1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3 * eCryptfs: Linux filesystem encryption layer
4 *
5 * Copyright (C) 1997-2003 Erez Zadok
6 * Copyright (C) 2001-2003 Stony Brook University
7 * Copyright (C) 2004-2007 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Tyler Hicks <code@tyhicks.com>
11 */
12
13 #include <linux/dcache.h>
14 #include <linux/file.h>
15 #include <linux/module.h>
16 #include <linux/namei.h>
17 #include <linux/skbuff.h>
18 #include <linux/mount.h>
19 #include <linux/pagemap.h>
20 #include <linux/key.h>
21 #include <linux/parser.h>
22 #include <linux/fs_stack.h>
23 #include <linux/slab.h>
24 #include <linux/magic.h>
25 #include "ecryptfs_kernel.h"
26
27 /**
28 * Module parameter that defines the ecryptfs_verbosity level.
29 */
30 int ecryptfs_verbosity = 0;
31
32 module_param(ecryptfs_verbosity, int, 0);
33 MODULE_PARM_DESC(ecryptfs_verbosity,
34 "Initial verbosity level (0 or 1; defaults to "
35 "0, which is Quiet)");
36
37 /**
38 * Module parameter that defines the number of message buffer elements
39 */
40 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
41
42 module_param(ecryptfs_message_buf_len, uint, 0);
43 MODULE_PARM_DESC(ecryptfs_message_buf_len,
44 "Number of message buffer elements");
45
46 /**
47 * Module parameter that defines the maximum guaranteed amount of time to wait
48 * for a response from ecryptfsd. The actual sleep time will be, more than
49 * likely, a small amount greater than this specified value, but only less if
50 * the message successfully arrives.
51 */
52 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
53
54 module_param(ecryptfs_message_wait_timeout, long, 0);
55 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
56 "Maximum number of seconds that an operation will "
57 "sleep while waiting for a message response from "
58 "userspace");
59
60 /**
61 * Module parameter that is an estimate of the maximum number of users
62 * that will be concurrently using eCryptfs. Set this to the right
63 * value to balance performance and memory use.
64 */
65 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
66
67 module_param(ecryptfs_number_of_users, uint, 0);
68 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
69 "concurrent users of eCryptfs");
70
__ecryptfs_printk(const char * fmt,...)71 void __ecryptfs_printk(const char *fmt, ...)
72 {
73 va_list args;
74 va_start(args, fmt);
75 if (fmt[1] == '7') { /* KERN_DEBUG */
76 if (ecryptfs_verbosity >= 1)
77 vprintk(fmt, args);
78 } else
79 vprintk(fmt, args);
80 va_end(args);
81 }
82
83 /**
84 * ecryptfs_init_lower_file
85 * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
86 * the lower dentry and the lower mount set
87 *
88 * eCryptfs only ever keeps a single open file for every lower
89 * inode. All I/O operations to the lower inode occur through that
90 * file. When the first eCryptfs dentry that interposes with the first
91 * lower dentry for that inode is created, this function creates the
92 * lower file struct and associates it with the eCryptfs
93 * inode. When all eCryptfs files associated with the inode are released, the
94 * file is closed.
95 *
96 * The lower file will be opened with read/write permissions, if
97 * possible. Otherwise, it is opened read-only.
98 *
99 * This function does nothing if a lower file is already
100 * associated with the eCryptfs inode.
