drm_wait_vblank *vblwait = data;
1741 int ret;
1742 u64 req_seq, seq;
1743 unsigned int pipe_index;
1744 unsigned int flags, pipe, high_pipe;
1745
1746 if (!dev->irq_enabled)
1747 return -EOPNOTSUPP;
1748
1749 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1750 return -EINVAL;
1751
1752 if (vblwait->request.type &
1753 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1754 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1755 drm_dbg_core(dev,
1756 "Unsupported type value 0x%x, supported mask 0x%x\n",
1757 vblwait->request.type,
1758 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1759 _DRM_VBLANK_HIGH_CRTC_MASK));
1760 return -EINVAL;
1761 }
1762
1763 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1764 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1765 if (high_pipe)
1766 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1767 else
1768 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1769
1770 /* Convert lease-relative crtc index into global crtc index */
1771 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1772 pipe = 0;
1773 drm_for_each_crtc(crtc, dev) {
1774 if (drm_lease_held(file_priv, crtc->base.id)) {
1775 if (pipe_index == 0)
1776 break;
1777 pipe_index--;
1778 }
1779 pipe++;
1780 }
1781 } else {
1782 pipe = pipe_index;
1783 }
1784
1785 if (pipe >= dev->num_crtcs)
1786 return -EINVAL;
1787
1788 vblank = &dev->vblank[pipe];
1789
1790 /* If the counter is currently enabled and accurate, short-circuit
1791 * queries to return the cached timestamp of the last vblank.
1792 */
1793 if (dev->vblank_disable_immediate &&
1794 drm_wait_vblank_is_query(vblwait) &&
1795 READ_ONCE(vblank->enabled)) {
1796 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1797 return 0;
1798 }
1799
1800 ret = drm_vblank_get(dev, pipe);
1801 if (ret) {
1802 drm_dbg_core(dev,
1803 "crtc %d failed to acquire vblank counter, %d\n",
1804 pipe, ret);
1805 return ret;
1806 }
1807 seq = drm_vblank_count(dev, pipe);
1808
1809 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1810 case _DRM_VBLANK_RELATIVE:
1811 req_seq = seq + vblwait->request.sequence;
1812 vblwait->request.sequence = req_seq;
1813 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1814 break;
1815 case _DRM_VBLANK_ABSOLUTE:
1816 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1817 break;
1818 default:
1819 ret = -EINVAL;
1820 goto done;
1821 }
1822
1823 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1824 drm_vblank_passed(seq, req_seq)) {
1825 req_seq = seq + 1;
1826 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1827 vblwait->request.sequence = req_seq;
1828 }
1829
1830 if (flags & _DRM_VBLANK_EVENT) {
1831 /* must hold on to the vblank ref until the event fires
1832 * drm_vblank_put will be called asynchronously
1833 */
1834 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1835 }
1836
1837 if (req_seq != seq) {
1838 int wait;
1839
1840 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1841 req_seq, pipe);
1842 wait = wait_event_interruptible_timeout(vblank->queue,
1843 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1844 !READ_ONCE(vblank->enabled),
1845 msecs_to_jiffies(3000));
1846
1847 switch (wait) {
1848 case 0:
1849 /* timeout */
1850 ret = -EBUSY;
1851 break;
1852 case -ERESTARTSYS:
1853 /* interrupted by signal */
1854 ret = -EINTR;
1855 break;
1856 default:
1857 ret = 0;
1858 break;
1859 }
1860 }
1861
1862 if (ret != -EINTR) {
1863 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1864
1865 drm_dbg_core(dev, "crtc %d returning %u to client\n",
1866 pipe, vblwait->reply.sequence);
1867 } else {
1868 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1869 pipe);
1870 }
1871
1872 done:
1873 drm_vblank_put(dev, pipe);
1874 return ret;
1875 }
1876
drm_handle_vblank_events(struct drm_device * dev,unsigned int pipe)1877 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1878 {
1879 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1880 bool high_prec = false;
1881 struct drm_pending_vblank_event *e, *t;
1882 ktime_t now;
1883 u64 seq;
1884
1885 assert_spin_locked(&dev->event_lock);
1886
1887 seq = drm_vblank_count_and_time(dev, pipe, &now);
1888
1889 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1890 if (e->pipe != pipe)
1891 continue;
1892 if (!drm_vblank_passed(seq, e->sequence))
1893 continue;
1894
1895 drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1896 e->sequence, seq);
1897
1898 list_del(&e->base.link);
1899 drm_vblank_put(dev, pipe);
1900 send_vblank_event(dev, e, seq, now);
1901 }
1902
1903 if (crtc && crtc->funcs->get_vblank_timestamp)
1904 high_prec = true;
1905
1906 trace_drm_vblank_event(pipe, seq, now, high_prec);
1907 }
1908
1909 /**
1910 * drm_handle_vblank - handle a vblank event
1911 * @dev: DRM device
1912 * @pipe: index of CRTC where this event occurred
1913 *
1914 * Drivers should call this routine in their vblank interrupt handlers to
1915 * update the vblank counter and send any signals that may be pending.
