• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/property.h>
33 #include <linux/suspend.h>
34 #include <linux/wait.h>
35 #include <asm/unaligned.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 #include <net/bluetooth/l2cap.h>
40 #include <net/bluetooth/mgmt.h>
41 
42 #include "hci_request.h"
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47 
48 static void hci_rx_work(struct work_struct *work);
49 static void hci_cmd_work(struct work_struct *work);
50 static void hci_tx_work(struct work_struct *work);
51 
52 /* HCI device list */
53 LIST_HEAD(hci_dev_list);
54 DEFINE_RWLOCK(hci_dev_list_lock);
55 
56 /* HCI callback list */
57 LIST_HEAD(hci_cb_list);
58 DEFINE_MUTEX(hci_cb_list_lock);
59 
60 /* HCI ID Numbering */
61 static DEFINE_IDA(hci_index_ida);
62 
63 /* ---- HCI debugfs entries ---- */
64 
dut_mode_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)65 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 			     size_t count, loff_t *ppos)
67 {
68 	struct hci_dev *hdev = file->private_data;
69 	char buf[3];
70 
71 	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 	buf[1] = '\n';
73 	buf[2] = '\0';
74 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75 }
76 
dut_mode_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)77 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 			      size_t count, loff_t *ppos)
79 {
80 	struct hci_dev *hdev = file->private_data;
81 	struct sk_buff *skb;
82 	bool enable;
83 	int err;
84 
85 	if (!test_bit(HCI_UP, &hdev->flags))
86 		return -ENETDOWN;
87 
88 	err = kstrtobool_from_user(user_buf, count, &enable);
89 	if (err)
90 		return err;
91 
92 	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 		return -EALREADY;
94 
95 	hci_req_sync_lock(hdev);
96 	if (enable)
97 		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 				     HCI_CMD_TIMEOUT);
99 	else
100 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 				     HCI_CMD_TIMEOUT);
102 	hci_req_sync_unlock(hdev);
103 
104 	if (IS_ERR(skb))
105 		return PTR_ERR(skb);
106 
107 	kfree_skb(skb);
108 
109 	hci_dev_change_flag(hdev, HCI_DUT_MODE);
110 
111 	return count;
112 }
113 
114 static const struct file_operations dut_mode_fops = {
115 	.open		= simple_open,
116 	.read		= dut_mode_read,
117 	.write		= dut_mode_write,
118 	.llseek		= default_llseek,
119 };
120 
vendor_diag_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)121 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 				size_t count, loff_t *ppos)
123 {
124 	struct hci_dev *hdev = file->private_data;
125 	char buf[3];
126 
127 	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 	buf[1] = '\n';
129 	buf[2] = '\0';
130 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131 }
132 
vendor_diag_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)133 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 				 size_t count, loff_t *ppos)
135 {
136 	struct hci_dev *hdev = file->private_data;
137 	bool enable;
138 	int err;
139 
140 	err = kstrtobool_from_user(user_buf, count, &enable);
141 	if (err)
142 		return err;
143 
144 	/* When the diagnostic flags are not persistent and the transport
145 	 * is not active or in user channel operation, then there is no need
146 	 * for the vendor callback. Instead just store the desired value and
147 	 * the setting will be programmed when the controller gets powered on.
148 	 */
149 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 		goto done;
153 
154 	hci_req_sync_lock(hdev);
155 	err = hdev->set_diag(hdev, enable);
156 	hci_req_sync_unlock(hdev);
157 
158 	if (err < 0)
159 		return err;
160 
161 done:
162 	if (enable)
163 		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 	else
165 		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166 
167 	return count;
168 }
169 
170 static const struct file_operations vendor_diag_fops = {
171 	.open		= simple_open,
172 	.read		= vendor_diag_read,
173 	.write		= vendor_diag_write,
174 	.llseek		= default_llseek,
175 };
176 
hci_debugfs_create_basic(struct hci_dev * hdev)177 static void hci_debugfs_create_basic(struct hci_dev *hdev)
178 {
179 	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 			    &dut_mode_fops);
181 
182 	if (hdev->set_diag)
183 		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 				    &vendor_diag_fops);
185 }
186 
hci_reset_req(struct hci_request * req,unsigned long opt)187 static int hci_reset_req(struct hci_request *req, unsigned long opt)
188 {
189 	BT_DBG("%s %ld", req->hdev->name, opt);
190 
191 	/* Reset device */
192 	set_bit(HCI_RESET, &req->hdev->flags);
193 	hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 	return 0;
195 }
196 
bredr_init(struct hci_request * req)197 static void bredr_init(struct hci_request *req)
198 {
199 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200 
201 	/* Read Local Supported Features */
202 	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203 
204 	/* Read Local Version */
205 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206 
207 	/* Read BD Address */
208 	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209 }
210 
amp_init1(struct hci_request * req)211 static void amp_init1(struct hci_request *req)
212 {
213 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214 
215 	/* Read Local Version */
216 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217 
218 	/* Read Local Supported Commands */
219 	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220 
221 	/* Read Local AMP Info */
222 	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223 
224 	/* Read Data Blk size */
225 	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226 
227 	/* Read Flow Control Mode */
228 	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229 
230 	/* Read Location Data */
231 	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232 }
233 
amp_init2(struct hci_request * req)234 static int amp_init2(struct hci_request *req)
235 {
236 	/* Read Local Supported Features. Not all AMP controllers
237 	 * support this so it's placed conditionally in the second
238 	 * stage init.
239 	 */
240 	if (req->hdev->commands[14] & 0x20)
241 		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242 
243 	return 0;
244 }
245 
hci_init1_req(struct hci_request * req,unsigned long opt)246 static int hci_init1_req(struct hci_request *req, unsigned long opt)
247 {
248 	struct hci_dev *hdev = req->hdev;
249 
250 	BT_DBG("%s %ld", hdev->name, opt);
251 
252 	/* Reset */
253 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 		hci_reset_req(req, 0);
255 
256 	switch (hdev->dev_type) {
257 	case HCI_PRIMARY:
258 		bredr_init(req);
259 		break;
260 	case HCI_AMP:
261 		amp_init1(req);
262 		break;
263 	default:
264 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 		break;
266 	}
267 
268 	return 0;
269 }
270 
bredr_setup(struct hci_request * req)271 static void bredr_setup(struct hci_request *req)
272 {
273 	__le16 param;
274 	__u8 flt_type;
275 
276 	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278 
279 	/* Read Class of Device */
280 	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281 
282 	/* Read Local Name */
283 	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284 
285 	/* Read Voice Setting */
286 	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287 
288 	/* Read Number of Supported IAC */
289 	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290 
291 	/* Read Current IAC LAP */
292 	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293 
294 	/* Clear Event Filters */
295 	flt_type = HCI_FLT_CLEAR_ALL;
296 	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297 
298 	/* Connection accept timeout ~20 secs */
299 	param = cpu_to_le16(0x7d00);
300 	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
301 }
302 
le_setup(struct hci_request * req)303 static void le_setup(struct hci_request *req)
304 {
305 	struct hci_dev *hdev = req->hdev;
306 
307 	/* Read LE Buffer Size */
308 	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309 
310 	/* Read LE Local Supported Features */
311 	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312 
313 	/* Read LE Supported States */
314 	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315 
316 	/* LE-only controllers have LE implicitly enabled */
317 	if (!lmp_bredr_capable(hdev))
318 		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319 }
320 
hci_setup_event_mask(struct hci_request * req)321 static void hci_setup_event_mask(struct hci_request *req)
322 {
323 	struct hci_dev *hdev = req->hdev;
324 
325 	/* The second byte is 0xff instead of 0x9f (two reserved bits
326 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 	 * command otherwise.
328 	 */
329 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330 
331 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 	 * any event mask for pre 1.2 devices.
333 	 */
334 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 		return;
336 
337 	if (lmp_bredr_capable(hdev)) {
338 		events[4] |= 0x01; /* Flow Specification Complete */
339 	} else {
340 		/* Use a different default for LE-only devices */
341 		memset(events, 0, sizeof(events));
342 		events[1] |= 0x20; /* Command Complete */
343 		events[1] |= 0x40; /* Command Status */
344 		events[1] |= 0x80; /* Hardware Error */
345 
346 		/* If the controller supports the Disconnect command, enable
347 		 * the corresponding event. In addition enable packet flow
348 		 * control related events.
349 		 */
350 		if (hdev->commands[0] & 0x20) {
351 			events[0] |= 0x10; /* Disconnection Complete */
352 			events[2] |= 0x04; /* Number of Completed Packets */
353 			events[3] |= 0x02; /* Data Buffer Overflow */
354 		}
355 
356 		/* If the controller supports the Read Remote Version
357 		 * Information command, enable the corresponding event.
358 		 */
359 		if (hdev->commands[2] & 0x80)
360 			events[1] |= 0x08; /* Read Remote Version Information
361 					    * Complete
362 					    */
363 
364 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 			events[0] |= 0x80; /* Encryption Change */
366 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 		}
368 	}
369 
370 	if (lmp_inq_rssi_capable(hdev) ||
371 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 		events[4] |= 0x02; /* Inquiry Result with RSSI */
373 
374 	if (lmp_ext_feat_capable(hdev))
375 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
376 
377 	if (lmp_esco_capable(hdev)) {
378 		events[5] |= 0x08; /* Synchronous Connection Complete */
379 		events[5] |= 0x10; /* Synchronous Connection Changed */
380 	}
381 
382 	if (lmp_sniffsubr_capable(hdev))
383 		events[5] |= 0x20; /* Sniff Subrating */
384 
385 	if (lmp_pause_enc_capable(hdev))
386 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
387 
388 	if (lmp_ext_inq_capable(hdev))
389 		events[5] |= 0x40; /* Extended Inquiry Result */
390 
391 	if (lmp_no_flush_capable(hdev))
392 		events[7] |= 0x01; /* Enhanced Flush Complete */
393 
394 	if (lmp_lsto_capable(hdev))
395 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
396 
397 	if (lmp_ssp_capable(hdev)) {
398 		events[6] |= 0x01;	/* IO Capability Request */
399 		events[6] |= 0x02;	/* IO Capability Response */
400 		events[6] |= 0x04;	/* User Confirmation Request */
401 		events[6] |= 0x08;	/* User Passkey Request */
402 		events[6] |= 0x10;	/* Remote OOB Data Request */
403 		events[6] |= 0x20;	/* Simple Pairing Complete */
404 		events[7] |= 0x04;	/* User Passkey Notification */
405 		events[7] |= 0x08;	/* Keypress Notification */
406 		events[7] |= 0x10;	/* Remote Host Supported
407 					 * Features Notification
408 					 */
409 	}
410 
411 	if (lmp_le_capable(hdev))
412 		events[7] |= 0x20;	/* LE Meta-Event */
413 
414 	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415 }
416 
hci_init2_req(struct hci_request * req,unsigned long opt)417 static int hci_init2_req(struct hci_request *req, unsigned long opt)
418 {
419 	struct hci_dev *hdev = req->hdev;
420 
421 	if (hdev->dev_type == HCI_AMP)
422 		return amp_init2(req);
423 
424 	if (lmp_bredr_capable(hdev))
425 		bredr_setup(req);
426 	else
427 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428 
429 	if (lmp_le_capable(hdev))
430 		le_setup(req);
431 
432 	/* All Bluetooth 1.2 and later controllers should support the
433 	 * HCI command for reading the local supported commands.
434 	 *
435 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 	 * but do not have support for this command. If that is the case,
437 	 * the driver can quirk the behavior and skip reading the local
438 	 * supported commands.
439 	 */
440 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443 
444 	if (lmp_ssp_capable(hdev)) {
445 		/* When SSP is available, then the host features page
446 		 * should also be available as well. However some
447 		 * controllers list the max_page as 0 as long as SSP
448 		 * has not been enabled. To achieve proper debugging
449 		 * output, force the minimum max_page to 1 at least.
450 		 */
451 		hdev->max_page = 0x01;
452 
453 		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 			u8 mode = 0x01;
455 
456 			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 				    sizeof(mode), &mode);
458 		} else {
459 			struct hci_cp_write_eir cp;
460 
461 			memset(hdev->eir, 0, sizeof(hdev->eir));
462 			memset(&cp, 0, sizeof(cp));
463 
464 			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 		}
466 	}
467 
468 	if (lmp_inq_rssi_capable(hdev) ||
469 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 		u8 mode;
471 
472 		/* If Extended Inquiry Result events are supported, then
473 		 * they are clearly preferred over Inquiry Result with RSSI
474 		 * events.
475 		 */
476 		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477 
478 		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 	}
480 
481 	if (lmp_inq_tx_pwr_capable(hdev))
482 		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483 
484 	if (lmp_ext_feat_capable(hdev)) {
485 		struct hci_cp_read_local_ext_features cp;
486 
487 		cp.page = 0x01;
488 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 			    sizeof(cp), &cp);
490 	}
491 
492 	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 		u8 enable = 1;
494 		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 			    &enable);
496 	}
497 
498 	return 0;
499 }
500 
hci_setup_link_policy(struct hci_request * req)501 static void hci_setup_link_policy(struct hci_request *req)
502 {
503 	struct hci_dev *hdev = req->hdev;
504 	struct hci_cp_write_def_link_policy cp;
505 	u16 link_policy = 0;
506 
507 	if (lmp_rswitch_capable(hdev))
508 		link_policy |= HCI_LP_RSWITCH;
509 	if (lmp_hold_capable(hdev))
510 		link_policy |= HCI_LP_HOLD;
511 	if (lmp_sniff_capable(hdev))
512 		link_policy |= HCI_LP_SNIFF;
513 	if (lmp_park_capable(hdev))
514 		link_policy |= HCI_LP_PARK;
515 
516 	cp.policy = cpu_to_le16(link_policy);
517 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518 }
519 
hci_set_le_support(struct hci_request * req)520 static void hci_set_le_support(struct hci_request *req)
521 {
522 	struct hci_dev *hdev = req->hdev;
523 	struct hci_cp_write_le_host_supported cp;
524 
525 	/* LE-only devices do not support explicit enablement */
526 	if (!lmp_bredr_capable(hdev))
527 		return;
528 
529 	memset(&cp, 0, sizeof(cp));
530 
531 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 		cp.le = 0x01;
533 		cp.simul = 0x00;
534 	}
535 
536 	if (cp.le != lmp_host_le_capable(hdev))
537 		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 			    &cp);
539 }
540 
hci_set_event_mask_page_2(struct hci_request * req)541 static void hci_set_event_mask_page_2(struct hci_request *req)
542 {
543 	struct hci_dev *hdev = req->hdev;
544 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 	bool changed = false;
546 
547 	/* If Connectionless Slave Broadcast master role is supported
548 	 * enable all necessary events for it.
549 	 */
550 	if (lmp_csb_master_capable(hdev)) {
551 		events[1] |= 0x40;	/* Triggered Clock Capture */
552 		events[1] |= 0x80;	/* Synchronization Train Complete */
553 		events[2] |= 0x10;	/* Slave Page Response Timeout */
554 		events[2] |= 0x20;	/* CSB Channel Map Change */
555 		changed = true;
556 	}
557 
558 	/* If Connectionless Slave Broadcast slave role is supported
559 	 * enable all necessary events for it.
560 	 */
561 	if (lmp_csb_slave_capable(hdev)) {
562 		events[2] |= 0x01;	/* Synchronization Train Received */
563 		events[2] |= 0x02;	/* CSB Receive */
564 		events[2] |= 0x04;	/* CSB Timeout */
565 		events[2] |= 0x08;	/* Truncated Page Complete */
566 		changed = true;
567 	}
568 
569 	/* Enable Authenticated Payload Timeout Expired event if supported */
570 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 		events[2] |= 0x80;
572 		changed = true;
573 	}
574 
575 	/* Some Broadcom based controllers indicate support for Set Event
576 	 * Mask Page 2 command, but then actually do not support it. Since
577 	 * the default value is all bits set to zero, the command is only
578 	 * required if the event mask has to be changed. In case no change
579 	 * to the event mask is needed, skip this command.
580 	 */
581 	if (changed)
582 		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 			    sizeof(events), events);
584 }
585 
hci_init3_req(struct hci_request * req,unsigned long opt)586 static int hci_init3_req(struct hci_request *req, unsigned long opt)
587 {
588 	struct hci_dev *hdev = req->hdev;
589 	u8 p;
590 
591 	hci_setup_event_mask(req);
592 
593 	if (hdev->commands[6] & 0x20 &&
594 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 		struct hci_cp_read_stored_link_key cp;
596 
597 		bacpy(&cp.bdaddr, BDADDR_ANY);
598 		cp.read_all = 0x01;
599 		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 	}
601 
602 	if (hdev->commands[5] & 0x10)
603 		hci_setup_link_policy(req);
604 
605 	if (hdev->commands[8] & 0x01)
606 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607 
608 	if (hdev->commands[18] & 0x04 &&
609 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611 
612 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
613 	 * support the Read Page Scan Type command. Check support for
614 	 * this command in the bit mask of supported commands.
615 	 */
616 	if (hdev->commands[13] & 0x01)
617 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618 
619 	if (lmp_le_capable(hdev)) {
620 		u8 events[8];
621 
622 		memset(events, 0, sizeof(events));
623 
624 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 			events[0] |= 0x10;	/* LE Long Term Key Request */
626 
627 		/* If controller supports the Connection Parameters Request
628 		 * Link Layer Procedure, enable the corresponding event.
629 		 */
630 		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 			events[0] |= 0x20;	/* LE Remote Connection
632 						 * Parameter Request
633 						 */
634 
635 		/* If the controller supports the Data Length Extension
636 		 * feature, enable the corresponding event.
637 		 */
638 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 			events[0] |= 0x40;	/* LE Data Length Change */
640 
641 		/* If the controller supports LL Privacy feature, enable
642 		 * the corresponding event.
643 		 */
644 		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 			events[1] |= 0x02;	/* LE Enhanced Connection
646 						 * Complete
647 						 */
648 
649 		/* If the controller supports Extended Scanner Filter
650 		 * Policies, enable the correspondig event.
651 		 */
652 		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 			events[1] |= 0x04;	/* LE Direct Advertising
654 						 * Report
655 						 */
656 
657 		/* If the controller supports Channel Selection Algorithm #2
658 		 * feature, enable the corresponding event.
659 		 */
660 		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 			events[2] |= 0x08;	/* LE Channel Selection
662 						 * Algorithm
663 						 */
664 
665 		/* If the controller supports the LE Set Scan Enable command,
666 		 * enable the corresponding advertising report event.
667 		 */
668 		if (hdev->commands[26] & 0x08)
669 			events[0] |= 0x02;	/* LE Advertising Report */
670 
671 		/* If the controller supports the LE Create Connection
672 		 * command, enable the corresponding event.
673 		 */
674 		if (hdev->commands[26] & 0x10)
675 			events[0] |= 0x01;	/* LE Connection Complete */
676 
677 		/* If the controller supports the LE Connection Update
678 		 * command, enable the corresponding event.
679 		 */
680 		if (hdev->commands[27] & 0x04)
681 			events[0] |= 0x04;	/* LE Connection Update
682 						 * Complete
683 						 */
684 
685 		/* If the controller supports the LE Read Remote Used Features
686 		 * command, enable the corresponding event.
