1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/property.h>
33 #include <linux/suspend.h>
34 #include <linux/wait.h>
35 #include <asm/unaligned.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 #include <net/bluetooth/l2cap.h>
40 #include <net/bluetooth/mgmt.h>
41
42 #include "hci_request.h"
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47
48 static void hci_rx_work(struct work_struct *work);
49 static void hci_cmd_work(struct work_struct *work);
50 static void hci_tx_work(struct work_struct *work);
51
52 /* HCI device list */
53 LIST_HEAD(hci_dev_list);
54 DEFINE_RWLOCK(hci_dev_list_lock);
55
56 /* HCI callback list */
57 LIST_HEAD(hci_cb_list);
58 DEFINE_MUTEX(hci_cb_list_lock);
59
60 /* HCI ID Numbering */
61 static DEFINE_IDA(hci_index_ida);
62
63 /* ---- HCI debugfs entries ---- */
64
dut_mode_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)65 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 size_t count, loff_t *ppos)
67 {
68 struct hci_dev *hdev = file->private_data;
69 char buf[3];
70
71 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 buf[1] = '\n';
73 buf[2] = '\0';
74 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75 }
76
dut_mode_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)77 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 size_t count, loff_t *ppos)
79 {
80 struct hci_dev *hdev = file->private_data;
81 struct sk_buff *skb;
82 bool enable;
83 int err;
84
85 if (!test_bit(HCI_UP, &hdev->flags))
86 return -ENETDOWN;
87
88 err = kstrtobool_from_user(user_buf, count, &enable);
89 if (err)
90 return err;
91
92 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 return -EALREADY;
94
95 hci_req_sync_lock(hdev);
96 if (enable)
97 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 HCI_CMD_TIMEOUT);
99 else
100 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 HCI_CMD_TIMEOUT);
102 hci_req_sync_unlock(hdev);
103
104 if (IS_ERR(skb))
105 return PTR_ERR(skb);
106
107 kfree_skb(skb);
108
109 hci_dev_change_flag(hdev, HCI_DUT_MODE);
110
111 return count;
112 }
113
114 static const struct file_operations dut_mode_fops = {
115 .open = simple_open,
116 .read = dut_mode_read,
117 .write = dut_mode_write,
118 .llseek = default_llseek,
119 };
120
vendor_diag_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)121 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 size_t count, loff_t *ppos)
123 {
124 struct hci_dev *hdev = file->private_data;
125 char buf[3];
126
127 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 buf[1] = '\n';
129 buf[2] = '\0';
130 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131 }
132
vendor_diag_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)133 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 size_t count, loff_t *ppos)
135 {
136 struct hci_dev *hdev = file->private_data;
137 bool enable;
138 int err;
139
140 err = kstrtobool_from_user(user_buf, count, &enable);
141 if (err)
142 return err;
143
144 /* When the diagnostic flags are not persistent and the transport
145 * is not active or in user channel operation, then there is no need
146 * for the vendor callback. Instead just store the desired value and
147 * the setting will be programmed when the controller gets powered on.
148 */
149 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 goto done;
153
154 hci_req_sync_lock(hdev);
155 err = hdev->set_diag(hdev, enable);
156 hci_req_sync_unlock(hdev);
157
158 if (err < 0)
159 return err;
160
161 done:
162 if (enable)
163 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 else
165 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166
167 return count;
168 }
169
170 static const struct file_operations vendor_diag_fops = {
171 .open = simple_open,
172 .read = vendor_diag_read,
173 .write = vendor_diag_write,
174 .llseek = default_llseek,
175 };
176
hci_debugfs_create_basic(struct hci_dev * hdev)177 static void hci_debugfs_create_basic(struct hci_dev *hdev)
178 {
179 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 &dut_mode_fops);
181
182 if (hdev->set_diag)
183 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 &vendor_diag_fops);
185 }
186
hci_reset_req(struct hci_request * req,unsigned long opt)187 static int hci_reset_req(struct hci_request *req, unsigned long opt)
188 {
189 BT_DBG("%s %ld", req->hdev->name, opt);
190
191 /* Reset device */
192 set_bit(HCI_RESET, &req->hdev->flags);
193 hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 return 0;
195 }
196
bredr_init(struct hci_request * req)197 static void bredr_init(struct hci_request *req)
198 {
199 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200
201 /* Read Local Supported Features */
202 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203
204 /* Read Local Version */
205 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206
207 /* Read BD Address */
208 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209 }
210
amp_init1(struct hci_request * req)211 static void amp_init1(struct hci_request *req)
212 {
213 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214
215 /* Read Local Version */
216 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217
218 /* Read Local Supported Commands */
219 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220
221 /* Read Local AMP Info */
222 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223
224 /* Read Data Blk size */
225 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226
227 /* Read Flow Control Mode */
228 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229
230 /* Read Location Data */
231 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232 }
233
amp_init2(struct hci_request * req)234 static int amp_init2(struct hci_request *req)
235 {
236 /* Read Local Supported Features. Not all AMP controllers
237 * support this so it's placed conditionally in the second
238 * stage init.
239 */
240 if (req->hdev->commands[14] & 0x20)
241 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242
243 return 0;
244 }
245
hci_init1_req(struct hci_request * req,unsigned long opt)246 static int hci_init1_req(struct hci_request *req, unsigned long opt)
247 {
248 struct hci_dev *hdev = req->hdev;
249
250 BT_DBG("%s %ld", hdev->name, opt);
251
252 /* Reset */
253 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 hci_reset_req(req, 0);
255
256 switch (hdev->dev_type) {
257 case HCI_PRIMARY:
258 bredr_init(req);
259 break;
260 case HCI_AMP:
261 amp_init1(req);
262 break;
263 default:
264 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 break;
266 }
267
268 return 0;
269 }
270
bredr_setup(struct hci_request * req)271 static void bredr_setup(struct hci_request *req)
272 {
273 __le16 param;
274 __u8 flt_type;
275
276 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278
279 /* Read Class of Device */
280 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281
282 /* Read Local Name */
283 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284
285 /* Read Voice Setting */
286 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287
288 /* Read Number of Supported IAC */
289 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290
291 /* Read Current IAC LAP */
292 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293
294 /* Clear Event Filters */
295 flt_type = HCI_FLT_CLEAR_ALL;
296 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297
298 /* Connection accept timeout ~20 secs */
299 param = cpu_to_le16(0x7d00);
300 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
301 }
302
le_setup(struct hci_request * req)303 static void le_setup(struct hci_request *req)
304 {
305 struct hci_dev *hdev = req->hdev;
306
307 /* Read LE Buffer Size */
308 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309
310 /* Read LE Local Supported Features */
311 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312
313 /* Read LE Supported States */
314 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315
316 /* LE-only controllers have LE implicitly enabled */
317 if (!lmp_bredr_capable(hdev))
318 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319 }
320
hci_setup_event_mask(struct hci_request * req)321 static void hci_setup_event_mask(struct hci_request *req)
322 {
323 struct hci_dev *hdev = req->hdev;
324
325 /* The second byte is 0xff instead of 0x9f (two reserved bits
326 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 * command otherwise.
328 */
329 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330
331 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 * any event mask for pre 1.2 devices.
333 */
334 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 return;
336
337 if (lmp_bredr_capable(hdev)) {
338 events[4] |= 0x01; /* Flow Specification Complete */
339 } else {
340 /* Use a different default for LE-only devices */
341 memset(events, 0, sizeof(events));
342 events[1] |= 0x20; /* Command Complete */
343 events[1] |= 0x40; /* Command Status */
344 events[1] |= 0x80; /* Hardware Error */
345
346 /* If the controller supports the Disconnect command, enable
347 * the corresponding event. In addition enable packet flow
348 * control related events.
349 */
350 if (hdev->commands[0] & 0x20) {
351 events[0] |= 0x10; /* Disconnection Complete */
352 events[2] |= 0x04; /* Number of Completed Packets */
353 events[3] |= 0x02; /* Data Buffer Overflow */
354 }
355
356 /* If the controller supports the Read Remote Version
357 * Information command, enable the corresponding event.
358 */
359 if (hdev->commands[2] & 0x80)
360 events[1] |= 0x08; /* Read Remote Version Information
361 * Complete
362 */
363
364 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 events[0] |= 0x80; /* Encryption Change */
366 events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 }
368 }
369
370 if (lmp_inq_rssi_capable(hdev) ||
371 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 events[4] |= 0x02; /* Inquiry Result with RSSI */
373
374 if (lmp_ext_feat_capable(hdev))
375 events[4] |= 0x04; /* Read Remote Extended Features Complete */
376
377 if (lmp_esco_capable(hdev)) {
378 events[5] |= 0x08; /* Synchronous Connection Complete */
379 events[5] |= 0x10; /* Synchronous Connection Changed */
380 }
381
382 if (lmp_sniffsubr_capable(hdev))
383 events[5] |= 0x20; /* Sniff Subrating */
384
385 if (lmp_pause_enc_capable(hdev))
386 events[5] |= 0x80; /* Encryption Key Refresh Complete */
387
388 if (lmp_ext_inq_capable(hdev))
389 events[5] |= 0x40; /* Extended Inquiry Result */
390
391 if (lmp_no_flush_capable(hdev))
392 events[7] |= 0x01; /* Enhanced Flush Complete */
393
394 if (lmp_lsto_capable(hdev))
395 events[6] |= 0x80; /* Link Supervision Timeout Changed */
396
397 if (lmp_ssp_capable(hdev)) {
398 events[6] |= 0x01; /* IO Capability Request */
399 events[6] |= 0x02; /* IO Capability Response */
400 events[6] |= 0x04; /* User Confirmation Request */
401 events[6] |= 0x08; /* User Passkey Request */
402 events[6] |= 0x10; /* Remote OOB Data Request */
403 events[6] |= 0x20; /* Simple Pairing Complete */
404 events[7] |= 0x04; /* User Passkey Notification */
405 events[7] |= 0x08; /* Keypress Notification */
406 events[7] |= 0x10; /* Remote Host Supported
407 * Features Notification
408 */
409 }
410
411 if (lmp_le_capable(hdev))
412 events[7] |= 0x20; /* LE Meta-Event */
413
414 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415 }
416
hci_init2_req(struct hci_request * req,unsigned long opt)417 static int hci_init2_req(struct hci_request *req, unsigned long opt)
418 {
419 struct hci_dev *hdev = req->hdev;
420
421 if (hdev->dev_type == HCI_AMP)
422 return amp_init2(req);
423
424 if (lmp_bredr_capable(hdev))
425 bredr_setup(req);
426 else
427 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428
429 if (lmp_le_capable(hdev))
430 le_setup(req);
431
432 /* All Bluetooth 1.2 and later controllers should support the
433 * HCI command for reading the local supported commands.
434 *
435 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 * but do not have support for this command. If that is the case,
437 * the driver can quirk the behavior and skip reading the local
438 * supported commands.
439 */
440 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443
444 if (lmp_ssp_capable(hdev)) {
445 /* When SSP is available, then the host features page
446 * should also be available as well. However some
447 * controllers list the max_page as 0 as long as SSP
448 * has not been enabled. To achieve proper debugging
449 * output, force the minimum max_page to 1 at least.
450 */
451 hdev->max_page = 0x01;
452
453 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 u8 mode = 0x01;
455
456 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 sizeof(mode), &mode);
458 } else {
459 struct hci_cp_write_eir cp;
460
461 memset(hdev->eir, 0, sizeof(hdev->eir));
462 memset(&cp, 0, sizeof(cp));
463
464 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 }
466 }
467
468 if (lmp_inq_rssi_capable(hdev) ||
469 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 u8 mode;
471
472 /* If Extended Inquiry Result events are supported, then
473 * they are clearly preferred over Inquiry Result with RSSI
474 * events.
475 */
476 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477
478 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 }
480
481 if (lmp_inq_tx_pwr_capable(hdev))
482 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483
484 if (lmp_ext_feat_capable(hdev)) {
485 struct hci_cp_read_local_ext_features cp;
486
487 cp.page = 0x01;
488 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 sizeof(cp), &cp);
490 }
491
492 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 u8 enable = 1;
494 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 &enable);
496 }
497
498 return 0;
499 }
500
hci_setup_link_policy(struct hci_request * req)501 static void hci_setup_link_policy(struct hci_request *req)
502 {
503 struct hci_dev *hdev = req->hdev;
504 struct hci_cp_write_def_link_policy cp;
505 u16 link_policy = 0;
506
507 if (lmp_rswitch_capable(hdev))
508 link_policy |= HCI_LP_RSWITCH;
509 if (lmp_hold_capable(hdev))
510 link_policy |= HCI_LP_HOLD;
511 if (lmp_sniff_capable(hdev))
512 link_policy |= HCI_LP_SNIFF;
513 if (lmp_park_capable(hdev))
514 link_policy |= HCI_LP_PARK;
515
516 cp.policy = cpu_to_le16(link_policy);
517 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518 }
519
hci_set_le_support(struct hci_request * req)520 static void hci_set_le_support(struct hci_request *req)
521 {
522 struct hci_dev *hdev = req->hdev;
523 struct hci_cp_write_le_host_supported cp;
524
525 /* LE-only devices do not support explicit enablement */
526 if (!lmp_bredr_capable(hdev))
527 return;
528
529 memset(&cp, 0, sizeof(cp));
530
531 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 cp.le = 0x01;
533 cp.simul = 0x00;
534 }
535
536 if (cp.le != lmp_host_le_capable(hdev))
537 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 &cp);
539 }
540
hci_set_event_mask_page_2(struct hci_request * req)541 static void hci_set_event_mask_page_2(struct hci_request *req)
542 {
543 struct hci_dev *hdev = req->hdev;
544 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 bool changed = false;
546
547 /* If Connectionless Slave Broadcast master role is supported
548 * enable all necessary events for it.
549 */
550 if (lmp_csb_master_capable(hdev)) {
551 events[1] |= 0x40; /* Triggered Clock Capture */
552 events[1] |= 0x80; /* Synchronization Train Complete */
553 events[2] |= 0x10; /* Slave Page Response Timeout */
554 events[2] |= 0x20; /* CSB Channel Map Change */
555 changed = true;
556 }
557
558 /* If Connectionless Slave Broadcast slave role is supported
559 * enable all necessary events for it.
560 */
561 if (lmp_csb_slave_capable(hdev)) {
562 events[2] |= 0x01; /* Synchronization Train Received */
563 events[2] |= 0x02; /* CSB Receive */
564 events[2] |= 0x04; /* CSB Timeout */
565 events[2] |= 0x08; /* Truncated Page Complete */
566 changed = true;
567 }
568
569 /* Enable Authenticated Payload Timeout Expired event if supported */
570 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 events[2] |= 0x80;
572 changed = true;
573 }
574
575 /* Some Broadcom based controllers indicate support for Set Event
576 * Mask Page 2 command, but then actually do not support it. Since
577 * the default value is all bits set to zero, the command is only
578 * required if the event mask has to be changed. In case no change
579 * to the event mask is needed, skip this command.
580 */
581 if (changed)
582 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 sizeof(events), events);
584 }
585
hci_init3_req(struct hci_request * req,unsigned long opt)586 static int hci_init3_req(struct hci_request *req, unsigned long opt)
587 {
588 struct hci_dev *hdev = req->hdev;
589 u8 p;
590
591 hci_setup_event_mask(req);
592
593 if (hdev->commands[6] & 0x20 &&
594 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 struct hci_cp_read_stored_link_key cp;
596
597 bacpy(&cp.bdaddr, BDADDR_ANY);
598 cp.read_all = 0x01;
599 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 }
601
602 if (hdev->commands[5] & 0x10)
603 hci_setup_link_policy(req);
604
605 if (hdev->commands[8] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607
608 if (hdev->commands[18] & 0x04 &&
609 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611
612 /* Some older Broadcom based Bluetooth 1.2 controllers do not
613 * support the Read Page Scan Type command. Check support for
614 * this command in the bit mask of supported commands.
615 */
616 if (hdev->commands[13] & 0x01)
617 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618
619 if (lmp_le_capable(hdev)) {
620 u8 events[8];
621
622 memset(events, 0, sizeof(events));
623
624 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 events[0] |= 0x10; /* LE Long Term Key Request */
626
627 /* If controller supports the Connection Parameters Request
628 * Link Layer Procedure, enable the corresponding event.
629 */
630 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 events[0] |= 0x20; /* LE Remote Connection
632 * Parameter Request
633 */
634
635 /* If the controller supports the Data Length Extension
636 * feature, enable the corresponding event.
637 */
638 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 events[0] |= 0x40; /* LE Data Length Change */
640
641 /* If the controller supports LL Privacy feature, enable
642 * the corresponding event.
643 */
644 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 events[1] |= 0x02; /* LE Enhanced Connection
646 * Complete
647 */
648
649 /* If the controller supports Extended Scanner Filter
650 * Policies, enable the correspondig event.
651 */
652 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 events[1] |= 0x04; /* LE Direct Advertising
654 * Report
655 */
656
657 /* If the controller supports Channel Selection Algorithm #2
658 * feature, enable the corresponding event.
659 */
660 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 events[2] |= 0x08; /* LE Channel Selection
662 * Algorithm
663 */
664
665 /* If the controller supports the LE Set Scan Enable command,
666 * enable the corresponding advertising report event.
667 */
668 if (hdev->commands[26] & 0x08)
669 events[0] |= 0x02; /* LE Advertising Report */
670
671 /* If the controller supports the LE Create Connection
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[26] & 0x10)
675 events[0] |= 0x01; /* LE Connection Complete */
676
677 /* If the controller supports the LE Connection Update
678 * command, enable the corresponding event.
679 */
680 if (hdev->commands[27] & 0x04)
681 events[0] |= 0x04; /* LE Connection Update
682 * Complete
683 */
684
685 /* If the controller supports the LE Read Remote Used Features
686 * command, enable the corresponding event.
687 */
688 if (hdev->commands[27] & 0x20)
689 events[0] |= 0x08; /* LE Read Remote Used
690 * Features Complete
691 */
692
693 /* If the controller supports the LE Read Local P-256
694 * Public Key command, enable the corresponding event.