1916 *
1917 * This is the legacy version of drm_crtc_handle_vblank().
1918 */
drm_handle_vblank(struct drm_device * dev,unsigned int pipe)1919 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1920 {
1921 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1922 unsigned long irqflags;
1923 bool disable_irq;
1924
1925 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1926 return false;
1927
1928 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1929 return false;
1930
1931 spin_lock_irqsave(&dev->event_lock, irqflags);
1932
1933 /* Need timestamp lock to prevent concurrent execution with
1934 * vblank enable/disable, as this would cause inconsistent
1935 * or corrupted timestamps and vblank counts.
1936 */
1937 spin_lock(&dev->vblank_time_lock);
1938
1939 /* Vblank irq handling disabled. Nothing to do. */
1940 if (!vblank->enabled) {
1941 spin_unlock(&dev->vblank_time_lock);
1942 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1943 return false;
1944 }
1945
1946 drm_update_vblank_count(dev, pipe, true);
1947
1948 spin_unlock(&dev->vblank_time_lock);
1949
1950 wake_up(&vblank->queue);
1951
1952 /* With instant-off, we defer disabling the interrupt until after
1953 * we finish processing the following vblank after all events have
1954 * been signaled. The disable has to be last (after
1955 * drm_handle_vblank_events) so that the timestamp is always accurate.
1956 */
1957 disable_irq = (dev->vblank_disable_immediate &&
1958 drm_vblank_offdelay > 0 &&
1959 !atomic_read(&vblank->refcount));
1960
1961 drm_handle_vblank_events(dev, pipe);
1962 drm_handle_vblank_works(vblank);
1963
1964 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1965
1966 if (disable_irq)
1967 vblank_disable_fn(&vblank->disable_timer);
1968
1969 return true;
1970 }
1971 EXPORT_SYMBOL(drm_handle_vblank);
1972
1973 /**
1974 * drm_crtc_handle_vblank - handle a vblank event
1975 * @crtc: where this event occurred
1976 *
1977 * Drivers should call this routine in their vblank interrupt handlers to
1978 * update the vblank counter and send any signals that may be pending.
1979 *
1980 * This is the native KMS version of drm_handle_vblank().
1981 *
1982 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1983 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1984 * provide a barrier: Any writes done before calling
1985 * drm_crtc_handle_vblank() will be visible to callers of the later
1986 * functions, iff the vblank count is the same or a later one.
1987 *
1988 * See also &drm_vblank_crtc.count.
1989 *
1990 * Returns:
1991 * True if the event was successfully handled, false on failure.
1992 */
drm_crtc_handle_vblank(struct drm_crtc * crtc)1993 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1994 {
1995 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1996 }
1997 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1998
1999 /*
2000 * Get crtc VBLANK count.