687 		 */
688 		if (hdev->commands[27] & 0x20)
689 			events[0] |= 0x08;	/* LE Read Remote Used
690 						 * Features Complete
691 						 */
692 
693 		/* If the controller supports the LE Read Local P-256
694 		 * Public Key command, enable the corresponding event.
695 		 */
696 		if (hdev->commands[34] & 0x02)
697 			events[0] |= 0x80;	/* LE Read Local P-256
698 						 * Public Key Complete
699 						 */
700 
701 		/* If the controller supports the LE Generate DHKey
702 		 * command, enable the corresponding event.
703 		 */
704 		if (hdev->commands[34] & 0x04)
705 			events[1] |= 0x01;	/* LE Generate DHKey Complete */
706 
707 		/* If the controller supports the LE Set Default PHY or
708 		 * LE Set PHY commands, enable the corresponding event.
709 		 */
710 		if (hdev->commands[35] & (0x20 | 0x40))
711 			events[1] |= 0x08;        /* LE PHY Update Complete */
712 
713 		/* If the controller supports LE Set Extended Scan Parameters
714 		 * and LE Set Extended Scan Enable commands, enable the
715 		 * corresponding event.
716 		 */
717 		if (use_ext_scan(hdev))
718 			events[1] |= 0x10;	/* LE Extended Advertising
719 						 * Report
720 						 */
721 
722 		/* If the controller supports the LE Extended Advertising
723 		 * command, enable the corresponding event.
724 		 */
725 		if (ext_adv_capable(hdev))
726 			events[2] |= 0x02;	/* LE Advertising Set
727 						 * Terminated
728 						 */
729 
730 		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 			    events);
732 
733 		/* Read LE Advertising Channel TX Power */
734 		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 			/* HCI TS spec forbids mixing of legacy and extended
736 			 * advertising commands wherein READ_ADV_TX_POWER is
737 			 * also included. So do not call it if extended adv
738 			 * is supported otherwise controller will return
739 			 * COMMAND_DISALLOWED for extended commands.
740 			 */
741 			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 		}
743 
744 		if (hdev->commands[26] & 0x40) {
745 			/* Read LE White List Size */
746 			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
747 				    0, NULL);
748 		}
749 
750 		if (hdev->commands[26] & 0x80) {
751 			/* Clear LE White List */
752 			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
753 		}
754 
755 		if (hdev->commands[34] & 0x40) {
756 			/* Read LE Resolving List Size */
757 			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 				    0, NULL);
759 		}
760 
761 		if (hdev->commands[34] & 0x20) {
762 			/* Clear LE Resolving List */
763 			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 		}
765 
766 		if (hdev->commands[35] & 0x04) {
767 			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768 
769 			/* Set RPA timeout */
770 			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 				    &rpa_timeout);
772 		}
773 
774 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 			/* Read LE Maximum Data Length */
776 			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777 
778 			/* Read LE Suggested Default Data Length */
779 			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 		}
781 
782 		if (ext_adv_capable(hdev)) {
783 			/* Read LE Number of Supported Advertising Sets */
784 			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 				    0, NULL);
786 		}
787 
788 		hci_set_le_support(req);
789 	}
790 
791 	/* Read features beyond page 1 if available */
792 	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 		struct hci_cp_read_local_ext_features cp;
794 
795 		cp.page = p;
796 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 			    sizeof(cp), &cp);
798 	}
799 
800 	return 0;
801 }
802 
hci_init4_req(struct hci_request * req,unsigned long opt)803 static int hci_init4_req(struct hci_request *req, unsigned long opt)
804 {
805 	struct hci_dev *hdev = req->hdev;
806 
807 	/* Some Broadcom based Bluetooth controllers do not support the
808 	 * Delete Stored Link Key command. They are clearly indicating its
809 	 * absence in the bit mask of supported commands.
810 	 *
811 	 * Check the supported commands and only if the command is marked
812 	 * as supported send it. If not supported assume that the controller
813 	 * does not have actual support for stored link keys which makes this
814 	 * command redundant anyway.
815 	 *
816 	 * Some controllers indicate that they support handling deleting
817 	 * stored link keys, but they don't. The quirk lets a driver
818 	 * just disable this command.
819 	 */
820 	if (hdev->commands[6] & 0x80 &&
821 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 		struct hci_cp_delete_stored_link_key cp;
823 
824 		bacpy(&cp.bdaddr, BDADDR_ANY);
825 		cp.delete_all = 0x01;
826 		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 			    sizeof(cp), &cp);
828 	}
829 
830 	/* Set event mask page 2 if the HCI command for it is supported */
831 	if (hdev->commands[22] & 0x04)
832 		hci_set_event_mask_page_2(req);
833 
834 	/* Read local codec list if the HCI command is supported */
835 	if (hdev->commands[29] & 0x20)
836 		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837 
838 	/* Read local pairing options if the HCI command is supported */
839 	if (hdev->commands[41] & 0x08)
840 		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841 
842 	/* Get MWS transport configuration if the HCI command is supported */
843 	if (hdev->commands[30] & 0x08)
844 		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845 
846 	/* Check for Synchronization Train support */
847 	if (lmp_sync_train_capable(hdev))
848 		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849 
850 	/* Enable Secure Connections if supported and configured */
851 	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 	    bredr_sc_enabled(hdev)) {
853 		u8 support = 0x01;
854 
855 		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 			    sizeof(support), &support);
857 	}
858 
859 	/* Set erroneous data reporting if supported to the wideband speech
860 	 * setting value
861 	 */
862 	if (hdev->commands[18] & 0x08 &&
863 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 		bool enabled = hci_dev_test_flag(hdev,
865 						 HCI_WIDEBAND_SPEECH_ENABLED);
866 
867 		if (enabled !=
868 		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 			struct hci_cp_write_def_err_data_reporting cp;
870 
871 			cp.err_data_reporting = enabled ?
872 						ERR_DATA_REPORTING_ENABLED :
873 						ERR_DATA_REPORTING_DISABLED;
874 
875 			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 				    sizeof(cp), &cp);
877 		}
878 	}
879 
880 	/* Set Suggested Default Data Length to maximum if supported */
881 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 		struct hci_cp_le_write_def_data_len cp;
883 
884 		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 	}
888 
889 	/* Set Default PHY parameters if command is supported */
890 	if (hdev->commands[35] & 0x20) {
891 		struct hci_cp_le_set_default_phy cp;
892 
893 		cp.all_phys = 0x00;
894 		cp.tx_phys = hdev->le_tx_def_phys;
895 		cp.rx_phys = hdev->le_rx_def_phys;
896 
897 		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 	}
899 
900 	return 0;
901 }
902 
__hci_init(struct hci_dev * hdev)903 static int __hci_init(struct hci_dev *hdev)
904 {
905 	int err;
906 
907 	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 	if (err < 0)
909 		return err;
910 
911 	if (hci_dev_test_flag(hdev, HCI_SETUP))
912 		hci_debugfs_create_basic(hdev);
913 
914 	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 	if (err < 0)
916 		return err;
917 
918 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 	 * BR/EDR/LE type controllers. AMP controllers only need the
920 	 * first two stages of init.
921 	 */
922 	if (hdev->dev_type != HCI_PRIMARY)
923 		return 0;
924 
925 	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 	if (err < 0)
927 		return err;
928 
929 	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 	if (err < 0)
931 		return err;
932 
933 	/* This function is only called when the controller is actually in
934 	 * configured state. When the controller is marked as unconfigured,
935 	 * this initialization procedure is not run.
936 	 *
937 	 * It means that it is possible that a controller runs through its
938 	 * setup phase and then discovers missing settings. If that is the
939 	 * case, then this function will not be called. It then will only
940 	 * be called during the config phase.
941 	 *
942 	 * So only when in setup phase or config phase, create the debugfs
943 	 * entries and register the SMP channels.
944 	 */
945 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
947 		return 0;
948 
949 	hci_debugfs_create_common(hdev);
950 
951 	if (lmp_bredr_capable(hdev))
952 		hci_debugfs_create_bredr(hdev);
953 
954 	if (lmp_le_capable(hdev))
955 		hci_debugfs_create_le(hdev);
956 
957 	return 0;
958 }
959 
hci_init0_req(struct hci_request * req,unsigned long opt)960 static int hci_init0_req(struct hci_request *req, unsigned long opt)
961 {
962 	struct hci_dev *hdev = req->hdev;
963 
964 	BT_DBG("%s %ld", hdev->name, opt);
965 
966 	/* Reset */
967 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 		hci_reset_req(req, 0);
969 
970 	/* Read Local Version */
971 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972 
973 	/* Read BD Address */
974 	if (hdev->set_bdaddr)
975 		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976 
977 	return 0;
978 }
979 
__hci_unconf_init(struct hci_dev * hdev)980 static int __hci_unconf_init(struct hci_dev *hdev)
981 {
982 	int err;
983 
984 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 		return 0;
986 
987 	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 	if (err < 0)
989 		return err;
990 
991 	if (hci_dev_test_flag(hdev, HCI_SETUP))
992 		hci_debugfs_create_basic(hdev);
993 
994 	return 0;
995 }
996 
hci_scan_req(struct hci_request * req,unsigned long opt)997 static int hci_scan_req(struct hci_request *req, unsigned long opt)
998 {
999 	__u8 scan = opt;
1000 
1001 	BT_DBG("%s %x", req->hdev->name, scan);
1002 
1003 	/* Inquiry and Page scans */
1004 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 	return 0;
1006 }
1007 
hci_auth_req(struct hci_request * req,unsigned long opt)1008 static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009 {
1010 	__u8 auth = opt;
1011 
1012 	BT_DBG("%s %x", req->hdev->name, auth);
1013 
1014 	/* Authentication */
1015 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 	return 0;
1017 }
1018 
hci_encrypt_req(struct hci_request * req,unsigned long opt)1019 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020 {
1021 	__u8 encrypt = opt;
1022 
1023 	BT_DBG("%s %x", req->hdev->name, encrypt);
1024 
1025 	/* Encryption */
1026 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 	return 0;
1028 }
1029 
hci_linkpol_req(struct hci_request * req,unsigned long opt)1030 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031 {
1032 	__le16 policy = cpu_to_le16(opt);
1033 
1034 	BT_DBG("%s %x", req->hdev->name, policy);
1035 
1036 	/* Default link policy */
1037 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 	return 0;
1039 }
1040 
1041 /* Get HCI device by index.
1042  * Device is held on return. */
hci_dev_get(int index)1043 struct hci_dev *hci_dev_get(int index)
1044 {
1045 	struct hci_dev *hdev = NULL, *d;
1046 
1047 	BT_DBG("%d", index);
1048 
1049 	if (index < 0)
1050 		return NULL;
1051 
1052 	read_lock(&hci_dev_list_lock);
1053 	list_for_each_entry(d, &hci_dev_list, list) {
1054 		if (d->id == index) {
1055 			hdev = hci_dev_hold(d);
1056 			break;
1057 		}
1058 	}
1059 	read_unlock(&hci_dev_list_lock);
1060 	return hdev;
1061 }
1062 
1063 /* ---- Inquiry support ---- */
1064 
hci_discovery_active(struct hci_dev * hdev)1065 bool hci_discovery_active(struct hci_dev *hdev)
1066 {
1067 	struct discovery_state *discov = &hdev->discovery;
1068 
1069 	switch (discov->state) {
1070 	case DISCOVERY_FINDING:
1071 	case DISCOVERY_RESOLVING:
1072 		return true;
1073 
1074 	default:
1075 		return false;
1076 	}
1077 }
1078 
hci_discovery_set_state(struct hci_dev * hdev,int state)1079 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080 {
1081 	int old_state = hdev->discovery.state;
1082 
1083 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084 
1085 	if (old_state == state)
1086 		return;
1087 
1088 	hdev->discovery.state = state;
1089 
1090 	switch (state) {
1091 	case DISCOVERY_STOPPED:
1092 		hci_update_background_scan(hdev);
1093 
1094 		if (old_state != DISCOVERY_STARTING)
1095 			mgmt_discovering(hdev, 0);
1096 		break;
1097 	case DISCOVERY_STARTING:
1098 		break;
1099 	case DISCOVERY_FINDING:
1100 		mgmt_discovering(hdev, 1);
1101 		break;
1102 	case DISCOVERY_RESOLVING:
1103 		break;
1104 	case DISCOVERY_STOPPING:
1105 		break;
1106 	}
1107 }
1108 
hci_inquiry_cache_flush(struct hci_dev * hdev)1109 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110 {
1111 	struct discovery_state *cache = &hdev->discovery;
1112 	struct inquiry_entry *p, *n;
1113 
1114 	list_for_each_entry_safe(p, n, &cache->all, all) {
1115 		list_del(&p->all);
1116 		kfree(p);
1117 	}
1118 
1119 	INIT_LIST_HEAD(&cache->unknown);
1120 	INIT_LIST_HEAD(&cache->resolve);
1121 }
1122 
hci_inquiry_cache_lookup(struct hci_dev * hdev,bdaddr_t * bdaddr)1123 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 					       bdaddr_t *bdaddr)
1125 {
1126 	struct discovery_state *cache = &hdev->discovery;
1127 	struct inquiry_entry *e;
1128 
1129 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1130 
1131 	list_for_each_entry(e, &cache->all, all) {
1132 		if (!bacmp(&e->data.bdaddr, bdaddr))
1133 			return e;
1134 	}
1135 
1136 	return NULL;
1137 }
1138 
hci_inquiry_cache_lookup_unknown(struct hci_dev * hdev,bdaddr_t * bdaddr)1139 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 						       bdaddr_t *bdaddr)
1141 {
1142 	struct discovery_state *cache = &hdev->discovery;
1143 	struct inquiry_entry *e;
1144 
1145 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1146 
1147 	list_for_each_entry(e, &cache->unknown, list) {
1148 		if (!bacmp(&e->data.bdaddr, bdaddr))
1149 			return e;
1150 	}
1151 
1152 	return NULL;
1153 }
1154 
hci_inquiry_cache_lookup_resolve(struct hci_dev * hdev,bdaddr_t * bdaddr,int state)1155 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 						       bdaddr_t *bdaddr,
1157 						       int state)
1158 {
1159 	struct discovery_state *cache = &hdev->discovery;
1160 	struct inquiry_entry *e;
1161 
1162 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163 
1164 	list_for_each_entry(e, &cache->resolve, list) {
1165 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 			return e;
1167 		if (!bacmp(&e->data.bdaddr, bdaddr))
1168 			return e;
1169 	}
1170 
1171 	return NULL;
1172 }
1173 
hci_inquiry_cache_update_resolve(struct hci_dev * hdev,struct inquiry_entry * ie)1174 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 				      struct inquiry_entry *ie)
1176 {
1177 	struct discovery_state *cache = &hdev->discovery;
1178 	struct list_head *pos = &cache->resolve;
1179 	struct inquiry_entry *p;
1180 
1181 	list_del(&ie->list);
1182 
1183 	list_for_each_entry(p, &cache->resolve, list) {
1184 		if (p->name_state != NAME_PENDING &&
1185 		    abs(p->data.rssi) >= abs(ie->data.rssi))
1186 			break;
1187 		pos = &p->list;
1188 	}
1189 
1190 	list_add(&ie->list, pos);
1191 }
1192 
hci_inquiry_cache_update(struct hci_dev * hdev,struct inquiry_data * data,bool name_known)1193 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 			     bool name_known)
1195 {
1196 	struct discovery_state *cache = &hdev->discovery;
1197 	struct inquiry_entry *ie;
1198 	u32 flags = 0;
1199 
1200 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201 
1202 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203 
1204 	if (!data->ssp_mode)
1205 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206 
1207 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 	if (ie) {
1209 		if (!ie->data.ssp_mode)
1210 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211 
1212 		if (ie->name_state == NAME_NEEDED &&
1213 		    data->rssi != ie->data.rssi) {
1214 			ie->data.rssi = data->rssi;
1215 			hci_inquiry_cache_update_resolve(hdev, ie);
1216 		}
1217 
1218 		goto update;
1219 	}
1220 
1221 	/* Entry not in the cache. Add new one. */
1222 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 	if (!ie) {
1224 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 		goto done;
1226 	}
1227 
1228 	list_add(&ie->all, &cache->all);
1229 
1230 	if (name_known) {
1231 		ie->name_state = NAME_KNOWN;
1232 	} else {
1233 		ie->name_state = NAME_NOT_KNOWN;
1234 		list_add(&ie->list, &cache->unknown);
1235 	}
1236 
1237 update:
1238 	if (name_known && ie->name_state != NAME_KNOWN &&
1239 	    ie->name_state != NAME_PENDING) {
1240 		ie->name_state = NAME_KNOWN;
1241 		list_del(&ie->list);
1242 	}
1243 
1244 	memcpy(&ie->data, data, sizeof(*data));
1245 	ie->timestamp = jiffies;
1246 	cache->timestamp = jiffies;
1247 
1248 	if (ie->name_state == NAME_NOT_KNOWN)
1249 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250 
1251 done:
1252 	return flags;
1253 }
1254 
inquiry_cache_dump(struct hci_dev * hdev,int num,__u8 * buf)1255 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256 {
1257 	struct discovery_state *cache = &hdev->discovery;
1258 	struct inquiry_info *info = (struct inquiry_info *) buf;
1259 	struct inquiry_entry *e;
1260 	int copied = 0;
1261 
1262 	list_for_each_entry(e, &cache->all, all) {
1263 		struct inquiry_data *data = &e->data;
1264 
1265 		if (copied >= num)
1266 			break;
1267 
1268 		bacpy(&info->bdaddr, &data->bdaddr);
1269 		info->pscan_rep_mode	= data->pscan_rep_mode;
1270 		info->pscan_period_mode	= data->pscan_period_mode;
1271 		info->pscan_mode	= data->pscan_mode;
1272 		memcpy(info->dev_class, data->dev_class, 3);
1273 		info->clock_offset	= data->clock_offset;
1274 
1275 		info++;
1276 		copied++;
1277 	}
1278 
1279 	BT_DBG("cache %p, copied %d", cache, copied);
1280 	return copied;
1281 }
1282 
hci_inq_req(struct hci_request * req,unsigned long opt)1283 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284 {
1285 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 	struct hci_dev *hdev = req->hdev;
1287 	struct hci_cp_inquiry cp;
1288 
1289 	BT_DBG("%s", hdev->name);
1290 
1291 	if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 		return 0;
1293 
1294 	/* Start Inquiry */
1295 	memcpy(&cp.lap, &ir->lap, 3);
1296 	cp.length  = ir->length;
1297 	cp.num_rsp = ir->num_rsp;
1298 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299 
1300 	return 0;
1301 }
1302 
hci_inquiry(void __user * arg)1303 int hci_inquiry(void __user *arg)
1304 {
1305 	__u8 __user *ptr = arg;
1306 	struct hci_inquiry_req ir;
1307 	struct hci_dev *hdev;
1308 	int err = 0, do_inquiry = 0, max_rsp;
1309 	long timeo;
1310 	__u8 *buf;
1311 
1312 	if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 		return -EFAULT;
1314 
1315 	hdev = hci_dev_get(ir.dev_id);
1316 	if (!hdev)
1317 		return -ENODEV;
1318 
1319 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 		err = -EBUSY;
1321 		goto done;
1322 	}
1323 
1324 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 		err = -EOPNOTSUPP;
1326 		goto done;
1327 	}
1328 
1329 	if (hdev->dev_type != HCI_PRIMARY) {
1330 		err = -EOPNOTSUPP;
1331 		goto done;
1332 	}
1333 
1334 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 		err = -EOPNOTSUPP;
1336 		goto done;
1337 	}
1338 
1339 	/* Restrict maximum inquiry length to 60 seconds */
1340 	if (ir.length > 60) {
1341 		err = -EINVAL;
1342 		goto done;
1343 	}
1344 
1345 	hci_dev_lock(hdev);
1346 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1347 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1348 		hci_inquiry_cache_flush(hdev);
1349 		do_inquiry = 1;
1350 	}
1351 	hci_dev_unlock(hdev);
1352 
1353 	timeo = ir.length * msecs_to_jiffies(2000);
1354 
1355 	if (do_inquiry) {
1356 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1357 				   timeo, NULL);
1358 		if (err < 0)
1359 			goto done;
1360 
1361 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1362 		 * cleared). If it is interrupted by a signal, return -EINTR.
