• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/realmode.h>
47 #include <asm/text-patching.h>
48 #include <asm/ftrace.h>
49 #include <asm/traps.h>
50 #include <asm/desc.h>
51 #include <asm/fpu/internal.h>
52 #include <asm/cpu.h>
53 #include <asm/cpu_entry_area.h>
54 #include <asm/mce.h>
55 #include <asm/fixmap.h>
56 #include <asm/mach_traps.h>
57 #include <asm/alternative.h>
58 #include <asm/fpu/xstate.h>
59 #include <asm/vm86.h>
60 #include <asm/umip.h>
61 #include <asm/insn.h>
62 #include <asm/insn-eval.h>
63 
64 #ifdef CONFIG_X86_64
65 #include <asm/x86_init.h>
66 #include <asm/proto.h>
67 #else
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
71 #endif
72 
73 DECLARE_BITMAP(system_vectors, NR_VECTORS);
74 
cond_local_irq_enable(struct pt_regs * regs)75 static inline void cond_local_irq_enable(struct pt_regs *regs)
76 {
77 	if (regs->flags & X86_EFLAGS_IF)
78 		local_irq_enable();
79 }
80 
cond_local_irq_disable(struct pt_regs * regs)81 static inline void cond_local_irq_disable(struct pt_regs *regs)
82 {
83 	if (regs->flags & X86_EFLAGS_IF)
84 		local_irq_disable();
85 }
86 
is_valid_bugaddr(unsigned long addr)87 __always_inline int is_valid_bugaddr(unsigned long addr)
88 {
89 	if (addr < TASK_SIZE_MAX)
90 		return 0;
91 
92 	/*
93 	 * We got #UD, if the text isn't readable we'd have gotten
94 	 * a different exception.
95 	 */
96 	return *(unsigned short *)addr == INSN_UD2;
97 }
98 
99 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)100 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
101 		  struct pt_regs *regs,	long error_code)
102 {
103 	if (v8086_mode(regs)) {
104 		/*
105 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
106 		 * On nmi (interrupt 2), do_trap should not be called.
107 		 */
108 		if (trapnr < X86_TRAP_UD) {
109 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
110 						error_code, trapnr))
111 				return 0;
112 		}
113 	} else if (!user_mode(regs)) {
114 		if (fixup_exception(regs, trapnr, error_code, 0))
115 			return 0;
116 
117 		tsk->thread.error_code = error_code;
118 		tsk->thread.trap_nr = trapnr;
119 		die(str, regs, error_code);
120 	}
121 
122 	/*
123 	 * We want error_code and trap_nr set for userspace faults and
124 	 * kernelspace faults which result in die(), but not
125 	 * kernelspace faults which are fixed up.  die() gives the
126 	 * process no chance to handle the signal and notice the
127 	 * kernel fault information, so that won't result in polluting
128 	 * the information about previously queued, but not yet
129 	 * delivered, faults.  See also exc_general_protection below.
130 	 */
131 	tsk->thread.error_code = error_code;
132 	tsk->thread.trap_nr = trapnr;
133 
134 	return -1;
135 }
136 
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)137 static void show_signal(struct task_struct *tsk, int signr,
138 			const char *type, const char *desc,
139 			struct pt_regs *regs, long error_code)
140 {
141 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
142 	    printk_ratelimit()) {
143 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
144 			tsk->comm, task_pid_nr(tsk), type, desc,
145 			regs->ip, regs->sp, error_code);
146 		print_vma_addr(KERN_CONT " in ", regs->ip);
147 		pr_cont("\n");
148 	}
149 }
150 
151 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)152 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
153 	long error_code, int sicode, void __user *addr)
154 {
155 	struct task_struct *tsk = current;
156 
157 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
158 		return;
159 
160 	show_signal(tsk, signr, "trap ", str, regs, error_code);
161 
162 	if (!sicode)
163 		force_sig(signr);
164 	else
165 		force_sig_fault(signr, sicode, addr);
166 }
167 NOKPROBE_SYMBOL(do_trap);
168 
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)169 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
170 	unsigned long trapnr, int signr, int sicode, void __user *addr)
171 {
172 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
173 
174 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
175 			NOTIFY_STOP) {
176 		cond_local_irq_enable(regs);
177 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
178 		cond_local_irq_disable(regs);
179 	}
180 }
181 
182 /*
183  * Posix requires to provide the address of the faulting instruction for
184  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
185  *
186  * This address is usually regs->ip, but when an uprobe moved the code out
187  * of line then regs->ip points to the XOL code which would confuse
188  * anything which analyzes the fault address vs. the unmodified binary. If
189  * a trap happened in XOL code then uprobe maps regs->ip back to the
190  * original instruction address.