695 */
696 if (hdev->commands[34] & 0x02)
697 events[0] |= 0x80; /* LE Read Local P-256
698 * Public Key Complete
699 */
700
701 /* If the controller supports the LE Generate DHKey
702 * command, enable the corresponding event.
703 */
704 if (hdev->commands[34] & 0x04)
705 events[1] |= 0x01; /* LE Generate DHKey Complete */
706
707 /* If the controller supports the LE Set Default PHY or
708 * LE Set PHY commands, enable the corresponding event.
709 */
710 if (hdev->commands[35] & (0x20 | 0x40))
711 events[1] |= 0x08; /* LE PHY Update Complete */
712
713 /* If the controller supports LE Set Extended Scan Parameters
714 * and LE Set Extended Scan Enable commands, enable the
715 * corresponding event.
716 */
717 if (use_ext_scan(hdev))
718 events[1] |= 0x10; /* LE Extended Advertising
719 * Report
720 */
721
722 /* If the controller supports the LE Extended Advertising
723 * command, enable the corresponding event.
724 */
725 if (ext_adv_capable(hdev))
726 events[2] |= 0x02; /* LE Advertising Set
727 * Terminated
728 */
729
730 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 events);
732
733 /* Read LE Advertising Channel TX Power */
734 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 /* HCI TS spec forbids mixing of legacy and extended
736 * advertising commands wherein READ_ADV_TX_POWER is
737 * also included. So do not call it if extended adv
738 * is supported otherwise controller will return
739 * COMMAND_DISALLOWED for extended commands.
740 */
741 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 }
743
744 if (hdev->commands[26] & 0x40) {
745 /* Read LE White List Size */
746 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
747 0, NULL);
748 }
749
750 if (hdev->commands[26] & 0x80) {
751 /* Clear LE White List */
752 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
753 }
754
755 if (hdev->commands[34] & 0x40) {
756 /* Read LE Resolving List Size */
757 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 0, NULL);
759 }
760
761 if (hdev->commands[34] & 0x20) {
762 /* Clear LE Resolving List */
763 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 }
765
766 if (hdev->commands[35] & 0x04) {
767 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768
769 /* Set RPA timeout */
770 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 &rpa_timeout);
772 }
773
774 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 /* Read LE Maximum Data Length */
776 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777
778 /* Read LE Suggested Default Data Length */
779 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 }
781
782 if (ext_adv_capable(hdev)) {
783 /* Read LE Number of Supported Advertising Sets */
784 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 0, NULL);
786 }
787
788 hci_set_le_support(req);
789 }
790
791 /* Read features beyond page 1 if available */
792 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 struct hci_cp_read_local_ext_features cp;
794
795 cp.page = p;
796 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 sizeof(cp), &cp);
798 }
799
800 return 0;
801 }
802
hci_init4_req(struct hci_request * req,unsigned long opt)803 static int hci_init4_req(struct hci_request *req, unsigned long opt)
804 {
805 struct hci_dev *hdev = req->hdev;
806
807 /* Some Broadcom based Bluetooth controllers do not support the
808 * Delete Stored Link Key command. They are clearly indicating its
809 * absence in the bit mask of supported commands.
810 *
811 * Check the supported commands and only if the command is marked
812 * as supported send it. If not supported assume that the controller
813 * does not have actual support for stored link keys which makes this
814 * command redundant anyway.
815 *
816 * Some controllers indicate that they support handling deleting
817 * stored link keys, but they don't. The quirk lets a driver
818 * just disable this command.
819 */
820 if (hdev->commands[6] & 0x80 &&
821 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 struct hci_cp_delete_stored_link_key cp;
823
824 bacpy(&cp.bdaddr, BDADDR_ANY);
825 cp.delete_all = 0x01;
826 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 sizeof(cp), &cp);
828 }
829
830 /* Set event mask page 2 if the HCI command for it is supported */
831 if (hdev->commands[22] & 0x04)
832 hci_set_event_mask_page_2(req);
833
834 /* Read local codec list if the HCI command is supported */
835 if (hdev->commands[29] & 0x20)
836 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837
838 /* Read local pairing options if the HCI command is supported */
839 if (hdev->commands[41] & 0x08)
840 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841
842 /* Get MWS transport configuration if the HCI command is supported */
843 if (hdev->commands[30] & 0x08)
844 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845
846 /* Check for Synchronization Train support */
847 if (lmp_sync_train_capable(hdev))
848 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849
850 /* Enable Secure Connections if supported and configured */
851 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 bredr_sc_enabled(hdev)) {
853 u8 support = 0x01;
854
855 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 sizeof(support), &support);
857 }
858
859 /* Set erroneous data reporting if supported to the wideband speech
860 * setting value
861 */
862 if (hdev->commands[18] & 0x08 &&
863 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 bool enabled = hci_dev_test_flag(hdev,
865 HCI_WIDEBAND_SPEECH_ENABLED);
866
867 if (enabled !=
868 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 struct hci_cp_write_def_err_data_reporting cp;
870
871 cp.err_data_reporting = enabled ?
872 ERR_DATA_REPORTING_ENABLED :
873 ERR_DATA_REPORTING_DISABLED;
874
875 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 sizeof(cp), &cp);
877 }
878 }
879
880 /* Set Suggested Default Data Length to maximum if supported */
881 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 struct hci_cp_le_write_def_data_len cp;
883
884 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 }
888
889 /* Set Default PHY parameters if command is supported */
890 if (hdev->commands[35] & 0x20) {
891 struct hci_cp_le_set_default_phy cp;
892
893 cp.all_phys = 0x00;
894 cp.tx_phys = hdev->le_tx_def_phys;
895 cp.rx_phys = hdev->le_rx_def_phys;
896
897 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 }
899
900 return 0;
901 }
902
__hci_init(struct hci_dev * hdev)903 static int __hci_init(struct hci_dev *hdev)
904 {
905 int err;
906
907 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 if (err < 0)
909 return err;
910
911 if (hci_dev_test_flag(hdev, HCI_SETUP))
912 hci_debugfs_create_basic(hdev);
913
914 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 if (err < 0)
916 return err;
917
918 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 * BR/EDR/LE type controllers. AMP controllers only need the
920 * first two stages of init.
921 */
922 if (hdev->dev_type != HCI_PRIMARY)
923 return 0;
924
925 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 if (err < 0)
927 return err;
928
929 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 if (err < 0)
931 return err;
932
933 /* This function is only called when the controller is actually in
934 * configured state. When the controller is marked as unconfigured,
935 * this initialization procedure is not run.
936 *
937 * It means that it is possible that a controller runs through its
938 * setup phase and then discovers missing settings. If that is the
939 * case, then this function will not be called. It then will only
940 * be called during the config phase.
941 *
942 * So only when in setup phase or config phase, create the debugfs
943 * entries and register the SMP channels.
944 */
945 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 !hci_dev_test_flag(hdev, HCI_CONFIG))
947 return 0;
948
949 hci_debugfs_create_common(hdev);
950
951 if (lmp_bredr_capable(hdev))
952 hci_debugfs_create_bredr(hdev);
953
954 if (lmp_le_capable(hdev))
955 hci_debugfs_create_le(hdev);
956
957 return 0;
958 }
959
hci_init0_req(struct hci_request * req,unsigned long opt)960 static int hci_init0_req(struct hci_request *req, unsigned long opt)
961 {
962 struct hci_dev *hdev = req->hdev;
963
964 BT_DBG("%s %ld", hdev->name, opt);
965
966 /* Reset */
967 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 hci_reset_req(req, 0);
969
970 /* Read Local Version */
971 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972
973 /* Read BD Address */
974 if (hdev->set_bdaddr)
975 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976
977 return 0;
978 }
979
__hci_unconf_init(struct hci_dev * hdev)980 static int __hci_unconf_init(struct hci_dev *hdev)
981 {
982 int err;
983
984 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 return 0;
986
987 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 if (err < 0)
989 return err;
990
991 if (hci_dev_test_flag(hdev, HCI_SETUP))
992 hci_debugfs_create_basic(hdev);
993
994 return 0;
995 }
996
hci_scan_req(struct hci_request * req,unsigned long opt)997 static int hci_scan_req(struct hci_request *req, unsigned long opt)
998 {
999 __u8 scan = opt;
1000
1001 BT_DBG("%s %x", req->hdev->name, scan);
1002
1003 /* Inquiry and Page scans */
1004 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 return 0;
1006 }
1007
hci_auth_req(struct hci_request * req,unsigned long opt)1008 static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009 {
1010 __u8 auth = opt;
1011
1012 BT_DBG("%s %x", req->hdev->name, auth);
1013
1014 /* Authentication */
1015 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 return 0;
1017 }
1018
hci_encrypt_req(struct hci_request * req,unsigned long opt)1019 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020 {
1021 __u8 encrypt = opt;
1022
1023 BT_DBG("%s %x", req->hdev->name, encrypt);
1024
1025 /* Encryption */
1026 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 return 0;
1028 }
1029
hci_linkpol_req(struct hci_request * req,unsigned long opt)1030 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031 {
1032 __le16 policy = cpu_to_le16(opt);
1033
1034 BT_DBG("%s %x", req->hdev->name, policy);
1035
1036 /* Default link policy */
1037 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 return 0;
1039 }
1040
1041 /* Get HCI device by index.
1042 * Device is held on return. */
hci_dev_get(int index)1043 struct hci_dev *hci_dev_get(int index)
1044 {
1045 struct hci_dev *hdev = NULL, *d;
1046
1047 BT_DBG("%d", index);
1048
1049 if (index < 0)
1050 return NULL;
1051
1052 read_lock(&hci_dev_list_lock);
1053 list_for_each_entry(d, &hci_dev_list, list) {
1054 if (d->id == index) {
1055 hdev = hci_dev_hold(d);
1056 break;
1057 }
1058 }
1059 read_unlock(&hci_dev_list_lock);
1060 return hdev;
1061 }
1062
1063 /* ---- Inquiry support ---- */
1064
hci_discovery_active(struct hci_dev * hdev)1065 bool hci_discovery_active(struct hci_dev *hdev)
1066 {
1067 struct discovery_state *discov = &hdev->discovery;
1068
1069 switch (discov->state) {
1070 case DISCOVERY_FINDING:
1071 case DISCOVERY_RESOLVING:
1072 return true;
1073
1074 default:
1075 return false;
1076 }
1077 }
1078
hci_discovery_set_state(struct hci_dev * hdev,int state)1079 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080 {
1081 int old_state = hdev->discovery.state;
1082
1083 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084
1085 if (old_state == state)
1086 return;
1087
1088 hdev->discovery.state = state;
1089
1090 switch (state) {
1091 case DISCOVERY_STOPPED:
1092 hci_update_background_scan(hdev);
1093
1094 if (old_state != DISCOVERY_STARTING)
1095 mgmt_discovering(hdev, 0);
1096 break;
1097 case DISCOVERY_STARTING:
1098 break;
1099 case DISCOVERY_FINDING:
1100 mgmt_discovering(hdev, 1);
1101 break;
1102 case DISCOVERY_RESOLVING:
1103 break;
1104 case DISCOVERY_STOPPING:
1105 break;
1106 }
1107 }
1108
hci_inquiry_cache_flush(struct hci_dev * hdev)1109 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110 {
1111 struct discovery_state *cache = &hdev->discovery;
1112 struct inquiry_entry *p, *n;
1113
1114 list_for_each_entry_safe(p, n, &cache->all, all) {
1115 list_del(&p->all);
1116 kfree(p);
1117 }
1118
1119 INIT_LIST_HEAD(&cache->unknown);
1120 INIT_LIST_HEAD(&cache->resolve);
1121 }
1122
hci_inquiry_cache_lookup(struct hci_dev * hdev,bdaddr_t * bdaddr)1123 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 bdaddr_t *bdaddr)
1125 {
1126 struct discovery_state *cache = &hdev->discovery;
1127 struct inquiry_entry *e;
1128
1129 BT_DBG("cache %p, %pMR", cache, bdaddr);
1130
1131 list_for_each_entry(e, &cache->all, all) {
1132 if (!bacmp(&e->data.bdaddr, bdaddr))
1133 return e;
1134 }
1135
1136 return NULL;
1137 }
1138
hci_inquiry_cache_lookup_unknown(struct hci_dev * hdev,bdaddr_t * bdaddr)1139 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 bdaddr_t *bdaddr)
1141 {
1142 struct discovery_state *cache = &hdev->discovery;
1143 struct inquiry_entry *e;
1144
1145 BT_DBG("cache %p, %pMR", cache, bdaddr);
1146
1147 list_for_each_entry(e, &cache->unknown, list) {
1148 if (!bacmp(&e->data.bdaddr, bdaddr))
1149 return e;
1150 }
1151
1152 return NULL;
1153 }
1154
hci_inquiry_cache_lookup_resolve(struct hci_dev * hdev,bdaddr_t * bdaddr,int state)1155 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 bdaddr_t *bdaddr,
1157 int state)
1158 {
1159 struct discovery_state *cache = &hdev->discovery;
1160 struct inquiry_entry *e;
1161
1162 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163
1164 list_for_each_entry(e, &cache->resolve, list) {
1165 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 return e;
1167 if (!bacmp(&e->data.bdaddr, bdaddr))
1168 return e;
1169 }
1170
1171 return NULL;
1172 }
1173
hci_inquiry_cache_update_resolve(struct hci_dev * hdev,struct inquiry_entry * ie)1174 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 struct inquiry_entry *ie)
1176 {
1177 struct discovery_state *cache = &hdev->discovery;
1178 struct list_head *pos = &cache->resolve;
1179 struct inquiry_entry *p;
1180
1181 list_del(&ie->list);
1182
1183 list_for_each_entry(p, &cache->resolve, list) {
1184 if (p->name_state != NAME_PENDING &&
1185 abs(p->data.rssi) >= abs(ie->data.rssi))
1186 break;
1187 pos = &p->list;
1188 }
1189
1190 list_add(&ie->list, pos);
1191 }
1192
hci_inquiry_cache_update(struct hci_dev * hdev,struct inquiry_data * data,bool name_known)1193 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 bool name_known)
1195 {
1196 struct discovery_state *cache = &hdev->discovery;
1197 struct inquiry_entry *ie;
1198 u32 flags = 0;
1199
1200 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201
1202 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203
1204 if (!data->ssp_mode)
1205 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206
1207 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 if (ie) {
1209 if (!ie->data.ssp_mode)
1210 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211
1212 if (ie->name_state == NAME_NEEDED &&
1213 data->rssi != ie->data.rssi) {
1214 ie->data.rssi = data->rssi;
1215 hci_inquiry_cache_update_resolve(hdev, ie);
1216 }
1217
1218 goto update;
1219 }
1220
1221 /* Entry not in the cache. Add new one. */
1222 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 if (!ie) {
1224 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 goto done;
1226 }
1227
1228 list_add(&ie->all, &cache->all);
1229
1230 if (name_known) {
1231 ie->name_state = NAME_KNOWN;
1232 } else {
1233 ie->name_state = NAME_NOT_KNOWN;
1234 list_add(&ie->list, &cache->unknown);
1235 }
1236
1237 update:
1238 if (name_known && ie->name_state != NAME_KNOWN &&
1239 ie->name_state != NAME_PENDING) {
1240 ie->name_state = NAME_KNOWN;
1241 list_del(&ie->list);
1242 }
1243
1244 memcpy(&ie->data, data, sizeof(*data));
1245 ie->timestamp = jiffies;
1246 cache->timestamp = jiffies;
1247
1248 if (ie->name_state == NAME_NOT_KNOWN)
1249 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250
1251 done:
1252 return flags;
1253 }
1254
inquiry_cache_dump(struct hci_dev * hdev,int num,__u8 * buf)1255 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256 {
1257 struct discovery_state *cache = &hdev->discovery;
1258 struct inquiry_info *info = (struct inquiry_info *) buf;
1259 struct inquiry_entry *e;
1260 int copied = 0;
1261
1262 list_for_each_entry(e, &cache->all, all) {
1263 struct inquiry_data *data = &e->data;
1264
1265 if (copied >= num)
1266 break;
1267
1268 bacpy(&info->bdaddr, &data->bdaddr);
1269 info->pscan_rep_mode = data->pscan_rep_mode;
1270 info->pscan_period_mode = data->pscan_period_mode;
1271 info->pscan_mode = data->pscan_mode;
1272 memcpy(info->dev_class, data->dev_class, 3);
1273 info->clock_offset = data->clock_offset;
1274
1275 info++;
1276 copied++;
1277 }
1278
1279 BT_DBG("cache %p, copied %d", cache, copied);
1280 return copied;
1281 }
1282
hci_inq_req(struct hci_request * req,unsigned long opt)1283 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284 {
1285 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 struct hci_dev *hdev = req->hdev;
1287 struct hci_cp_inquiry cp;
1288
1289 BT_DBG("%s", hdev->name);
1290
1291 if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 return 0;
1293
1294 /* Start Inquiry */
1295 memcpy(&cp.lap, &ir->lap, 3);
1296 cp.length = ir->length;
1297 cp.num_rsp = ir->num_rsp;
1298 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299
1300 return 0;
1301 }
1302
hci_inquiry(void __user * arg)1303 int hci_inquiry(void __user *arg)
1304 {
1305 __u8 __user *ptr = arg;
1306 struct hci_inquiry_req ir;
1307 struct hci_dev *hdev;
1308 int err = 0, do_inquiry = 0, max_rsp;
1309 long timeo;
1310 __u8 *buf;
1311
1312 if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 return -EFAULT;
1314
1315 hdev = hci_dev_get(ir.dev_id);
1316 if (!hdev)
1317 return -ENODEV;
1318
1319 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 err = -EBUSY;
1321 goto done;
1322 }
1323
1324 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 err = -EOPNOTSUPP;
1326 goto done;
1327 }
1328
1329 if (hdev->dev_type != HCI_PRIMARY) {
1330 err = -EOPNOTSUPP;
1331 goto done;
1332 }
1333
1334 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 err = -EOPNOTSUPP;
1336 goto done;
1337 }
1338
1339 /* Restrict maximum inquiry length to 60 seconds */
1340 if (ir.length > 60) {
1341 err = -EINVAL;
1342 goto done;
1343 }
1344
1345 hci_dev_lock(hdev);
1346 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1347 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1348 hci_inquiry_cache_flush(hdev);
1349 do_inquiry = 1;
1350 }
1351 hci_dev_unlock(hdev);
1352
1353 timeo = ir.length * msecs_to_jiffies(2000);
1354
1355 if (do_inquiry) {
1356 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1357 timeo, NULL);
1358 if (err < 0)
1359 goto done;
1360
1361 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1362 * cleared). If it is interrupted by a signal, return -EINTR.