1363 		 */
1364 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1365 				TASK_INTERRUPTIBLE)) {
1366 			err = -EINTR;
1367 			goto done;
1368 		}
1369 	}
1370 
1371 	/* for unlimited number of responses we will use buffer with
1372 	 * 255 entries
1373 	 */
1374 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1375 
1376 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1377 	 * copy it to the user space.
1378 	 */
1379 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1380 	if (!buf) {
1381 		err = -ENOMEM;
1382 		goto done;
1383 	}
1384 
1385 	hci_dev_lock(hdev);
1386 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1387 	hci_dev_unlock(hdev);
1388 
1389 	BT_DBG("num_rsp %d", ir.num_rsp);
1390 
1391 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1392 		ptr += sizeof(ir);
1393 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1394 				 ir.num_rsp))
1395 			err = -EFAULT;
1396 	} else
1397 		err = -EFAULT;
1398 
1399 	kfree(buf);
1400 
1401 done:
1402 	hci_dev_put(hdev);
1403 	return err;
1404 }
1405 
1406 /**
1407  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1408  *				       (BD_ADDR) for a HCI device from
1409  *				       a firmware node property.
1410  * @hdev:	The HCI device
1411  *
1412  * Search the firmware node for 'local-bd-address'.
1413  *
1414  * All-zero BD addresses are rejected, because those could be properties
1415  * that exist in the firmware tables, but were not updated by the firmware. For
1416  * example, the DTS could define 'local-bd-address', with zero BD addresses.
1417  */
hci_dev_get_bd_addr_from_property(struct hci_dev * hdev)1418 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1419 {
1420 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1421 	bdaddr_t ba;
1422 	int ret;
1423 
1424 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1425 					    (u8 *)&ba, sizeof(ba));
1426 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1427 		return;
1428 
1429 	bacpy(&hdev->public_addr, &ba);
1430 }
1431 
hci_dev_do_open(struct hci_dev * hdev)1432 static int hci_dev_do_open(struct hci_dev *hdev)
1433 {
1434 	int ret = 0;
1435 
1436 	BT_DBG("%s %p", hdev->name, hdev);
1437 
1438 	hci_req_sync_lock(hdev);
1439 
1440 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1441 		ret = -ENODEV;
1442 		goto done;
1443 	}
1444 
1445 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1446 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1447 		/* Check for rfkill but allow the HCI setup stage to
1448 		 * proceed (which in itself doesn't cause any RF activity).
1449 		 */
1450 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1451 			ret = -ERFKILL;
1452 			goto done;
1453 		}
1454 
1455 		/* Check for valid public address or a configured static
1456 		 * random adddress, but let the HCI setup proceed to
1457 		 * be able to determine if there is a public address
1458 		 * or not.
1459 		 *
1460 		 * In case of user channel usage, it is not important
1461 		 * if a public address or static random address is
1462 		 * available.
1463 		 *
1464 		 * This check is only valid for BR/EDR controllers
1465 		 * since AMP controllers do not have an address.
1466 		 */
1467 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1468 		    hdev->dev_type == HCI_PRIMARY &&
1469 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1470 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1471 			ret = -EADDRNOTAVAIL;
1472 			goto done;
1473 		}
1474 	}
1475 
1476 	if (test_bit(HCI_UP, &hdev->flags)) {
1477 		ret = -EALREADY;
1478 		goto done;
1479 	}
1480 
1481 	if (hdev->open(hdev)) {
1482 		ret = -EIO;
1483 		goto done;
1484 	}
1485 
1486 	set_bit(HCI_RUNNING, &hdev->flags);
1487 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1488 
1489 	atomic_set(&hdev->cmd_cnt, 1);
1490 	set_bit(HCI_INIT, &hdev->flags);
1491 
1492 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1493 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1494 		bool invalid_bdaddr;
1495 
1496 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1497 
1498 		if (hdev->setup)
1499 			ret = hdev->setup(hdev);
1500 
1501 		/* The transport driver can set the quirk to mark the
1502 		 * BD_ADDR invalid before creating the HCI device or in
1503 		 * its setup callback.
1504 		 */
1505 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1506 					  &hdev->quirks);
1507 
1508 		if (ret)
1509 			goto setup_failed;
1510 
1511 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1512 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1513 				hci_dev_get_bd_addr_from_property(hdev);
1514 
1515 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1516 			    hdev->set_bdaddr) {
1517 				ret = hdev->set_bdaddr(hdev,
1518 						       &hdev->public_addr);
1519 
1520 				/* If setting of the BD_ADDR from the device
1521 				 * property succeeds, then treat the address
1522 				 * as valid even if the invalid BD_ADDR
1523 				 * quirk indicates otherwise.
1524 				 */
1525 				if (!ret)
1526 					invalid_bdaddr = false;
1527 			}
1528 		}
1529 
1530 setup_failed:
1531 		/* The transport driver can set these quirks before
1532 		 * creating the HCI device or in its setup callback.
1533 		 *
1534 		 * For the invalid BD_ADDR quirk it is possible that
1535 		 * it becomes a valid address if the bootloader does
1536 		 * provide it (see above).
1537 		 *
1538 		 * In case any of them is set, the controller has to
1539 		 * start up as unconfigured.
1540 		 */
1541 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1542 		    invalid_bdaddr)
1543 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1544 
1545 		/* For an unconfigured controller it is required to
1546 		 * read at least the version information provided by
1547 		 * the Read Local Version Information command.
1548 		 *
1549 		 * If the set_bdaddr driver callback is provided, then
1550 		 * also the original Bluetooth public device address
1551 		 * will be read using the Read BD Address command.
1552 		 */
1553 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1554 			ret = __hci_unconf_init(hdev);
1555 	}
1556 
1557 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1558 		/* If public address change is configured, ensure that
1559 		 * the address gets programmed. If the driver does not
1560 		 * support changing the public address, fail the power
1561 		 * on procedure.
1562 		 */
1563 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1564 		    hdev->set_bdaddr)
1565 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1566 		else
1567 			ret = -EADDRNOTAVAIL;
1568 	}
1569 
1570 	if (!ret) {
1571 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1572 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1573 			ret = __hci_init(hdev);
1574 			if (!ret && hdev->post_init)
1575 				ret = hdev->post_init(hdev);
1576 		}
1577 	}
1578 
1579 	/* If the HCI Reset command is clearing all diagnostic settings,
1580 	 * then they need to be reprogrammed after the init procedure
1581 	 * completed.
1582 	 */
1583 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1584 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1585 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1586 		ret = hdev->set_diag(hdev, true);
1587 
1588 	msft_do_open(hdev);
1589 
1590 	clear_bit(HCI_INIT, &hdev->flags);
1591 
1592 	if (!ret) {
1593 		hci_dev_hold(hdev);
1594 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1595 		hci_adv_instances_set_rpa_expired(hdev, true);
1596 		set_bit(HCI_UP, &hdev->flags);
1597 		hci_sock_dev_event(hdev, HCI_DEV_UP);
1598 		hci_leds_update_powered(hdev, true);
1599 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1600 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1601 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1602 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1603 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1604 		    hdev->dev_type == HCI_PRIMARY) {
1605 			ret = __hci_req_hci_power_on(hdev);
1606 			mgmt_power_on(hdev, ret);
1607 		}
1608 	} else {
1609 		/* Init failed, cleanup */
1610 		flush_work(&hdev->tx_work);
1611 
1612 		/* Since hci_rx_work() is possible to awake new cmd_work
1613 		 * it should be flushed first to avoid unexpected call of
1614 		 * hci_cmd_work()
1615 		 */
1616 		flush_work(&hdev->rx_work);
1617 		flush_work(&hdev->cmd_work);
1618 
1619 		skb_queue_purge(&hdev->cmd_q);
1620 		skb_queue_purge(&hdev->rx_q);
1621 
1622 		if (hdev->flush)
1623 			hdev->flush(hdev);
1624 
1625 		if (hdev->sent_cmd) {
1626 			cancel_delayed_work_sync(&hdev->cmd_timer);
1627 			kfree_skb(hdev->sent_cmd);
1628 			hdev->sent_cmd = NULL;
1629 		}
1630 
1631 		clear_bit(HCI_RUNNING, &hdev->flags);
1632 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1633 
1634 		hdev->close(hdev);
1635 		hdev->flags &= BIT(HCI_RAW);
1636 	}
1637 
1638 done:
1639 	hci_req_sync_unlock(hdev);
1640 	return ret;
1641 }
1642 
1643 /* ---- HCI ioctl helpers ---- */
1644 
hci_dev_open(__u16 dev)1645 int hci_dev_open(__u16 dev)
1646 {
1647 	struct hci_dev *hdev;
1648 	int err;
1649 
1650 	hdev = hci_dev_get(dev);
1651 	if (!hdev)
1652 		return -ENODEV;
1653 
1654 	/* Devices that are marked as unconfigured can only be powered
1655 	 * up as user channel. Trying to bring them up as normal devices
1656 	 * will result into a failure. Only user channel operation is
1657 	 * possible.
1658 	 *
1659 	 * When this function is called for a user channel, the flag
1660 	 * HCI_USER_CHANNEL will be set first before attempting to
1661 	 * open the device.
1662 	 */
1663 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1664 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1665 		err = -EOPNOTSUPP;
1666 		goto done;
1667 	}
1668 
1669 	/* We need to ensure that no other power on/off work is pending
1670 	 * before proceeding to call hci_dev_do_open. This is
1671 	 * particularly important if the setup procedure has not yet
1672 	 * completed.
1673 	 */
1674 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1675 		cancel_delayed_work(&hdev->power_off);
1676 
1677 	/* After this call it is guaranteed that the setup procedure
1678 	 * has finished. This means that error conditions like RFKILL
1679 	 * or no valid public or static random address apply.
1680 	 */
1681 	flush_workqueue(hdev->req_workqueue);
1682 
1683 	/* For controllers not using the management interface and that
1684 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1685 	 * so that pairing works for them. Once the management interface
1686 	 * is in use this bit will be cleared again and userspace has
1687 	 * to explicitly enable it.
1688 	 */
1689 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1690 	    !hci_dev_test_flag(hdev, HCI_MGMT))
1691 		hci_dev_set_flag(hdev, HCI_BONDABLE);
1692 
1693 	err = hci_dev_do_open(hdev);
1694 
1695 done:
1696 	hci_dev_put(hdev);
1697 	return err;
1698 }
1699 
1700 /* This function requires the caller holds hdev->lock */
hci_pend_le_actions_clear(struct hci_dev * hdev)1701 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1702 {
1703 	struct hci_conn_params *p;
1704 
1705 	list_for_each_entry(p, &hdev->le_conn_params, list) {
1706 		if (p->conn) {
1707 			hci_conn_drop(p->conn);
1708 			hci_conn_put(p->conn);
1709 			p->conn = NULL;
1710 		}
1711 		list_del_init(&p->action);
1712 	}
1713 
1714 	BT_DBG("All LE pending actions cleared");
1715 }
1716 
hci_dev_do_close(struct hci_dev * hdev)1717 int hci_dev_do_close(struct hci_dev *hdev)
1718 {
1719 	bool auto_off;
1720 
1721 	BT_DBG("%s %p", hdev->name, hdev);
1722 
1723 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1724 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1725 	    test_bit(HCI_UP, &hdev->flags)) {
1726 		/* Execute vendor specific shutdown routine */
1727 		if (hdev->shutdown)
1728 			hdev->shutdown(hdev);
1729 	}
1730 
1731 	cancel_delayed_work(&hdev->power_off);
1732 
1733 	hci_request_cancel_all(hdev);
1734 	hci_req_sync_lock(hdev);
1735 
1736 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1737 		cancel_delayed_work_sync(&hdev->cmd_timer);
1738 		hci_req_sync_unlock(hdev);
1739 		return 0;
1740 	}
1741 
1742 	hci_leds_update_powered(hdev, false);
1743 
1744 	/* Flush RX and TX works */
1745 	flush_work(&hdev->tx_work);
1746 	flush_work(&hdev->rx_work);
1747 
1748 	if (hdev->discov_timeout > 0) {
1749 		hdev->discov_timeout = 0;
1750 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1751 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1752 	}
1753 
1754 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1755 		cancel_delayed_work(&hdev->service_cache);
1756 
1757 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1758 		struct adv_info *adv_instance;
1759 
1760 		cancel_delayed_work_sync(&hdev->rpa_expired);
1761 
1762 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1763 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1764 	}
1765 
1766 	/* Avoid potential lockdep warnings from the *_flush() calls by
1767 	 * ensuring the workqueue is empty up front.
1768 	 */
1769 	drain_workqueue(hdev->workqueue);
1770 
1771 	hci_dev_lock(hdev);
1772 
1773 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1774 
1775 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1776 
1777 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1778 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1779 	    hci_dev_test_flag(hdev, HCI_MGMT))
1780 		__mgmt_power_off(hdev);
1781 
1782 	hci_inquiry_cache_flush(hdev);
1783 	hci_pend_le_actions_clear(hdev);
1784 	hci_conn_hash_flush(hdev);
1785 	hci_dev_unlock(hdev);
1786 
1787 	smp_unregister(hdev);
1788 
1789 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1790 
1791 	msft_do_close(hdev);
1792 
1793 	if (hdev->flush)
1794 		hdev->flush(hdev);
1795 
1796 	/* Reset device */
1797 	skb_queue_purge(&hdev->cmd_q);
1798 	atomic_set(&hdev->cmd_cnt, 1);
1799 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1800 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801 		set_bit(HCI_INIT, &hdev->flags);
1802 		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1803 		clear_bit(HCI_INIT, &hdev->flags);
1804 	}
1805 
1806 	/* flush cmd  work */
1807 	flush_work(&hdev->cmd_work);
1808 
1809 	/* Drop queues */
1810 	skb_queue_purge(&hdev->rx_q);
1811 	skb_queue_purge(&hdev->cmd_q);
1812 	skb_queue_purge(&hdev->raw_q);
1813 
1814 	/* Drop last sent command */
1815 	if (hdev->sent_cmd) {
1816 		cancel_delayed_work_sync(&hdev->cmd_timer);
1817 		kfree_skb(hdev->sent_cmd);
1818 		hdev->sent_cmd = NULL;
1819 	}
1820 
1821 	clear_bit(HCI_RUNNING, &hdev->flags);
1822 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1823 
1824 	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1825 		wake_up(&hdev->suspend_wait_q);
1826 
1827 	/* After this point our queues are empty
1828 	 * and no tasks are scheduled. */
1829 	hdev->close(hdev);
1830 
1831 	/* Clear flags */
1832 	hdev->flags &= BIT(HCI_RAW);
1833 	hci_dev_clear_volatile_flags(hdev);
1834 
1835 	/* Controller radio is available but is currently powered down */
1836 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1837 
1838 	memset(hdev->eir, 0, sizeof(hdev->eir));
1839 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1840 	bacpy(&hdev->random_addr, BDADDR_ANY);
1841 
1842 	hci_req_sync_unlock(hdev);
1843 
1844 	hci_dev_put(hdev);
1845 	return 0;
1846 }
1847 
hci_dev_close(__u16 dev)1848 int hci_dev_close(__u16 dev)
1849 {
1850 	struct hci_dev *hdev;
1851 	int err;
1852 
1853 	hdev = hci_dev_get(dev);
1854 	if (!hdev)
1855 		return -ENODEV;
1856 
1857 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1858 		err = -EBUSY;
1859 		goto done;
1860 	}
1861 
1862 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1863 		cancel_delayed_work(&hdev->power_off);
1864 
1865 	err = hci_dev_do_close(hdev);
1866 
1867 done:
1868 	hci_dev_put(hdev);
1869 	return err;
1870 }
1871 
hci_dev_do_reset(struct hci_dev * hdev)1872 static int hci_dev_do_reset(struct hci_dev *hdev)
1873 {
1874 	int ret;
1875 
1876 	BT_DBG("%s %p", hdev->name, hdev);
1877 
1878 	hci_req_sync_lock(hdev);
1879 
1880 	/* Drop queues */
1881 	skb_queue_purge(&hdev->rx_q);
1882 	skb_queue_purge(&hdev->cmd_q);
1883 
1884 	/* Avoid potential lockdep warnings from the *_flush() calls by
1885 	 * ensuring the workqueue is empty up front.