191  */
error_get_trap_addr(struct pt_regs * regs)192 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
193 {
194 	return (void __user *)uprobe_get_trap_addr(regs);
195 }
196 
DEFINE_IDTENTRY(exc_divide_error)197 DEFINE_IDTENTRY(exc_divide_error)
198 {
199 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
200 		      FPE_INTDIV, error_get_trap_addr(regs));
201 }
202 
DEFINE_IDTENTRY(exc_overflow)203 DEFINE_IDTENTRY(exc_overflow)
204 {
205 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
206 }
207 
208 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)209 void handle_invalid_op(struct pt_regs *regs)
210 #else
211 static inline void handle_invalid_op(struct pt_regs *regs)
212 #endif
213 {
214 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
215 		      ILL_ILLOPN, error_get_trap_addr(regs));
216 }
217 
handle_bug(struct pt_regs * regs)218 static noinstr bool handle_bug(struct pt_regs *regs)
219 {
220 	bool handled = false;
221 
222 	if (!is_valid_bugaddr(regs->ip))
223 		return handled;
224 
225 	/*
226 	 * All lies, just get the WARN/BUG out.
227 	 */
228 	instrumentation_begin();
229 	/*
230 	 * Since we're emulating a CALL with exceptions, restore the interrupt
231 	 * state to what it was at the exception site.
232 	 */
233 	if (regs->flags & X86_EFLAGS_IF)
234 		raw_local_irq_enable();
235 	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
236 		regs->ip += LEN_UD2;
237 		handled = true;
238 	}
239 	if (regs->flags & X86_EFLAGS_IF)
240 		raw_local_irq_disable();
241 	instrumentation_end();
242 
243 	return handled;
244 }
245 
DEFINE_IDTENTRY_RAW(exc_invalid_op)246 DEFINE_IDTENTRY_RAW(exc_invalid_op)
247 {
248 	irqentry_state_t state;
249 
250 	/*
251 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
252 	 * handle it before exception entry to avoid recursive WARN
253 	 * in case exception entry is the one triggering WARNs.
254 	 */
255 	if (!user_mode(regs) && handle_bug(regs))
256 		return;
257 
258 	state = irqentry_enter(regs);
259 	instrumentation_begin();
260 	handle_invalid_op(regs);
261 	instrumentation_end();
262 	irqentry_exit(regs, state);
263 }
264 
DEFINE_IDTENTRY(exc_coproc_segment_overrun)265 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
266 {
267 	do_error_trap(regs, 0, "coprocessor segment overrun",
268 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
269 }
270 
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)271 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
272 {
273 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
274 		      0, NULL);
275 }
276 
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)277 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
278 {
279 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
280 		      SIGBUS, 0, NULL);
281 }
282 
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)283 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
284 {
285 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
286 		      0, NULL);
287 }
288 
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)289 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
290 {
291 	char *str = "alignment check";
292 
293 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
294 		return;
295 
296 	if (!user_mode(regs))
297 		die("Split lock detected\n", regs, error_code);
298 
299 	local_irq_enable();
300 
301 	if (handle_user_split_lock(regs, error_code))
302 		goto out;
303 
304 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
305 		error_code, BUS_ADRALN, NULL);
306 
307 out:
308 	local_irq_disable();
309 }
310 
311 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(const char * message,struct pt_regs * regs,unsigned long fault_address)312 __visible void __noreturn handle_stack_overflow(const char *message,
313 						struct pt_regs *regs,
314 						unsigned long fault_address)
315 {
316 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
317 		 (void *)fault_address, current->stack,
318 		 (char *)current->stack + THREAD_SIZE - 1);
319 	die(message, regs, 0);
320 
321 	/* Be absolutely certain we don't return. */
322 	panic("%s", message);
323 }
324 #endif
325 
326 /*
327  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
328  *
329  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
330  * SDM's warnings about double faults being unrecoverable, returning works as
331  * expected.  Presumably what the SDM actually means is that the CPU may get
332  * the register state wrong on entry, so returning could be a bad idea.