1363 */
1364 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1365 TASK_INTERRUPTIBLE)) {
1366 err = -EINTR;
1367 goto done;
1368 }
1369 }
1370
1371 /* for unlimited number of responses we will use buffer with
1372 * 255 entries
1373 */
1374 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1375
1376 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1377 * copy it to the user space.
1378 */
1379 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1380 if (!buf) {
1381 err = -ENOMEM;
1382 goto done;
1383 }
1384
1385 hci_dev_lock(hdev);
1386 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1387 hci_dev_unlock(hdev);
1388
1389 BT_DBG("num_rsp %d", ir.num_rsp);
1390
1391 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1392 ptr += sizeof(ir);
1393 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1394 ir.num_rsp))
1395 err = -EFAULT;
1396 } else
1397 err = -EFAULT;
1398
1399 kfree(buf);
1400
1401 done:
1402 hci_dev_put(hdev);
1403 return err;
1404 }
1405
1406 /**
1407 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1408 * (BD_ADDR) for a HCI device from
1409 * a firmware node property.
1410 * @hdev: The HCI device
1411 *
1412 * Search the firmware node for 'local-bd-address'.
1413 *
1414 * All-zero BD addresses are rejected, because those could be properties
1415 * that exist in the firmware tables, but were not updated by the firmware. For
1416 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1417 */
hci_dev_get_bd_addr_from_property(struct hci_dev * hdev)1418 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1419 {
1420 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1421 bdaddr_t ba;
1422 int ret;
1423
1424 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1425 (u8 *)&ba, sizeof(ba));
1426 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1427 return;
1428
1429 bacpy(&hdev->public_addr, &ba);
1430 }
1431
hci_dev_do_open(struct hci_dev * hdev)1432 static int hci_dev_do_open(struct hci_dev *hdev)
1433 {
1434 int ret = 0;
1435
1436 BT_DBG("%s %p", hdev->name, hdev);
1437
1438 hci_req_sync_lock(hdev);
1439
1440 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1441 ret = -ENODEV;
1442 goto done;
1443 }
1444
1445 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1446 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1447 /* Check for rfkill but allow the HCI setup stage to
1448 * proceed (which in itself doesn't cause any RF activity).
1449 */
1450 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1451 ret = -ERFKILL;
1452 goto done;
1453 }
1454
1455 /* Check for valid public address or a configured static
1456 * random adddress, but let the HCI setup proceed to
1457 * be able to determine if there is a public address
1458 * or not.
1459 *
1460 * In case of user channel usage, it is not important
1461 * if a public address or static random address is
1462 * available.
1463 *
1464 * This check is only valid for BR/EDR controllers
1465 * since AMP controllers do not have an address.
1466 */
1467 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1468 hdev->dev_type == HCI_PRIMARY &&
1469 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1470 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1471 ret = -EADDRNOTAVAIL;
1472 goto done;
1473 }
1474 }
1475
1476 if (test_bit(HCI_UP, &hdev->flags)) {
1477 ret = -EALREADY;
1478 goto done;
1479 }
1480
1481 if (hdev->open(hdev)) {
1482 ret = -EIO;
1483 goto done;
1484 }
1485
1486 set_bit(HCI_RUNNING, &hdev->flags);
1487 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1488
1489 atomic_set(&hdev->cmd_cnt, 1);
1490 set_bit(HCI_INIT, &hdev->flags);
1491
1492 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1493 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1494 bool invalid_bdaddr;
1495
1496 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1497
1498 if (hdev->setup)
1499 ret = hdev->setup(hdev);
1500
1501 /* The transport driver can set the quirk to mark the
1502 * BD_ADDR invalid before creating the HCI device or in
1503 * its setup callback.
1504 */
1505 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1506 &hdev->quirks);
1507
1508 if (ret)
1509 goto setup_failed;
1510
1511 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1512 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1513 hci_dev_get_bd_addr_from_property(hdev);
1514
1515 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1516 hdev->set_bdaddr) {
1517 ret = hdev->set_bdaddr(hdev,
1518 &hdev->public_addr);
1519
1520 /* If setting of the BD_ADDR from the device
1521 * property succeeds, then treat the address
1522 * as valid even if the invalid BD_ADDR
1523 * quirk indicates otherwise.
1524 */
1525 if (!ret)
1526 invalid_bdaddr = false;
1527 }
1528 }
1529
1530 setup_failed:
1531 /* The transport driver can set these quirks before
1532 * creating the HCI device or in its setup callback.
1533 *
1534 * For the invalid BD_ADDR quirk it is possible that
1535 * it becomes a valid address if the bootloader does
1536 * provide it (see above).
1537 *
1538 * In case any of them is set, the controller has to
1539 * start up as unconfigured.
1540 */
1541 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1542 invalid_bdaddr)
1543 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1544
1545 /* For an unconfigured controller it is required to
1546 * read at least the version information provided by
1547 * the Read Local Version Information command.
1548 *
1549 * If the set_bdaddr driver callback is provided, then
1550 * also the original Bluetooth public device address
1551 * will be read using the Read BD Address command.
1552 */
1553 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1554 ret = __hci_unconf_init(hdev);
1555 }
1556
1557 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1558 /* If public address change is configured, ensure that
1559 * the address gets programmed. If the driver does not
1560 * support changing the public address, fail the power
1561 * on procedure.
1562 */
1563 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1564 hdev->set_bdaddr)
1565 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1566 else
1567 ret = -EADDRNOTAVAIL;
1568 }
1569
1570 if (!ret) {
1571 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1572 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1573 ret = __hci_init(hdev);
1574 if (!ret && hdev->post_init)
1575 ret = hdev->post_init(hdev);
1576 }
1577 }
1578
1579 /* If the HCI Reset command is clearing all diagnostic settings,
1580 * then they need to be reprogrammed after the init procedure
1581 * completed.
1582 */
1583 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1584 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1585 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1586 ret = hdev->set_diag(hdev, true);
1587
1588 msft_do_open(hdev);
1589
1590 clear_bit(HCI_INIT, &hdev->flags);
1591
1592 if (!ret) {
1593 hci_dev_hold(hdev);
1594 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1595 hci_adv_instances_set_rpa_expired(hdev, true);
1596 set_bit(HCI_UP, &hdev->flags);
1597 hci_sock_dev_event(hdev, HCI_DEV_UP);
1598 hci_leds_update_powered(hdev, true);
1599 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1600 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1601 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1602 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1603 hci_dev_test_flag(hdev, HCI_MGMT) &&
1604 hdev->dev_type == HCI_PRIMARY) {
1605 ret = __hci_req_hci_power_on(hdev);
1606 mgmt_power_on(hdev, ret);
1607 }
1608 } else {
1609 /* Init failed, cleanup */
1610 flush_work(&hdev->tx_work);
1611
1612 /* Since hci_rx_work() is possible to awake new cmd_work
1613 * it should be flushed first to avoid unexpected call of
1614 * hci_cmd_work()
1615 */
1616 flush_work(&hdev->rx_work);
1617 flush_work(&hdev->cmd_work);
1618
1619 skb_queue_purge(&hdev->cmd_q);
1620 skb_queue_purge(&hdev->rx_q);
1621
1622 if (hdev->flush)
1623 hdev->flush(hdev);
1624
1625 if (hdev->sent_cmd) {
1626 cancel_delayed_work_sync(&hdev->cmd_timer);
1627 kfree_skb(hdev->sent_cmd);
1628 hdev->sent_cmd = NULL;
1629 }
1630
1631 clear_bit(HCI_RUNNING, &hdev->flags);
1632 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1633
1634 hdev->close(hdev);
1635 hdev->flags &= BIT(HCI_RAW);
1636 }
1637
1638 done:
1639 hci_req_sync_unlock(hdev);
1640 return ret;
1641 }
1642
1643 /* ---- HCI ioctl helpers ---- */
1644
hci_dev_open(__u16 dev)1645 int hci_dev_open(__u16 dev)
1646 {
1647 struct hci_dev *hdev;
1648 int err;
1649
1650 hdev = hci_dev_get(dev);
1651 if (!hdev)
1652 return -ENODEV;
1653
1654 /* Devices that are marked as unconfigured can only be powered
1655 * up as user channel. Trying to bring them up as normal devices
1656 * will result into a failure. Only user channel operation is
1657 * possible.
1658 *
1659 * When this function is called for a user channel, the flag
1660 * HCI_USER_CHANNEL will be set first before attempting to
1661 * open the device.
1662 */
1663 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1664 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1665 err = -EOPNOTSUPP;
1666 goto done;
1667 }
1668
1669 /* We need to ensure that no other power on/off work is pending
1670 * before proceeding to call hci_dev_do_open. This is
1671 * particularly important if the setup procedure has not yet
1672 * completed.
1673 */
1674 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1675 cancel_delayed_work(&hdev->power_off);
1676
1677 /* After this call it is guaranteed that the setup procedure
1678 * has finished. This means that error conditions like RFKILL
1679 * or no valid public or static random address apply.
1680 */
1681 flush_workqueue(hdev->req_workqueue);
1682
1683 /* For controllers not using the management interface and that
1684 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1685 * so that pairing works for them. Once the management interface
1686 * is in use this bit will be cleared again and userspace has
1687 * to explicitly enable it.
1688 */
1689 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1690 !hci_dev_test_flag(hdev, HCI_MGMT))
1691 hci_dev_set_flag(hdev, HCI_BONDABLE);
1692
1693 err = hci_dev_do_open(hdev);
1694
1695 done:
1696 hci_dev_put(hdev);
1697 return err;
1698 }
1699
1700 /* This function requires the caller holds hdev->lock */
hci_pend_le_actions_clear(struct hci_dev * hdev)1701 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1702 {
1703 struct hci_conn_params *p;
1704
1705 list_for_each_entry(p, &hdev->le_conn_params, list) {
1706 if (p->conn) {
1707 hci_conn_drop(p->conn);
1708 hci_conn_put(p->conn);
1709 p->conn = NULL;
1710 }
1711 list_del_init(&p->action);
1712 }
1713
1714 BT_DBG("All LE pending actions cleared");
1715 }
1716
hci_dev_do_close(struct hci_dev * hdev)1717 int hci_dev_do_close(struct hci_dev *hdev)
1718 {
1719 bool auto_off;
1720
1721 BT_DBG("%s %p", hdev->name, hdev);
1722
1723 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1724 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1725 test_bit(HCI_UP, &hdev->flags)) {
1726 /* Execute vendor specific shutdown routine */
1727 if (hdev->shutdown)
1728 hdev->shutdown(hdev);
1729 }
1730
1731 cancel_delayed_work(&hdev->power_off);
1732
1733 hci_request_cancel_all(hdev);
1734 hci_req_sync_lock(hdev);
1735
1736 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1737 cancel_delayed_work_sync(&hdev->cmd_timer);
1738 hci_req_sync_unlock(hdev);
1739 return 0;
1740 }
1741
1742 hci_leds_update_powered(hdev, false);
1743
1744 /* Flush RX and TX works */
1745 flush_work(&hdev->tx_work);
1746 flush_work(&hdev->rx_work);
1747
1748 if (hdev->discov_timeout > 0) {
1749 hdev->discov_timeout = 0;
1750 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1751 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1752 }
1753
1754 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1755 cancel_delayed_work(&hdev->service_cache);
1756
1757 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1758 struct adv_info *adv_instance;
1759
1760 cancel_delayed_work_sync(&hdev->rpa_expired);
1761
1762 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1763 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1764 }
1765
1766 /* Avoid potential lockdep warnings from the *_flush() calls by
1767 * ensuring the workqueue is empty up front.
1768 */
1769 drain_workqueue(hdev->workqueue);
1770
1771 hci_dev_lock(hdev);
1772
1773 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1774
1775 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1776
1777 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1778 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1779 hci_dev_test_flag(hdev, HCI_MGMT))
1780 __mgmt_power_off(hdev);
1781
1782 hci_inquiry_cache_flush(hdev);
1783 hci_pend_le_actions_clear(hdev);
1784 hci_conn_hash_flush(hdev);
1785 hci_dev_unlock(hdev);
1786
1787 smp_unregister(hdev);
1788
1789 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1790
1791 msft_do_close(hdev);
1792
1793 if (hdev->flush)
1794 hdev->flush(hdev);
1795
1796 /* Reset device */
1797 skb_queue_purge(&hdev->cmd_q);
1798 atomic_set(&hdev->cmd_cnt, 1);
1799 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1800 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801 set_bit(HCI_INIT, &hdev->flags);
1802 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1803 clear_bit(HCI_INIT, &hdev->flags);
1804 }
1805
1806 /* flush cmd work */
1807 flush_work(&hdev->cmd_work);
1808
1809 /* Drop queues */
1810 skb_queue_purge(&hdev->rx_q);
1811 skb_queue_purge(&hdev->cmd_q);
1812 skb_queue_purge(&hdev->raw_q);
1813
1814 /* Drop last sent command */
1815 if (hdev->sent_cmd) {
1816 cancel_delayed_work_sync(&hdev->cmd_timer);
1817 kfree_skb(hdev->sent_cmd);
1818 hdev->sent_cmd = NULL;
1819 }
1820
1821 clear_bit(HCI_RUNNING, &hdev->flags);
1822 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1823
1824 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1825 wake_up(&hdev->suspend_wait_q);
1826
1827 /* After this point our queues are empty
1828 * and no tasks are scheduled. */
1829 hdev->close(hdev);
1830
1831 /* Clear flags */
1832 hdev->flags &= BIT(HCI_RAW);
1833 hci_dev_clear_volatile_flags(hdev);
1834
1835 /* Controller radio is available but is currently powered down */
1836 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1837
1838 memset(hdev->eir, 0, sizeof(hdev->eir));
1839 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1840 bacpy(&hdev->random_addr, BDADDR_ANY);
1841
1842 hci_req_sync_unlock(hdev);
1843
1844 hci_dev_put(hdev);
1845 return 0;
1846 }
1847
hci_dev_close(__u16 dev)1848 int hci_dev_close(__u16 dev)
1849 {
1850 struct hci_dev *hdev;
1851 int err;
1852
1853 hdev = hci_dev_get(dev);
1854 if (!hdev)
1855 return -ENODEV;
1856
1857 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1858 err = -EBUSY;
1859 goto done;
1860 }
1861
1862 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1863 cancel_delayed_work(&hdev->power_off);
1864
1865 err = hci_dev_do_close(hdev);
1866
1867 done:
1868 hci_dev_put(hdev);
1869 return err;
1870 }
1871
hci_dev_do_reset(struct hci_dev * hdev)1872 static int hci_dev_do_reset(struct hci_dev *hdev)
1873 {
1874 int ret;
1875
1876 BT_DBG("%s %p", hdev->name, hdev);
1877
1878 hci_req_sync_lock(hdev);
1879
1880 /* Drop queues */
1881 skb_queue_purge(&hdev->rx_q);
1882 skb_queue_purge(&hdev->cmd_q);
1883
1884 /* Avoid potential lockdep warnings from the *_flush() calls by
1885 * ensuring the workqueue is empty up front.
1886 */
1887 drain_workqueue(hdev->workqueue);
1888
1889 hci_dev_lock(hdev);
1890 hci_inquiry_cache_flush(hdev);
1891 hci_conn_hash_flush(hdev);
1892 hci_dev_unlock(hdev);
1893
1894 if (hdev->flush)
1895 hdev->flush(hdev);
1896
1897 atomic_set(&hdev->cmd_cnt, 1);
1898 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1899
1900 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1901
1902 hci_req_sync_unlock(hdev);
1903 return ret;
1904 }
1905
hci_dev_reset(__u16 dev)1906 int hci_dev_reset(__u16 dev)
1907 {
1908 struct hci_dev *hdev;
1909 int err;
1910
1911 hdev = hci_dev_get(dev);
1912 if (!hdev)
1913 return -ENODEV;
1914
1915 if (!test_bit(HCI_UP, &hdev->flags)) {
1916 err = -ENETDOWN;
1917 goto done;
1918 }
1919
1920 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1921 err = -EBUSY;
1922 goto done;
1923 }
1924
1925 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1926 err = -EOPNOTSUPP;
1927 goto done;
1928 }
1929
1930 err = hci_dev_do_reset(hdev);
1931
1932 done:
1933 hci_dev_put(hdev);
1934 return err;
1935 }
1936
hci_dev_reset_stat(__u16 dev)1937 int hci_dev_reset_stat(__u16 dev)
1938 {
1939 struct hci_dev *hdev;
1940 int ret = 0;
1941
1942 hdev = hci_dev_get(dev);
1943 if (!hdev)
1944 return -ENODEV;
1945
1946 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1947 ret = -EBUSY;
1948 goto done;
1949 }
1950
1951 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1952 ret = -EOPNOTSUPP;
1953 goto done;
1954 }
1955
1956 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1957
1958 done:
1959 hci_dev_put(hdev);
1960 return ret;
1961 }
1962
hci_update_scan_state(struct hci_dev * hdev,u8 scan)1963 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1964 {
1965 bool conn_changed, discov_changed;
1966
1967 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1968
1969 if ((scan & SCAN_PAGE))
1970 conn_changed = !hci_dev_test_and_set_flag(hdev,
1971 HCI_CONNECTABLE);
1972 else
1973 conn_changed = hci_dev_test_and_clear_flag(hdev,
1974 HCI_CONNECTABLE);
1975
1976 if ((scan & SCAN_INQUIRY)) {
1977 discov_changed = !hci_dev_test_and_set_flag(hdev,
1978 HCI_DISCOVERABLE);
1979 } else {
1980 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1981 discov_changed = hci_dev_test_and_clear_flag(hdev,
1982 HCI_DISCOVERABLE);
1983 }
1984
1985 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1986 return;
1987
1988 if (conn_changed || discov_changed) {
1989 /* In case this was disabled through mgmt */
1990 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1991
1992 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1993 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1994
1995 mgmt_new_settings(hdev);
1996 }
1997 }
1998
hci_dev_cmd(unsigned int cmd,void __user * arg)1999 int hci_dev_cmd(unsigned int cmd, void __user *arg)
2000 {
2001 struct hci_dev *hdev;
2002 struct hci_dev_req dr;
2003 int err = 0;
2004
2005 if (copy_from_user(&dr, arg, sizeof(dr)))
2006 return -EFAULT;
2007
2008 hdev = hci_dev_get(dr.dev_id);
2009 if (!hdev)
2010 return -ENODEV;
2011
2012 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
2013 err = -EBUSY;
2014 goto done;
2015 }
2016
2017 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2018 err = -EOPNOTSUPP;
2019 goto done;
2020 }
2021
2022 if (hdev->dev_type != HCI_PRIMARY) {
2023 err = -EOPNOTSUPP;
2024 goto done;
2025 }
2026
2027 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2028 err = -EOPNOTSUPP;
2029 goto done;
2030 }
2031
2032 switch (cmd) {
2033 case HCISETAUTH:
2034 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2035 HCI_INIT_TIMEOUT, NULL);
2036 break;
2037
2038 case HCISETENCRYPT:
2039 if (!lmp_encrypt_capable(hdev)) {
2040 err = -EOPNOTSUPP;
2041 break;
2042 }
2043
2044 if (!test_bit(HCI_AUTH, &hdev->flags)) {
2045 /* Auth must be enabled first */
2046 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2047 HCI_INIT_TIMEOUT, NULL);
2048 if (err)
2049 break;
2050 }
2051
2052 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2053 HCI_INIT_TIMEOUT, NULL);
2054 break;
2055
2056 case HCISETSCAN:
2057 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2058 HCI_INIT_TIMEOUT, NULL);
2059
2060 /* Ensure that the connectable and discoverable states
2061 * get correctly modified as this was a non-mgmt change.