1886 	 */
1887 	drain_workqueue(hdev->workqueue);
1888 
1889 	hci_dev_lock(hdev);
1890 	hci_inquiry_cache_flush(hdev);
1891 	hci_conn_hash_flush(hdev);
1892 	hci_dev_unlock(hdev);
1893 
1894 	if (hdev->flush)
1895 		hdev->flush(hdev);
1896 
1897 	atomic_set(&hdev->cmd_cnt, 1);
1898 	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1899 
1900 	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1901 
1902 	hci_req_sync_unlock(hdev);
1903 	return ret;
1904 }
1905 
hci_dev_reset(__u16 dev)1906 int hci_dev_reset(__u16 dev)
1907 {
1908 	struct hci_dev *hdev;
1909 	int err;
1910 
1911 	hdev = hci_dev_get(dev);
1912 	if (!hdev)
1913 		return -ENODEV;
1914 
1915 	if (!test_bit(HCI_UP, &hdev->flags)) {
1916 		err = -ENETDOWN;
1917 		goto done;
1918 	}
1919 
1920 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1921 		err = -EBUSY;
1922 		goto done;
1923 	}
1924 
1925 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1926 		err = -EOPNOTSUPP;
1927 		goto done;
1928 	}
1929 
1930 	err = hci_dev_do_reset(hdev);
1931 
1932 done:
1933 	hci_dev_put(hdev);
1934 	return err;
1935 }
1936 
hci_dev_reset_stat(__u16 dev)1937 int hci_dev_reset_stat(__u16 dev)
1938 {
1939 	struct hci_dev *hdev;
1940 	int ret = 0;
1941 
1942 	hdev = hci_dev_get(dev);
1943 	if (!hdev)
1944 		return -ENODEV;
1945 
1946 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1947 		ret = -EBUSY;
1948 		goto done;
1949 	}
1950 
1951 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1952 		ret = -EOPNOTSUPP;
1953 		goto done;
1954 	}
1955 
1956 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1957 
1958 done:
1959 	hci_dev_put(hdev);
1960 	return ret;
1961 }
1962 
hci_update_scan_state(struct hci_dev * hdev,u8 scan)1963 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1964 {
1965 	bool conn_changed, discov_changed;
1966 
1967 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1968 
1969 	if ((scan & SCAN_PAGE))
1970 		conn_changed = !hci_dev_test_and_set_flag(hdev,
1971 							  HCI_CONNECTABLE);
1972 	else
1973 		conn_changed = hci_dev_test_and_clear_flag(hdev,
1974 							   HCI_CONNECTABLE);
1975 
1976 	if ((scan & SCAN_INQUIRY)) {
1977 		discov_changed = !hci_dev_test_and_set_flag(hdev,
1978 							    HCI_DISCOVERABLE);
1979 	} else {
1980 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1981 		discov_changed = hci_dev_test_and_clear_flag(hdev,
1982 							     HCI_DISCOVERABLE);
1983 	}
1984 
1985 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1986 		return;
1987 
1988 	if (conn_changed || discov_changed) {
1989 		/* In case this was disabled through mgmt */
1990 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1991 
1992 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1993 			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1994 
1995 		mgmt_new_settings(hdev);
1996 	}
1997 }
1998 
hci_dev_cmd(unsigned int cmd,void __user * arg)1999 int hci_dev_cmd(unsigned int cmd, void __user *arg)
2000 {
2001 	struct hci_dev *hdev;
2002 	struct hci_dev_req dr;
2003 	int err = 0;
2004 
2005 	if (copy_from_user(&dr, arg, sizeof(dr)))
2006 		return -EFAULT;
2007 
2008 	hdev = hci_dev_get(dr.dev_id);
2009 	if (!hdev)
2010 		return -ENODEV;
2011 
2012 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
2013 		err = -EBUSY;
2014 		goto done;
2015 	}
2016 
2017 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2018 		err = -EOPNOTSUPP;
2019 		goto done;
2020 	}
2021 
2022 	if (hdev->dev_type != HCI_PRIMARY) {
2023 		err = -EOPNOTSUPP;
2024 		goto done;
2025 	}
2026 
2027 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2028 		err = -EOPNOTSUPP;
2029 		goto done;
2030 	}
2031 
2032 	switch (cmd) {
2033 	case HCISETAUTH:
2034 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2035 				   HCI_INIT_TIMEOUT, NULL);
2036 		break;
2037 
2038 	case HCISETENCRYPT:
2039 		if (!lmp_encrypt_capable(hdev)) {
2040 			err = -EOPNOTSUPP;
2041 			break;
2042 		}
2043 
2044 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2045 			/* Auth must be enabled first */
2046 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2047 					   HCI_INIT_TIMEOUT, NULL);
2048 			if (err)
2049 				break;
2050 		}
2051 
2052 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2053 				   HCI_INIT_TIMEOUT, NULL);
2054 		break;
2055 
2056 	case HCISETSCAN:
2057 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2058 				   HCI_INIT_TIMEOUT, NULL);
2059 
2060 		/* Ensure that the connectable and discoverable states
2061 		 * get correctly modified as this was a non-mgmt change.
2062 		 */
2063 		if (!err)
2064 			hci_update_scan_state(hdev, dr.dev_opt);
2065 		break;
2066 
2067 	case HCISETLINKPOL:
2068 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2069 				   HCI_INIT_TIMEOUT, NULL);
2070 		break;
2071 
2072 	case HCISETLINKMODE:
2073 		hdev->link_mode = ((__u16) dr.dev_opt) &
2074 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2075 		break;
2076 
2077 	case HCISETPTYPE:
2078 		if (hdev->pkt_type == (__u16) dr.dev_opt)
2079 			break;
2080 
2081 		hdev->pkt_type = (__u16) dr.dev_opt;
2082 		mgmt_phy_configuration_changed(hdev, NULL);
2083 		break;
2084 
2085 	case HCISETACLMTU:
2086 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2087 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2088 		break;
2089 
2090 	case HCISETSCOMTU:
2091 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2092 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2093 		break;
2094 
2095 	default:
2096 		err = -EINVAL;
2097 		break;
2098 	}
2099 
2100 done:
2101 	hci_dev_put(hdev);
2102 	return err;
2103 }
2104 
hci_get_dev_list(void __user * arg)2105 int hci_get_dev_list(void __user *arg)
2106 {
2107 	struct hci_dev *hdev;
2108 	struct hci_dev_list_req *dl;
2109 	struct hci_dev_req *dr;
2110 	int n = 0, size, err;
2111 	__u16 dev_num;
2112 
2113 	if (get_user(dev_num, (__u16 __user *) arg))
2114 		return -EFAULT;
2115 
2116 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2117 		return -EINVAL;
2118 
2119 	size = sizeof(*dl) + dev_num * sizeof(*dr);
2120 
2121 	dl = kzalloc(size, GFP_KERNEL);
2122 	if (!dl)
2123 		return -ENOMEM;
2124 
2125 	dr = dl->dev_req;
2126 
2127 	read_lock(&hci_dev_list_lock);
2128 	list_for_each_entry(hdev, &hci_dev_list, list) {
2129 		unsigned long flags = hdev->flags;
2130 
2131 		/* When the auto-off is configured it means the transport
2132 		 * is running, but in that case still indicate that the
2133 		 * device is actually down.
2134 		 */
2135 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2136 			flags &= ~BIT(HCI_UP);
2137 
2138 		(dr + n)->dev_id  = hdev->id;
2139 		(dr + n)->dev_opt = flags;
2140 
2141 		if (++n >= dev_num)
2142 			break;
2143 	}
2144 	read_unlock(&hci_dev_list_lock);
2145 
2146 	dl->dev_num = n;
2147 	size = sizeof(*dl) + n * sizeof(*dr);
2148 
2149 	err = copy_to_user(arg, dl, size);
2150 	kfree(dl);
2151 
2152 	return err ? -EFAULT : 0;
2153 }
2154 
hci_get_dev_info(void __user * arg)2155 int hci_get_dev_info(void __user *arg)
2156 {
2157 	struct hci_dev *hdev;
2158 	struct hci_dev_info di;
2159 	unsigned long flags;
2160 	int err = 0;
2161 
2162 	if (copy_from_user(&di, arg, sizeof(di)))
2163 		return -EFAULT;
2164 
2165 	hdev = hci_dev_get(di.dev_id);
2166 	if (!hdev)
2167 		return -ENODEV;
2168 
2169 	/* When the auto-off is configured it means the transport
2170 	 * is running, but in that case still indicate that the
2171 	 * device is actually down.
2172 	 */
2173 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2174 		flags = hdev->flags & ~BIT(HCI_UP);
2175 	else
2176 		flags = hdev->flags;
2177 
2178 	strcpy(di.name, hdev->name);
2179 	di.bdaddr   = hdev->bdaddr;
2180 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2181 	di.flags    = flags;
2182 	di.pkt_type = hdev->pkt_type;
2183 	if (lmp_bredr_capable(hdev)) {
2184 		di.acl_mtu  = hdev->acl_mtu;
2185 		di.acl_pkts = hdev->acl_pkts;
2186 		di.sco_mtu  = hdev->sco_mtu;
2187 		di.sco_pkts = hdev->sco_pkts;
2188 	} else {
2189 		di.acl_mtu  = hdev->le_mtu;
2190 		di.acl_pkts = hdev->le_pkts;
2191 		di.sco_mtu  = 0;
2192 		di.sco_pkts = 0;
2193 	}
2194 	di.link_policy = hdev->link_policy;
2195 	di.link_mode   = hdev->link_mode;
2196 
2197 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2198 	memcpy(&di.features, &hdev->features, sizeof(di.features));
2199 
2200 	if (copy_to_user(arg, &di, sizeof(di)))
2201 		err = -EFAULT;
2202 
2203 	hci_dev_put(hdev);
2204 
2205 	return err;
2206 }
2207 
2208 /* ---- Interface to HCI drivers ---- */
2209 
hci_rfkill_set_block(void * data,bool blocked)2210 static int hci_rfkill_set_block(void *data, bool blocked)
2211 {
2212 	struct hci_dev *hdev = data;
2213 
2214 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2215 
2216 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2217 		return -EBUSY;
2218 
2219 	if (blocked) {
2220 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2221 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2222 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2223 			hci_dev_do_close(hdev);
2224 	} else {
2225 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 static const struct rfkill_ops hci_rfkill_ops = {
2232 	.set_block = hci_rfkill_set_block,
2233 };
2234 
hci_power_on(struct work_struct * work)2235 static void hci_power_on(struct work_struct *work)
2236 {
2237 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2238 	int err;
2239 
2240 	BT_DBG("%s", hdev->name);
2241 
2242 	if (test_bit(HCI_UP, &hdev->flags) &&
2243 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2244 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2245 		cancel_delayed_work(&hdev->power_off);
2246 		hci_req_sync_lock(hdev);
2247 		err = __hci_req_hci_power_on(hdev);
2248 		hci_req_sync_unlock(hdev);
2249 		mgmt_power_on(hdev, err);
2250 		return;
2251 	}
2252 
2253 	err = hci_dev_do_open(hdev);
2254 	if (err < 0) {
2255 		hci_dev_lock(hdev);
2256 		mgmt_set_powered_failed(hdev, err);
2257 		hci_dev_unlock(hdev);
2258 		return;
2259 	}
2260 
2261 	/* During the HCI setup phase, a few error conditions are
2262 	 * ignored and they need to be checked now. If they are still
2263 	 * valid, it is important to turn the device back off.
2264 	 */
2265 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2266 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2267 	    (hdev->dev_type == HCI_PRIMARY &&
2268 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2269 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2270 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2271 		hci_dev_do_close(hdev);
2272 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2273 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2274 				   HCI_AUTO_OFF_TIMEOUT);
2275 	}
2276 
2277 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2278 		/* For unconfigured devices, set the HCI_RAW flag
2279 		 * so that userspace can easily identify them.
2280 		 */
2281 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2282 			set_bit(HCI_RAW, &hdev->flags);
2283 
2284 		/* For fully configured devices, this will send
2285 		 * the Index Added event. For unconfigured devices,
2286 		 * it will send Unconfigued Index Added event.
2287 		 *
2288 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2289 		 * and no event will be send.
2290 		 */
2291 		mgmt_index_added(hdev);
2292 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2293 		/* When the controller is now configured, then it
2294 		 * is important to clear the HCI_RAW flag.
2295 		 */
2296 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2297 			clear_bit(HCI_RAW, &hdev->flags);
2298 
2299 		/* Powering on the controller with HCI_CONFIG set only
2300 		 * happens with the transition from unconfigured to
2301 		 * configured. This will send the Index Added event.
2302 		 */
2303 		mgmt_index_added(hdev);
2304 	}
2305 }
2306 
hci_power_off(struct work_struct * work)2307 static void hci_power_off(struct work_struct *work)
2308 {
2309 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2310 					    power_off.work);
2311 
2312 	BT_DBG("%s", hdev->name);
2313 
2314 	hci_dev_do_close(hdev);
2315 }
2316 
hci_error_reset(struct work_struct * work)2317 static void hci_error_reset(struct work_struct *work)
2318 {
2319 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2320 
2321 	hci_dev_hold(hdev);
2322 	BT_DBG("%s", hdev->name);
2323 
2324 	if (hdev->hw_error)
2325 		hdev->hw_error(hdev, hdev->hw_error_code);
2326 	else
2327 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2328 
2329 	if (!hci_dev_do_close(hdev))
2330 		hci_dev_do_open(hdev);
2331 
2332 	hci_dev_put(hdev);
2333 }
2334 
hci_uuids_clear(struct hci_dev * hdev)2335 void hci_uuids_clear(struct hci_dev *hdev)
2336 {
2337 	struct bt_uuid *uuid, *tmp;
2338 
2339 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2340 		list_del(&uuid->list);
2341 		kfree(uuid);
2342 	}
2343 }
2344 
hci_link_keys_clear(struct hci_dev * hdev)2345 void hci_link_keys_clear(struct hci_dev *hdev)
2346 {
2347 	struct link_key *key, *tmp;
2348 
2349 	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
2350 		list_del_rcu(&key->list);
2351 		kfree_rcu(key, rcu);
2352 	}
2353 }
2354 
hci_smp_ltks_clear(struct hci_dev * hdev)2355 void hci_smp_ltks_clear(struct hci_dev *hdev)
2356 {
2357 	struct smp_ltk *k, *tmp;
2358 
2359 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
2360 		list_del_rcu(&k->list);
2361 		kfree_rcu(k, rcu);
2362 	}
2363 }
2364 
hci_smp_irks_clear(struct hci_dev * hdev)2365 void hci_smp_irks_clear(struct hci_dev *hdev)
2366 {
2367 	struct smp_irk *k, *tmp;
2368 
2369 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
2370 		list_del_rcu(&k->list);
2371 		kfree_rcu(k, rcu);
2372 	}
2373 }
2374 
hci_blocked_keys_clear(struct hci_dev * hdev)2375 void hci_blocked_keys_clear(struct hci_dev *hdev)
2376 {
2377 	struct blocked_key *b, *tmp;
2378 
2379 	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
2380 		list_del_rcu(&b->list);
2381 		kfree_rcu(b, rcu);
2382 	}
2383 }
2384 
hci_is_blocked_key(struct hci_dev * hdev,u8 type,u8 val[16])2385 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2386 {
2387 	bool blocked = false;
2388 	struct blocked_key *b;
2389 
2390 	rcu_read_lock();
2391 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2392 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2393 			blocked = true;
2394 			break;
2395 		}
2396 	}
2397 
2398 	rcu_read_unlock();
2399 	return blocked;
2400 }
2401 
hci_find_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2402 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2403 {
2404 	struct link_key *k;
2405 
2406 	rcu_read_lock();
2407 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2408 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2409 			rcu_read_unlock();
2410 
2411 			if (hci_is_blocked_key(hdev,
2412 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2413 					       k->val)) {
2414 				bt_dev_warn_ratelimited(hdev,
2415 							"Link key blocked for %pMR",
2416 							&k->bdaddr);
2417 				return NULL;
2418 			}
2419 
2420 			return k;
2421 		}
2422 	}
2423 	rcu_read_unlock();
2424 
2425 	return NULL;
2426 }
2427 
hci_persistent_key(struct hci_dev * hdev,struct hci_conn * conn,u8 key_type,u8 old_key_type)2428 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2429 			       u8 key_type, u8 old_key_type)
2430 {
2431 	/* Legacy key */
2432 	if (key_type < 0x03)
2433 		return true;
2434 
2435 	/* Debug keys are insecure so don't store them persistently */
2436 	if (key_type == HCI_LK_DEBUG_COMBINATION)
2437 		return false;
2438 
2439 	/* Changed combination key and there's no previous one */
2440 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2441 		return false;
2442 
2443 	/* Security mode 3 case */
2444 	if (!conn)
2445 		return true;
2446 
2447 	/* BR/EDR key derived using SC from an LE link */
2448 	if (conn->type == LE_LINK)
2449 		return true;
2450 
2451 	/* Neither local nor remote side had no-bonding as requirement */
2452 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2453 		return true;
2454 
2455 	/* Local side had dedicated bonding as requirement */
2456 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2457 		return true;
2458 
2459 	/* Remote side had dedicated bonding as requirement */
2460 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2461 		return true;
2462 
2463 	/* If none of the above criteria match, then don't store the key
2464 	 * persistently */
2465 	return false;
2466 }
2467 
ltk_role(u8 type)2468 static u8 ltk_role(u8 type)
2469 {
2470 	if (type == SMP_LTK)
2471 		return HCI_ROLE_MASTER;
2472 
2473 	return HCI_ROLE_SLAVE;
2474 }
2475 
hci_find_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 role)2476 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2477 			     u8 addr_type, u8 role)
2478 {
2479 	struct smp_ltk *k;
2480 
2481 	rcu_read_lock();
2482 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2483 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2484 			continue;
2485 
2486 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2487 			rcu_read_unlock();
2488 
2489 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2490 					       k->val)) {
2491 				bt_dev_warn_ratelimited(hdev,
2492 							"LTK blocked for %pMR",
2493 							&k->bdaddr);
2494 				return NULL;
2495 			}
2496 
2497 			return k;
2498 		}
2499 	}
2500 	rcu_read_unlock();
2501 
2502 	return NULL;
2503 }
2504 
hci_find_irk_by_rpa(struct hci_dev * hdev,bdaddr_t * rpa)2505 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2506 {
2507 	struct smp_irk *irk_to_return = NULL;
2508 	struct smp_irk *irk;
2509 
2510 	rcu_read_lock();
2511 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2512 		if (!bacmp(&irk->rpa, rpa)) {
2513 			irk_to_return = irk;
2514 			goto done;
2515 		}
2516 	}
2517 
2518 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2519 		if (smp_irk_matches(hdev, irk->val, rpa)) {
2520 			bacpy(&irk->rpa, rpa);
2521 			irk_to_return = irk;
2522 			goto done;
2523 		}
2524 	}
2525 
2526 done:
2527 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2528 						irk_to_return->val)) {
2529 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2530 					&irk_to_return->bdaddr);
2531 		irk_to_return = NULL;
2532 	}
2533 
2534 	rcu_read_unlock();
2535 
2536 	return irk_to_return;
2537 }
2538 
hci_find_irk_by_addr(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2539 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2540 				     u8 addr_type)
2541 {
2542 	struct smp_irk *irk_to_return = NULL;
2543 	struct smp_irk *irk;
2544 
2545 	/* Identity Address must be public or static random */
2546 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2547 		return NULL;
2548 
2549 	rcu_read_lock();
2550 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2551 		if (addr_type == irk->addr_type &&
2552 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2553 			irk_to_return = irk;
2554 			goto done;
2555 		}
2556 	}
2557 
2558 done:
2559 
2560 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2561 						irk_to_return->val)) {
2562 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2563 					&irk_to_return->bdaddr);
2564 		irk_to_return = NULL;
2565 	}
2566 
2567 	rcu_read_unlock();
2568 
2569 	return irk_to_return;
2570 }
2571 
hci_add_link_key(struct hci_dev * hdev,struct hci_conn * conn,bdaddr_t * bdaddr,u8 * val,u8 type,u8 pin_len,bool * persistent)2572 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2573 				  bdaddr_t *bdaddr, u8 *val, u8 type,
2574 				  u8 pin_len, bool *persistent)
2575 {
2576 	struct link_key *key, *old_key;
2577 	u8 old_key_type;
2578 
2579 	old_key = hci_find_link_key(hdev, bdaddr);
2580 	if (old_key) {
2581 		old_key_type = old_key->type;
2582 		key = old_key;
2583 	} else {
2584 		old_key_type = conn ? conn->key_type : 0xff;
2585 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2586 		if (!key)
2587 			return NULL;
2588 		list_add_rcu(&key->list, &hdev->link_keys);
2589 	}
2590 
2591 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2592 
2593 	/* Some buggy controller combinations generate a changed
2594 	 * combination key for legacy pairing even when there's no
2595 	 * previous key */
2596 	if (type == HCI_LK_CHANGED_COMBINATION &&
2597 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2598 		type = HCI_LK_COMBINATION;
2599 		if (conn)
2600 			conn->key_type = type;
2601 	}
2602 
2603 	bacpy(&key->bdaddr, bdaddr);
2604 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2605 	key->pin_len = pin_len;
2606 
2607 	if (type == HCI_LK_CHANGED_COMBINATION)
2608 		key->type = old_key_type;
2609 	else
2610 		key->type = type;
2611 
2612 	if (persistent)
2613 		*persistent = hci_persistent_key(hdev, conn, type,
2614 						 old_key_type);
2615 
2616 	return key;
2617 }
2618 
hci_add_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 type,u8 authenticated,u8 tk[16],u8 enc_size,__le16 ediv,__le64 rand)2619 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2620 			    u8 addr_type, u8 type, u8 authenticated,
2621 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2622 {
2623 	struct smp_ltk *key, *old_key;
2624 	u8 role = ltk_role(type);
2625 
2626 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2627 	if (old_key)
2628 		key = old_key;
2629 	else {
2630 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2631 		if (!key)
2632 			return NULL;
2633 		list_add_rcu(&key->list, &hdev->long_term_keys);
2634 	}
2635 
2636 	bacpy(&key->bdaddr, bdaddr);
2637 	key->bdaddr_type = addr_type;
2638 	memcpy(key->val, tk, sizeof(key->val));
2639 	key->authenticated = authenticated;
2640 	key->ediv = ediv;
2641 	key->rand = rand;
2642 	key->enc_size = enc_size;
2643 	key->type = type;
2644 
2645 	return key;
2646 }
2647 
hci_add_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 val[16],bdaddr_t * rpa)2648 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2649 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2650 {
2651 	struct smp_irk *irk;
2652 
2653 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2654 	if (!irk) {
2655 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2656 		if (!irk)
2657 			return NULL;
2658 
2659 		bacpy(&irk->bdaddr, bdaddr);
2660 		irk->addr_type = addr_type;
2661 
2662 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2663 	}
2664 
2665 	memcpy(irk->val, val, 16);
2666 	bacpy(&irk->rpa, rpa);
2667 
2668 	return irk;
2669 }
2670 