333  *
334  * Various CPU engineers have promised that double faults due to an IRET fault
335  * while the stack is read-only are, in fact, recoverable.
336  *
337  * On x86_32, this is entered through a task gate, and regs are synthesized
338  * from the TSS.  Returning is, in principle, okay, but changes to regs will
339  * be lost.  If, for some reason, we need to return to a context with modified
340  * regs, the shim code could be adjusted to synchronize the registers.
341  *
342  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
343  * to be read before doing anything else.
344  */
DEFINE_IDTENTRY_DF(exc_double_fault)345 DEFINE_IDTENTRY_DF(exc_double_fault)
346 {
347 	static const char str[] = "double fault";
348 	struct task_struct *tsk = current;
349 
350 #ifdef CONFIG_VMAP_STACK
351 	unsigned long address = read_cr2();
352 #endif
353 
354 #ifdef CONFIG_X86_ESPFIX64
355 	extern unsigned char native_irq_return_iret[];
356 
357 	/*
358 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
359 	 * end up promoting it to a doublefault.  In that case, take
360 	 * advantage of the fact that we're not using the normal (TSS.sp0)
361 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
362 	 * and then modify our own IRET frame so that, when we return,
363 	 * we land directly at the #GP(0) vector with the stack already
364 	 * set up according to its expectations.
365 	 *
366 	 * The net result is that our #GP handler will think that we
367 	 * entered from usermode with the bad user context.
368 	 *
369 	 * No need for nmi_enter() here because we don't use RCU.
370 	 */
371 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
372 		regs->cs == __KERNEL_CS &&
373 		regs->ip == (unsigned long)native_irq_return_iret)
374 	{
375 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
376 		unsigned long *p = (unsigned long *)regs->sp;
377 
378 		/*
379 		 * regs->sp points to the failing IRET frame on the
380 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
381 		 * in gpregs->ss through gpregs->ip.
382 		 *
383 		 */
384 		gpregs->ip	= p[0];
385 		gpregs->cs	= p[1];
386 		gpregs->flags	= p[2];
387 		gpregs->sp	= p[3];
388 		gpregs->ss	= p[4];
389 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
390 
391 		/*
392 		 * Adjust our frame so that we return straight to the #GP
393 		 * vector with the expected RSP value.  This is safe because
394 		 * we won't enable interupts or schedule before we invoke
395 		 * general_protection, so nothing will clobber the stack
396 		 * frame we just set up.
397 		 *
398 		 * We will enter general_protection with kernel GSBASE,
399 		 * which is what the stub expects, given that the faulting
400 		 * RIP will be the IRET instruction.
401 		 */
402 		regs->ip = (unsigned long)asm_exc_general_protection;
403 		regs->sp = (unsigned long)&gpregs->orig_ax;
404 
405 		return;
406 	}
407 #endif
408 
409 	irqentry_nmi_enter(regs);
410 	instrumentation_begin();
411 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
412 
413 	tsk->thread.error_code = error_code;
414 	tsk->thread.trap_nr = X86_TRAP_DF;
415 
416 #ifdef CONFIG_VMAP_STACK
417 	/*
418 	 * If we overflow the stack into a guard page, the CPU will fail
419 	 * to deliver #PF and will send #DF instead.  Similarly, if we
420 	 * take any non-IST exception while too close to the bottom of
421 	 * the stack, the processor will get a page fault while
422 	 * delivering the exception and will generate a double fault.