101 *
102 * Returns zero on success; non-zero otherwise
103 */
ecryptfs_init_lower_file(struct dentry * dentry,struct file ** lower_file)104 static int ecryptfs_init_lower_file(struct dentry *dentry,
105 struct file **lower_file)
106 {
107 const struct cred *cred = current_cred();
108 struct path *path = ecryptfs_dentry_to_lower_path(dentry);
109 int rc;
110
111 rc = ecryptfs_privileged_open(lower_file, path->dentry, path->mnt,
112 cred);
113 if (rc) {
114 printk(KERN_ERR "Error opening lower file "
115 "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
116 "rc = [%d]\n", path->dentry, path->mnt, rc);
117 (*lower_file) = NULL;
118 }
119 return rc;
120 }
121
ecryptfs_get_lower_file(struct dentry * dentry,struct inode * inode)122 int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode)
123 {
124 struct ecryptfs_inode_info *inode_info;
125 int count, rc = 0;
126
127 inode_info = ecryptfs_inode_to_private(inode);
128 mutex_lock(&inode_info->lower_file_mutex);
129 count = atomic_inc_return(&inode_info->lower_file_count);
130 if (WARN_ON_ONCE(count < 1))
131 rc = -EINVAL;
132 else if (count == 1) {
133 rc = ecryptfs_init_lower_file(dentry,
134 &inode_info->lower_file);
135 if (rc)
136 atomic_set(&inode_info->lower_file_count, 0);
137 }
138 mutex_unlock(&inode_info->lower_file_mutex);
139 return rc;
140 }
141
ecryptfs_put_lower_file(struct inode * inode)142 void ecryptfs_put_lower_file(struct inode *inode)
143 {
144 struct ecryptfs_inode_info *inode_info;
145
146 inode_info = ecryptfs_inode_to_private(inode);
147 if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count,
148 &inode_info->lower_file_mutex)) {
149 filemap_write_and_wait(inode->i_mapping);
150 fput(inode_info->lower_file);
151 inode_info->lower_file = NULL;
152 mutex_unlock(&inode_info->lower_file_mutex);
153 }
154 }
155
156 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
157 ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
158 ecryptfs_opt_ecryptfs_key_bytes,
159 ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
160 ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
161 ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
162 ecryptfs_opt_unlink_sigs, ecryptfs_opt_mount_auth_tok_only,
163 ecryptfs_opt_check_dev_ruid,
164 ecryptfs_opt_err };
165
166 static const match_table_t tokens = {
167 {ecryptfs_opt_sig, "sig=%s"},
168 {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
169 {ecryptfs_opt_cipher, "cipher=%s"},
170 {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
171 {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
172 {ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
173 {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
174 {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
175 {ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
176 {ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
177 {ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
178 {ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
179 {ecryptfs_opt_mount_auth_tok_only, "ecryptfs_mount_auth_tok_only"},
180 {ecryptfs_opt_check_dev_ruid, "ecryptfs_check_dev_ruid"},
181 {ecryptfs_opt_err, NULL}
182 };
183
ecryptfs_init_global_auth_toks(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)184 static int ecryptfs_init_global_auth_toks(
185 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
186 {
187 struct ecryptfs_global_auth_tok *global_auth_tok;
188 struct ecryptfs_auth_tok *auth_tok;
189 int rc = 0;
190
191 list_for_each_entry(global_auth_tok,
192 &mount_crypt_stat->global_auth_tok_list,
193 mount_crypt_stat_list) {
194 rc = ecryptfs_keyring_auth_tok_for_sig(
195 &global_auth_tok->global_auth_tok_key, &auth_tok,
196 global_auth_tok->sig);
197 if (rc) {
198 printk(KERN_ERR "Could not find valid key in user "
199 "session keyring for sig specified in mount "
200 "option: [%s]\n", global_auth_tok->sig);
201 global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
202 goto out;
203 } else {
204 global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
205 up_write(&(global_auth_tok->global_auth_tok_key)->sem);
206 }
207 }
208 out:
209 return rc;
210 }
211
ecryptfs_init_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)212 static void ecryptfs_init_mount_crypt_stat(
213 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
214 {
215 memset((void *)mount_crypt_stat, 0,
216 sizeof(struct ecryptfs_mount_crypt_stat));
217 INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
218 mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
219 mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
220 }
221
222 /**
223 * ecryptfs_parse_options
224 * @sb: The ecryptfs super block
225 * @options: The options passed to the kernel
226 * @check_ruid: set to 1 if device uid should be checked against the ruid
227 *
228 * Parse mount options:
229 * debug=N - ecryptfs_verbosity level for debug output
230 * sig=XXX - description(signature) of the key to use
231 *
232 * Returns the dentry object of the lower-level (lower/interposed)
233 * directory; We want to mount our stackable file system on top of
234 * that lower directory.