2062 */
2063 if (!err)
2064 hci_update_scan_state(hdev, dr.dev_opt);
2065 break;
2066
2067 case HCISETLINKPOL:
2068 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2069 HCI_INIT_TIMEOUT, NULL);
2070 break;
2071
2072 case HCISETLINKMODE:
2073 hdev->link_mode = ((__u16) dr.dev_opt) &
2074 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2075 break;
2076
2077 case HCISETPTYPE:
2078 if (hdev->pkt_type == (__u16) dr.dev_opt)
2079 break;
2080
2081 hdev->pkt_type = (__u16) dr.dev_opt;
2082 mgmt_phy_configuration_changed(hdev, NULL);
2083 break;
2084
2085 case HCISETACLMTU:
2086 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2087 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2088 break;
2089
2090 case HCISETSCOMTU:
2091 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2092 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2093 break;
2094
2095 default:
2096 err = -EINVAL;
2097 break;
2098 }
2099
2100 done:
2101 hci_dev_put(hdev);
2102 return err;
2103 }
2104
hci_get_dev_list(void __user * arg)2105 int hci_get_dev_list(void __user *arg)
2106 {
2107 struct hci_dev *hdev;
2108 struct hci_dev_list_req *dl;
2109 struct hci_dev_req *dr;
2110 int n = 0, size, err;
2111 __u16 dev_num;
2112
2113 if (get_user(dev_num, (__u16 __user *) arg))
2114 return -EFAULT;
2115
2116 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2117 return -EINVAL;
2118
2119 size = sizeof(*dl) + dev_num * sizeof(*dr);
2120
2121 dl = kzalloc(size, GFP_KERNEL);
2122 if (!dl)
2123 return -ENOMEM;
2124
2125 dr = dl->dev_req;
2126
2127 read_lock(&hci_dev_list_lock);
2128 list_for_each_entry(hdev, &hci_dev_list, list) {
2129 unsigned long flags = hdev->flags;
2130
2131 /* When the auto-off is configured it means the transport
2132 * is running, but in that case still indicate that the
2133 * device is actually down.
2134 */
2135 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2136 flags &= ~BIT(HCI_UP);
2137
2138 (dr + n)->dev_id = hdev->id;
2139 (dr + n)->dev_opt = flags;
2140
2141 if (++n >= dev_num)
2142 break;
2143 }
2144 read_unlock(&hci_dev_list_lock);
2145
2146 dl->dev_num = n;
2147 size = sizeof(*dl) + n * sizeof(*dr);
2148
2149 err = copy_to_user(arg, dl, size);
2150 kfree(dl);
2151
2152 return err ? -EFAULT : 0;
2153 }
2154
hci_get_dev_info(void __user * arg)2155 int hci_get_dev_info(void __user *arg)
2156 {
2157 struct hci_dev *hdev;
2158 struct hci_dev_info di;
2159 unsigned long flags;
2160 int err = 0;
2161
2162 if (copy_from_user(&di, arg, sizeof(di)))
2163 return -EFAULT;
2164
2165 hdev = hci_dev_get(di.dev_id);
2166 if (!hdev)
2167 return -ENODEV;
2168
2169 /* When the auto-off is configured it means the transport
2170 * is running, but in that case still indicate that the
2171 * device is actually down.
2172 */
2173 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2174 flags = hdev->flags & ~BIT(HCI_UP);
2175 else
2176 flags = hdev->flags;
2177
2178 strcpy(di.name, hdev->name);
2179 di.bdaddr = hdev->bdaddr;
2180 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2181 di.flags = flags;
2182 di.pkt_type = hdev->pkt_type;
2183 if (lmp_bredr_capable(hdev)) {
2184 di.acl_mtu = hdev->acl_mtu;
2185 di.acl_pkts = hdev->acl_pkts;
2186 di.sco_mtu = hdev->sco_mtu;
2187 di.sco_pkts = hdev->sco_pkts;
2188 } else {
2189 di.acl_mtu = hdev->le_mtu;
2190 di.acl_pkts = hdev->le_pkts;
2191 di.sco_mtu = 0;
2192 di.sco_pkts = 0;
2193 }
2194 di.link_policy = hdev->link_policy;
2195 di.link_mode = hdev->link_mode;
2196
2197 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2198 memcpy(&di.features, &hdev->features, sizeof(di.features));
2199
2200 if (copy_to_user(arg, &di, sizeof(di)))
2201 err = -EFAULT;
2202
2203 hci_dev_put(hdev);
2204
2205 return err;
2206 }
2207
2208 /* ---- Interface to HCI drivers ---- */
2209
hci_rfkill_set_block(void * data,bool blocked)2210 static int hci_rfkill_set_block(void *data, bool blocked)
2211 {
2212 struct hci_dev *hdev = data;
2213
2214 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2215
2216 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2217 return -EBUSY;
2218
2219 if (blocked) {
2220 hci_dev_set_flag(hdev, HCI_RFKILLED);
2221 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2222 !hci_dev_test_flag(hdev, HCI_CONFIG))
2223 hci_dev_do_close(hdev);
2224 } else {
2225 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2226 }
2227
2228 return 0;
2229 }
2230
2231 static const struct rfkill_ops hci_rfkill_ops = {
2232 .set_block = hci_rfkill_set_block,
2233 };
2234
hci_power_on(struct work_struct * work)2235 static void hci_power_on(struct work_struct *work)
2236 {
2237 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2238 int err;
2239
2240 BT_DBG("%s", hdev->name);
2241
2242 if (test_bit(HCI_UP, &hdev->flags) &&
2243 hci_dev_test_flag(hdev, HCI_MGMT) &&
2244 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2245 cancel_delayed_work(&hdev->power_off);
2246 hci_req_sync_lock(hdev);
2247 err = __hci_req_hci_power_on(hdev);
2248 hci_req_sync_unlock(hdev);
2249 mgmt_power_on(hdev, err);
2250 return;
2251 }
2252
2253 err = hci_dev_do_open(hdev);
2254 if (err < 0) {
2255 hci_dev_lock(hdev);
2256 mgmt_set_powered_failed(hdev, err);
2257 hci_dev_unlock(hdev);
2258 return;
2259 }
2260
2261 /* During the HCI setup phase, a few error conditions are
2262 * ignored and they need to be checked now. If they are still
2263 * valid, it is important to turn the device back off.
2264 */
2265 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2266 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2267 (hdev->dev_type == HCI_PRIMARY &&
2268 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2269 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2270 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2271 hci_dev_do_close(hdev);
2272 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2273 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2274 HCI_AUTO_OFF_TIMEOUT);
2275 }
2276
2277 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2278 /* For unconfigured devices, set the HCI_RAW flag
2279 * so that userspace can easily identify them.
2280 */
2281 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2282 set_bit(HCI_RAW, &hdev->flags);
2283
2284 /* For fully configured devices, this will send
2285 * the Index Added event. For unconfigured devices,
2286 * it will send Unconfigued Index Added event.
2287 *
2288 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2289 * and no event will be send.
2290 */
2291 mgmt_index_added(hdev);
2292 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2293 /* When the controller is now configured, then it
2294 * is important to clear the HCI_RAW flag.
2295 */
2296 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2297 clear_bit(HCI_RAW, &hdev->flags);
2298
2299 /* Powering on the controller with HCI_CONFIG set only
2300 * happens with the transition from unconfigured to
2301 * configured. This will send the Index Added event.
2302 */
2303 mgmt_index_added(hdev);
2304 }
2305 }
2306
hci_power_off(struct work_struct * work)2307 static void hci_power_off(struct work_struct *work)
2308 {
2309 struct hci_dev *hdev = container_of(work, struct hci_dev,
2310 power_off.work);
2311
2312 BT_DBG("%s", hdev->name);
2313
2314 hci_dev_do_close(hdev);
2315 }
2316
hci_error_reset(struct work_struct * work)2317 static void hci_error_reset(struct work_struct *work)
2318 {
2319 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2320
2321 hci_dev_hold(hdev);
2322 BT_DBG("%s", hdev->name);
2323
2324 if (hdev->hw_error)
2325 hdev->hw_error(hdev, hdev->hw_error_code);
2326 else
2327 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2328
2329 if (!hci_dev_do_close(hdev))
2330 hci_dev_do_open(hdev);
2331
2332 hci_dev_put(hdev);
2333 }
2334
hci_uuids_clear(struct hci_dev * hdev)2335 void hci_uuids_clear(struct hci_dev *hdev)
2336 {
2337 struct bt_uuid *uuid, *tmp;
2338
2339 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2340 list_del(&uuid->list);
2341 kfree(uuid);
2342 }
2343 }
2344
hci_link_keys_clear(struct hci_dev * hdev)2345 void hci_link_keys_clear(struct hci_dev *hdev)
2346 {
2347 struct link_key *key, *tmp;
2348
2349 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
2350 list_del_rcu(&key->list);
2351 kfree_rcu(key, rcu);
2352 }
2353 }
2354
hci_smp_ltks_clear(struct hci_dev * hdev)2355 void hci_smp_ltks_clear(struct hci_dev *hdev)
2356 {
2357 struct smp_ltk *k, *tmp;
2358
2359 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
2360 list_del_rcu(&k->list);
2361 kfree_rcu(k, rcu);
2362 }
2363 }
2364
hci_smp_irks_clear(struct hci_dev * hdev)2365 void hci_smp_irks_clear(struct hci_dev *hdev)
2366 {
2367 struct smp_irk *k, *tmp;
2368
2369 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
2370 list_del_rcu(&k->list);
2371 kfree_rcu(k, rcu);
2372 }
2373 }
2374
hci_blocked_keys_clear(struct hci_dev * hdev)2375 void hci_blocked_keys_clear(struct hci_dev *hdev)
2376 {
2377 struct blocked_key *b, *tmp;
2378
2379 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
2380 list_del_rcu(&b->list);
2381 kfree_rcu(b, rcu);
2382 }
2383 }
2384
hci_is_blocked_key(struct hci_dev * hdev,u8 type,u8 val[16])2385 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2386 {
2387 bool blocked = false;
2388 struct blocked_key *b;
2389
2390 rcu_read_lock();
2391 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2392 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2393 blocked = true;
2394 break;
2395 }
2396 }
2397
2398 rcu_read_unlock();
2399 return blocked;
2400 }
2401
hci_find_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2402 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2403 {
2404 struct link_key *k;
2405
2406 rcu_read_lock();
2407 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2408 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2409 rcu_read_unlock();
2410
2411 if (hci_is_blocked_key(hdev,
2412 HCI_BLOCKED_KEY_TYPE_LINKKEY,
2413 k->val)) {
2414 bt_dev_warn_ratelimited(hdev,
2415 "Link key blocked for %pMR",
2416 &k->bdaddr);
2417 return NULL;
2418 }
2419
2420 return k;
2421 }
2422 }
2423 rcu_read_unlock();
2424
2425 return NULL;
2426 }
2427
hci_persistent_key(struct hci_dev * hdev,struct hci_conn * conn,u8 key_type,u8 old_key_type)2428 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2429 u8 key_type, u8 old_key_type)
2430 {
2431 /* Legacy key */
2432 if (key_type < 0x03)
2433 return true;
2434
2435 /* Debug keys are insecure so don't store them persistently */
2436 if (key_type == HCI_LK_DEBUG_COMBINATION)
2437 return false;
2438
2439 /* Changed combination key and there's no previous one */
2440 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2441 return false;
2442
2443 /* Security mode 3 case */
2444 if (!conn)
2445 return true;
2446
2447 /* BR/EDR key derived using SC from an LE link */
2448 if (conn->type == LE_LINK)
2449 return true;
2450
2451 /* Neither local nor remote side had no-bonding as requirement */
2452 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2453 return true;
2454
2455 /* Local side had dedicated bonding as requirement */
2456 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2457 return true;
2458
2459 /* Remote side had dedicated bonding as requirement */
2460 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2461 return true;
2462
2463 /* If none of the above criteria match, then don't store the key
2464 * persistently */
2465 return false;
2466 }
2467
ltk_role(u8 type)2468 static u8 ltk_role(u8 type)
2469 {
2470 if (type == SMP_LTK)
2471 return HCI_ROLE_MASTER;
2472
2473 return HCI_ROLE_SLAVE;
2474 }
2475
hci_find_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 role)2476 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2477 u8 addr_type, u8 role)
2478 {
2479 struct smp_ltk *k;
2480
2481 rcu_read_lock();
2482 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2483 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2484 continue;
2485
2486 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2487 rcu_read_unlock();
2488
2489 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2490 k->val)) {
2491 bt_dev_warn_ratelimited(hdev,
2492 "LTK blocked for %pMR",
2493 &k->bdaddr);
2494 return NULL;
2495 }
2496
2497 return k;
2498 }
2499 }
2500 rcu_read_unlock();
2501
2502 return NULL;
2503 }
2504
hci_find_irk_by_rpa(struct hci_dev * hdev,bdaddr_t * rpa)2505 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2506 {
2507 struct smp_irk *irk_to_return = NULL;
2508 struct smp_irk *irk;
2509
2510 rcu_read_lock();
2511 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2512 if (!bacmp(&irk->rpa, rpa)) {
2513 irk_to_return = irk;
2514 goto done;
2515 }
2516 }
2517
2518 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2519 if (smp_irk_matches(hdev, irk->val, rpa)) {
2520 bacpy(&irk->rpa, rpa);
2521 irk_to_return = irk;
2522 goto done;
2523 }
2524 }
2525
2526 done:
2527 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2528 irk_to_return->val)) {
2529 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2530 &irk_to_return->bdaddr);
2531 irk_to_return = NULL;
2532 }
2533
2534 rcu_read_unlock();
2535
2536 return irk_to_return;
2537 }
2538
hci_find_irk_by_addr(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2539 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2540 u8 addr_type)
2541 {
2542 struct smp_irk *irk_to_return = NULL;
2543 struct smp_irk *irk;
2544
2545 /* Identity Address must be public or static random */
2546 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2547 return NULL;
2548
2549 rcu_read_lock();
2550 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2551 if (addr_type == irk->addr_type &&
2552 bacmp(bdaddr, &irk->bdaddr) == 0) {
2553 irk_to_return = irk;
2554 goto done;
2555 }
2556 }
2557
2558 done:
2559
2560 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2561 irk_to_return->val)) {
2562 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2563 &irk_to_return->bdaddr);
2564 irk_to_return = NULL;
2565 }
2566
2567 rcu_read_unlock();
2568
2569 return irk_to_return;
2570 }
2571
hci_add_link_key(struct hci_dev * hdev,struct hci_conn * conn,bdaddr_t * bdaddr,u8 * val,u8 type,u8 pin_len,bool * persistent)2572 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2573 bdaddr_t *bdaddr, u8 *val, u8 type,
2574 u8 pin_len, bool *persistent)
2575 {
2576 struct link_key *key, *old_key;
2577 u8 old_key_type;
2578
2579 old_key = hci_find_link_key(hdev, bdaddr);
2580 if (old_key) {
2581 old_key_type = old_key->type;
2582 key = old_key;
2583 } else {
2584 old_key_type = conn ? conn->key_type : 0xff;
2585 key = kzalloc(sizeof(*key), GFP_KERNEL);
2586 if (!key)
2587 return NULL;
2588 list_add_rcu(&key->list, &hdev->link_keys);
2589 }
2590
2591 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2592
2593 /* Some buggy controller combinations generate a changed
2594 * combination key for legacy pairing even when there's no
2595 * previous key */
2596 if (type == HCI_LK_CHANGED_COMBINATION &&
2597 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2598 type = HCI_LK_COMBINATION;
2599 if (conn)
2600 conn->key_type = type;
2601 }
2602
2603 bacpy(&key->bdaddr, bdaddr);
2604 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2605 key->pin_len = pin_len;
2606
2607 if (type == HCI_LK_CHANGED_COMBINATION)
2608 key->type = old_key_type;
2609 else
2610 key->type = type;
2611
2612 if (persistent)
2613 *persistent = hci_persistent_key(hdev, conn, type,
2614 old_key_type);
2615
2616 return key;
2617 }
2618
hci_add_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 type,u8 authenticated,u8 tk[16],u8 enc_size,__le16 ediv,__le64 rand)2619 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2620 u8 addr_type, u8 type, u8 authenticated,
2621 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2622 {
2623 struct smp_ltk *key, *old_key;
2624 u8 role = ltk_role(type);
2625
2626 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2627 if (old_key)
2628 key = old_key;
2629 else {
2630 key = kzalloc(sizeof(*key), GFP_KERNEL);
2631 if (!key)
2632 return NULL;
2633 list_add_rcu(&key->list, &hdev->long_term_keys);
2634 }
2635
2636 bacpy(&key->bdaddr, bdaddr);
2637 key->bdaddr_type = addr_type;
2638 memcpy(key->val, tk, sizeof(key->val));
2639 key->authenticated = authenticated;
2640 key->ediv = ediv;
2641 key->rand = rand;
2642 key->enc_size = enc_size;
2643 key->type = type;
2644
2645 return key;
2646 }
2647
hci_add_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 val[16],bdaddr_t * rpa)2648 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2649 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2650 {
2651 struct smp_irk *irk;
2652
2653 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2654 if (!irk) {
2655 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2656 if (!irk)
2657 return NULL;
2658
2659 bacpy(&irk->bdaddr, bdaddr);
2660 irk->addr_type = addr_type;
2661
2662 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2663 }
2664
2665 memcpy(irk->val, val, 16);
2666 bacpy(&irk->rpa, rpa);
2667
2668 return irk;
2669 }
2670
hci_remove_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2671 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2672 {
2673 struct link_key *key;
2674
2675 key = hci_find_link_key(hdev, bdaddr);
2676 if (!key)
2677 return -ENOENT;
2678
2679 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2680
2681 list_del_rcu(&key->list);
2682 kfree_rcu(key, rcu);
2683
2684 return 0;
2685 }
2686
hci_remove_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2687 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2688 {
2689 struct smp_ltk *k, *tmp;
2690 int removed = 0;
2691
2692 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
2693 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2694 continue;
2695
2696 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2697
2698 list_del_rcu(&k->list);
2699 kfree_rcu(k, rcu);
2700 removed++;
2701 }
2702
2703 return removed ? 0 : -ENOENT;
2704 }
2705
hci_remove_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2706 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2707 {
2708 struct smp_irk *k, *tmp;
2709
2710 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
2711 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2712 continue;
2713
2714 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2715
2716 list_del_rcu(&k->list);
2717 kfree_rcu(k, rcu);
2718 }
2719 }
2720
hci_bdaddr_is_paired(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 type)2721 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2722 {
2723 struct smp_ltk *k;
2724 struct smp_irk *irk;
2725 u8 addr_type;
2726
2727 if (type == BDADDR_BREDR) {
2728 if (hci_find_link_key(hdev, bdaddr))
2729 return true;
2730 return false;
2731 }
2732
2733 /* Convert to HCI addr type which struct smp_ltk uses */
2734 if (type == BDADDR_LE_PUBLIC)
2735 addr_type = ADDR_LE_DEV_PUBLIC;
2736 else
2737 addr_type = ADDR_LE_DEV_RANDOM;
2738
2739 irk = hci_get_irk(hdev, bdaddr, addr_type);
2740 if (irk) {
2741 bdaddr = &irk->bdaddr;
2742 addr_type = irk->addr_type;
2743 }
2744
2745 rcu_read_lock();
2746 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2747 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2748 rcu_read_unlock();
2749 return true;
2750 }
2751 }
2752 rcu_read_unlock();
2753