423 	 *
424 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
425 	 * Page-Fault Exception (#PF):
426 	 *
427 	 *   Processors update CR2 whenever a page fault is detected. If a
428 	 *   second page fault occurs while an earlier page fault is being
429 	 *   delivered, the faulting linear address of the second fault will
430 	 *   overwrite the contents of CR2 (replacing the previous
431 	 *   address). These updates to CR2 occur even if the page fault
432 	 *   results in a double fault or occurs during the delivery of a
433 	 *   double fault.
434 	 *
435 	 * The logic below has a small possibility of incorrectly diagnosing
436 	 * some errors as stack overflows.  For example, if the IDT or GDT
437 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
438 	 * causing #GP and we hit this condition while CR2 coincidentally
439 	 * points to the stack guard page, we'll think we overflowed the
440 	 * stack.  Given that we're going to panic one way or another
441 	 * if this happens, this isn't necessarily worth fixing.
442 	 *
443 	 * If necessary, we could improve the test by only diagnosing
444 	 * a stack overflow if the saved RSP points within 47 bytes of
445 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
446 	 * take an exception, the stack is already aligned and there
447 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
448 	 * possible error code, so a stack overflow would *not* double
449 	 * fault.  With any less space left, exception delivery could
450 	 * fail, and, as a practical matter, we've overflowed the
451 	 * stack even if the actual trigger for the double fault was
452 	 * something else.
453 	 */
454 	if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
455 		handle_stack_overflow("kernel stack overflow (double-fault)",
456 				      regs, address);
457 	}
458 #endif
459 
460 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
461 	die("double fault", regs, error_code);
462 	panic("Machine halted.");
463 	instrumentation_end();
464 }
465 
DEFINE_IDTENTRY(exc_bounds)466 DEFINE_IDTENTRY(exc_bounds)
467 {
468 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
469 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
470 		return;
471 	cond_local_irq_enable(regs);
472 
473 	if (!user_mode(regs))
474 		die("bounds", regs, 0);
475 
476 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
477 
478 	cond_local_irq_disable(regs);
479 }
480 
481 enum kernel_gp_hint {
482 	GP_NO_HINT,
483 	GP_NON_CANONICAL,
484 	GP_CANONICAL
485 };
486 
487 /*
488  * When an uncaught #GP occurs, try to determine the memory address accessed by
489  * the instruction and return that address to the caller. Also, try to figure
490  * out whether any part of the access to that address was non-canonical.
491  */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)492 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
493 						 unsigned long *addr)
494 {
495 	u8 insn_buf[MAX_INSN_SIZE];
496 	struct insn insn;
497 
498 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
499 			MAX_INSN_SIZE))
500 		return GP_NO_HINT;
501 
502 	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
503 	insn_get_modrm(&insn);
504 	insn_get_sib(&insn);
505 
506 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
507 	if (*addr == -1UL)
508 		return GP_NO_HINT;
509 
510 #ifdef CONFIG_X86_64
511 	/*
512 	 * Check that:
513 	 *  - the operand is not in the kernel half
514 	 *  - the last byte of the operand is not in the user canonical half
515 	 */
516 	if (*addr < ~__VIRTUAL_MASK &&
517 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
518 		return GP_NON_CANONICAL;
519 #endif
520 
521 	return GP_CANONICAL;
522 }
523 
524 #define GPFSTR "general protection fault"
525 
fixup_iopl_exception(struct pt_regs * regs)526 static bool fixup_iopl_exception(struct pt_regs *regs)
527 {
528 	struct thread_struct *t = &current->thread;
529 	unsigned char byte;
530 	unsigned long ip;
531 
532 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
533 		return false;
534 
535 	ip = insn_get_effective_ip(regs);