235 *
236 * The signature of the key to use must be the description of a key
237 * already in the keyring. Mounting will fail if the key can not be
238 * found.
239 *
240 * Returns zero on success; non-zero on error
241 */
ecryptfs_parse_options(struct ecryptfs_sb_info * sbi,char * options,uid_t * check_ruid)242 static int ecryptfs_parse_options(struct ecryptfs_sb_info *sbi, char *options,
243 uid_t *check_ruid)
244 {
245 char *p;
246 int rc = 0;
247 int sig_set = 0;
248 int cipher_name_set = 0;
249 int fn_cipher_name_set = 0;
250 int cipher_key_bytes;
251 int cipher_key_bytes_set = 0;
252 int fn_cipher_key_bytes;
253 int fn_cipher_key_bytes_set = 0;
254 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
255 &sbi->mount_crypt_stat;
256 substring_t args[MAX_OPT_ARGS];
257 int token;
258 char *sig_src;
259 char *cipher_name_dst;
260 char *cipher_name_src;
261 char *fn_cipher_name_dst;
262 char *fn_cipher_name_src;
263 char *fnek_dst;
264 char *fnek_src;
265 char *cipher_key_bytes_src;
266 char *fn_cipher_key_bytes_src;
267 u8 cipher_code;
268
269 *check_ruid = 0;
270
271 if (!options) {
272 rc = -EINVAL;
273 goto out;
274 }
275 ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
276 while ((p = strsep(&options, ",")) != NULL) {
277 if (!*p)
278 continue;
279 token = match_token(p, tokens, args);
280 switch (token) {
281 case ecryptfs_opt_sig:
282 case ecryptfs_opt_ecryptfs_sig:
283 sig_src = args[0].from;
284 rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
285 sig_src, 0);
286 if (rc) {
287 printk(KERN_ERR "Error attempting to register "
288 "global sig; rc = [%d]\n", rc);
289 goto out;
290 }
291 sig_set = 1;
292 break;
293 case ecryptfs_opt_cipher:
294 case ecryptfs_opt_ecryptfs_cipher:
295 cipher_name_src = args[0].from;
296 cipher_name_dst =
297 mount_crypt_stat->
298 global_default_cipher_name;
299 strncpy(cipher_name_dst, cipher_name_src,
300 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
301 cipher_name_dst[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
302 cipher_name_set = 1;
303 break;
304 case ecryptfs_opt_ecryptfs_key_bytes:
305 cipher_key_bytes_src = args[0].from;
306 cipher_key_bytes =
307 (int)simple_strtol(cipher_key_bytes_src,
308 &cipher_key_bytes_src, 0);
309 mount_crypt_stat->global_default_cipher_key_size =
310 cipher_key_bytes;
311 cipher_key_bytes_set = 1;
312 break;
313 case ecryptfs_opt_passthrough:
314 mount_crypt_stat->flags |=
315 ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
316 break;
317 case ecryptfs_opt_xattr_metadata:
318 mount_crypt_stat->flags |=
319 ECRYPTFS_XATTR_METADATA_ENABLED;
320 break;
321 case ecryptfs_opt_encrypted_view:
322 mount_crypt_stat->flags |=
323 ECRYPTFS_XATTR_METADATA_ENABLED;
324 mount_crypt_stat->flags |=
325 ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
326 break;
327 case ecryptfs_opt_fnek_sig:
328 fnek_src = args[0].from;
329 fnek_dst =
330 mount_crypt_stat->global_default_fnek_sig;
331 strncpy(fnek_dst, fnek_src, ECRYPTFS_SIG_SIZE_HEX);
332 mount_crypt_stat->global_default_fnek_sig[
333 ECRYPTFS_SIG_SIZE_HEX] = '\0';
334 rc = ecryptfs_add_global_auth_tok(
335 mount_crypt_stat,
336 mount_crypt_stat->global_default_fnek_sig,
337 ECRYPTFS_AUTH_TOK_FNEK);
338 if (rc) {
339 printk(KERN_ERR "Error attempting to register "
340 "global fnek sig [%s]; rc = [%d]\n",