2754 return false;
2755 }
2756
2757 /* HCI command timer function */
hci_cmd_timeout(struct work_struct * work)2758 static void hci_cmd_timeout(struct work_struct *work)
2759 {
2760 struct hci_dev *hdev = container_of(work, struct hci_dev,
2761 cmd_timer.work);
2762
2763 if (hdev->sent_cmd) {
2764 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2765 u16 opcode = __le16_to_cpu(sent->opcode);
2766
2767 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2768 } else {
2769 bt_dev_err(hdev, "command tx timeout");
2770 }
2771
2772 if (hdev->cmd_timeout)
2773 hdev->cmd_timeout(hdev);
2774
2775 atomic_set(&hdev->cmd_cnt, 1);
2776 queue_work(hdev->workqueue, &hdev->cmd_work);
2777 }
2778
hci_find_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2779 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2780 bdaddr_t *bdaddr, u8 bdaddr_type)
2781 {
2782 struct oob_data *data;
2783
2784 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2785 if (bacmp(bdaddr, &data->bdaddr) != 0)
2786 continue;
2787 if (data->bdaddr_type != bdaddr_type)
2788 continue;
2789 return data;
2790 }
2791
2792 return NULL;
2793 }
2794
hci_remove_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2795 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2796 u8 bdaddr_type)
2797 {
2798 struct oob_data *data;
2799
2800 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2801 if (!data)
2802 return -ENOENT;
2803
2804 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2805
2806 list_del(&data->list);
2807 kfree(data);
2808
2809 return 0;
2810 }
2811
hci_remote_oob_data_clear(struct hci_dev * hdev)2812 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2813 {
2814 struct oob_data *data, *n;
2815
2816 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2817 list_del(&data->list);
2818 kfree(data);
2819 }
2820 }
2821
hci_add_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type,u8 * hash192,u8 * rand192,u8 * hash256,u8 * rand256)2822 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2823 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2824 u8 *hash256, u8 *rand256)
2825 {
2826 struct oob_data *data;
2827
2828 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2829 if (!data) {
2830 data = kmalloc(sizeof(*data), GFP_KERNEL);
2831 if (!data)
2832 return -ENOMEM;
2833
2834 bacpy(&data->bdaddr, bdaddr);
2835 data->bdaddr_type = bdaddr_type;
2836 list_add(&data->list, &hdev->remote_oob_data);
2837 }
2838
2839 if (hash192 && rand192) {
2840 memcpy(data->hash192, hash192, sizeof(data->hash192));
2841 memcpy(data->rand192, rand192, sizeof(data->rand192));
2842 if (hash256 && rand256)
2843 data->present = 0x03;
2844 } else {
2845 memset(data->hash192, 0, sizeof(data->hash192));
2846 memset(data->rand192, 0, sizeof(data->rand192));
2847 if (hash256 && rand256)
2848 data->present = 0x02;
2849 else
2850 data->present = 0x00;
2851 }
2852
2853 if (hash256 && rand256) {
2854 memcpy(data->hash256, hash256, sizeof(data->hash256));
2855 memcpy(data->rand256, rand256, sizeof(data->rand256));
2856 } else {
2857 memset(data->hash256, 0, sizeof(data->hash256));
2858 memset(data->rand256, 0, sizeof(data->rand256));
2859 if (hash192 && rand192)
2860 data->present = 0x01;
2861 }
2862
2863 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2864
2865 return 0;
2866 }
2867
2868 /* This function requires the caller holds hdev->lock */
hci_find_adv_instance(struct hci_dev * hdev,u8 instance)2869 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2870 {
2871 struct adv_info *adv_instance;
2872
2873 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2874 if (adv_instance->instance == instance)
2875 return adv_instance;
2876 }
2877
2878 return NULL;
2879 }
2880
2881 /* This function requires the caller holds hdev->lock */
hci_get_next_instance(struct hci_dev * hdev,u8 instance)2882 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2883 {
2884 struct adv_info *cur_instance;
2885
2886 cur_instance = hci_find_adv_instance(hdev, instance);
2887 if (!cur_instance)
2888 return NULL;
2889
2890 if (cur_instance == list_last_entry(&hdev->adv_instances,
2891 struct adv_info, list))
2892 return list_first_entry(&hdev->adv_instances,
2893 struct adv_info, list);
2894 else
2895 return list_next_entry(cur_instance, list);
2896 }
2897
2898 /* This function requires the caller holds hdev->lock */
hci_remove_adv_instance(struct hci_dev * hdev,u8 instance)2899 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2900 {
2901 struct adv_info *adv_instance;
2902
2903 adv_instance = hci_find_adv_instance(hdev, instance);
2904 if (!adv_instance)
2905 return -ENOENT;
2906
2907 BT_DBG("%s removing %dMR", hdev->name, instance);
2908
2909 if (hdev->cur_adv_instance == instance) {
2910 if (hdev->adv_instance_timeout) {
2911 cancel_delayed_work(&hdev->adv_instance_expire);
2912 hdev->adv_instance_timeout = 0;
2913 }
2914 hdev->cur_adv_instance = 0x00;
2915 }
2916
2917 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2918
2919 list_del(&adv_instance->list);
2920 kfree(adv_instance);
2921
2922 hdev->adv_instance_cnt--;
2923
2924 return 0;
2925 }
2926
hci_adv_instances_set_rpa_expired(struct hci_dev * hdev,bool rpa_expired)2927 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2928 {
2929 struct adv_info *adv_instance, *n;
2930
2931 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2932 adv_instance->rpa_expired = rpa_expired;
2933 }
2934
2935 /* This function requires the caller holds hdev->lock */
hci_adv_instances_clear(struct hci_dev * hdev)2936 void hci_adv_instances_clear(struct hci_dev *hdev)
2937 {
2938 struct adv_info *adv_instance, *n;
2939
2940 if (hdev->adv_instance_timeout) {
2941 cancel_delayed_work(&hdev->adv_instance_expire);
2942 hdev->adv_instance_timeout = 0;
2943 }
2944
2945 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2946 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2947 list_del(&adv_instance->list);
2948 kfree(adv_instance);
2949 }
2950
2951 hdev->adv_instance_cnt = 0;
2952 hdev->cur_adv_instance = 0x00;
2953 }
2954
adv_instance_rpa_expired(struct work_struct * work)2955 static void adv_instance_rpa_expired(struct work_struct *work)
2956 {
2957 struct adv_info *adv_instance = container_of(work, struct adv_info,
2958 rpa_expired_cb.work);
2959
2960 BT_DBG("");
2961
2962 adv_instance->rpa_expired = true;
2963 }
2964
2965 /* This function requires the caller holds hdev->lock */
hci_add_adv_instance(struct hci_dev * hdev,u8 instance,u32 flags,u16 adv_data_len,u8 * adv_data,u16 scan_rsp_len,u8 * scan_rsp_data,u16 timeout,u16 duration)2966 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2967 u16 adv_data_len, u8 *adv_data,
2968 u16 scan_rsp_len, u8 *scan_rsp_data,
2969 u16 timeout, u16 duration)
2970 {
2971 struct adv_info *adv_instance;
2972
2973 adv_instance = hci_find_adv_instance(hdev, instance);
2974 if (adv_instance) {
2975 memset(adv_instance->adv_data, 0,
2976 sizeof(adv_instance->adv_data));
2977 memset(adv_instance->scan_rsp_data, 0,
2978 sizeof(adv_instance->scan_rsp_data));
2979 } else {
2980 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2981 instance < 1 || instance > hdev->le_num_of_adv_sets)
2982 return -EOVERFLOW;
2983
2984 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2985 if (!adv_instance)
2986 return -ENOMEM;
2987
2988 adv_instance->pending = true;
2989 adv_instance->instance = instance;
2990 list_add(&adv_instance->list, &hdev->adv_instances);
2991 hdev->adv_instance_cnt++;
2992 }
2993
2994 adv_instance->flags = flags;
2995 adv_instance->adv_data_len = adv_data_len;
2996 adv_instance->scan_rsp_len = scan_rsp_len;
2997
2998 if (adv_data_len)
2999 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3000
3001 if (scan_rsp_len)
3002 memcpy(adv_instance->scan_rsp_data,
3003 scan_rsp_data, scan_rsp_len);
3004
3005 adv_instance->timeout = timeout;
3006 adv_instance->remaining_time = timeout;
3007
3008 if (duration == 0)
3009 adv_instance->duration = hdev->def_multi_adv_rotation_duration;
3010 else
3011 adv_instance->duration = duration;
3012
3013 adv_instance->tx_power = HCI_TX_POWER_INVALID;
3014
3015 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3016 adv_instance_rpa_expired);
3017
3018 BT_DBG("%s for %dMR", hdev->name, instance);
3019
3020 return 0;
3021 }
3022
3023 /* This function requires the caller holds hdev->lock */
hci_adv_monitors_clear(struct hci_dev * hdev)3024 void hci_adv_monitors_clear(struct hci_dev *hdev)
3025 {
3026 struct adv_monitor *monitor;
3027 int handle;
3028
3029 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3030 hci_free_adv_monitor(monitor);
3031
3032 idr_destroy(&hdev->adv_monitors_idr);
3033 }
3034
hci_free_adv_monitor(struct adv_monitor * monitor)3035 void hci_free_adv_monitor(struct adv_monitor *monitor)
3036 {
3037 struct adv_pattern *pattern;
3038 struct adv_pattern *tmp;
3039
3040 if (!monitor)
3041 return;
3042
3043 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3044 kfree(pattern);
3045
3046 kfree(monitor);
3047 }
3048
3049 /* This function requires the caller holds hdev->lock */
hci_add_adv_monitor(struct hci_dev * hdev,struct adv_monitor * monitor)3050 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3051 {
3052 int min, max, handle;
3053
3054 if (!monitor)
3055 return -EINVAL;
3056
3057 min = HCI_MIN_ADV_MONITOR_HANDLE;
3058 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3059 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3060 GFP_KERNEL);
3061 if (handle < 0)
3062 return handle;
3063
3064 hdev->adv_monitors_cnt++;
3065 monitor->handle = handle;
3066
3067 hci_update_background_scan(hdev);
3068
3069 return 0;
3070 }
3071
free_adv_monitor(int id,void * ptr,void * data)3072 static int free_adv_monitor(int id, void *ptr, void *data)
3073 {
3074 struct hci_dev *hdev = data;
3075 struct adv_monitor *monitor = ptr;
3076
3077 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3078 hci_free_adv_monitor(monitor);
3079 hdev->adv_monitors_cnt--;
3080
3081 return 0;
3082 }
3083
3084 /* This function requires the caller holds hdev->lock */
hci_remove_adv_monitor(struct hci_dev * hdev,u16 handle)3085 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3086 {
3087 struct adv_monitor *monitor;
3088
3089 if (handle) {
3090 monitor = idr_find(&hdev->adv_monitors_idr, handle);
3091 if (!monitor)
3092 return -ENOENT;
3093
3094 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3095 hci_free_adv_monitor(monitor);
3096 hdev->adv_monitors_cnt--;
3097 } else {
3098 /* Remove all monitors if handle is 0. */
3099 idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3100 }
3101
3102 hci_update_background_scan(hdev);
3103
3104 return 0;
3105 }
3106
3107 /* This function requires the caller holds hdev->lock */
hci_is_adv_monitoring(struct hci_dev * hdev)3108 bool hci_is_adv_monitoring(struct hci_dev *hdev)
3109 {
3110 return !idr_is_empty(&hdev->adv_monitors_idr);
3111 }
3112
hci_bdaddr_list_lookup(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3113 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3114 bdaddr_t *bdaddr, u8 type)
3115 {
3116 struct bdaddr_list *b;
3117
3118 list_for_each_entry(b, bdaddr_list, list) {
3119 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3120 return b;
3121 }
3122
3123 return NULL;
3124 }
3125
hci_bdaddr_list_lookup_with_irk(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3126 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3127 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3128 u8 type)
3129 {
3130 struct bdaddr_list_with_irk *b;
3131
3132 list_for_each_entry(b, bdaddr_list, list) {
3133 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3134 return b;
3135 }
3136
3137 return NULL;
3138 }
3139
3140 struct bdaddr_list_with_flags *
hci_bdaddr_list_lookup_with_flags(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3141 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3142 bdaddr_t *bdaddr, u8 type)
3143 {
3144 struct bdaddr_list_with_flags *b;
3145
3146 list_for_each_entry(b, bdaddr_list, list) {
3147 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3148 return b;
3149 }
3150
3151 return NULL;
3152 }
3153
hci_bdaddr_list_clear(struct list_head * bdaddr_list)3154 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3155 {
3156 struct bdaddr_list *b, *n;
3157
3158 list_for_each_entry_safe(b, n, bdaddr_list, list) {
3159 list_del(&b->list);
3160 kfree(b);
3161 }
3162 }
3163
hci_bdaddr_list_add(struct list_head * list,bdaddr_t * bdaddr,u8 type)3164 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3165 {
3166 struct bdaddr_list *entry;
3167
3168 if (!bacmp(bdaddr, BDADDR_ANY))
3169 return -EBADF;
3170
3171 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3172 return -EEXIST;
3173
3174 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3175 if (!entry)
3176 return -ENOMEM;
3177
3178 bacpy(&entry->bdaddr, bdaddr);
3179 entry->bdaddr_type = type;
3180
3181 list_add(&entry->list, list);
3182
3183 return 0;
3184 }
3185
hci_bdaddr_list_add_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type,u8 * peer_irk,u8 * local_irk)3186 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3187 u8 type, u8 *peer_irk, u8 *local_irk)
3188 {
3189 struct bdaddr_list_with_irk *entry;
3190
3191 if (!bacmp(bdaddr, BDADDR_ANY))
3192 return -EBADF;
3193
3194 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3195 return -EEXIST;
3196
3197 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3198 if (!entry)
3199 return -ENOMEM;
3200
3201 bacpy(&entry->bdaddr, bdaddr);
3202 entry->bdaddr_type = type;
3203
3204 if (peer_irk)
3205 memcpy(entry->peer_irk, peer_irk, 16);
3206
3207 if (local_irk)
3208 memcpy(entry->local_irk, local_irk, 16);
3209
3210 list_add(&entry->list, list);
3211
3212 return 0;
3213 }
3214
hci_bdaddr_list_add_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type,u32 flags)3215 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3216 u8 type, u32 flags)
3217 {
3218 struct bdaddr_list_with_flags *entry;
3219
3220 if (!bacmp(bdaddr, BDADDR_ANY))
3221 return -EBADF;
3222
3223 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3224 return -EEXIST;
3225
3226 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3227 if (!entry)
3228 return -ENOMEM;
3229
3230 bacpy(&entry->bdaddr, bdaddr);
3231 entry->bdaddr_type = type;
3232 entry->current_flags = flags;
3233
3234 list_add(&entry->list, list);
3235
3236 return 0;
3237 }
3238
hci_bdaddr_list_del(struct list_head * list,bdaddr_t * bdaddr,u8 type)3239 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3240 {
3241 struct bdaddr_list *entry;
3242
3243 if (!bacmp(bdaddr, BDADDR_ANY)) {
3244 hci_bdaddr_list_clear(list);
3245 return 0;
3246 }
3247
3248 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3249 if (!entry)
3250 return -ENOENT;
3251
3252 list_del(&entry->list);
3253 kfree(entry);
3254
3255 return 0;
3256 }
3257
hci_bdaddr_list_del_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type)3258 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3259 u8 type)
3260 {
3261 struct bdaddr_list_with_irk *entry;
3262
3263 if (!bacmp(bdaddr, BDADDR_ANY)) {
3264 hci_bdaddr_list_clear(list);
3265 return 0;
3266 }
3267
3268 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3269 if (!entry)
3270 return -ENOENT;
3271
3272 list_del(&entry->list);
3273 kfree(entry);
3274
3275 return 0;
3276 }
3277
hci_bdaddr_list_del_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type)3278 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3279 u8 type)
3280 {
3281 struct bdaddr_list_with_flags *entry;
3282
3283 if (!bacmp(bdaddr, BDADDR_ANY)) {
3284 hci_bdaddr_list_clear(list);
3285 return 0;
3286 }
3287
3288 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3289 if (!entry)
3290 return -ENOENT;
3291
3292 list_del(&entry->list);
3293 kfree(entry);
3294
3295 return 0;
3296 }
3297
3298 /* This function requires the caller holds hdev->lock */
hci_conn_params_lookup(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3299 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3300 bdaddr_t *addr, u8 addr_type)
3301 {
3302 struct hci_conn_params *params;
3303
3304 list_for_each_entry(params, &hdev->le_conn_params, list) {
3305 if (bacmp(¶ms->addr, addr) == 0 &&
3306 params->addr_type == addr_type) {
3307 return params;
3308 }
3309 }
3310
3311 return NULL;
3312 }
3313
3314 /* This function requires the caller holds hdev->lock */
hci_pend_le_action_lookup(struct list_head * list,bdaddr_t * addr,u8 addr_type)3315 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3316 bdaddr_t *addr, u8 addr_type)
3317 {
3318 struct hci_conn_params *param;
3319
3320 switch (addr_type) {
3321 case ADDR_LE_DEV_PUBLIC_RESOLVED:
3322 addr_type = ADDR_LE_DEV_PUBLIC;
3323 break;
3324 case ADDR_LE_DEV_RANDOM_RESOLVED:
3325 addr_type = ADDR_LE_DEV_RANDOM;
3326 break;
3327 }
3328
3329 list_for_each_entry(param, list, action) {
3330 if (bacmp(¶m->addr, addr) == 0 &&
3331 param->addr_type == addr_type)
3332 return param;
3333 }
3334
3335 return NULL;
3336 }
3337
3338 /* This function requires the caller holds hdev->lock */
hci_conn_params_add(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3339 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3340 bdaddr_t *addr, u8 addr_type)
3341 {
3342 struct hci_conn_params *params;
3343
3344 params = hci_conn_params_lookup(hdev, addr, addr_type);
3345 if (params)
3346 return params;
3347
3348 params = kzalloc(sizeof(*params), GFP_KERNEL);
3349 if (!params) {
3350 bt_dev_err(hdev, "out of memory");
3351 return NULL;
3352 }
3353
3354 bacpy(¶ms->addr, addr);
3355 params->addr_type = addr_type;
3356
3357 list_add(¶ms->list, &hdev->le_conn_params);
3358 INIT_LIST_HEAD(¶ms->action);
3359
3360 params->conn_min_interval = hdev->le_conn_min_interval;
3361 params->conn_max_interval = hdev->le_conn_max_interval;
3362 params->conn_latency = hdev->le_conn_latency;
3363 params->supervision_timeout = hdev->le_supv_timeout;
3364 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3365
3366 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3367
3368 return params;
3369 }
3370
hci_conn_params_free(struct hci_conn_params * params)3371 static void hci_conn_params_free(struct hci_conn_params *params)
3372 {
3373 if (params->conn) {
3374 hci_conn_drop(params->conn);
3375 hci_conn_put(params->conn);
3376 }
3377
3378 list_del(¶ms->action);
3379 list_del(¶ms->list);
3380 kfree(params);
3381 }
3382
3383 /* This function requires the caller holds hdev->lock */
hci_conn_params_del(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3384 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3385 {
3386 struct hci_conn_params *params;
3387
3388 params = hci_conn_params_lookup(hdev, addr, addr_type);
3389 if (!params)
3390 return;
3391
3392 hci_conn_params_free(params);
3393
3394 hci_update_background_scan(hdev);
3395
3396 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3397 }
3398
3399 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_disabled(struct hci_dev * hdev)3400 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3401 {
3402 struct hci_conn_params *params, *tmp;
3403
3404 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3405 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3406 continue;
3407
3408 /* If trying to estabilish one time connection to disabled
3409 * device, leave the params, but mark them as just once.