536 	if (!ip)
537 		return false;
538 
539 	if (get_user(byte, (const char __user *)ip))
540 		return false;
541 
542 	if (byte != 0xfa && byte != 0xfb)
543 		return false;
544 
545 	if (!t->iopl_warn && printk_ratelimit()) {
546 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
547 		       current->comm, task_pid_nr(current), ip);
548 		print_vma_addr(KERN_CONT " in ", ip);
549 		pr_cont("\n");
550 		t->iopl_warn = 1;
551 	}
552 
553 	regs->ip += 1;
554 	return true;
555 }
556 
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)557 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
558 {
559 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
560 	enum kernel_gp_hint hint = GP_NO_HINT;
561 	struct task_struct *tsk;
562 	unsigned long gp_addr;
563 	int ret;
564 
565 	cond_local_irq_enable(regs);
566 
567 	if (static_cpu_has(X86_FEATURE_UMIP)) {
568 		if (user_mode(regs) && fixup_umip_exception(regs))
569 			goto exit;
570 	}
571 
572 	if (v8086_mode(regs)) {
573 		local_irq_enable();
574 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
575 		local_irq_disable();
576 		return;
577 	}
578 
579 	tsk = current;
580 
581 	if (user_mode(regs)) {
582 		if (fixup_iopl_exception(regs))
583 			goto exit;
584 
585 		tsk->thread.error_code = error_code;
586 		tsk->thread.trap_nr = X86_TRAP_GP;
587 
588 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
589 		force_sig(SIGSEGV);
590 		goto exit;
591 	}
592 
593 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
594 		goto exit;
595 
596 	tsk->thread.error_code = error_code;
597 	tsk->thread.trap_nr = X86_TRAP_GP;
598 
599 	/*
600 	 * To be potentially processing a kprobe fault and to trust the result
601 	 * from kprobe_running(), we have to be non-preemptible.
602 	 */
603 	if (!preemptible() &&
604 	    kprobe_running() &&
605 	    kprobe_fault_handler(regs, X86_TRAP_GP))
606 		goto exit;
607 
608 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
609 	if (ret == NOTIFY_STOP)
610 		goto exit;
611 
612 	if (error_code)
613 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
614 	else
615 		hint = get_kernel_gp_address(regs, &gp_addr);
616 
617 	if (hint != GP_NO_HINT)
618 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
619 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
620 						    : "maybe for address",
621 			 gp_addr);
622 
623 	/*
624 	 * KASAN is interested only in the non-canonical case, clear it
625 	 * otherwise.
626 	 */
627 	if (hint != GP_NON_CANONICAL)
628 		gp_addr = 0;
629 
630 	die_addr(desc, regs, error_code, gp_addr);
631 
632 exit:
633 	cond_local_irq_disable(regs);
634 }
635 
do_int3(struct pt_regs * regs)636 static bool do_int3(struct pt_regs *regs)
637 {
638 	int res;
639 
640 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
641 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
642 			 SIGTRAP) == NOTIFY_STOP)
643 		return true;
644 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
645 
646 #ifdef CONFIG_KPROBES
647 	if (kprobe_int3_handler(regs))
648 		return true;
649 #endif
650 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
651 
652 	return res == NOTIFY_STOP;
653 }
654 NOKPROBE_SYMBOL(do_int3);
655 
do_int3_user(struct pt_regs * regs)656 static void do_int3_user(struct pt_regs *regs)
657 {
658 	if (do_int3(regs))
659 		return;
660 
661 	cond_local_irq_enable(regs);
662 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
663 	cond_local_irq_disable(regs);
664 }
665 
DEFINE_IDTENTRY_RAW(exc_int3)666 DEFINE_IDTENTRY_RAW(exc_int3)
667 {
668 	/*
669 	 * poke_int3_handler() is completely self contained code; it does (and
670 	 * must) *NOT* call out to anything, lest it hits upon yet another
671 	 * INT3.
672 	 */
673 	if (poke_int3_handler(regs))
674 		return;
675 
676 	/*
677 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
678 	 * and therefore can trigger INT3, hence poke_int3_handler() must
679 	 * be done before. If the entry came from kernel mode, then use
680 	 * nmi_enter() because the INT3 could have been hit in any context
681 	 * including NMI.