341 mount_crypt_stat->global_default_fnek_sig,
342 rc);
343 goto out;
344 }
345 mount_crypt_stat->flags |=
346 (ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
347 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
348 break;
349 case ecryptfs_opt_fn_cipher:
350 fn_cipher_name_src = args[0].from;
351 fn_cipher_name_dst =
352 mount_crypt_stat->global_default_fn_cipher_name;
353 strncpy(fn_cipher_name_dst, fn_cipher_name_src,
354 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
355 mount_crypt_stat->global_default_fn_cipher_name[
356 ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
357 fn_cipher_name_set = 1;
358 break;
359 case ecryptfs_opt_fn_cipher_key_bytes:
360 fn_cipher_key_bytes_src = args[0].from;
361 fn_cipher_key_bytes =
362 (int)simple_strtol(fn_cipher_key_bytes_src,
363 &fn_cipher_key_bytes_src, 0);
364 mount_crypt_stat->global_default_fn_cipher_key_bytes =
365 fn_cipher_key_bytes;
366 fn_cipher_key_bytes_set = 1;
367 break;
368 case ecryptfs_opt_unlink_sigs:
369 mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
370 break;
371 case ecryptfs_opt_mount_auth_tok_only:
372 mount_crypt_stat->flags |=
373 ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
374 break;
375 case ecryptfs_opt_check_dev_ruid:
376 *check_ruid = 1;
377 break;
378 case ecryptfs_opt_err:
379 default:
380 printk(KERN_WARNING
381 "%s: eCryptfs: unrecognized option [%s]\n",
382 __func__, p);
383 }
384 }
385 if (!sig_set) {
386 rc = -EINVAL;
387 ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
388 "auth tok signature as a mount "
389 "parameter; see the eCryptfs README\n");
390 goto out;
391 }
392 if (!cipher_name_set) {
393 int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
394
395 BUG_ON(cipher_name_len > ECRYPTFS_MAX_CIPHER_NAME_SIZE);
396 strcpy(mount_crypt_stat->global_default_cipher_name,
397 ECRYPTFS_DEFAULT_CIPHER);
398 }
399 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
400 && !fn_cipher_name_set)
401 strcpy(mount_crypt_stat->global_default_fn_cipher_name,
402 mount_crypt_stat->global_default_cipher_name);
403 if (!cipher_key_bytes_set)
404 mount_crypt_stat->global_default_cipher_key_size = 0;
405 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
406 && !fn_cipher_key_bytes_set)
407 mount_crypt_stat->global_default_fn_cipher_key_bytes =
408 mount_crypt_stat->global_default_cipher_key_size;
409
410 cipher_code = ecryptfs_code_for_cipher_string(
411 mount_crypt_stat->global_default_cipher_name,
412 mount_crypt_stat->global_default_cipher_key_size);
413 if (!cipher_code) {
414 ecryptfs_printk(KERN_ERR,
415 "eCryptfs doesn't support cipher: %s\n",
416 mount_crypt_stat->global_default_cipher_name);
417 rc = -EINVAL;
418 goto out;
419 }
420
421 mutex_lock(&key_tfm_list_mutex);
422 if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
423 NULL)) {
424 rc = ecryptfs_add_new_key_tfm(
425 NULL, mount_crypt_stat->global_default_cipher_name,
426 mount_crypt_stat->global_default_cipher_key_size);
427 if (rc) {
428 printk(KERN_ERR "Error attempting to initialize "
429 "cipher with name = [%s] and key size = [%td]; "
430 "rc = [%d]\n",
431 mount_crypt_stat->global_default_cipher_name,
432 mount_crypt_stat->global_default_cipher_key_size,
433 rc);
434 rc = -EINVAL;
435 mutex_unlock(&key_tfm_list_mutex);
436 goto out;
437 }
438 }