3410 */
3411 if (params->explicit_connect) {
3412 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3413 continue;
3414 }
3415
3416 list_del(¶ms->list);
3417 kfree(params);
3418 }
3419
3420 BT_DBG("All LE disabled connection parameters were removed");
3421 }
3422
3423 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_all(struct hci_dev * hdev)3424 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3425 {
3426 struct hci_conn_params *params, *tmp;
3427
3428 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3429 hci_conn_params_free(params);
3430
3431 BT_DBG("All LE connection parameters were removed");
3432 }
3433
3434 /* Copy the Identity Address of the controller.
3435 *
3436 * If the controller has a public BD_ADDR, then by default use that one.
3437 * If this is a LE only controller without a public address, default to
3438 * the static random address.
3439 *
3440 * For debugging purposes it is possible to force controllers with a
3441 * public address to use the static random address instead.
3442 *
3443 * In case BR/EDR has been disabled on a dual-mode controller and
3444 * userspace has configured a static address, then that address
3445 * becomes the identity address instead of the public BR/EDR address.
3446 */
hci_copy_identity_address(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 * bdaddr_type)3447 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3448 u8 *bdaddr_type)
3449 {
3450 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3451 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3452 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3453 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3454 bacpy(bdaddr, &hdev->static_addr);
3455 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3456 } else {
3457 bacpy(bdaddr, &hdev->bdaddr);
3458 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3459 }
3460 }
3461
hci_suspend_clear_tasks(struct hci_dev * hdev)3462 static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3463 {
3464 int i;
3465
3466 for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3467 clear_bit(i, hdev->suspend_tasks);
3468
3469 wake_up(&hdev->suspend_wait_q);
3470 }
3471
hci_suspend_wait_event(struct hci_dev * hdev)3472 static int hci_suspend_wait_event(struct hci_dev *hdev)
3473 {
3474 #define WAKE_COND \
3475 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \
3476 __SUSPEND_NUM_TASKS)
3477
3478 int i;
3479 int ret = wait_event_timeout(hdev->suspend_wait_q,
3480 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3481
3482 if (ret == 0) {
3483 bt_dev_err(hdev, "Timed out waiting for suspend events");
3484 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3485 if (test_bit(i, hdev->suspend_tasks))
3486 bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3487 clear_bit(i, hdev->suspend_tasks);
3488 }
3489
3490 ret = -ETIMEDOUT;
3491 } else {
3492 ret = 0;
3493 }
3494
3495 return ret;
3496 }
3497
hci_prepare_suspend(struct work_struct * work)3498 static void hci_prepare_suspend(struct work_struct *work)
3499 {
3500 struct hci_dev *hdev =
3501 container_of(work, struct hci_dev, suspend_prepare);
3502
3503 hci_dev_lock(hdev);
3504 hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3505 hci_dev_unlock(hdev);
3506 }
3507
hci_change_suspend_state(struct hci_dev * hdev,enum suspended_state next)3508 static int hci_change_suspend_state(struct hci_dev *hdev,
3509 enum suspended_state next)
3510 {
3511 hdev->suspend_state_next = next;
3512 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3513 queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3514 return hci_suspend_wait_event(hdev);
3515 }
3516
hci_clear_wake_reason(struct hci_dev * hdev)3517 static void hci_clear_wake_reason(struct hci_dev *hdev)
3518 {
3519 hci_dev_lock(hdev);
3520
3521 hdev->wake_reason = 0;
3522 bacpy(&hdev->wake_addr, BDADDR_ANY);
3523 hdev->wake_addr_type = 0;
3524
3525 hci_dev_unlock(hdev);
3526 }
3527
hci_suspend_notifier(struct notifier_block * nb,unsigned long action,void * data)3528 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3529 void *data)
3530 {
3531 struct hci_dev *hdev =
3532 container_of(nb, struct hci_dev, suspend_notifier);
3533 int ret = 0;
3534 u8 state = BT_RUNNING;
3535
3536 /* If powering down, wait for completion. */
3537 if (mgmt_powering_down(hdev)) {
3538 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3539 ret = hci_suspend_wait_event(hdev);
3540 if (ret)
3541 goto done;
3542 }
3543
3544 /* Suspend notifier should only act on events when powered. */
3545 if (!hdev_is_powered(hdev) ||
3546 hci_dev_test_flag(hdev, HCI_UNREGISTER))
3547 goto done;
3548
3549 if (action == PM_SUSPEND_PREPARE) {
3550 /* Suspend consists of two actions:
3551 * - First, disconnect everything and make the controller not
3552 * connectable (disabling scanning)
3553 * - Second, program event filter/whitelist and enable scan
3554 */
3555 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3556 if (!ret)
3557 state = BT_SUSPEND_DISCONNECT;
3558
3559 /* Only configure whitelist if disconnect succeeded and wake
3560 * isn't being prevented.
3561 */
3562 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3563 ret = hci_change_suspend_state(hdev,
3564 BT_SUSPEND_CONFIGURE_WAKE);
3565 if (!ret)
3566 state = BT_SUSPEND_CONFIGURE_WAKE;
3567 }
3568
3569 hci_clear_wake_reason(hdev);
3570 mgmt_suspending(hdev, state);
3571
3572 } else if (action == PM_POST_SUSPEND) {
3573 ret = hci_change_suspend_state(hdev, BT_RUNNING);
3574
3575 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3576 hdev->wake_addr_type);
3577 }
3578
3579 done:
3580 /* We always allow suspend even if suspend preparation failed and
3581 * attempt to recover in resume.
3582 */
3583 if (ret)
3584 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3585 action, ret);
3586
3587 return NOTIFY_DONE;
3588 }
3589
3590 /* Alloc HCI device */
hci_alloc_dev(void)3591 struct hci_dev *hci_alloc_dev(void)
3592 {
3593 struct hci_dev *hdev;
3594
3595 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3596 if (!hdev)
3597 return NULL;
3598
3599 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3600 hdev->esco_type = (ESCO_HV1);
3601 hdev->link_mode = (HCI_LM_ACCEPT);
3602 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3603 hdev->io_capability = 0x03; /* No Input No Output */
3604 hdev->manufacturer = 0xffff; /* Default to internal use */
3605 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3606 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3607 hdev->adv_instance_cnt = 0;
3608 hdev->cur_adv_instance = 0x00;
3609 hdev->adv_instance_timeout = 0;
3610
3611 hdev->sniff_max_interval = 800;
3612 hdev->sniff_min_interval = 80;
3613
3614 hdev->le_adv_channel_map = 0x07;
3615 hdev->le_adv_min_interval = 0x0800;
3616 hdev->le_adv_max_interval = 0x0800;
3617 hdev->le_scan_interval = 0x0060;
3618 hdev->le_scan_window = 0x0030;
3619 hdev->le_scan_int_suspend = 0x0400;
3620 hdev->le_scan_window_suspend = 0x0012;
3621 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3622 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3623 hdev->le_scan_int_connect = 0x0060;
3624 hdev->le_scan_window_connect = 0x0060;
3625 hdev->le_conn_min_interval = 0x0018;
3626 hdev->le_conn_max_interval = 0x0028;
3627 hdev->le_conn_latency = 0x0000;
3628 hdev->le_supv_timeout = 0x002a;
3629 hdev->le_def_tx_len = 0x001b;
3630 hdev->le_def_tx_time = 0x0148;
3631 hdev->le_max_tx_len = 0x001b;
3632 hdev->le_max_tx_time = 0x0148;
3633 hdev->le_max_rx_len = 0x001b;
3634 hdev->le_max_rx_time = 0x0148;
3635 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3636 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3637 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3638 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3639 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3640 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3641 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3642
3643 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3644 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3645 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3646 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3647 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3648 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3649
3650 /* default 1.28 sec page scan */
3651 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3652 hdev->def_page_scan_int = 0x0800;
3653 hdev->def_page_scan_window = 0x0012;
3654
3655 mutex_init(&hdev->lock);
3656 mutex_init(&hdev->req_lock);
3657
3658 INIT_LIST_HEAD(&hdev->mgmt_pending);
3659 INIT_LIST_HEAD(&hdev->blacklist);
3660 INIT_LIST_HEAD(&hdev->whitelist);
3661 INIT_LIST_HEAD(&hdev->uuids);
3662 INIT_LIST_HEAD(&hdev->link_keys);
3663 INIT_LIST_HEAD(&hdev->long_term_keys);
3664 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3665 INIT_LIST_HEAD(&hdev->remote_oob_data);
3666 INIT_LIST_HEAD(&hdev->le_white_list);
3667 INIT_LIST_HEAD(&hdev->le_resolv_list);
3668 INIT_LIST_HEAD(&hdev->le_conn_params);
3669 INIT_LIST_HEAD(&hdev->pend_le_conns);
3670 INIT_LIST_HEAD(&hdev->pend_le_reports);
3671 INIT_LIST_HEAD(&hdev->conn_hash.list);
3672 INIT_LIST_HEAD(&hdev->adv_instances);
3673 INIT_LIST_HEAD(&hdev->blocked_keys);
3674
3675 INIT_WORK(&hdev->rx_work, hci_rx_work);
3676 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3677 INIT_WORK(&hdev->tx_work, hci_tx_work);
3678 INIT_WORK(&hdev->power_on, hci_power_on);
3679 INIT_WORK(&hdev->error_reset, hci_error_reset);
3680 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3681
3682 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3683
3684 skb_queue_head_init(&hdev->rx_q);
3685 skb_queue_head_init(&hdev->cmd_q);
3686 skb_queue_head_init(&hdev->raw_q);
3687
3688 init_waitqueue_head(&hdev->req_wait_q);
3689 init_waitqueue_head(&hdev->suspend_wait_q);
3690
3691 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3692
3693 hci_request_setup(hdev);
3694
3695 hci_init_sysfs(hdev);
3696 discovery_init(hdev);
3697
3698 return hdev;
3699 }
3700 EXPORT_SYMBOL(hci_alloc_dev);
3701
3702 /* Free HCI device */
hci_free_dev(struct hci_dev * hdev)3703 void hci_free_dev(struct hci_dev *hdev)
3704 {
3705 /* will free via device release */
3706 put_device(&hdev->dev);
3707 }
3708 EXPORT_SYMBOL(hci_free_dev);
3709
3710 /* Register HCI device */
hci_register_dev(struct hci_dev * hdev)3711 int hci_register_dev(struct hci_dev *hdev)
3712 {
3713 int id, error;
3714
3715 if (!hdev->open || !hdev->close || !hdev->send)
3716 return -EINVAL;
3717
3718 /* Do not allow HCI_AMP devices to register at index 0,
3719 * so the index can be used as the AMP controller ID.
3720 */
3721 switch (hdev->dev_type) {
3722 case HCI_PRIMARY:
3723 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
3724 break;
3725 case HCI_AMP:
3726 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
3727 break;
3728 default:
3729 return -EINVAL;
3730 }
3731
3732 if (id < 0)
3733 return id;
3734
3735 snprintf(hdev->name, sizeof(hdev->name), "hci%d", id);
3736 hdev->id = id;
3737
3738 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3739
3740 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3741 if (!hdev->workqueue) {
3742 error = -ENOMEM;
3743 goto err;
3744 }
3745
3746 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3747 hdev->name);
3748 if (!hdev->req_workqueue) {
3749 destroy_workqueue(hdev->workqueue);
3750 error = -ENOMEM;
3751 goto err;
3752 }
3753
3754 if (!IS_ERR_OR_NULL(bt_debugfs))
3755 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3756
3757 dev_set_name(&hdev->dev, "%s", hdev->name);
3758
3759 error = device_add(&hdev->dev);
3760 if (error < 0)
3761 goto err_wqueue;
3762
3763 hci_leds_init(hdev);
3764
3765 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3766 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3767 hdev);
3768 if (hdev->rfkill) {
3769 if (rfkill_register(hdev->rfkill) < 0) {
3770 rfkill_destroy(hdev->rfkill);
3771 hdev->rfkill = NULL;
3772 }
3773 }
3774
3775 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3776 hci_dev_set_flag(hdev, HCI_RFKILLED);
3777
3778 hci_dev_set_flag(hdev, HCI_SETUP);
3779 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3780
3781 if (hdev->dev_type == HCI_PRIMARY) {
3782 /* Assume BR/EDR support until proven otherwise (such as
3783 * through reading supported features during init.
3784 */
3785 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3786 }
3787
3788 write_lock(&hci_dev_list_lock);
3789 list_add(&hdev->list, &hci_dev_list);
3790 write_unlock(&hci_dev_list_lock);
3791
3792 /* Devices that are marked for raw-only usage are unconfigured
3793 * and should not be included in normal operation.