2001 *
2002 * \param dev DRM device
2003 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
2004 * \param file_priv drm file private for the user's open file descriptor
2005 */
2006
drm_crtc_get_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2007 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
2008 struct drm_file *file_priv)
2009 {
2010 struct drm_crtc *crtc;
2011 struct drm_vblank_crtc *vblank;
2012 int pipe;
2013 struct drm_crtc_get_sequence *get_seq = data;
2014 ktime_t now;
2015 bool vblank_enabled;
2016 int ret;
2017
2018 if (!drm_core_check_feature(dev, DRIVER_MODESET))
2019 return -EOPNOTSUPP;
2020
2021 if (!dev->irq_enabled)
2022 return -EOPNOTSUPP;
2023
2024 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
2025 if (!crtc)
2026 return -ENOENT;
2027
2028 pipe = drm_crtc_index(crtc);
2029
2030 vblank = &dev->vblank[pipe];
2031 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
2032
2033 if (!vblank_enabled) {
2034 ret = drm_crtc_vblank_get(crtc);
2035 if (ret) {
2036 drm_dbg_core(dev,
2037 "crtc %d failed to acquire vblank counter, %d\n",
2038 pipe, ret);
2039 return ret;
2040 }
2041 }
2042 drm_modeset_lock(&crtc->mutex, NULL);
2043 if (crtc->state)
2044 get_seq->active = crtc->state->enable;
2045 else
2046 get_seq->active = crtc->enabled;
2047 drm_modeset_unlock(&crtc->mutex);
2048 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2049 get_seq->sequence_ns = ktime_to_ns(now);
2050 if (!vblank_enabled)
2051 drm_crtc_vblank_put(crtc);
2052 return 0;
2053 }
2054
2055 /*
2056 * Queue a event for VBLANK sequence
2057 *
2058 * \param dev DRM device
2059 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
2060 * \param file_priv drm file private for the user's open file descriptor
2061 */
2062
drm_crtc_queue_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2063 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2064 struct drm_file *file_priv)
2065 {
2066 struct drm_crtc *crtc;
2067 struct drm_vblank_crtc *vblank;
2068 int pipe;
2069 struct drm_crtc_queue_sequence *queue_seq = data;
2070 ktime_t now;
2071 struct drm_pending_vblank_event *e;
2072 u32 flags;
2073 u64 seq;
2074 u64 req_seq;
2075 int ret;
2076
2077 if (!drm_core_check_feature(dev, DRIVER_MODESET))
2078 return -EOPNOTSUPP;
2079
2080 if (!dev->irq_enabled)
2081 return -EOPNOTSUPP;
2082
2083 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2084 if (!crtc)
2085 return -ENOENT;
2086
2087 flags = queue_seq->flags;
2088 /* Check valid flag bits */
2089 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2090 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2091 return -EINVAL;
2092
2093 pipe = drm_crtc_index(crtc);
2094
2095 vblank = &dev->vblank[pipe];
2096
2097 e = kzalloc(sizeof(*e), GFP_KERNEL);
2098 if (e == NULL)
2099 return -ENOMEM;
2100
2101 ret = drm_crtc_vblank_get(crtc);
2102 if (ret) {
2103 drm_dbg_core(dev,
2104 "crtc %d failed to acquire vblank counter, %d\n",
2105 pipe, ret);
2106 goto err_free;
2107 }
2108
2109 seq = drm_vblank_count_and_time(dev, pipe, &now);
2110 req_seq = queue_seq->sequence;
2111
2112 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2113 req_seq += seq;
2114
2115 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2116 req_seq = seq + 1;
2117
2118 e->pipe = pipe;
2119 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2120 e->event.base.length = sizeof(e->event.seq);
2121 e->event.seq.user_data = queue_seq->user_data;
2122
2123 spin_lock_irq(&dev->event_lock);
2124
2125 /*
2126 * drm_crtc_vblank_off() might have been called after we called
2127 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2128 * vblank disable, so no need for further locking. The reference from
2129 * drm_crtc_vblank_get() protects against vblank disable from another source.
2130 */
2131 if (!READ_ONCE(vblank->enabled)) {
2132 ret = -EINVAL;
2133 goto err_unlock;
2134 }
2135
2136 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2137 &e->event.base);
2138
2139 if (ret)
2140 goto err_unlock;
2141
2142 e->sequence = req_seq;
2143
2144 if (drm_vblank_passed(seq, req_seq)) {
2145 drm_crtc_vblank_put(crtc);
2146 send_vblank_event(dev, e, seq, now);
2147 queue_seq->sequence = seq;
2148 } else {
2149 /* drm_handle_vblank_events will call drm_vblank_put */
2150 list_add_tail(&e->base.link, &dev->vblank_event_list);
2151 queue_seq->sequence = req_seq;
2152 }
2153
2154 spin_unlock_irq(&dev->event_lock);
2155 return 0;
2156
2157 err_unlock:
2158 spin_unlock_irq(&dev->event_lock);
2159 drm_crtc_vblank_put(crtc);
2160 err_free:
2161 kfree(e);
2162 return ret;
2163 }
2164
2165