439 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
440 && !ecryptfs_tfm_exists(
441 mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
442 rc = ecryptfs_add_new_key_tfm(
443 NULL, mount_crypt_stat->global_default_fn_cipher_name,
444 mount_crypt_stat->global_default_fn_cipher_key_bytes);
445 if (rc) {
446 printk(KERN_ERR "Error attempting to initialize "
447 "cipher with name = [%s] and key size = [%td]; "
448 "rc = [%d]\n",
449 mount_crypt_stat->global_default_fn_cipher_name,
450 mount_crypt_stat->global_default_fn_cipher_key_bytes,
451 rc);
452 rc = -EINVAL;
453 mutex_unlock(&key_tfm_list_mutex);
454 goto out;
455 }
456 }
457 mutex_unlock(&key_tfm_list_mutex);
458 rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
459 if (rc)
460 printk(KERN_WARNING "One or more global auth toks could not "
461 "properly register; rc = [%d]\n", rc);
462 out:
463 return rc;
464 }
465
466 struct kmem_cache *ecryptfs_sb_info_cache;
467 static struct file_system_type ecryptfs_fs_type;
468
469 /**
470 * ecryptfs_get_sb
471 * @fs_type
472 * @flags
473 * @dev_name: The path to mount over
474 * @raw_data: The options passed into the kernel
475 */
ecryptfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * raw_data)476 static struct dentry *ecryptfs_mount(struct file_system_type *fs_type, int flags,
477 const char *dev_name, void *raw_data)
478 {
479 struct super_block *s;
480 struct ecryptfs_sb_info *sbi;
481 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
482 struct ecryptfs_dentry_info *root_info;
483 const char *err = "Getting sb failed";
484 struct inode *inode;
485 struct path path;
486 uid_t check_ruid;
487 int rc;
488
489 sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
490 if (!sbi) {
491 rc = -ENOMEM;
492 goto out;
493 }
494
495 if (!dev_name) {
496 rc = -EINVAL;
497 err = "Device name cannot be null";
498 goto out;
499 }
500
501 rc = ecryptfs_parse_options(sbi, raw_data, &check_ruid);
502 if (rc) {
503 err = "Error parsing options";
504 goto out;
505 }
506 mount_crypt_stat = &sbi->mount_crypt_stat;
507
508 s = sget(fs_type, NULL, set_anon_super, flags, NULL);
509 if (IS_ERR(s)) {
510 rc = PTR_ERR(s);
511 goto out;
512 }
513
514 rc = super_setup_bdi(s);
515 if (rc)
516 goto out1;
517
518 ecryptfs_set_superblock_private(s, sbi);
519
520 /* ->kill_sb() will take care of sbi after that point */
521 sbi = NULL;
522 s->s_op = &ecryptfs_sops;
523 s->s_xattr = ecryptfs_xattr_handlers;
524 s->s_d_op = &ecryptfs_dops;
525
526 err = "Reading sb failed";
527 rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
528 if (rc) {
529 ecryptfs_printk(KERN_WARNING, "kern_path() failed\n");
530 goto out1;
531 }
532 if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
533 rc = -EINVAL;
534 printk(KERN_ERR "Mount on filesystem of type "
535 "eCryptfs explicitly disallowed due to "
536 "known incompatibilities\n");
537 goto out_free;
538 }
539
540 if (check_ruid && !uid_eq(d_inode(path.dentry)->i_uid, current_uid())) {
541 rc = -EPERM;
542 printk(KERN_ERR "Mount of device (uid: %d) not owned by "
543 "requested user (uid: %d)\n",
544 i_uid_read(d_inode(path.dentry)),
545 from_kuid(&init_user_ns, current_uid()));
546 goto out_free;
547 }
548
549 ecryptfs_set_superblock_lower(s, path.dentry->d_sb);
550
551 /**
552 * Set the POSIX ACL flag based on whether they're enabled in the lower
553 * mount.