3794 */
3795 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3796 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3797
3798 hci_sock_dev_event(hdev, HCI_DEV_REG);
3799 hci_dev_hold(hdev);
3800
3801 if (!hdev->suspend_notifier.notifier_call &&
3802 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3803 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3804 error = register_pm_notifier(&hdev->suspend_notifier);
3805 if (error)
3806 goto err_wqueue;
3807 }
3808
3809 queue_work(hdev->req_workqueue, &hdev->power_on);
3810
3811 idr_init(&hdev->adv_monitors_idr);
3812
3813 return id;
3814
3815 err_wqueue:
3816 debugfs_remove_recursive(hdev->debugfs);
3817 destroy_workqueue(hdev->workqueue);
3818 destroy_workqueue(hdev->req_workqueue);
3819 err:
3820 ida_simple_remove(&hci_index_ida, hdev->id);
3821
3822 return error;
3823 }
3824 EXPORT_SYMBOL(hci_register_dev);
3825
3826 /* Unregister HCI device */
hci_unregister_dev(struct hci_dev * hdev)3827 void hci_unregister_dev(struct hci_dev *hdev)
3828 {
3829 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3830
3831 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3832
3833 write_lock(&hci_dev_list_lock);
3834 list_del(&hdev->list);
3835 write_unlock(&hci_dev_list_lock);
3836
3837 cancel_work_sync(&hdev->power_on);
3838
3839 if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3840 hci_suspend_clear_tasks(hdev);
3841 unregister_pm_notifier(&hdev->suspend_notifier);
3842 cancel_work_sync(&hdev->suspend_prepare);
3843 }
3844
3845 hci_dev_do_close(hdev);
3846
3847 if (!test_bit(HCI_INIT, &hdev->flags) &&
3848 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3849 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3850 hci_dev_lock(hdev);
3851 mgmt_index_removed(hdev);
3852 hci_dev_unlock(hdev);
3853 }
3854
3855 /* mgmt_index_removed should take care of emptying the
3856 * pending list */
3857 BUG_ON(!list_empty(&hdev->mgmt_pending));
3858
3859 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3860
3861 if (hdev->rfkill) {
3862 rfkill_unregister(hdev->rfkill);
3863 rfkill_destroy(hdev->rfkill);
3864 }
3865
3866 device_del(&hdev->dev);
3867 /* Actual cleanup is deferred until hci_cleanup_dev(). */
3868 hci_dev_put(hdev);
3869 }
3870 EXPORT_SYMBOL(hci_unregister_dev);
3871
3872 /* Cleanup HCI device */
hci_cleanup_dev(struct hci_dev * hdev)3873 void hci_cleanup_dev(struct hci_dev *hdev)
3874 {
3875 debugfs_remove_recursive(hdev->debugfs);
3876 kfree_const(hdev->hw_info);
3877 kfree_const(hdev->fw_info);
3878
3879 destroy_workqueue(hdev->workqueue);
3880 destroy_workqueue(hdev->req_workqueue);
3881
3882 hci_dev_lock(hdev);
3883 hci_bdaddr_list_clear(&hdev->blacklist);
3884 hci_bdaddr_list_clear(&hdev->whitelist);
3885 hci_uuids_clear(hdev);
3886 hci_link_keys_clear(hdev);
3887 hci_smp_ltks_clear(hdev);
3888 hci_smp_irks_clear(hdev);
3889 hci_remote_oob_data_clear(hdev);
3890 hci_adv_instances_clear(hdev);
3891 hci_adv_monitors_clear(hdev);
3892 hci_bdaddr_list_clear(&hdev->le_white_list);
3893 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3894 hci_conn_params_clear_all(hdev);
3895 hci_discovery_filter_clear(hdev);
3896 hci_blocked_keys_clear(hdev);
3897 hci_dev_unlock(hdev);
3898
3899 ida_simple_remove(&hci_index_ida, hdev->id);
3900 }
3901
3902 /* Suspend HCI device */
hci_suspend_dev(struct hci_dev * hdev)3903 int hci_suspend_dev(struct hci_dev *hdev)
3904 {
3905 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3906 return 0;
3907 }
3908 EXPORT_SYMBOL(hci_suspend_dev);
3909
3910 /* Resume HCI device */
hci_resume_dev(struct hci_dev * hdev)3911 int hci_resume_dev(struct hci_dev *hdev)
3912 {
3913 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3914 return 0;
3915 }
3916 EXPORT_SYMBOL(hci_resume_dev);
3917
3918 /* Reset HCI device */
hci_reset_dev(struct hci_dev * hdev)3919 int hci_reset_dev(struct hci_dev *hdev)
3920 {
3921 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3922 struct sk_buff *skb;
3923
3924 skb = bt_skb_alloc(3, GFP_ATOMIC);
3925 if (!skb)
3926 return -ENOMEM;
3927
3928 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3929 skb_put_data(skb, hw_err, 3);
3930
3931 /* Send Hardware Error to upper stack */
3932 return hci_recv_frame(hdev, skb);
3933 }
3934 EXPORT_SYMBOL(hci_reset_dev);
3935
3936 /* Receive frame from HCI drivers */
hci_recv_frame(struct hci_dev * hdev,struct sk_buff * skb)3937 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3938 {
3939 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3940 && !test_bit(HCI_INIT, &hdev->flags))) {
3941 kfree_skb(skb);
3942 return -ENXIO;
3943 }
3944
3945 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3946 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3947 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3948 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3949 kfree_skb(skb);
3950 return -EINVAL;
3951 }
3952
3953 /* Incoming skb */
3954 bt_cb(skb)->incoming = 1;
3955
3956 /* Time stamp */
3957 __net_timestamp(skb);
3958
3959 skb_queue_tail(&hdev->rx_q, skb);
3960 queue_work(hdev->workqueue, &hdev->rx_work);
3961
3962 return 0;
3963 }
3964 EXPORT_SYMBOL(hci_recv_frame);
3965
3966 /* Receive diagnostic message from HCI drivers */
hci_recv_diag(struct hci_dev * hdev,struct sk_buff * skb)3967 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3968 {
3969 /* Mark as diagnostic packet */
3970 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3971
3972 /* Time stamp */
3973 __net_timestamp(skb);
3974
3975 skb_queue_tail(&hdev->rx_q, skb);
3976 queue_work(hdev->workqueue, &hdev->rx_work);
3977
3978 return 0;
3979 }
3980 EXPORT_SYMBOL(hci_recv_diag);
3981
hci_set_hw_info(struct hci_dev * hdev,const char * fmt,...)3982 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3983 {
3984 va_list vargs;
3985
3986 va_start(vargs, fmt);
3987 kfree_const(hdev->hw_info);
3988 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3989 va_end(vargs);
3990 }
3991 EXPORT_SYMBOL(hci_set_hw_info);
3992
hci_set_fw_info(struct hci_dev * hdev,const char * fmt,...)3993 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3994 {
3995 va_list vargs;
3996
3997 va_start(vargs, fmt);
3998 kfree_const(hdev->fw_info);
3999 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4000 va_end(vargs);
4001 }
4002 EXPORT_SYMBOL(hci_set_fw_info);
4003
4004 /* ---- Interface to upper protocols ---- */
4005
hci_register_cb(struct hci_cb * cb)4006 int hci_register_cb(struct hci_cb *cb)
4007 {
4008 BT_DBG("%p name %s", cb, cb->name);
4009
4010 mutex_lock(&hci_cb_list_lock);
4011 list_add_tail(&cb->list, &hci_cb_list);
4012 mutex_unlock(&hci_cb_list_lock);
4013
4014 return 0;
4015 }
4016 EXPORT_SYMBOL(hci_register_cb);
4017
hci_unregister_cb(struct hci_cb * cb)4018 int hci_unregister_cb(struct hci_cb *cb)
4019 {
4020 BT_DBG("%p name %s", cb, cb->name);
4021
4022 mutex_lock(&hci_cb_list_lock);
4023 list_del(&cb->list);
4024 mutex_unlock(&hci_cb_list_lock);
4025
4026 return 0;
4027 }
4028 EXPORT_SYMBOL(hci_unregister_cb);
4029
hci_send_frame(struct hci_dev * hdev,struct sk_buff * skb)4030 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4031 {
4032 int err;
4033
4034 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4035 skb->len);
4036
4037 /* Time stamp */
4038 __net_timestamp(skb);
4039
4040 /* Send copy to monitor */
4041 hci_send_to_monitor(hdev, skb);
4042
4043 if (atomic_read(&hdev->promisc)) {
4044 /* Send copy to the sockets */
4045 hci_send_to_sock(hdev, skb);
4046 }
4047
4048 /* Get rid of skb owner, prior to sending to the driver. */
4049 skb_orphan(skb);
4050
4051 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4052 kfree_skb(skb);
4053 return;
4054 }
4055
4056 err = hdev->send(hdev, skb);
4057 if (err < 0) {
4058 bt_dev_err(hdev, "sending frame failed (%d)", err);
4059 kfree_skb(skb);
4060 }
4061 }
4062
4063 /* Send HCI command */
hci_send_cmd(struct hci_dev * hdev,__u16 opcode,__u32 plen,const void * param)4064 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4065 const void *param)
4066 {
4067 struct sk_buff *skb;
4068
4069 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4070
4071 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4072 if (!skb) {
4073 bt_dev_err(hdev, "no memory for command");
4074 return -ENOMEM;
4075 }
4076
4077 /* Stand-alone HCI commands must be flagged as
4078 * single-command requests.
4079 */
4080 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4081
4082 skb_queue_tail(&hdev->cmd_q, skb);
4083 queue_work(hdev->workqueue, &hdev->cmd_work);
4084
4085 return 0;
4086 }
4087
__hci_cmd_send(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param)4088 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4089 const void *param)
4090 {
4091 struct sk_buff *skb;
4092
4093 if (hci_opcode_ogf(opcode) != 0x3f) {
4094 /* A controller receiving a command shall respond with either
4095 * a Command Status Event or a Command Complete Event.
4096 * Therefore, all standard HCI commands must be sent via the
4097 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4098 * Some vendors do not comply with this rule for vendor-specific
4099 * commands and do not return any event. We want to support
4100 * unresponded commands for such cases only.
4101 */
4102 bt_dev_err(hdev, "unresponded command not supported");
4103 return -EINVAL;
4104 }
4105
4106 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4107 if (!skb) {
4108 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4109 opcode);
4110 return -ENOMEM;
4111 }
4112
4113 hci_send_frame(hdev, skb);
4114
4115 return 0;
4116 }
4117 EXPORT_SYMBOL(__hci_cmd_send);
4118
4119 /* Get data from the previously sent command */
hci_sent_cmd_data(struct hci_dev * hdev,__u16 opcode)4120 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4121 {
4122 struct hci_command_hdr *hdr;
4123
4124 if (!hdev->sent_cmd)
4125 return NULL;
4126
4127 hdr = (void *) hdev->sent_cmd->data;
4128
4129 if (hdr->opcode != cpu_to_le16(opcode))
4130 return NULL;
4131
4132 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4133
4134 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4135 }
4136
4137 /* Send HCI command and wait for command commplete event */
hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)4138 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4139 const void *param, u32 timeout)
4140 {
4141 struct sk_buff *skb;
4142
4143 if (!test_bit(HCI_UP, &hdev->flags))
4144 return ERR_PTR(-ENETDOWN);
4145
4146 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4147
4148 hci_req_sync_lock(hdev);
4149 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4150 hci_req_sync_unlock(hdev);
4151
4152 return skb;
4153 }
4154 EXPORT_SYMBOL(hci_cmd_sync);
4155
4156 /* Send ACL data */
hci_add_acl_hdr(struct sk_buff * skb,__u16 handle,__u16 flags)4157 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4158 {
4159 struct hci_acl_hdr *hdr;
4160 int len = skb->len;
4161
4162 skb_push(skb, HCI_ACL_HDR_SIZE);
4163 skb_reset_transport_header(skb);
4164 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4165 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4166 hdr->dlen = cpu_to_le16(len);
4167 }
4168
hci_queue_acl(struct hci_chan * chan,struct sk_buff_head * queue,struct sk_buff * skb,__u16 flags)4169 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4170 struct sk_buff *skb, __u16 flags)
4171 {
4172 struct hci_conn *conn = chan->conn;
4173 struct hci_dev *hdev = conn->hdev;
4174 struct sk_buff *list;
4175
4176 skb->len = skb_headlen(skb);
4177 skb->data_len = 0;
4178
4179 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4180
4181 switch (hdev->dev_type) {
4182 case HCI_PRIMARY:
4183 hci_add_acl_hdr(skb, conn->handle, flags);
4184 break;
4185 case HCI_AMP:
4186 hci_add_acl_hdr(skb, chan->handle, flags);
4187 break;
4188 default:
4189 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4190 return;
4191 }
4192
4193 list = skb_shinfo(skb)->frag_list;
4194 if (!list) {
4195 /* Non fragmented */
4196 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4197
4198 skb_queue_tail(queue, skb);
4199 } else {
4200 /* Fragmented */
4201 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4202
4203 skb_shinfo(skb)->frag_list = NULL;
4204
4205 /* Queue all fragments atomically. We need to use spin_lock_bh
4206 * here because of 6LoWPAN links, as there this function is
4207 * called from softirq and using normal spin lock could cause
4208 * deadlocks.