hci_remove_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2671 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2672 {
2673 	struct link_key *key;
2674 
2675 	key = hci_find_link_key(hdev, bdaddr);
2676 	if (!key)
2677 		return -ENOENT;
2678 
2679 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2680 
2681 	list_del_rcu(&key->list);
2682 	kfree_rcu(key, rcu);
2683 
2684 	return 0;
2685 }
2686 
hci_remove_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2687 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2688 {
2689 	struct smp_ltk *k, *tmp;
2690 	int removed = 0;
2691 
2692 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
2693 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2694 			continue;
2695 
2696 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2697 
2698 		list_del_rcu(&k->list);
2699 		kfree_rcu(k, rcu);
2700 		removed++;
2701 	}
2702 
2703 	return removed ? 0 : -ENOENT;
2704 }
2705 
hci_remove_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2706 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2707 {
2708 	struct smp_irk *k, *tmp;
2709 
2710 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
2711 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2712 			continue;
2713 
2714 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2715 
2716 		list_del_rcu(&k->list);
2717 		kfree_rcu(k, rcu);
2718 	}
2719 }
2720 
hci_bdaddr_is_paired(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 type)2721 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2722 {
2723 	struct smp_ltk *k;
2724 	struct smp_irk *irk;
2725 	u8 addr_type;
2726 
2727 	if (type == BDADDR_BREDR) {
2728 		if (hci_find_link_key(hdev, bdaddr))
2729 			return true;
2730 		return false;
2731 	}
2732 
2733 	/* Convert to HCI addr type which struct smp_ltk uses */
2734 	if (type == BDADDR_LE_PUBLIC)
2735 		addr_type = ADDR_LE_DEV_PUBLIC;
2736 	else
2737 		addr_type = ADDR_LE_DEV_RANDOM;
2738 
2739 	irk = hci_get_irk(hdev, bdaddr, addr_type);
2740 	if (irk) {
2741 		bdaddr = &irk->bdaddr;
2742 		addr_type = irk->addr_type;
2743 	}
2744 
2745 	rcu_read_lock();
2746 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2747 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2748 			rcu_read_unlock();
2749 			return true;
2750 		}
2751 	}
2752 	rcu_read_unlock();
2753 
2754 	return false;
2755 }
2756 
2757 /* HCI command timer function */
hci_cmd_timeout(struct work_struct * work)2758 static void hci_cmd_timeout(struct work_struct *work)
2759 {
2760 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2761 					    cmd_timer.work);
2762 
2763 	if (hdev->sent_cmd) {
2764 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2765 		u16 opcode = __le16_to_cpu(sent->opcode);
2766 
2767 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2768 	} else {
2769 		bt_dev_err(hdev, "command tx timeout");
2770 	}
2771 
2772 	if (hdev->cmd_timeout)
2773 		hdev->cmd_timeout(hdev);
2774 
2775 	atomic_set(&hdev->cmd_cnt, 1);
2776 	queue_work(hdev->workqueue, &hdev->cmd_work);
2777 }
2778 
hci_find_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2779 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2780 					  bdaddr_t *bdaddr, u8 bdaddr_type)
2781 {
2782 	struct oob_data *data;
2783 
2784 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2785 		if (bacmp(bdaddr, &data->bdaddr) != 0)
2786 			continue;
2787 		if (data->bdaddr_type != bdaddr_type)
2788 			continue;
2789 		return data;
2790 	}
2791 
2792 	return NULL;
2793 }
2794 
hci_remove_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2795 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2796 			       u8 bdaddr_type)
2797 {
2798 	struct oob_data *data;
2799 
2800 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2801 	if (!data)
2802 		return -ENOENT;
2803 
2804 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2805 
2806 	list_del(&data->list);
2807 	kfree(data);
2808 
2809 	return 0;
2810 }
2811 
hci_remote_oob_data_clear(struct hci_dev * hdev)2812 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2813 {
2814 	struct oob_data *data, *n;
2815 
2816 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2817 		list_del(&data->list);
2818 		kfree(data);
2819 	}
2820 }
2821 
hci_add_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type,u8 * hash192,u8 * rand192,u8 * hash256,u8 * rand256)2822 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2823 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2824 			    u8 *hash256, u8 *rand256)
2825 {
2826 	struct oob_data *data;
2827 
2828 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2829 	if (!data) {
2830 		data = kmalloc(sizeof(*data), GFP_KERNEL);
2831 		if (!data)
2832 			return -ENOMEM;
2833 
2834 		bacpy(&data->bdaddr, bdaddr);
2835 		data->bdaddr_type = bdaddr_type;
2836 		list_add(&data->list, &hdev->remote_oob_data);
2837 	}
2838 
2839 	if (hash192 && rand192) {
2840 		memcpy(data->hash192, hash192, sizeof(data->hash192));
2841 		memcpy(data->rand192, rand192, sizeof(data->rand192));
2842 		if (hash256 && rand256)
2843 			data->present = 0x03;
2844 	} else {
2845 		memset(data->hash192, 0, sizeof(data->hash192));
2846 		memset(data->rand192, 0, sizeof(data->rand192));
2847 		if (hash256 && rand256)
2848 			data->present = 0x02;
2849 		else
2850 			data->present = 0x00;
2851 	}
2852 
2853 	if (hash256 && rand256) {
2854 		memcpy(data->hash256, hash256, sizeof(data->hash256));
2855 		memcpy(data->rand256, rand256, sizeof(data->rand256));
2856 	} else {
2857 		memset(data->hash256, 0, sizeof(data->hash256));
2858 		memset(data->rand256, 0, sizeof(data->rand256));
2859 		if (hash192 && rand192)
2860 			data->present = 0x01;
2861 	}
2862 
2863 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2864 
2865 	return 0;
2866 }
2867 
2868 /* This function requires the caller holds hdev->lock */
hci_find_adv_instance(struct hci_dev * hdev,u8 instance)2869 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2870 {
2871 	struct adv_info *adv_instance;
2872 
2873 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2874 		if (adv_instance->instance == instance)
2875 			return adv_instance;
2876 	}
2877 
2878 	return NULL;
2879 }
2880 
2881 /* This function requires the caller holds hdev->lock */
hci_get_next_instance(struct hci_dev * hdev,u8 instance)2882 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2883 {
2884 	struct adv_info *cur_instance;
2885 
2886 	cur_instance = hci_find_adv_instance(hdev, instance);
2887 	if (!cur_instance)
2888 		return NULL;
2889 
2890 	if (cur_instance == list_last_entry(&hdev->adv_instances,
2891 					    struct adv_info, list))
2892 		return list_first_entry(&hdev->adv_instances,
2893 						 struct adv_info, list);
2894 	else
2895 		return list_next_entry(cur_instance, list);
2896 }
2897 
2898 /* This function requires the caller holds hdev->lock */
hci_remove_adv_instance(struct hci_dev * hdev,u8 instance)2899 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2900 {
2901 	struct adv_info *adv_instance;
2902 
2903 	adv_instance = hci_find_adv_instance(hdev, instance);
2904 	if (!adv_instance)
2905 		return -ENOENT;
2906 
2907 	BT_DBG("%s removing %dMR", hdev->name, instance);
2908 
2909 	if (hdev->cur_adv_instance == instance) {
2910 		if (hdev->adv_instance_timeout) {
2911 			cancel_delayed_work(&hdev->adv_instance_expire);
2912 			hdev->adv_instance_timeout = 0;
2913 		}
2914 		hdev->cur_adv_instance = 0x00;
2915 	}
2916 
2917 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2918 
2919 	list_del(&adv_instance->list);
2920 	kfree(adv_instance);
2921 
2922 	hdev->adv_instance_cnt--;
2923 
2924 	return 0;
2925 }
2926 
hci_adv_instances_set_rpa_expired(struct hci_dev * hdev,bool rpa_expired)2927 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2928 {
2929 	struct adv_info *adv_instance, *n;
2930 
2931 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2932 		adv_instance->rpa_expired = rpa_expired;
2933 }
2934 
2935 /* This function requires the caller holds hdev->lock */
hci_adv_instances_clear(struct hci_dev * hdev)2936 void hci_adv_instances_clear(struct hci_dev *hdev)
2937 {
2938 	struct adv_info *adv_instance, *n;
2939 
2940 	if (hdev->adv_instance_timeout) {
2941 		cancel_delayed_work(&hdev->adv_instance_expire);
2942 		hdev->adv_instance_timeout = 0;
2943 	}
2944 
2945 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2946 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2947 		list_del(&adv_instance->list);
2948 		kfree(adv_instance);
2949 	}
2950 
2951 	hdev->adv_instance_cnt = 0;
2952 	hdev->cur_adv_instance = 0x00;
2953 }
2954 
adv_instance_rpa_expired(struct work_struct * work)2955 static void adv_instance_rpa_expired(struct work_struct *work)
2956 {
2957 	struct adv_info *adv_instance = container_of(work, struct adv_info,
2958 						     rpa_expired_cb.work);
2959 
2960 	BT_DBG("");
2961 
2962 	adv_instance->rpa_expired = true;
2963 }
2964 
2965 /* This function requires the caller holds hdev->lock */
hci_add_adv_instance(struct hci_dev * hdev,u8 instance,u32 flags,u16 adv_data_len,u8 * adv_data,u16 scan_rsp_len,u8 * scan_rsp_data,u16 timeout,u16 duration)2966 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2967 			 u16 adv_data_len, u8 *adv_data,
2968 			 u16 scan_rsp_len, u8 *scan_rsp_data,
2969 			 u16 timeout, u16 duration)
2970 {
2971 	struct adv_info *adv_instance;
2972 
2973 	adv_instance = hci_find_adv_instance(hdev, instance);
2974 	if (adv_instance) {
2975 		memset(adv_instance->adv_data, 0,
2976 		       sizeof(adv_instance->adv_data));
2977 		memset(adv_instance->scan_rsp_data, 0,
2978 		       sizeof(adv_instance->scan_rsp_data));
2979 	} else {
2980 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2981 		    instance < 1 || instance > hdev->le_num_of_adv_sets)
2982 			return -EOVERFLOW;
2983 
2984 		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2985 		if (!adv_instance)
2986 			return -ENOMEM;
2987 
2988 		adv_instance->pending = true;
2989 		adv_instance->instance = instance;
2990 		list_add(&adv_instance->list, &hdev->adv_instances);
2991 		hdev->adv_instance_cnt++;
2992 	}
2993 
2994 	adv_instance->flags = flags;
2995 	adv_instance->adv_data_len = adv_data_len;
2996 	adv_instance->scan_rsp_len = scan_rsp_len;
2997 
2998 	if (adv_data_len)
2999 		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3000 
3001 	if (scan_rsp_len)
3002 		memcpy(adv_instance->scan_rsp_data,
3003 		       scan_rsp_data, scan_rsp_len);
3004 
3005 	adv_instance->timeout = timeout;
3006 	adv_instance->remaining_time = timeout;
3007 
3008 	if (duration == 0)
3009 		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
3010 	else
3011 		adv_instance->duration = duration;
3012 
3013 	adv_instance->tx_power = HCI_TX_POWER_INVALID;
3014 
3015 	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3016 			  adv_instance_rpa_expired);
3017 
3018 	BT_DBG("%s for %dMR", hdev->name, instance);
3019 
3020 	return 0;
3021 }
3022 
3023 /* This function requires the caller holds hdev->lock */
hci_adv_monitors_clear(struct hci_dev * hdev)3024 void hci_adv_monitors_clear(struct hci_dev *hdev)
3025 {
3026 	struct adv_monitor *monitor;
3027 	int handle;
3028 
3029 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3030 		hci_free_adv_monitor(monitor);
3031 
3032 	idr_destroy(&hdev->adv_monitors_idr);
3033 }
3034 
hci_free_adv_monitor(struct adv_monitor * monitor)3035 void hci_free_adv_monitor(struct adv_monitor *monitor)
3036 {
3037 	struct adv_pattern *pattern;
3038 	struct adv_pattern *tmp;
3039 
3040 	if (!monitor)
3041 		return;
3042 
3043 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3044 		kfree(pattern);
3045 
3046 	kfree(monitor);
3047 }
3048 
3049 /* This function requires the caller holds hdev->lock */
hci_add_adv_monitor(struct hci_dev * hdev,struct adv_monitor * monitor)3050 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3051 {
3052 	int min, max, handle;
3053 
3054 	if (!monitor)
3055 		return -EINVAL;
3056 
3057 	min = HCI_MIN_ADV_MONITOR_HANDLE;
3058 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3059 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3060 			   GFP_KERNEL);
3061 	if (handle < 0)
3062 		return handle;
3063 
3064 	hdev->adv_monitors_cnt++;
3065 	monitor->handle = handle;
3066 
3067 	hci_update_background_scan(hdev);
3068 
3069 	return 0;
3070 }
3071 
free_adv_monitor(int id,void * ptr,void * data)3072 static int free_adv_monitor(int id, void *ptr, void *data)
3073 {
3074 	struct hci_dev *hdev = data;
3075 	struct adv_monitor *monitor = ptr;
3076 
3077 	idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3078 	hci_free_adv_monitor(monitor);
3079 	hdev->adv_monitors_cnt--;
3080 
3081 	return 0;
3082 }
3083 
3084 /* This function requires the caller holds hdev->lock */
hci_remove_adv_monitor(struct hci_dev * hdev,u16 handle)3085 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3086 {
3087 	struct adv_monitor *monitor;
3088 
3089 	if (handle) {
3090 		monitor = idr_find(&hdev->adv_monitors_idr, handle);
3091 		if (!monitor)
3092 			return -ENOENT;
3093 
3094 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3095 		hci_free_adv_monitor(monitor);
3096 		hdev->adv_monitors_cnt--;
3097 	} else {
3098 		/* Remove all monitors if handle is 0. */
3099 		idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3100 	}
3101 
3102 	hci_update_background_scan(hdev);
3103 
3104 	return 0;
3105 }
3106 
3107 /* This function requires the caller holds hdev->lock */
hci_is_adv_monitoring(struct hci_dev * hdev)3108 bool hci_is_adv_monitoring(struct hci_dev *hdev)
3109 {
3110 	return !idr_is_empty(&hdev->adv_monitors_idr);
3111 }
3112 
hci_bdaddr_list_lookup(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3113 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3114 					 bdaddr_t *bdaddr, u8 type)
3115 {
3116 	struct bdaddr_list *b;
3117 
3118 	list_for_each_entry(b, bdaddr_list, list) {
3119 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3120 			return b;
3121 	}
3122 
3123 	return NULL;
3124 }
3125 
hci_bdaddr_list_lookup_with_irk(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3126 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3127 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3128 				u8 type)
3129 {
3130 	struct bdaddr_list_with_irk *b;
3131 
3132 	list_for_each_entry(b, bdaddr_list, list) {
3133 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3134 			return b;
3135 	}
3136 
3137 	return NULL;
3138 }
3139 
3140 struct bdaddr_list_with_flags *
hci_bdaddr_list_lookup_with_flags(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3141 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3142 				  bdaddr_t *bdaddr, u8 type)
3143 {
3144 	struct bdaddr_list_with_flags *b;
3145 
3146 	list_for_each_entry(b, bdaddr_list, list) {
3147 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3148 			return b;
3149 	}
3150 
3151 	return NULL;
3152 }
3153 
hci_bdaddr_list_clear(struct list_head * bdaddr_list)3154 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3155 {
3156 	struct bdaddr_list *b, *n;
3157 
3158 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3159 		list_del(&b->list);
3160 		kfree(b);
3161 	}
3162 }
3163 
hci_bdaddr_list_add(struct list_head * list,bdaddr_t * bdaddr,u8 type)3164 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3165 {
3166 	struct bdaddr_list *entry;
3167 
3168 	if (!bacmp(bdaddr, BDADDR_ANY))
3169 		return -EBADF;
3170 
3171 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3172 		return -EEXIST;
3173 
3174 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3175 	if (!entry)
3176 		return -ENOMEM;
3177 
3178 	bacpy(&entry->bdaddr, bdaddr);
3179 	entry->bdaddr_type = type;
3180 
3181 	list_add(&entry->list, list);
3182 
3183 	return 0;
3184 }
3185 
hci_bdaddr_list_add_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type,u8 * peer_irk,u8 * local_irk)3186 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3187 					u8 type, u8 *peer_irk, u8 *local_irk)
3188 {
3189 	struct bdaddr_list_with_irk *entry;
3190 
3191 	if (!bacmp(bdaddr, BDADDR_ANY))
3192 		return -EBADF;
3193 
3194 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3195 		return -EEXIST;
3196 
3197 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3198 	if (!entry)
3199 		return -ENOMEM;
3200 
3201 	bacpy(&entry->bdaddr, bdaddr);
3202 	entry->bdaddr_type = type;
3203 
3204 	if (peer_irk)
3205 		memcpy(entry->peer_irk, peer_irk, 16);
3206 
3207 	if (local_irk)
3208 		memcpy(entry->local_irk, local_irk, 16);
3209 
3210 	list_add(&entry->list, list);
3211 
3212 	return 0;
3213 }
3214 
hci_bdaddr_list_add_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type,u32 flags)3215 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3216 				   u8 type, u32 flags)
3217 {
3218 	struct bdaddr_list_with_flags *entry;
3219 
3220 	if (!bacmp(bdaddr, BDADDR_ANY))
3221 		return -EBADF;
3222 
3223 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3224 		return -EEXIST;
3225 
3226 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3227 	if (!entry)
3228 		return -ENOMEM;
3229 
3230 	bacpy(&entry->bdaddr, bdaddr);
3231 	entry->bdaddr_type = type;
3232 	entry->current_flags = flags;
3233 
3234 	list_add(&entry->list, list);
3235 
3236 	return 0;
3237 }
3238 
hci_bdaddr_list_del(struct list_head * list,bdaddr_t * bdaddr,u8 type)3239 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3240 {
3241 	struct bdaddr_list *entry;
3242 
3243 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3244 		hci_bdaddr_list_clear(list);
3245 		return 0;
3246 	}
3247 
3248 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3249 	if (!entry)
3250 		return -ENOENT;
3251 
3252 	list_del(&entry->list);
3253 	kfree(entry);
3254 
3255 	return 0;
3256 }
3257 
hci_bdaddr_list_del_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type)3258 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3259 							u8 type)
3260 {
3261 	struct bdaddr_list_with_irk *entry;
3262 
3263 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3264 		hci_bdaddr_list_clear(list);
3265 		return 0;
3266 	}
3267 
3268 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3269 	if (!entry)
3270 		return -ENOENT;
3271 
3272 	list_del(&entry->list);
3273 	kfree(entry);
3274 
3275 	return 0;
3276 }
3277 
hci_bdaddr_list_del_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type)3278 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3279 				   u8 type)
3280 {
3281 	struct bdaddr_list_with_flags *entry;
3282 
3283 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3284 		hci_bdaddr_list_clear(list);
3285 		return 0;
3286 	}
3287 
3288 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3289 	if (!entry)
3290 		return -ENOENT;
3291 
3292 	list_del(&entry->list);
3293 	kfree(entry);
3294 
3295 	return 0;
3296 }
3297 
3298 /* This function requires the caller holds hdev->lock */
hci_conn_params_lookup(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3299 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3300 					       bdaddr_t *addr, u8 addr_type)
3301 {
3302 	struct hci_conn_params *params;
3303 
3304 	list_for_each_entry(params, &hdev->le_conn_params, list) {
3305 		if (bacmp(&params->addr, addr) == 0 &&
3306 		    params->addr_type == addr_type) {
3307 			return params;
3308 		}
3309 	}
3310 
3311 	return NULL;
3312 }
3313 
3314 /* This function requires the caller holds hdev->lock */
hci_pend_le_action_lookup(struct list_head * list,bdaddr_t * addr,u8 addr_type)3315 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3316 						  bdaddr_t *addr, u8 addr_type)
3317 {
3318 	struct hci_conn_params *param;
3319 
3320 	switch (addr_type) {
3321 	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3322 		addr_type = ADDR_LE_DEV_PUBLIC;
3323 		break;
3324 	case ADDR_LE_DEV_RANDOM_RESOLVED:
3325 		addr_type = ADDR_LE_DEV_RANDOM;
3326 		break;
3327 	}
3328 
3329 	list_for_each_entry(param, list, action) {
3330 		if (bacmp(&param->addr, addr) == 0 &&
3331 		    param->addr_type == addr_type)
3332 			return param;
3333 	}
3334 
3335 	return NULL;
3336 }
3337 
3338 /* This function requires the caller holds hdev->lock */
hci_conn_params_add(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3339 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3340 					    bdaddr_t *addr, u8 addr_type)
3341 {
3342 	struct hci_conn_params *params;
3343 
3344 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3345 	if (params)
3346 		return params;
3347 
3348 	params = kzalloc(sizeof(*params), GFP_KERNEL);
3349 	if (!params) {
3350 		bt_dev_err(hdev, "out of memory");
3351 		return NULL;
3352 	}
3353 
3354 	bacpy(&params->addr, addr);
3355 	params->addr_type = addr_type;
3356 
3357 	list_add(&params->list, &hdev->le_conn_params);
3358 	INIT_LIST_HEAD(&params->action);
3359 
3360 	params->conn_min_interval = hdev->le_conn_min_interval;
3361 	params->conn_max_interval = hdev->le_conn_max_interval;
3362 	params->conn_latency = hdev->le_conn_latency;
3363 	params->supervision_timeout = hdev->le_supv_timeout;
3364 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3365 
3366 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3367 
3368 	return params;
3369 }
3370 
hci_conn_params_free(struct hci_conn_params * params)3371 static void hci_conn_params_free(struct hci_conn_params *params)
3372 {
3373 	if (params->conn) {
3374 		hci_conn_drop(params->conn);
3375 		hci_conn_put(params->conn);
3376 	}
3377 
3378 	list_del(&params->action);
3379 	list_del(&params->list);
3380 	kfree(params);
3381 }
3382 
3383 /* This function requires the caller holds hdev->lock */
hci_conn_params_del(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3384 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3385 {
3386 	struct hci_conn_params *params;
3387 
3388 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3389 	if (!params)
3390 		return;
3391 
3392 	hci_conn_params_free(params);
3393 
3394 	hci_update_background_scan(hdev);
3395 
3396 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3397 }
3398 
3399 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_disabled(struct hci_dev * hdev)3400 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3401 {
3402 	struct hci_conn_params *params, *tmp;
3403 
3404 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3405 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3406 			continue;
3407 
3408 		/* If trying to estabilish one time connection to disabled
3409 		 * device, leave the params, but mark them as just once.