554 */
555 s->s_flags = flags & ~SB_POSIXACL;
556 s->s_flags |= path.dentry->d_sb->s_flags & SB_POSIXACL;
557
558 /**
559 * Force a read-only eCryptfs mount when:
560 * 1) The lower mount is ro
561 * 2) The ecryptfs_encrypted_view mount option is specified
562 */
563 if (sb_rdonly(path.dentry->d_sb) || mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
564 s->s_flags |= SB_RDONLY;
565
566 s->s_maxbytes = path.dentry->d_sb->s_maxbytes;
567 s->s_blocksize = path.dentry->d_sb->s_blocksize;
568 s->s_magic = ECRYPTFS_SUPER_MAGIC;
569 s->s_stack_depth = path.dentry->d_sb->s_stack_depth + 1;
570
571 rc = -EINVAL;
572 if (s->s_stack_depth > FILESYSTEM_MAX_STACK_DEPTH) {
573 pr_err("eCryptfs: maximum fs stacking depth exceeded\n");
574 goto out_free;
575 }
576
577 inode = ecryptfs_get_inode(d_inode(path.dentry), s);
578 rc = PTR_ERR(inode);
579 if (IS_ERR(inode))
580 goto out_free;
581
582 s->s_root = d_make_root(inode);
583 if (!s->s_root) {
584 rc = -ENOMEM;
585 goto out_free;
586 }
587
588 rc = -ENOMEM;
589 root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
590 if (!root_info)
591 goto out_free;
592
593 /* ->kill_sb() will take care of root_info */
594 ecryptfs_set_dentry_private(s->s_root, root_info);
595 root_info->lower_path = path;
596
597 s->s_flags |= SB_ACTIVE;
598 return dget(s->s_root);
599
600 out_free:
601 path_put(&path);
602 out1:
603 deactivate_locked_super(s);
604 out:
605 if (sbi) {
606 ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
607 kmem_cache_free(ecryptfs_sb_info_cache, sbi);
608 }
609 printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
610 return ERR_PTR(rc);
611 }
612
613 /**
614 * ecryptfs_kill_block_super
615 * @sb: The ecryptfs super block
616 *
617 * Used to bring the superblock down and free the private data.
618 */
ecryptfs_kill_block_super(struct super_block * sb)619 static void ecryptfs_kill_block_super(struct super_block *sb)
620 {
621 struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
622 kill_anon_super(sb);
623 if (!sb_info)
624 return;
625 ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
626 kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
627 }
628
629 static struct file_system_type ecryptfs_fs_type = {
630 .owner = THIS_MODULE,
631 .name = "ecryptfs",
632 .mount = ecryptfs_mount,
633 .kill_sb = ecryptfs_kill_block_super,
634 .fs_flags = 0
635 };
636 MODULE_ALIAS_FS("ecryptfs");
637
638 /**
639 * inode_info_init_once
640 *
641 * Initializes the ecryptfs_inode_info_cache when it is created
642 */
643 static void
inode_info_init_once(void * vptr)644 inode_info_init_once(void *vptr)
645 {
646 struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
647
648 inode_init_once(&ei->vfs_inode);
649 }
650
651 static struct ecryptfs_cache_info {
652 struct kmem_cache **cache;
653 const char *name;
654 size_t size;
655 slab_flags_t flags;
656 void (*ctor)(void *obj);
657 } ecryptfs_cache_infos[] = {
658 {
659 .cache = &ecryptfs_auth_tok_list_item_cache,
660 .name = "ecryptfs_auth_tok_list_item",
661 .size = sizeof(struct ecryptfs_auth_tok_list_item),
662 },
663 {
664 .cache = &ecryptfs_file_info_cache,
665 .name = "ecryptfs_file_cache",