4209 */
4210 spin_lock_bh(&queue->lock);
4211
4212 __skb_queue_tail(queue, skb);
4213
4214 flags &= ~ACL_START;
4215 flags |= ACL_CONT;
4216 do {
4217 skb = list; list = list->next;
4218
4219 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4220 hci_add_acl_hdr(skb, conn->handle, flags);
4221
4222 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4223
4224 __skb_queue_tail(queue, skb);
4225 } while (list);
4226
4227 spin_unlock_bh(&queue->lock);
4228 }
4229 }
4230
hci_send_acl(struct hci_chan * chan,struct sk_buff * skb,__u16 flags)4231 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4232 {
4233 struct hci_dev *hdev = chan->conn->hdev;
4234
4235 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4236
4237 hci_queue_acl(chan, &chan->data_q, skb, flags);
4238
4239 queue_work(hdev->workqueue, &hdev->tx_work);
4240 }
4241
4242 /* Send SCO data */
hci_send_sco(struct hci_conn * conn,struct sk_buff * skb)4243 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4244 {
4245 struct hci_dev *hdev = conn->hdev;
4246 struct hci_sco_hdr hdr;
4247
4248 BT_DBG("%s len %d", hdev->name, skb->len);
4249
4250 hdr.handle = cpu_to_le16(conn->handle);
4251 hdr.dlen = skb->len;
4252
4253 skb_push(skb, HCI_SCO_HDR_SIZE);
4254 skb_reset_transport_header(skb);
4255 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4256
4257 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4258
4259 skb_queue_tail(&conn->data_q, skb);
4260 queue_work(hdev->workqueue, &hdev->tx_work);
4261 }
4262
4263 /* ---- HCI TX task (outgoing data) ---- */
4264
4265 /* HCI Connection scheduler */
hci_low_sent(struct hci_dev * hdev,__u8 type,int * quote)4266 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4267 int *quote)
4268 {
4269 struct hci_conn_hash *h = &hdev->conn_hash;
4270 struct hci_conn *conn = NULL, *c;
4271 unsigned int num = 0, min = ~0;
4272
4273 /* We don't have to lock device here. Connections are always
4274 * added and removed with TX task disabled. */
4275
4276 rcu_read_lock();
4277
4278 list_for_each_entry_rcu(c, &h->list, list) {
4279 if (c->type != type || skb_queue_empty(&c->data_q))
4280 continue;
4281
4282 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4283 continue;
4284
4285 num++;
4286
4287 if (c->sent < min) {
4288 min = c->sent;
4289 conn = c;
4290 }
4291
4292 if (hci_conn_num(hdev, type) == num)
4293 break;
4294 }
4295
4296 rcu_read_unlock();
4297
4298 if (conn) {
4299 int cnt, q;
4300
4301 switch (conn->type) {
4302 case ACL_LINK:
4303 cnt = hdev->acl_cnt;
4304 break;
4305 case SCO_LINK:
4306 case ESCO_LINK:
4307 cnt = hdev->sco_cnt;
4308 break;
4309 case LE_LINK:
4310 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4311 break;
4312 default:
4313 cnt = 0;
4314 bt_dev_err(hdev, "unknown link type %d", conn->type);
4315 }
4316
4317 q = cnt / num;
4318 *quote = q ? q : 1;
4319 } else
4320 *quote = 0;
4321
4322 BT_DBG("conn %p quote %d", conn, *quote);
4323 return conn;
4324 }
4325
hci_link_tx_to(struct hci_dev * hdev,__u8 type)4326 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4327 {
4328 struct hci_conn_hash *h = &hdev->conn_hash;
4329 struct hci_conn *c;
4330
4331 bt_dev_err(hdev, "link tx timeout");
4332
4333 rcu_read_lock();
4334
4335 /* Kill stalled connections */
4336 list_for_each_entry_rcu(c, &h->list, list) {
4337 if (c->type == type && c->sent) {
4338 bt_dev_err(hdev, "killing stalled connection %pMR",
4339 &c->dst);
4340 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4341 }
4342 }
4343
4344 rcu_read_unlock();
4345 }
4346
hci_chan_sent(struct hci_dev * hdev,__u8 type,int * quote)4347 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4348 int *quote)
4349 {
4350 struct hci_conn_hash *h = &hdev->conn_hash;
4351 struct hci_chan *chan = NULL;
4352 unsigned int num = 0, min = ~0, cur_prio = 0;
4353 struct hci_conn *conn;
4354 int cnt, q, conn_num = 0;
4355
4356 BT_DBG("%s", hdev->name);
4357
4358 rcu_read_lock();
4359
4360 list_for_each_entry_rcu(conn, &h->list, list) {
4361 struct hci_chan *tmp;
4362
4363 if (conn->type != type)
4364 continue;
4365
4366 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4367 continue;
4368
4369 conn_num++;
4370
4371 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4372 struct sk_buff *skb;
4373
4374 if (skb_queue_empty(&tmp->data_q))
4375 continue;
4376
4377 skb = skb_peek(&tmp->data_q);
4378 if (skb->priority < cur_prio)
4379 continue;
4380
4381 if (skb->priority > cur_prio) {
4382 num = 0;
4383 min = ~0;
4384 cur_prio = skb->priority;
4385 }
4386
4387 num++;
4388
4389 if (conn->sent < min) {
4390 min = conn->sent;
4391 chan = tmp;
4392 }
4393 }
4394
4395 if (hci_conn_num(hdev, type) == conn_num)
4396 break;
4397 }
4398
4399 rcu_read_unlock();
4400
4401 if (!chan)
4402 return NULL;
4403
4404 switch (chan->conn->type) {
4405 case ACL_LINK:
4406 cnt = hdev->acl_cnt;
4407 break;
4408 case AMP_LINK:
4409 cnt = hdev->block_cnt;
4410 break;
4411 case SCO_LINK:
4412 case ESCO_LINK:
4413 cnt = hdev->sco_cnt;
4414 break;
4415 case LE_LINK:
4416 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4417 break;
4418 default:
4419 cnt = 0;
4420 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4421 }
4422
4423 q = cnt / num;
4424 *quote = q ? q : 1;
4425 BT_DBG("chan %p quote %d", chan, *quote);
4426 return chan;
4427 }
4428
hci_prio_recalculate(struct hci_dev * hdev,__u8 type)4429 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4430 {
4431 struct hci_conn_hash *h = &hdev->conn_hash;
4432 struct hci_conn *conn;
4433 int num = 0;
4434
4435 BT_DBG("%s", hdev->name);
4436
4437 rcu_read_lock();
4438
4439 list_for_each_entry_rcu(conn, &h->list, list) {
4440 struct hci_chan *chan;
4441
4442 if (conn->type != type)
4443 continue;
4444
4445 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4446 continue;
4447
4448 num++;
4449
4450 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4451 struct sk_buff *skb;
4452
4453 if (chan->sent) {
4454 chan->sent = 0;
4455 continue;
4456 }
4457
4458 if (skb_queue_empty(&chan->data_q))
4459 continue;
4460
4461 skb = skb_peek(&chan->data_q);
4462 if (skb->priority >= HCI_PRIO_MAX - 1)
4463 continue;
4464
4465 skb->priority = HCI_PRIO_MAX - 1;
4466
4467 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4468 skb->priority);
4469 }
4470
4471 if (hci_conn_num(hdev, type) == num)
4472 break;
4473 }
4474
4475 rcu_read_unlock();
4476
4477 }
4478
__get_blocks(struct hci_dev * hdev,struct sk_buff * skb)4479 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4480 {
4481 /* Calculate count of blocks used by this packet */
4482 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4483 }
4484
__check_timeout(struct hci_dev * hdev,unsigned int cnt,u8 type)4485 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
4486 {
4487 unsigned long last_tx;
4488
4489 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4490 return;
4491
4492 switch (type) {
4493 case LE_LINK:
4494 last_tx = hdev->le_last_tx;
4495 break;
4496 default:
4497 last_tx = hdev->acl_last_tx;
4498 break;
4499 }
4500
4501 /* tx timeout must be longer than maximum link supervision timeout
4502 * (40.9 seconds)
4503 */
4504 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
4505 hci_link_tx_to(hdev, type);
4506 }
4507
4508 /* Schedule SCO */
hci_sched_sco(struct hci_dev * hdev)4509 static void hci_sched_sco(struct hci_dev *hdev)
4510 {
4511 struct hci_conn *conn;
4512 struct sk_buff *skb;
4513 int quote;
4514
4515 BT_DBG("%s", hdev->name);
4516
4517 if (!hci_conn_num(hdev, SCO_LINK))
4518 return;
4519
4520 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
4521 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4522 BT_DBG("skb %p len %d", skb, skb->len);
4523 hci_send_frame(hdev, skb);
4524
4525 conn->sent++;
4526 if (conn->sent == ~0)
4527 conn->sent = 0;
4528 }
4529 }
4530 }
4531
hci_sched_esco(struct hci_dev * hdev)4532 static void hci_sched_esco(struct hci_dev *hdev)
4533 {
4534 struct hci_conn *conn;
4535 struct sk_buff *skb;
4536 int quote;
4537
4538 BT_DBG("%s", hdev->name);
4539
4540 if (!hci_conn_num(hdev, ESCO_LINK))
4541 return;
4542
4543 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4544 "e))) {
4545 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4546 BT_DBG("skb %p len %d", skb, skb->len);
4547 hci_send_frame(hdev, skb);
4548
4549 conn->sent++;
4550 if (conn->sent == ~0)
4551 conn->sent = 0;
4552 }
4553 }
4554 }
4555
hci_sched_acl_pkt(struct hci_dev * hdev)4556 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4557 {
4558 unsigned int cnt = hdev->acl_cnt;
4559 struct hci_chan *chan;
4560 struct sk_buff *skb;
4561 int quote;
4562
4563 __check_timeout(hdev, cnt, ACL_LINK);
4564
4565 while (hdev->acl_cnt &&
4566 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
4567 u32 priority = (skb_peek(&chan->data_q))->priority;
4568 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4569 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4570 skb->len, skb->priority);
4571
4572 /* Stop if priority has changed */
4573 if (skb->priority < priority)
4574 break;
4575
4576 skb = skb_dequeue(&chan->data_q);
4577
4578 hci_conn_enter_active_mode(chan->conn,
4579 bt_cb(skb)->force_active);
4580
4581 hci_send_frame(hdev, skb);
4582 hdev->acl_last_tx = jiffies;
4583
4584 hdev->acl_cnt--;
4585 chan->sent++;
4586 chan->conn->sent++;
4587
4588 /* Send pending SCO packets right away */
4589 hci_sched_sco(hdev);
4590 hci_sched_esco(hdev);
4591 }
4592 }
4593
4594 if (cnt != hdev->acl_cnt)
4595 hci_prio_recalculate(hdev, ACL_LINK);
4596 }
4597
hci_sched_acl_blk(struct hci_dev * hdev)4598 static void hci_sched_acl_blk(struct hci_dev *hdev)
4599 {
4600 unsigned int cnt = hdev->block_cnt;
4601 struct hci_chan *chan;
4602 struct sk_buff *skb;
4603 int quote;
4604 u8 type;
4605
4606 BT_DBG("%s", hdev->name);
4607
4608 if (hdev->dev_type == HCI_AMP)
4609 type = AMP_LINK;
4610 else
4611 type = ACL_LINK;
4612
4613 __check_timeout(hdev, cnt, type);
4614
4615 while (hdev->block_cnt > 0 &&
4616 (chan = hci_chan_sent(hdev, type, "e))) {
4617 u32 priority = (skb_peek(&chan->data_q))->priority;
4618 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4619 int blocks;
4620
4621 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4622 skb->len, skb->priority);
4623
4624 /* Stop if priority has changed */
4625 if (skb->priority < priority)
4626 break;
4627
4628 skb = skb_dequeue(&chan->data_q);
4629
4630 blocks = __get_blocks(hdev, skb);
4631 if (blocks > hdev->block_cnt)
4632 return;
4633
4634 hci_conn_enter_active_mode(chan->conn,
4635 bt_cb(skb)->force_active);
4636
4637 hci_send_frame(hdev, skb);
4638 hdev->acl_last_tx = jiffies;
4639
4640 hdev->block_cnt -= blocks;
4641 quote -= blocks;
4642
4643 chan->sent += blocks;
4644 chan->conn->sent += blocks;
4645 }
4646 }
4647
4648 if (cnt != hdev->block_cnt)
4649 hci_prio_recalculate(hdev, type);
4650 }
4651
hci_sched_acl(struct hci_dev * hdev)4652 static void hci_sched_acl(struct hci_dev *hdev)
4653 {
4654 BT_DBG("%s", hdev->name);
4655
4656 /* No ACL link over BR/EDR controller */
4657 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4658 return;
4659
4660 /* No AMP link over AMP controller */
4661 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4662 return;
4663
4664 switch (hdev->flow_ctl_mode) {
4665 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4666 hci_sched_acl_pkt(hdev);
4667 break;
4668
4669 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4670 hci_sched_acl_blk(hdev);
4671 break;
4672 }
4673 }
4674
hci_sched_le(struct hci_dev * hdev)4675 static void hci_sched_le(struct hci_dev *hdev)
4676 {
4677 struct hci_chan *chan;
4678 struct sk_buff *skb;
4679 int quote, cnt, tmp;
4680
4681 BT_DBG("%s", hdev->name);
4682
4683 if (!hci_conn_num(hdev, LE_LINK))
4684 return;
4685
4686 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4687
4688 __check_timeout(hdev, cnt, LE_LINK);
4689
4690 tmp = cnt;
4691 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
4692 u32 priority = (skb_peek(&chan->data_q))->priority;
4693 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4694 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4695 skb->len, skb->priority);
4696
4697 /* Stop if priority has changed */
4698 if (skb->priority < priority)
4699 break;
4700
4701 skb = skb_dequeue(&chan->data_q);
4702
4703 hci_send_frame(hdev, skb);
4704 hdev->le_last_tx = jiffies;
4705
4706 cnt--;
4707 chan->sent++;
4708 chan->conn->sent++;
4709
4710 /* Send pending SCO packets right away */
4711 hci_sched_sco(hdev);
4712 hci_sched_esco(hdev);
4713 }
4714 }
4715
4716 if (hdev->le_pkts)
4717 hdev->le_cnt = cnt;
4718 else
4719 hdev->acl_cnt = cnt;
4720
4721 if (cnt != tmp)
4722 hci_prio_recalculate(hdev, LE_LINK);
4723 }
4724
hci_tx_work(struct work_struct * work)4725 static void hci_tx_work(struct work_struct *work)
4726 {
4727 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4728 struct sk_buff *skb;
4729
4730 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4731 hdev->sco_cnt, hdev->le_cnt);
4732
4733 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4734 /* Schedule queues and send stuff to HCI driver */
4735 hci_sched_sco(hdev);
4736 hci_sched_esco(hdev);
4737 hci_sched_acl(hdev);
4738 hci_sched_le(hdev);
4739 }
4740
4741 /* Send next queued raw (unknown type) packet */
4742 while ((skb = skb_dequeue(&hdev->raw_q)))
4743 hci_send_frame(hdev, skb);
4744 }
4745
4746 /* ----- HCI RX task (incoming data processing) ----- */
4747
4748 /* ACL data packet */
hci_acldata_packet(struct hci_dev * hdev,struct sk_buff * skb)4749 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4750 {
4751 struct hci_acl_hdr *hdr = (void *) skb->data;
4752 struct hci_conn *conn;
4753 __u16 handle, flags;
4754
4755 skb_pull(skb, HCI_ACL_HDR_SIZE);
4756
4757 handle = __le16_to_cpu(hdr->handle);
4758 flags = hci_flags(handle);
4759 handle = hci_handle(handle);
4760
4761 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4762 handle, flags);
4763
4764 hdev->stat.acl_rx++;
4765
4766 hci_dev_lock(hdev);
4767 conn = hci_conn_hash_lookup_handle(hdev, handle);
4768 hci_dev_unlock(hdev);
4769
4770 if (conn) {
4771 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4772
4773 /* Send to upper protocol */
4774 l2cap_recv_acldata(conn, skb, flags);
4775 return;
4776 } else {
4777 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4778 handle);
4779 }
4780
4781 kfree_skb(skb);
4782 }
4783
4784 /* SCO data packet */
hci_scodata_packet(struct hci_dev * hdev,struct sk_buff * skb)4785 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4786 {
4787 struct hci_sco_hdr *hdr = (void *) skb->data;
4788 struct hci_conn *conn;
4789 __u16 handle, flags;
4790
4791 skb_pull(skb, HCI_SCO_HDR_SIZE);
4792
4793 handle = __le16_to_cpu(hdr->handle);
4794 flags = hci_flags(handle);
4795 handle = hci_handle(handle);
4796
4797 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4798 handle, flags);
4799
4800 hdev->stat.sco_rx++;
4801
4802 hci_dev_lock(hdev);
4803 conn = hci_conn_hash_lookup_handle(hdev, handle);
4804 hci_dev_unlock(hdev);
4805
4806 if (conn) {
4807 /* Send to upper protocol */
4808 bt_cb(skb)->sco.pkt_status = flags & 0x03;
4809 sco_recv_scodata(conn, skb);
4810 return;
4811 } else {
4812 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4813 handle);
4814 }
4815
4816 kfree_skb(skb);
4817 }
4818
hci_req_is_complete(struct hci_dev * hdev)4819 static bool hci_req_is_complete(struct hci_dev *hdev)
4820 {
4821 struct sk_buff *skb;
4822
4823 skb = skb_peek(&hdev->cmd_q);
4824 if (!skb)
4825 return true;
4826
4827 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4828 }
4829
hci_resend_last(struct hci_dev * hdev)4830 static void hci_resend_last(struct hci_dev *hdev)
4831 {
4832 struct hci_command_hdr *sent;
4833 struct sk_buff *skb;
4834 u16 opcode;
4835
4836 if (!hdev->sent_cmd)
4837 return;
4838
4839 sent = (void *) hdev->sent_cmd->data;
4840 opcode = __le16_to_cpu(sent->opcode);
4841 if (opcode == HCI_OP_RESET)
4842 return;
4843
4844 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4845 if (!skb)
4846 return;
4847
4848 skb_queue_head(&hdev->cmd_q, skb);
4849 queue_work(hdev->workqueue, &hdev->cmd_work);
4850 }
4851
hci_req_cmd_complete(struct hci_dev * hdev,u16 opcode,u8 status,hci_req_complete_t * req_complete,hci_req_complete_skb_t * req_complete_skb)4852 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4853 hci_req_complete_t *req_complete,
4854 hci_req_complete_skb_t *req_complete_skb)
4855 {
4856 struct sk_buff *skb;
4857 unsigned long flags;
4858
4859 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4860
4861 /* If the completed command doesn't match the last one that was
4862 * sent we need to do special handling of it.
4863 */
4864 if (!hci_sent_cmd_data(hdev, opcode)) {
4865 /* Some CSR based controllers generate a spontaneous
4866 * reset complete event during init and any pending
4867 * command will never be completed. In such a case we
4868 * need to resend whatever was the last sent
4869 * command.
4870 */
4871 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4872 hci_resend_last(hdev);
4873
4874 return;
4875 }
4876
4877 /* If we reach this point this event matches the last command sent */
4878 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4879
4880 /* If the command succeeded and there's still more commands in
4881 * this request the request is not yet complete.
4882 */
4883 if (!status && !hci_req_is_complete(hdev))
4884 return;
4885
4886 /* If this was the last command in a request the complete
4887 * callback would be found in hdev->sent_cmd instead of the
4888 * command queue (hdev->cmd_q).
4889 */
4890 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4891 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4892 return;
4893 }
4894
4895 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4896 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4897 return;
4898 }
4899
4900 /* Remove all pending commands belonging to this request */
4901 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4902 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4903 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4904 __skb_queue_head(&hdev->cmd_q, skb);
4905 break;
4906 }
4907
4908 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4909 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4910 else
4911 *req_complete = bt_cb(skb)->hci.req_complete;
4912 dev_kfree_skb_irq(skb);
4913 }
4914 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4915 }
4916
hci_rx_work(struct work_struct * work)4917 static void hci_rx_work(struct work_struct *work)
4918 {
4919 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4920 struct sk_buff *skb;
4921
4922 BT_DBG("%s", hdev->name);
4923
4924 while ((skb = skb_dequeue(&hdev->rx_q))) {
4925 /* Send copy to monitor */
4926 hci_send_to_monitor(hdev, skb);
4927
4928 if (atomic_read(&hdev->promisc)) {
4929 /* Send copy to the sockets */
4930 hci_send_to_sock(hdev, skb);
4931 }
4932
4933 /* If the device has been opened in HCI_USER_CHANNEL,
4934 * the userspace has exclusive access to device.
4935 * When device is HCI_INIT, we still need to process
4936 * the data packets to the driver in order
4937 * to complete its setup().
4938 */
4939 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4940 !test_bit(HCI_INIT, &hdev->flags)) {
4941 kfree_skb(skb);
4942 continue;
4943 }
4944
4945 if (test_bit(HCI_INIT, &hdev->flags)) {
4946 /* Don't process data packets in this states. */
4947 switch (hci_skb_pkt_type(skb)) {
4948 case HCI_ACLDATA_PKT:
4949 case HCI_SCODATA_PKT:
4950 case HCI_ISODATA_PKT:
4951 kfree_skb(skb);
4952 continue;
4953 }
4954 }
4955
4956 /* Process frame */
4957 switch (hci_skb_pkt_type(skb)) {
4958 case HCI_EVENT_PKT:
4959 BT_DBG("%s Event packet", hdev->name);
4960 hci_event_packet(hdev, skb);
4961 break;
4962
4963 case HCI_ACLDATA_PKT:
4964 BT_DBG("%s ACL data packet", hdev->name);
4965 hci_acldata_packet(hdev, skb);
4966 break;
4967
4968 case HCI_SCODATA_PKT:
4969 BT_DBG("%s SCO data packet", hdev->name);
4970 hci_scodata_packet(hdev, skb);
4971 break;
4972
4973 default:
4974 kfree_skb(skb);
4975 break;
4976 }
4977 }
4978 }
4979
hci_cmd_work(struct work_struct * work)4980 static void hci_cmd_work(struct work_struct *work)
4981 {
4982 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4983 struct sk_buff *skb;
4984
4985 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4986 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4987
4988 /* Send queued commands */
4989 if (atomic_read(&hdev->cmd_cnt)) {
4990 skb = skb_dequeue(&hdev->cmd_q);
4991 if (!skb)
4992 return;
4993
4994 kfree_skb(hdev->sent_cmd);
4995
4996 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4997 if (hdev->sent_cmd) {
4998 if (hci_req_status_pend(hdev))
4999 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
5000 atomic_dec(&hdev->cmd_cnt);
5001 hci_send_frame(hdev, skb);
5002 if (test_bit(HCI_RESET, &hdev->flags))
5003 cancel_delayed_work(&hdev->cmd_timer);
5004 else
5005 schedule_delayed_work(&hdev->cmd_timer,
5006 HCI_CMD_TIMEOUT);
5007 } else {
5008 skb_queue_head(&hdev->cmd_q, skb);
5009 queue_work(hdev->workqueue, &hdev->cmd_work);
5010 }
5011 }
5012 }
5013