3410 		 */
3411 		if (params->explicit_connect) {
3412 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3413 			continue;
3414 		}
3415 
3416 		list_del(&params->list);
3417 		kfree(params);
3418 	}
3419 
3420 	BT_DBG("All LE disabled connection parameters were removed");
3421 }
3422 
3423 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_all(struct hci_dev * hdev)3424 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3425 {
3426 	struct hci_conn_params *params, *tmp;
3427 
3428 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3429 		hci_conn_params_free(params);
3430 
3431 	BT_DBG("All LE connection parameters were removed");
3432 }
3433 
3434 /* Copy the Identity Address of the controller.
3435  *
3436  * If the controller has a public BD_ADDR, then by default use that one.
3437  * If this is a LE only controller without a public address, default to
3438  * the static random address.
3439  *
3440  * For debugging purposes it is possible to force controllers with a
3441  * public address to use the static random address instead.
3442  *
3443  * In case BR/EDR has been disabled on a dual-mode controller and
3444  * userspace has configured a static address, then that address
3445  * becomes the identity address instead of the public BR/EDR address.
3446  */
hci_copy_identity_address(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 * bdaddr_type)3447 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3448 			       u8 *bdaddr_type)
3449 {
3450 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3451 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3452 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3453 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3454 		bacpy(bdaddr, &hdev->static_addr);
3455 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3456 	} else {
3457 		bacpy(bdaddr, &hdev->bdaddr);
3458 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3459 	}
3460 }
3461 
hci_suspend_clear_tasks(struct hci_dev * hdev)3462 static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3463 {
3464 	int i;
3465 
3466 	for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3467 		clear_bit(i, hdev->suspend_tasks);
3468 
3469 	wake_up(&hdev->suspend_wait_q);
3470 }
3471 
hci_suspend_wait_event(struct hci_dev * hdev)3472 static int hci_suspend_wait_event(struct hci_dev *hdev)
3473 {
3474 #define WAKE_COND                                                              \
3475 	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3476 	 __SUSPEND_NUM_TASKS)
3477 
3478 	int i;
3479 	int ret = wait_event_timeout(hdev->suspend_wait_q,
3480 				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3481 
3482 	if (ret == 0) {
3483 		bt_dev_err(hdev, "Timed out waiting for suspend events");
3484 		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3485 			if (test_bit(i, hdev->suspend_tasks))
3486 				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3487 			clear_bit(i, hdev->suspend_tasks);
3488 		}
3489 
3490 		ret = -ETIMEDOUT;
3491 	} else {
3492 		ret = 0;
3493 	}
3494 
3495 	return ret;
3496 }
3497 
hci_prepare_suspend(struct work_struct * work)3498 static void hci_prepare_suspend(struct work_struct *work)
3499 {
3500 	struct hci_dev *hdev =
3501 		container_of(work, struct hci_dev, suspend_prepare);
3502 
3503 	hci_dev_lock(hdev);
3504 	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3505 	hci_dev_unlock(hdev);
3506 }
3507 
hci_change_suspend_state(struct hci_dev * hdev,enum suspended_state next)3508 static int hci_change_suspend_state(struct hci_dev *hdev,
3509 				    enum suspended_state next)
3510 {
3511 	hdev->suspend_state_next = next;
3512 	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3513 	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3514 	return hci_suspend_wait_event(hdev);
3515 }
3516 
hci_clear_wake_reason(struct hci_dev * hdev)3517 static void hci_clear_wake_reason(struct hci_dev *hdev)
3518 {
3519 	hci_dev_lock(hdev);
3520 
3521 	hdev->wake_reason = 0;
3522 	bacpy(&hdev->wake_addr, BDADDR_ANY);
3523 	hdev->wake_addr_type = 0;
3524 
3525 	hci_dev_unlock(hdev);
3526 }
3527 
hci_suspend_notifier(struct notifier_block * nb,unsigned long action,void * data)3528 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3529 				void *data)
3530 {
3531 	struct hci_dev *hdev =
3532 		container_of(nb, struct hci_dev, suspend_notifier);
3533 	int ret = 0;
3534 	u8 state = BT_RUNNING;
3535 
3536 	/* If powering down, wait for completion. */
3537 	if (mgmt_powering_down(hdev)) {
3538 		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3539 		ret = hci_suspend_wait_event(hdev);
3540 		if (ret)
3541 			goto done;
3542 	}
3543 
3544 	/* Suspend notifier should only act on events when powered. */
3545 	if (!hdev_is_powered(hdev) ||
3546 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
3547 		goto done;
3548 
3549 	if (action == PM_SUSPEND_PREPARE) {
3550 		/* Suspend consists of two actions:
3551 		 *  - First, disconnect everything and make the controller not
3552 		 *    connectable (disabling scanning)
3553 		 *  - Second, program event filter/whitelist and enable scan
3554 		 */
3555 		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3556 		if (!ret)
3557 			state = BT_SUSPEND_DISCONNECT;
3558 
3559 		/* Only configure whitelist if disconnect succeeded and wake
3560 		 * isn't being prevented.
3561 		 */
3562 		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3563 			ret = hci_change_suspend_state(hdev,
3564 						BT_SUSPEND_CONFIGURE_WAKE);
3565 			if (!ret)
3566 				state = BT_SUSPEND_CONFIGURE_WAKE;
3567 		}
3568 
3569 		hci_clear_wake_reason(hdev);
3570 		mgmt_suspending(hdev, state);
3571 
3572 	} else if (action == PM_POST_SUSPEND) {
3573 		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3574 
3575 		mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3576 			      hdev->wake_addr_type);
3577 	}
3578 
3579 done:
3580 	/* We always allow suspend even if suspend preparation failed and
3581 	 * attempt to recover in resume.
3582 	 */
3583 	if (ret)
3584 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3585 			   action, ret);
3586 
3587 	return NOTIFY_DONE;
3588 }
3589 
3590 /* Alloc HCI device */
hci_alloc_dev(void)3591 struct hci_dev *hci_alloc_dev(void)
3592 {
3593 	struct hci_dev *hdev;
3594 
3595 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3596 	if (!hdev)
3597 		return NULL;
3598 
3599 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3600 	hdev->esco_type = (ESCO_HV1);
3601 	hdev->link_mode = (HCI_LM_ACCEPT);
3602 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3603 	hdev->io_capability = 0x03;	/* No Input No Output */
3604 	hdev->manufacturer = 0xffff;	/* Default to internal use */
3605 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3606 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3607 	hdev->adv_instance_cnt = 0;
3608 	hdev->cur_adv_instance = 0x00;
3609 	hdev->adv_instance_timeout = 0;
3610 
3611 	hdev->sniff_max_interval = 800;
3612 	hdev->sniff_min_interval = 80;
3613 
3614 	hdev->le_adv_channel_map = 0x07;
3615 	hdev->le_adv_min_interval = 0x0800;
3616 	hdev->le_adv_max_interval = 0x0800;
3617 	hdev->le_scan_interval = 0x0060;
3618 	hdev->le_scan_window = 0x0030;
3619 	hdev->le_scan_int_suspend = 0x0400;
3620 	hdev->le_scan_window_suspend = 0x0012;
3621 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3622 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3623 	hdev->le_scan_int_connect = 0x0060;
3624 	hdev->le_scan_window_connect = 0x0060;
3625 	hdev->le_conn_min_interval = 0x0018;
3626 	hdev->le_conn_max_interval = 0x0028;
3627 	hdev->le_conn_latency = 0x0000;
3628 	hdev->le_supv_timeout = 0x002a;
3629 	hdev->le_def_tx_len = 0x001b;
3630 	hdev->le_def_tx_time = 0x0148;
3631 	hdev->le_max_tx_len = 0x001b;
3632 	hdev->le_max_tx_time = 0x0148;
3633 	hdev->le_max_rx_len = 0x001b;
3634 	hdev->le_max_rx_time = 0x0148;
3635 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3636 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3637 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3638 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3639 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3640 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3641 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3642 
3643 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3644 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3645 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3646 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3647 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3648 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3649 
3650 	/* default 1.28 sec page scan */
3651 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3652 	hdev->def_page_scan_int = 0x0800;
3653 	hdev->def_page_scan_window = 0x0012;
3654 
3655 	mutex_init(&hdev->lock);
3656 	mutex_init(&hdev->req_lock);
3657 
3658 	INIT_LIST_HEAD(&hdev->mgmt_pending);
3659 	INIT_LIST_HEAD(&hdev->blacklist);
3660 	INIT_LIST_HEAD(&hdev->whitelist);
3661 	INIT_LIST_HEAD(&hdev->uuids);
3662 	INIT_LIST_HEAD(&hdev->link_keys);
3663 	INIT_LIST_HEAD(&hdev->long_term_keys);
3664 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3665 	INIT_LIST_HEAD(&hdev->remote_oob_data);
3666 	INIT_LIST_HEAD(&hdev->le_white_list);
3667 	INIT_LIST_HEAD(&hdev->le_resolv_list);
3668 	INIT_LIST_HEAD(&hdev->le_conn_params);
3669 	INIT_LIST_HEAD(&hdev->pend_le_conns);
3670 	INIT_LIST_HEAD(&hdev->pend_le_reports);
3671 	INIT_LIST_HEAD(&hdev->conn_hash.list);
3672 	INIT_LIST_HEAD(&hdev->adv_instances);
3673 	INIT_LIST_HEAD(&hdev->blocked_keys);
3674 
3675 	INIT_WORK(&hdev->rx_work, hci_rx_work);
3676 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3677 	INIT_WORK(&hdev->tx_work, hci_tx_work);
3678 	INIT_WORK(&hdev->power_on, hci_power_on);
3679 	INIT_WORK(&hdev->error_reset, hci_error_reset);
3680 	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3681 
3682 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3683 
3684 	skb_queue_head_init(&hdev->rx_q);
3685 	skb_queue_head_init(&hdev->cmd_q);
3686 	skb_queue_head_init(&hdev->raw_q);
3687 
3688 	init_waitqueue_head(&hdev->req_wait_q);
3689 	init_waitqueue_head(&hdev->suspend_wait_q);
3690 
3691 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3692 
3693 	hci_request_setup(hdev);
3694 
3695 	hci_init_sysfs(hdev);
3696 	discovery_init(hdev);
3697 
3698 	return hdev;
3699 }
3700 EXPORT_SYMBOL(hci_alloc_dev);
3701 
3702 /* Free HCI device */
hci_free_dev(struct hci_dev * hdev)3703 void hci_free_dev(struct hci_dev *hdev)
3704 {
3705 	/* will free via device release */
3706 	put_device(&hdev->dev);
3707 }
3708 EXPORT_SYMBOL(hci_free_dev);
3709 
3710 /* Register HCI device */
hci_register_dev(struct hci_dev * hdev)3711 int hci_register_dev(struct hci_dev *hdev)
3712 {
3713 	int id, error;
3714 
3715 	if (!hdev->open || !hdev->close || !hdev->send)
3716 		return -EINVAL;
3717 
3718 	/* Do not allow HCI_AMP devices to register at index 0,
3719 	 * so the index can be used as the AMP controller ID.
3720 	 */
3721 	switch (hdev->dev_type) {
3722 	case HCI_PRIMARY:
3723 		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
3724 		break;
3725 	case HCI_AMP:
3726 		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
3727 		break;
3728 	default:
3729 		return -EINVAL;
3730 	}
3731 
3732 	if (id < 0)
3733 		return id;
3734 
3735 	snprintf(hdev->name, sizeof(hdev->name), "hci%d", id);
3736 	hdev->id = id;
3737 
3738 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3739 
3740 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3741 	if (!hdev->workqueue) {
3742 		error = -ENOMEM;
3743 		goto err;
3744 	}
3745 
3746 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3747 						      hdev->name);
3748 	if (!hdev->req_workqueue) {
3749 		destroy_workqueue(hdev->workqueue);
3750 		error = -ENOMEM;
3751 		goto err;
3752 	}
3753 
3754 	if (!IS_ERR_OR_NULL(bt_debugfs))
3755 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3756 
3757 	dev_set_name(&hdev->dev, "%s", hdev->name);
3758 
3759 	error = device_add(&hdev->dev);
3760 	if (error < 0)
3761 		goto err_wqueue;
3762 
3763 	hci_leds_init(hdev);
3764 
3765 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3766 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3767 				    hdev);
3768 	if (hdev->rfkill) {
3769 		if (rfkill_register(hdev->rfkill) < 0) {
3770 			rfkill_destroy(hdev->rfkill);
3771 			hdev->rfkill = NULL;
3772 		}
3773 	}
3774 
3775 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3776 		hci_dev_set_flag(hdev, HCI_RFKILLED);
3777 
3778 	hci_dev_set_flag(hdev, HCI_SETUP);
3779 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3780 
3781 	if (hdev->dev_type == HCI_PRIMARY) {
3782 		/* Assume BR/EDR support until proven otherwise (such as
3783 		 * through reading supported features during init.
3784 		 */
3785 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3786 	}
3787 
3788 	write_lock(&hci_dev_list_lock);
3789 	list_add(&hdev->list, &hci_dev_list);
3790 	write_unlock(&hci_dev_list_lock);
3791 
3792 	/* Devices that are marked for raw-only usage are unconfigured
3793 	 * and should not be included in normal operation.