666 .size = sizeof(struct ecryptfs_file_info),
667 },
668 {
669 .cache = &ecryptfs_dentry_info_cache,
670 .name = "ecryptfs_dentry_info_cache",
671 .size = sizeof(struct ecryptfs_dentry_info),
672 },
673 {
674 .cache = &ecryptfs_inode_info_cache,
675 .name = "ecryptfs_inode_cache",
676 .size = sizeof(struct ecryptfs_inode_info),
677 .flags = SLAB_ACCOUNT,
678 .ctor = inode_info_init_once,
679 },
680 {
681 .cache = &ecryptfs_sb_info_cache,
682 .name = "ecryptfs_sb_cache",
683 .size = sizeof(struct ecryptfs_sb_info),
684 },
685 {
686 .cache = &ecryptfs_header_cache,
687 .name = "ecryptfs_headers",
688 .size = PAGE_SIZE,
689 },
690 {
691 .cache = &ecryptfs_xattr_cache,
692 .name = "ecryptfs_xattr_cache",
693 .size = PAGE_SIZE,
694 },
695 {
696 .cache = &ecryptfs_key_record_cache,
697 .name = "ecryptfs_key_record_cache",
698 .size = sizeof(struct ecryptfs_key_record),
699 },
700 {
701 .cache = &ecryptfs_key_sig_cache,
702 .name = "ecryptfs_key_sig_cache",
703 .size = sizeof(struct ecryptfs_key_sig),
704 },
705 {
706 .cache = &ecryptfs_global_auth_tok_cache,
707 .name = "ecryptfs_global_auth_tok_cache",
708 .size = sizeof(struct ecryptfs_global_auth_tok),
709 },
710 {
711 .cache = &ecryptfs_key_tfm_cache,
712 .name = "ecryptfs_key_tfm_cache",
713 .size = sizeof(struct ecryptfs_key_tfm),
714 },
715 };
716
ecryptfs_free_kmem_caches(void)717 static void ecryptfs_free_kmem_caches(void)
718 {
719 int i;
720
721 /*
722 * Make sure all delayed rcu free inodes are flushed before we
723 * destroy cache.
724 */
725 rcu_barrier();
726
727 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
728 struct ecryptfs_cache_info *info;
729
730 info = &ecryptfs_cache_infos[i];
731 kmem_cache_destroy(*(info->cache));
732 }
733 }
734
735 /**
736 * ecryptfs_init_kmem_caches
737 *
738 * Returns zero on success; non-zero otherwise
739 */
ecryptfs_init_kmem_caches(void)740 static int ecryptfs_init_kmem_caches(void)
741 {
742 int i;
743
744 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
745 struct ecryptfs_cache_info *info;
746
747 info = &ecryptfs_cache_infos[i];
748 *(info->cache) = kmem_cache_create(info->name, info->size, 0,
749 SLAB_HWCACHE_ALIGN | info->flags, info->ctor);
750 if (!*(info->cache)) {
751 ecryptfs_free_kmem_caches();
752 ecryptfs_printk(KERN_WARNING, "%s: "
753 "kmem_cache_create failed\n",
754 info->name);
755 return -ENOMEM;
756 }
757 }
758 return 0;
759 }
760
761 static struct kobject *ecryptfs_kobj;
762
version_show(struct kobject * kobj,struct kobj_attribute * attr,char * buff)763 static ssize_t version_show(struct kobject *kobj,
764 struct kobj_attribute *attr, char *buff)
765 {
766 return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
767 }
768
769 static struct kobj_attribute version_attr = __ATTR_RO(version);
770
771 static struct attribute *attributes[] = {
772 &version_attr.attr,
773 NULL,
774 };
775
776 static const struct attribute_group attr_group = {
777 .attrs = attributes,
778 };
779
do_sysfs_registration(void)780 static int do_sysfs_registration(void)
781 {
782 int rc;
783
784 ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
785 if (!ecryptfs_kobj) {