3794 	 */
3795 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3796 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3797 
3798 	hci_sock_dev_event(hdev, HCI_DEV_REG);
3799 	hci_dev_hold(hdev);
3800 
3801 	if (!hdev->suspend_notifier.notifier_call &&
3802 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3803 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3804 		error = register_pm_notifier(&hdev->suspend_notifier);
3805 		if (error)
3806 			goto err_wqueue;
3807 	}
3808 
3809 	queue_work(hdev->req_workqueue, &hdev->power_on);
3810 
3811 	idr_init(&hdev->adv_monitors_idr);
3812 
3813 	return id;
3814 
3815 err_wqueue:
3816 	debugfs_remove_recursive(hdev->debugfs);
3817 	destroy_workqueue(hdev->workqueue);
3818 	destroy_workqueue(hdev->req_workqueue);
3819 err:
3820 	ida_simple_remove(&hci_index_ida, hdev->id);
3821 
3822 	return error;
3823 }
3824 EXPORT_SYMBOL(hci_register_dev);
3825 
3826 /* Unregister HCI device */
hci_unregister_dev(struct hci_dev * hdev)3827 void hci_unregister_dev(struct hci_dev *hdev)
3828 {
3829 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3830 
3831 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3832 
3833 	write_lock(&hci_dev_list_lock);
3834 	list_del(&hdev->list);
3835 	write_unlock(&hci_dev_list_lock);
3836 
3837 	cancel_work_sync(&hdev->power_on);
3838 
3839 	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3840 		hci_suspend_clear_tasks(hdev);
3841 		unregister_pm_notifier(&hdev->suspend_notifier);
3842 		cancel_work_sync(&hdev->suspend_prepare);
3843 	}
3844 
3845 	hci_dev_do_close(hdev);
3846 
3847 	if (!test_bit(HCI_INIT, &hdev->flags) &&
3848 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3849 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3850 		hci_dev_lock(hdev);
3851 		mgmt_index_removed(hdev);
3852 		hci_dev_unlock(hdev);
3853 	}
3854 
3855 	/* mgmt_index_removed should take care of emptying the
3856 	 * pending list */
3857 	BUG_ON(!list_empty(&hdev->mgmt_pending));
3858 
3859 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3860 
3861 	if (hdev->rfkill) {
3862 		rfkill_unregister(hdev->rfkill);
3863 		rfkill_destroy(hdev->rfkill);
3864 	}
3865 
3866 	device_del(&hdev->dev);
3867 	/* Actual cleanup is deferred until hci_cleanup_dev(). */
3868 	hci_dev_put(hdev);
3869 }
3870 EXPORT_SYMBOL(hci_unregister_dev);
3871 
3872 /* Cleanup HCI device */
hci_cleanup_dev(struct hci_dev * hdev)3873 void hci_cleanup_dev(struct hci_dev *hdev)
3874 {
3875 	debugfs_remove_recursive(hdev->debugfs);
3876 	kfree_const(hdev->hw_info);
3877 	kfree_const(hdev->fw_info);
3878 
3879 	destroy_workqueue(hdev->workqueue);
3880 	destroy_workqueue(hdev->req_workqueue);
3881 
3882 	hci_dev_lock(hdev);
3883 	hci_bdaddr_list_clear(&hdev->blacklist);
3884 	hci_bdaddr_list_clear(&hdev->whitelist);
3885 	hci_uuids_clear(hdev);
3886 	hci_link_keys_clear(hdev);
3887 	hci_smp_ltks_clear(hdev);
3888 	hci_smp_irks_clear(hdev);
3889 	hci_remote_oob_data_clear(hdev);
3890 	hci_adv_instances_clear(hdev);
3891 	hci_adv_monitors_clear(hdev);
3892 	hci_bdaddr_list_clear(&hdev->le_white_list);
3893 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3894 	hci_conn_params_clear_all(hdev);
3895 	hci_discovery_filter_clear(hdev);
3896 	hci_blocked_keys_clear(hdev);
3897 	hci_dev_unlock(hdev);
3898 
3899 	ida_simple_remove(&hci_index_ida, hdev->id);
3900 }
3901 
3902 /* Suspend HCI device */
hci_suspend_dev(struct hci_dev * hdev)3903 int hci_suspend_dev(struct hci_dev *hdev)
3904 {
3905 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3906 	return 0;
3907 }
3908 EXPORT_SYMBOL(hci_suspend_dev);
3909 
3910 /* Resume HCI device */
hci_resume_dev(struct hci_dev * hdev)3911 int hci_resume_dev(struct hci_dev *hdev)
3912 {
3913 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3914 	return 0;
3915 }
3916 EXPORT_SYMBOL(hci_resume_dev);
3917 
3918 /* Reset HCI device */
hci_reset_dev(struct hci_dev * hdev)3919 int hci_reset_dev(struct hci_dev *hdev)
3920 {
3921 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3922 	struct sk_buff *skb;
3923 
3924 	skb = bt_skb_alloc(3, GFP_ATOMIC);
3925 	if (!skb)
3926 		return -ENOMEM;
3927 
3928 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3929 	skb_put_data(skb, hw_err, 3);
3930 
3931 	/* Send Hardware Error to upper stack */
3932 	return hci_recv_frame(hdev, skb);
3933 }
3934 EXPORT_SYMBOL(hci_reset_dev);
3935 
3936 /* Receive frame from HCI drivers */
hci_recv_frame(struct hci_dev * hdev,struct sk_buff * skb)3937 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3938 {
3939 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3940 		      && !test_bit(HCI_INIT, &hdev->flags))) {
3941 		kfree_skb(skb);
3942 		return -ENXIO;
3943 	}
3944 
3945 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3946 	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3947 	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3948 	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3949 		kfree_skb(skb);
3950 		return -EINVAL;
3951 	}
3952 
3953 	/* Incoming skb */
3954 	bt_cb(skb)->incoming = 1;
3955 
3956 	/* Time stamp */
3957 	__net_timestamp(skb);
3958 
3959 	skb_queue_tail(&hdev->rx_q, skb);
3960 	queue_work(hdev->workqueue, &hdev->rx_work);
3961 
3962 	return 0;
3963 }
3964 EXPORT_SYMBOL(hci_recv_frame);
3965 
3966 /* Receive diagnostic message from HCI drivers */
hci_recv_diag(struct hci_dev * hdev,struct sk_buff * skb)3967 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3968 {
3969 	/* Mark as diagnostic packet */
3970 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3971 
3972 	/* Time stamp */
3973 	__net_timestamp(skb);
3974 
3975 	skb_queue_tail(&hdev->rx_q, skb);
3976 	queue_work(hdev->workqueue, &hdev->rx_work);
3977 
3978 	return 0;
3979 }
3980 EXPORT_SYMBOL(hci_recv_diag);
3981 
hci_set_hw_info(struct hci_dev * hdev,const char * fmt,...)3982 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3983 {
3984 	va_list vargs;
3985 
3986 	va_start(vargs, fmt);
3987 	kfree_const(hdev->hw_info);
3988 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3989 	va_end(vargs);
3990 }
3991 EXPORT_SYMBOL(hci_set_hw_info);
3992 
hci_set_fw_info(struct hci_dev * hdev,const char * fmt,...)3993 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3994 {
3995 	va_list vargs;
3996 
3997 	va_start(vargs, fmt);
3998 	kfree_const(hdev->fw_info);
3999 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4000 	va_end(vargs);
4001 }
4002 EXPORT_SYMBOL(hci_set_fw_info);
4003 
4004 /* ---- Interface to upper protocols ---- */
4005 
hci_register_cb(struct hci_cb * cb)4006 int hci_register_cb(struct hci_cb *cb)
4007 {
4008 	BT_DBG("%p name %s", cb, cb->name);
4009 
4010 	mutex_lock(&hci_cb_list_lock);
4011 	list_add_tail(&cb->list, &hci_cb_list);
4012 	mutex_unlock(&hci_cb_list_lock);
4013 
4014 	return 0;
4015 }
4016 EXPORT_SYMBOL(hci_register_cb);
4017 
hci_unregister_cb(struct hci_cb * cb)4018 int hci_unregister_cb(struct hci_cb *cb)
4019 {
4020 	BT_DBG("%p name %s", cb, cb->name);
4021 
4022 	mutex_lock(&hci_cb_list_lock);
4023 	list_del(&cb->list);
4024 	mutex_unlock(&hci_cb_list_lock);
4025 
4026 	return 0;
4027 }
4028 EXPORT_SYMBOL(hci_unregister_cb);
4029 
hci_send_frame(struct hci_dev * hdev,struct sk_buff * skb)4030 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4031 {
4032 	int err;
4033 
4034 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4035 	       skb->len);
4036 
4037 	/* Time stamp */
4038 	__net_timestamp(skb);
4039 
4040 	/* Send copy to monitor */
4041 	hci_send_to_monitor(hdev, skb);
4042 
4043 	if (atomic_read(&hdev->promisc)) {
4044 		/* Send copy to the sockets */
4045 		hci_send_to_sock(hdev, skb);
4046 	}
4047 
4048 	/* Get rid of skb owner, prior to sending to the driver. */
4049 	skb_orphan(skb);
4050 
4051 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4052 		kfree_skb(skb);
4053 		return;
4054 	}
4055 
4056 	err = hdev->send(hdev, skb);
4057 	if (err < 0) {
4058 		bt_dev_err(hdev, "sending frame failed (%d)", err);
4059 		kfree_skb(skb);
4060 	}
4061 }
4062 
4063 /* Send HCI command */
hci_send_cmd(struct hci_dev * hdev,__u16 opcode,__u32 plen,const void * param)4064 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4065 		 const void *param)
4066 {
4067 	struct sk_buff *skb;
4068 
4069 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4070 
4071 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4072 	if (!skb) {
4073 		bt_dev_err(hdev, "no memory for command");
4074 		return -ENOMEM;
4075 	}
4076 
4077 	/* Stand-alone HCI commands must be flagged as
4078 	 * single-command requests.
4079 	 */
4080 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4081 
4082 	skb_queue_tail(&hdev->cmd_q, skb);
4083 	queue_work(hdev->workqueue, &hdev->cmd_work);
4084 
4085 	return 0;
4086 }
4087 
__hci_cmd_send(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param)4088 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4089 		   const void *param)
4090 {
4091 	struct sk_buff *skb;
4092 
4093 	if (hci_opcode_ogf(opcode) != 0x3f) {
4094 		/* A controller receiving a command shall respond with either
4095 		 * a Command Status Event or a Command Complete Event.
4096 		 * Therefore, all standard HCI commands must be sent via the
4097 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4098 		 * Some vendors do not comply with this rule for vendor-specific
4099 		 * commands and do not return any event. We want to support
4100 		 * unresponded commands for such cases only.
4101 		 */
4102 		bt_dev_err(hdev, "unresponded command not supported");
4103 		return -EINVAL;
4104 	}
4105 
4106 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4107 	if (!skb) {
4108 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4109 			   opcode);
4110 		return -ENOMEM;
4111 	}
4112 
4113 	hci_send_frame(hdev, skb);
4114 
4115 	return 0;
4116 }
4117 EXPORT_SYMBOL(__hci_cmd_send);
4118 
4119 /* Get data from the previously sent command */
hci_sent_cmd_data(struct hci_dev * hdev,__u16 opcode)4120 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4121 {
4122 	struct hci_command_hdr *hdr;
4123 
4124 	if (!hdev->sent_cmd)
4125 		return NULL;
4126 
4127 	hdr = (void *) hdev->sent_cmd->data;
4128 
4129 	if (hdr->opcode != cpu_to_le16(opcode))
4130 		return NULL;
4131 
4132 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4133 
4134 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4135 }
4136 
4137 /* Send HCI command and wait for command commplete event */
hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)4138 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4139 			     const void *param, u32 timeout)
4140 {
4141 	struct sk_buff *skb;
4142 
4143 	if (!test_bit(HCI_UP, &hdev->flags))
4144 		return ERR_PTR(-ENETDOWN);
4145 
4146 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4147 
4148 	hci_req_sync_lock(hdev);
4149 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4150 	hci_req_sync_unlock(hdev);
4151 
4152 	return skb;
4153 }
4154 EXPORT_SYMBOL(hci_cmd_sync);
4155 
4156 /* Send ACL data */
hci_add_acl_hdr(struct sk_buff * skb,__u16 handle,__u16 flags)4157 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4158 {
4159 	struct hci_acl_hdr *hdr;
4160 	int len = skb->len;
4161 
4162 	skb_push(skb, HCI_ACL_HDR_SIZE);
4163 	skb_reset_transport_header(skb);
4164 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4165 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4166 	hdr->dlen   = cpu_to_le16(len);
4167 }
4168 
hci_queue_acl(struct hci_chan * chan,struct sk_buff_head * queue,struct sk_buff * skb,__u16 flags)4169 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4170 			  struct sk_buff *skb, __u16 flags)
4171 {
4172 	struct hci_conn *conn = chan->conn;
4173 	struct hci_dev *hdev = conn->hdev;
4174 	struct sk_buff *list;
4175 
4176 	skb->len = skb_headlen(skb);
4177 	skb->data_len = 0;
4178 
4179 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4180 
4181 	switch (hdev->dev_type) {
4182 	case HCI_PRIMARY:
4183 		hci_add_acl_hdr(skb, conn->handle, flags);
4184 		break;
4185 	case HCI_AMP:
4186 		hci_add_acl_hdr(skb, chan->handle, flags);
4187 		break;
4188 	default:
4189 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4190 		return;
4191 	}
4192 
4193 	list = skb_shinfo(skb)->frag_list;
4194 	if (!list) {
4195 		/* Non fragmented */
4196 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4197 
4198 		skb_queue_tail(queue, skb);
4199 	} else {
4200 		/* Fragmented */
4201 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4202 
4203 		skb_shinfo(skb)->frag_list = NULL;
4204 
4205 		/* Queue all fragments atomically. We need to use spin_lock_bh
4206 		 * here because of 6LoWPAN links, as there this function is
4207 		 * called from softirq and using normal spin lock could cause
4208 		 * deadlocks.
4209 		 */
4210 		spin_lock_bh(&queue->lock);
4211 
4212 		__skb_queue_tail(queue, skb);
4213 
4214 		flags &= ~ACL_START;
4215 		flags |= ACL_CONT;
4216 		do {
4217 			skb = list; list = list->next;
4218 
4219 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4220 			hci_add_acl_hdr(skb, conn->handle, flags);
4221 
4222 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4223 
4224 			__skb_queue_tail(queue, skb);
4225 		} while (list);
4226 
4227 		spin_unlock_bh(&queue->lock);
4228 	}
4229 }
4230 
hci_send_acl(struct hci_chan * chan,struct sk_buff * skb,__u16 flags)4231 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4232 {
4233 	struct hci_dev *hdev = chan->conn->hdev;
4234 
4235 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4236 
4237 	hci_queue_acl(chan, &chan->data_q, skb, flags);
4238 
4239 	queue_work(hdev->workqueue, &hdev->tx_work);
4240 }
4241 
4242 /* Send SCO data */
hci_send_sco(struct hci_conn * conn,struct sk_buff * skb)4243 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4244 {
4245 	struct hci_dev *hdev = conn->hdev;
4246 	struct hci_sco_hdr hdr;
4247 
4248 	BT_DBG("%s len %d", hdev->name, skb->len);
4249 
4250 	hdr.handle = cpu_to_le16(conn->handle);
4251 	hdr.dlen   = skb->len;
4252 
4253 	skb_push(skb, HCI_SCO_HDR_SIZE);
4254 	skb_reset_transport_header(skb);
4255 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4256 
4257 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4258 
4259 	skb_queue_tail(&conn->data_q, skb);
4260 	queue_work(hdev->workqueue, &hdev->tx_work);
4261 }
4262 
4263 /* ---- HCI TX task (outgoing data) ---- */
4264 
4265 /* HCI Connection scheduler */
hci_low_sent(struct hci_dev * hdev,__u8 type,int * quote)4266 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4267 				     int *quote)
4268 {
4269 	struct hci_conn_hash *h = &hdev->conn_hash;
4270 	struct hci_conn *conn = NULL, *c;
4271 	unsigned int num = 0, min = ~0;
4272 
4273 	/* We don't have to lock device here. Connections are always
4274 	 * added and removed with TX task disabled. */
4275 
4276 	rcu_read_lock();
4277 
4278 	list_for_each_entry_rcu(c, &h->list, list) {
4279 		if (c->type != type || skb_queue_empty(&c->data_q))
4280 			continue;
4281 
4282 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4283 			continue;
4284 
4285 		num++;
4286 
4287 		if (c->sent < min) {
4288 			min  = c->sent;
4289 			conn = c;
4290 		}
4291 
4292 		if (hci_conn_num(hdev, type) == num)
4293 			break;
4294 	}
4295 
4296 	rcu_read_unlock();
4297 
4298 	if (conn) {
4299 		int cnt, q;
4300 
4301 		switch (conn->type) {
4302 		case ACL_LINK:
4303 			cnt = hdev->acl_cnt;
4304 			break;
4305 		case SCO_LINK:
4306 		case ESCO_LINK:
4307 			cnt = hdev->sco_cnt;
4308 			break;
4309 		case LE_LINK:
4310 			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4311 			break;
4312 		default:
4313 			cnt = 0;
4314 			bt_dev_err(hdev, "unknown link type %d", conn->type);
4315 		}
4316 
4317 		q = cnt / num;
4318 		*quote = q ? q : 1;
4319 	} else
4320 		*quote = 0;
4321 
4322 	BT_DBG("conn %p quote %d", conn, *quote);
4323 	return conn;
4324 }
4325 
hci_link_tx_to(struct hci_dev * hdev,__u8 type)4326 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4327 {
4328 	struct hci_conn_hash *h = &hdev->conn_hash;
4329 	struct hci_conn *c;
4330 
4331 	bt_dev_err(hdev, "link tx timeout");
4332 
4333 	rcu_read_lock();
4334 
4335 	/* Kill stalled connections */
4336 	list_for_each_entry_rcu(c, &h->list, list) {
4337 		if (c->type == type && c->sent) {
4338 			bt_dev_err(hdev, "killing stalled connection %pMR",
4339 				   &c->dst);
4340 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4341 		}
4342 	}
4343 
4344 	rcu_read_unlock();
4345 }
4346 
hci_chan_sent(struct hci_dev * hdev,__u8 type,int * quote)4347 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4348 				      int *quote)
4349 {
4350 	struct hci_conn_hash *h = &hdev->conn_hash;
4351 	struct hci_chan *chan = NULL;
4352 	unsigned int num = 0, min = ~0, cur_prio = 0;
4353 	struct hci_conn *conn;
4354 	int cnt, q, conn_num = 0;
4355 
4356 	BT_DBG("%s", hdev->name);
4357 
4358 	rcu_read_lock();
4359 
4360 	list_for_each_entry_rcu(conn, &h->list, list) {
4361 		struct hci_chan *tmp;
4362 
4363 		if (conn->type != type)
4364 			continue;
4365 
4366 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4367 			continue;
4368 
4369 		conn_num++;
4370 
4371 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4372 			struct sk_buff *skb;
4373 
4374 			if (skb_queue_empty(&tmp->data_q))
4375 				continue;
4376 
4377 			skb = skb_peek(&tmp->data_q);
4378 			if (skb->priority < cur_prio)
4379 				continue;
4380 
4381 			if (skb->priority > cur_prio) {
4382 				num = 0;
4383 				min = ~0;
4384 				cur_prio = skb->priority;
4385 			}
4386 
4387 			num++;
4388 
4389 			if (conn->sent < min) {
4390 				min  = conn->sent;
4391 				chan = tmp;
4392 			}
4393 		}
4394 
4395 		if (hci_conn_num(hdev, type) == conn_num)
4396 			break;
4397 	}
4398 
4399 	rcu_read_unlock();
4400 
4401 	if (!chan)
4402 		return NULL;
4403 
4404 	switch (chan->conn->type) {
4405 	case ACL_LINK:
4406 		cnt = hdev->acl_cnt;
4407 		break;
4408 	case AMP_LINK:
4409 		cnt = hdev->block_cnt;
4410 		break;
4411 	case SCO_LINK:
4412 	case ESCO_LINK:
4413 		cnt = hdev->sco_cnt;
4414 		break;
4415 	case LE_LINK:
4416 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4417 		break;
4418 	default:
4419 		cnt = 0;
4420 		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4421 	}
4422 
4423 	q = cnt / num;
4424 	*quote = q ? q : 1;
4425 	BT_DBG("chan %p quote %d", chan, *quote);
4426 	return chan;
4427 }
4428 
hci_prio_recalculate(struct hci_dev * hdev,__u8 type)4429 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4430 {
4431 	struct hci_conn_hash *h = &hdev->conn_hash;
4432 	struct hci_conn *conn;
4433 	int num = 0;
4434 
4435 	BT_DBG("%s", hdev->name);
4436 
4437 	rcu_read_lock();
4438 
4439 	list_for_each_entry_rcu(conn, &h->list, list) {
4440 		struct hci_chan *chan;
4441 
4442 		if (conn->type != type)
4443 			continue;
4444 
4445 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4446 			continue;
4447 
4448 		num++;
4449 
4450 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4451 			struct sk_buff *skb;
4452 
4453 			if (chan->sent) {
4454 				chan->sent = 0;
4455 				continue;
4456 			}
4457 
4458 			if (skb_queue_empty(&chan->data_q))
4459 				continue;
4460 
4461 			skb = skb_peek(&chan->data_q);
4462 			if (skb->priority >= HCI_PRIO_MAX - 1)
4463 				continue;
4464 
4465 			skb->priority = HCI_PRIO_MAX - 1;
4466 
4467 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4468 			       skb->priority);
4469 		}
4470 
4471 		if (hci_conn_num(hdev, type) == num)
4472 			break;
4473 	}
4474 
4475 	rcu_read_unlock();
4476 
4477 }
4478 
__get_blocks(struct hci_dev * hdev,struct sk_buff * skb)4479 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4480 {
4481 	/* Calculate count of blocks used by this packet */
4482 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4483 }
4484 
__check_timeout(struct hci_dev * hdev,unsigned int cnt,u8 type)4485 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
4486 {
4487 	unsigned long last_tx;
4488 
4489 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4490 		return;
4491 
4492 	switch (type) {
4493 	case LE_LINK:
4494 		last_tx = hdev->le_last_tx;
4495 		break;
4496 	default:
4497 		last_tx = hdev->acl_last_tx;
4498 		break;
4499 	}
4500 
4501 	/* tx timeout must be longer than maximum link supervision timeout
4502 	 * (40.9 seconds)
4503 	 */
4504 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
4505 		hci_link_tx_to(hdev, type);
4506 }
4507 
4508 /* Schedule SCO */
hci_sched_sco(struct hci_dev * hdev)4509 static void hci_sched_sco(struct hci_dev *hdev)
4510 {
4511 	struct hci_conn *conn;
4512 	struct sk_buff *skb;
4513 	int quote;
4514 
4515 	BT_DBG("%s", hdev->name);
4516 
4517 	if (!hci_conn_num(hdev, SCO_LINK))
4518 		return;
4519 
4520 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4521 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4522 			BT_DBG("skb %p len %d", skb, skb->len);
4523 			hci_send_frame(hdev, skb);
4524 
4525 			conn->sent++;
4526 			if (conn->sent == ~0)
4527 				conn->sent = 0;
4528 		}
4529 	}
4530 }
4531 
hci_sched_esco(struct hci_dev * hdev)4532 static void hci_sched_esco(struct hci_dev *hdev)
4533 {
4534 	struct hci_conn *conn;
4535 	struct sk_buff *skb;
4536 	int quote;
4537 
4538 	BT_DBG("%s", hdev->name);
4539 
4540 	if (!hci_conn_num(hdev, ESCO_LINK))
4541 		return;
4542 
4543 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4544 						     &quote))) {
4545 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4546 			BT_DBG("skb %p len %d", skb, skb->len);
4547 			hci_send_frame(hdev, skb);
4548 
4549 			conn->sent++;
4550 			if (conn->sent == ~0)
4551 				conn->sent = 0;
4552 		}
4553 	}
4554 }
4555 
hci_sched_acl_pkt(struct hci_dev * hdev)4556 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4557 {
4558 	unsigned int cnt = hdev->acl_cnt;
4559 	struct hci_chan *chan;
4560 	struct sk_buff *skb;
4561 	int quote;
4562 
4563 	__check_timeout(hdev, cnt, ACL_LINK);
4564 
4565 	while (hdev->acl_cnt &&
4566 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4567 		u32 priority = (skb_peek(&chan->data_q))->priority;
4568 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4569 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4570 			       skb->len, skb->priority);
4571 
4572 			/* Stop if priority has changed */
4573 			if (skb->priority < priority)
4574 				break;
4575 
4576 			skb = skb_dequeue(&chan->data_q);
4577 
4578 			hci_conn_enter_active_mode(chan->conn,
4579 						   bt_cb(skb)->force_active);
4580 
4581 			hci_send_frame(hdev, skb);
4582 			hdev->acl_last_tx = jiffies;
4583 
4584 			hdev->acl_cnt--;
4585 			chan->sent++;
4586 			chan->conn->sent++;
4587 
4588 			/* Send pending SCO packets right away */
4589 			hci_sched_sco(hdev);
4590 			hci_sched_esco(hdev);
4591 		}
4592 	}
4593 
4594 	if (cnt != hdev->acl_cnt)
4595 		hci_prio_recalculate(hdev, ACL_LINK);
4596 }
4597 
hci_sched_acl_blk(struct hci_dev * hdev)4598 static void hci_sched_acl_blk(struct hci_dev *hdev)
4599 {
4600 	unsigned int cnt = hdev->block_cnt;
4601 	struct hci_chan *chan;
4602 	struct sk_buff *skb;
4603 	int quote;
4604 	u8 type;
4605 
4606 	BT_DBG("%s", hdev->name);
4607 
4608 	if (hdev->dev_type == HCI_AMP)
4609 		type = AMP_LINK;
4610 	else
4611 		type = ACL_LINK;
4612 
4613 	__check_timeout(hdev, cnt, type);
4614 
4615 	while (hdev->block_cnt > 0 &&
4616 	       (chan = hci_chan_sent(hdev, type, &quote))) {
4617 		u32 priority = (skb_peek(&chan->data_q))->priority;
4618 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4619 			int blocks;
4620 
4621 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4622 			       skb->len, skb->priority);
4623 
4624 			/* Stop if priority has changed */
4625 			if (skb->priority < priority)
4626 				break;
4627 
4628 			skb = skb_dequeue(&chan->data_q);
4629 
4630 			blocks = __get_blocks(hdev, skb);
4631 			if (blocks > hdev->block_cnt)
4632 				return;
4633 
4634 			hci_conn_enter_active_mode(chan->conn,
4635 						   bt_cb(skb)->force_active);
4636 
4637 			hci_send_frame(hdev, skb);
4638 			hdev->acl_last_tx = jiffies;
4639 
4640 			hdev->block_cnt -= blocks;
4641 			quote -= blocks;
4642 
4643 			chan->sent += blocks;
4644 			chan->conn->sent += blocks;
4645 		}
4646 	}
4647 
4648 	if (cnt != hdev->block_cnt)
4649 		hci_prio_recalculate(hdev, type);
4650 }
4651 
hci_sched_acl(struct hci_dev * hdev)4652 static void hci_sched_acl(struct hci_dev *hdev)
4653 {
4654 	BT_DBG("%s", hdev->name);
4655 
4656 	/* No ACL link over BR/EDR controller */
4657 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4658 		return;
4659 
4660 	/* No AMP link over AMP controller */
4661 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4662 		return;
4663 
4664 	switch (hdev->flow_ctl_mode) {
4665 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4666 		hci_sched_acl_pkt(hdev);
4667 		break;
4668 
4669 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4670 		hci_sched_acl_blk(hdev);
4671 		break;
4672 	}
4673 }
4674 
hci_sched_le(struct hci_dev * hdev)4675 static void hci_sched_le(struct hci_dev *hdev)
4676 {
4677 	struct hci_chan *chan;
4678 	struct sk_buff *skb;
4679 	int quote, cnt, tmp;
4680 
4681 	BT_DBG("%s", hdev->name);
4682 
4683 	if (!hci_conn_num(hdev, LE_LINK))
4684 		return;
4685 
4686 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4687 
4688 	__check_timeout(hdev, cnt, LE_LINK);
4689 
4690 	tmp = cnt;
4691 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4692 		u32 priority = (skb_peek(&chan->data_q))->priority;
4693 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4694 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4695 			       skb->len, skb->priority);
4696 
4697 			/* Stop if priority has changed */
4698 			if (skb->priority < priority)
4699 				break;
4700 
4701 			skb = skb_dequeue(&chan->data_q);
4702 
4703 			hci_send_frame(hdev, skb);
4704 			hdev->le_last_tx = jiffies;
4705 
4706 			cnt--;
4707 			chan->sent++;
4708 			chan->conn->sent++;
4709 
4710 			/* Send pending SCO packets right away */
4711 			hci_sched_sco(hdev);
4712 			hci_sched_esco(hdev);
4713 		}
4714 	}
4715 
4716 	if (hdev->le_pkts)
4717 		hdev->le_cnt = cnt;
4718 	else
4719 		hdev->acl_cnt = cnt;
4720 
4721 	if (cnt != tmp)
4722 		hci_prio_recalculate(hdev, LE_LINK);
4723 }
4724 
hci_tx_work(struct work_struct * work)4725 static void hci_tx_work(struct work_struct *work)
4726 {
4727 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4728 	struct sk_buff *skb;
4729 
4730 	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4731 	       hdev->sco_cnt, hdev->le_cnt);
4732 
4733 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4734 		/* Schedule queues and send stuff to HCI driver */
4735 		hci_sched_sco(hdev);
4736 		hci_sched_esco(hdev);
4737 		hci_sched_acl(hdev);
4738 		hci_sched_le(hdev);
4739 	}
4740 
4741 	/* Send next queued raw (unknown type) packet */
4742 	while ((skb = skb_dequeue(&hdev->raw_q)))
4743 		hci_send_frame(hdev, skb);
4744 }
4745 
4746 /* ----- HCI RX task (incoming data processing) ----- */
4747 
4748 /* ACL data packet */
hci_acldata_packet(struct hci_dev * hdev,struct sk_buff * skb)4749 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4750 {
4751 	struct hci_acl_hdr *hdr = (void *) skb->data;
4752 	struct hci_conn *conn;
4753 	__u16 handle, flags;
4754 
4755 	skb_pull(skb, HCI_ACL_HDR_SIZE);
4756 
4757 	handle = __le16_to_cpu(hdr->handle);
4758 	flags  = hci_flags(handle);
4759 	handle = hci_handle(handle);
4760 
4761 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4762 	       handle, flags);
4763 
4764 	hdev->stat.acl_rx++;
4765 
4766 	hci_dev_lock(hdev);
4767 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4768 	hci_dev_unlock(hdev);
4769 
4770 	if (conn) {
4771 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4772 
4773 		/* Send to upper protocol */
4774 		l2cap_recv_acldata(conn, skb, flags);
4775 		return;
4776 	} else {
4777 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4778 			   handle);
4779 	}
4780 
4781 	kfree_skb(skb);
4782 }
4783 
4784 /* SCO data packet */
hci_scodata_packet(struct hci_dev * hdev,struct sk_buff * skb)4785 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4786 {
4787 	struct hci_sco_hdr *hdr = (void *) skb->data;
4788 	struct hci_conn *conn;
4789 	__u16 handle, flags;
4790 
4791 	skb_pull(skb, HCI_SCO_HDR_SIZE);
4792 
4793 	handle = __le16_to_cpu(hdr->handle);
4794 	flags  = hci_flags(handle);
4795 	handle = hci_handle(handle);
4796 
4797 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4798 	       handle, flags);
4799 
4800 	hdev->stat.sco_rx++;
4801 
4802 	hci_dev_lock(hdev);
4803 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4804 	hci_dev_unlock(hdev);
4805 
4806 	if (conn) {
4807 		/* Send to upper protocol */
4808 		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4809 		sco_recv_scodata(conn, skb);
4810 		return;
4811 	} else {
4812 		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4813 			   handle);
4814 	}
4815 
4816 	kfree_skb(skb);
4817 }
4818 
hci_req_is_complete(struct hci_dev * hdev)4819 static bool hci_req_is_complete(struct hci_dev *hdev)
4820 {
4821 	struct sk_buff *skb;
4822 
4823 	skb = skb_peek(&hdev->cmd_q);
4824 	if (!skb)
4825 		return true;
4826 
4827 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4828 }
4829 
hci_resend_last(struct hci_dev * hdev)4830 static void hci_resend_last(struct hci_dev *hdev)
4831 {
4832 	struct hci_command_hdr *sent;
4833 	struct sk_buff *skb;
4834 	u16 opcode;
4835 
4836 	if (!hdev->sent_cmd)
4837 		return;
4838 
4839 	sent = (void *) hdev->sent_cmd->data;
4840 	opcode = __le16_to_cpu(sent->opcode);
4841 	if (opcode == HCI_OP_RESET)
4842 		return;
4843 
4844 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4845 	if (!skb)
4846 		return;
4847 
4848 	skb_queue_head(&hdev->cmd_q, skb);
4849 	queue_work(hdev->workqueue, &hdev->cmd_work);
4850 }
4851 
hci_req_cmd_complete(struct hci_dev * hdev,u16 opcode,u8 status,hci_req_complete_t * req_complete,hci_req_complete_skb_t * req_complete_skb)4852 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4853 			  hci_req_complete_t *req_complete,
4854 			  hci_req_complete_skb_t *req_complete_skb)
4855 {
4856 	struct sk_buff *skb;
4857 	unsigned long flags;
4858 
4859 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4860 
4861 	/* If the completed command doesn't match the last one that was
4862 	 * sent we need to do special handling of it.
4863 	 */
4864 	if (!hci_sent_cmd_data(hdev, opcode)) {
4865 		/* Some CSR based controllers generate a spontaneous
4866 		 * reset complete event during init and any pending
4867 		 * command will never be completed. In such a case we
4868 		 * need to resend whatever was the last sent
4869 		 * command.
4870 		 */
4871 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4872 			hci_resend_last(hdev);
4873 
4874 		return;
4875 	}
4876 
4877 	/* If we reach this point this event matches the last command sent */
4878 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4879 
4880 	/* If the command succeeded and there's still more commands in
4881 	 * this request the request is not yet complete.
4882 	 */
4883 	if (!status && !hci_req_is_complete(hdev))
4884 		return;
4885 
4886 	/* If this was the last command in a request the complete
4887 	 * callback would be found in hdev->sent_cmd instead of the
4888 	 * command queue (hdev->cmd_q).
4889 	 */
4890 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4891 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4892 		return;
4893 	}
4894 
4895 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4896 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4897 		return;
4898 	}
4899 
4900 	/* Remove all pending commands belonging to this request */
4901 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4902 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4903 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4904 			__skb_queue_head(&hdev->cmd_q, skb);
4905 			break;
4906 		}
4907 
4908 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4909 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4910 		else
4911 			*req_complete = bt_cb(skb)->hci.req_complete;
4912 		dev_kfree_skb_irq(skb);
4913 	}
4914 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4915 }
4916 
hci_rx_work(struct work_struct * work)4917 static void hci_rx_work(struct work_struct *work)
4918 {
4919 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4920 	struct sk_buff *skb;
4921 
4922 	BT_DBG("%s", hdev->name);
4923 
4924 	while ((skb = skb_dequeue(&hdev->rx_q))) {
4925 		/* Send copy to monitor */
4926 		hci_send_to_monitor(hdev, skb);
4927 
4928 		if (atomic_read(&hdev->promisc)) {
4929 			/* Send copy to the sockets */
4930 			hci_send_to_sock(hdev, skb);
4931 		}
4932 
4933 		/* If the device has been opened in HCI_USER_CHANNEL,
4934 		 * the userspace has exclusive access to device.
4935 		 * When device is HCI_INIT, we still need to process
4936 		 * the data packets to the driver in order
4937 		 * to complete its setup().
4938 		 */
4939 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4940 		    !test_bit(HCI_INIT, &hdev->flags)) {
4941 			kfree_skb(skb);
4942 			continue;
4943 		}
4944 
4945 		if (test_bit(HCI_INIT, &hdev->flags)) {
4946 			/* Don't process data packets in this states. */
4947 			switch (hci_skb_pkt_type(skb)) {
4948 			case HCI_ACLDATA_PKT:
4949 			case HCI_SCODATA_PKT:
4950 			case HCI_ISODATA_PKT:
4951 				kfree_skb(skb);
4952 				continue;
4953 			}
4954 		}
4955 
4956 		/* Process frame */
4957 		switch (hci_skb_pkt_type(skb)) {
4958 		case HCI_EVENT_PKT:
4959 			BT_DBG("%s Event packet", hdev->name);
4960 			hci_event_packet(hdev, skb);
4961 			break;
4962 
4963 		case HCI_ACLDATA_PKT:
4964 			BT_DBG("%s ACL data packet", hdev->name);
4965 			hci_acldata_packet(hdev, skb);
4966 			break;
4967 
4968 		case HCI_SCODATA_PKT:
4969 			BT_DBG("%s SCO data packet", hdev->name);
4970 			hci_scodata_packet(hdev, skb);
4971 			break;
4972 
4973 		default:
4974 			kfree_skb(skb);
4975 			break;
4976 		}
4977 	}
4978 }
4979 
hci_cmd_work(struct work_struct * work)4980 static void hci_cmd_work(struct work_struct *work)
4981 {
4982 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4983 	struct sk_buff *skb;
4984 
4985 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4986 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4987 
4988 	/* Send queued commands */
4989 	if (atomic_read(&hdev->cmd_cnt)) {
4990 		skb = skb_dequeue(&hdev->cmd_q);
4991 		if (!skb)
4992 			return;
4993 
4994 		kfree_skb(hdev->sent_cmd);
4995 
4996 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4997 		if (hdev->sent_cmd) {
4998 			if (hci_req_status_pend(hdev))
4999 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
5000 			atomic_dec(&hdev->cmd_cnt);
5001 			hci_send_frame(hdev, skb);
5002 			if (test_bit(HCI_RESET, &hdev->flags))
5003 				cancel_delayed_work(&hdev->cmd_timer);
5004 			else
5005 				schedule_delayed_work(&hdev->cmd_timer,
5006 						      HCI_CMD_TIMEOUT);
5007 		} else {
5008 			skb_queue_head(&hdev->cmd_q, skb);
5009 			queue_work(hdev->workqueue, &hdev->cmd_work);
5010 		}
5011 	}
5012 }
5013