786 printk(KERN_ERR "Unable to create ecryptfs kset\n");
787 rc = -ENOMEM;
788 goto out;
789 }
790 rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
791 if (rc) {
792 printk(KERN_ERR
793 "Unable to create ecryptfs version attributes\n");
794 kobject_put(ecryptfs_kobj);
795 }
796 out:
797 return rc;
798 }
799
do_sysfs_unregistration(void)800 static void do_sysfs_unregistration(void)
801 {
802 sysfs_remove_group(ecryptfs_kobj, &attr_group);
803 kobject_put(ecryptfs_kobj);
804 }
805
ecryptfs_init(void)806 static int __init ecryptfs_init(void)
807 {
808 int rc;
809
810 if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_SIZE) {
811 rc = -EINVAL;
812 ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
813 "larger than the host's page size, and so "
814 "eCryptfs cannot run on this system. The "
815 "default eCryptfs extent size is [%u] bytes; "
816 "the page size is [%lu] bytes.\n",
817 ECRYPTFS_DEFAULT_EXTENT_SIZE,
818 (unsigned long)PAGE_SIZE);
819 goto out;
820 }
821 rc = ecryptfs_init_kmem_caches();
822 if (rc) {
823 printk(KERN_ERR
824 "Failed to allocate one or more kmem_cache objects\n");
825 goto out;
826 }
827 rc = do_sysfs_registration();
828 if (rc) {
829 printk(KERN_ERR "sysfs registration failed\n");
830 goto out_free_kmem_caches;
831 }
832 rc = ecryptfs_init_kthread();
833 if (rc) {
834 printk(KERN_ERR "%s: kthread initialization failed; "
835 "rc = [%d]\n", __func__, rc);
836 goto out_do_sysfs_unregistration;
837 }
838 rc = ecryptfs_init_messaging();
839 if (rc) {
840 printk(KERN_ERR "Failure occurred while attempting to "
841 "initialize the communications channel to "
842 "ecryptfsd\n");
843 goto out_destroy_kthread;
844 }
845 rc = ecryptfs_init_crypto();
846 if (rc) {
847 printk(KERN_ERR "Failure whilst attempting to init crypto; "
848 "rc = [%d]\n", rc);
849 goto out_release_messaging;
850 }
851 rc = register_filesystem(&ecryptfs_fs_type);
852 if (rc) {
853 printk(KERN_ERR "Failed to register filesystem\n");
854 goto out_destroy_crypto;
855 }
856 if (ecryptfs_verbosity > 0)
857 printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
858 "will be written to the syslog!\n", ecryptfs_verbosity);
859
860 goto out;
861 out_destroy_crypto:
862 ecryptfs_destroy_crypto();
863 out_release_messaging:
864 ecryptfs_release_messaging();
865 out_destroy_kthread:
866 ecryptfs_destroy_kthread();
867 out_do_sysfs_unregistration:
868 do_sysfs_unregistration();
869 out_free_kmem_caches:
870 ecryptfs_free_kmem_caches();
871 out:
872 return rc;
873 }
874
ecryptfs_exit(void)875 static void __exit ecryptfs_exit(void)
876 {
877 int rc;
878
879 rc = ecryptfs_destroy_crypto();
880 if (rc)
881 printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
882 "rc = [%d]\n", rc);
883 ecryptfs_release_messaging();
884 ecryptfs_destroy_kthread();
885 do_sysfs_unregistration();
886 unregister_filesystem(&ecryptfs_fs_type);
887 ecryptfs_free_kmem_caches();
888 }
889
890 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
891 MODULE_DESCRIPTION("eCryptfs");
892
893 MODULE_LICENSE("GPL");
894 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
895
896 module_init(ecryptfs_init)
897 module_exit(ecryptfs_exit)
898