682 	 */
683 	if (user_mode(regs)) {
684 		irqentry_enter_from_user_mode(regs);
685 		instrumentation_begin();
686 		do_int3_user(regs);
687 		instrumentation_end();
688 		irqentry_exit_to_user_mode(regs);
689 	} else {
690 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
691 
692 		instrumentation_begin();
693 		if (!do_int3(regs))
694 			die("int3", regs, 0);
695 		instrumentation_end();
696 		irqentry_nmi_exit(regs, irq_state);
697 	}
698 }
699 
700 #ifdef CONFIG_X86_64
701 /*
702  * Help handler running on a per-cpu (IST or entry trampoline) stack
703  * to switch to the normal thread stack if the interrupted code was in
704  * user mode. The actual stack switch is done in entry_64.S
705  */
sync_regs(struct pt_regs * eregs)706 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
707 {
708 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
709 	if (regs != eregs)
710 		*regs = *eregs;
711 	return regs;
712 }
713 
714 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)715 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
716 {
717 	unsigned long sp, *stack;
718 	struct stack_info info;
719 	struct pt_regs *regs_ret;
720 
721 	/*
722 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
723 	 * trust it and switch to the current kernel stack
724 	 */
725 	if (ip_within_syscall_gap(regs)) {
726 		sp = this_cpu_read(cpu_current_top_of_stack);
727 		goto sync;
728 	}
729 
730 	/*
731 	 * From here on the RSP value is trusted. Now check whether entry
732 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
733 	 * use the fall-back stack instead in this case.
734 	 */
735 	sp    = regs->sp;
736 	stack = (unsigned long *)sp;
737 
738 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
739 	    info.type > STACK_TYPE_EXCEPTION_LAST)
740 		sp = __this_cpu_ist_top_va(VC2);
741 
742 sync:
743 	/*
744 	 * Found a safe stack - switch to it as if the entry didn't happen via
745 	 * IST stack. The code below only copies pt_regs, the real switch happens
746 	 * in assembly code.
747 	 */
748 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
749 
750 	regs_ret = (struct pt_regs *)sp;
751 	*regs_ret = *regs;
752 
753 	return regs_ret;
754 }
755 #endif
756 
757 struct bad_iret_stack {
758 	void *error_entry_ret;
759 	struct pt_regs regs;
760 };
761 
762 asmlinkage __visible noinstr
fixup_bad_iret(struct bad_iret_stack * s)763 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
764 {
765 	/*
766 	 * This is called from entry_64.S early in handling a fault
767 	 * caused by a bad iret to user mode.  To handle the fault
768 	 * correctly, we want to move our stack frame to where it would
769 	 * be had we entered directly on the entry stack (rather than
770 	 * just below the IRET frame) and we want to pretend that the
771 	 * exception came from the IRET target.
772 	 */
773 	struct bad_iret_stack tmp, *new_stack =
774 		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
775 
776 	/* Copy the IRET target to the temporary storage. */
777 	__memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
778 
779 	/* Copy the remainder of the stack from the current stack. */
780 	__memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
781 
782 	/* Update the entry stack */
783 	__memcpy(new_stack, &tmp, sizeof(tmp));
784 
785 	BUG_ON(!user_mode(&new_stack->regs));
786 	return new_stack;
787 }
788 #endif
789 
is_sysenter_singlestep(struct pt_regs * regs)790 static bool is_sysenter_singlestep(struct pt_regs *regs)
791 {
792 	/*
793 	 * We don't try for precision here.  If we're anywhere in the region of
794 	 * code that can be single-stepped in the SYSENTER entry path, then
795 	 * assume that this is a useless single-step trap due to SYSENTER
796 	 * being invoked with TF set.  (We don't know in advance exactly
797 	 * which instructions will be hit because BTF could plausibly
798 	 * be set.)
799 	 */
800 #ifdef CONFIG_X86_32
801 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
802 		(unsigned long)__end_SYSENTER_singlestep_region -
803 		(unsigned long)__begin_SYSENTER_singlestep_region;
804 #elif defined(CONFIG_IA32_EMULATION)
805 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
806 		(unsigned long)__end_entry_SYSENTER_compat -
807 		(unsigned long)entry_SYSENTER_compat;
808 #else
809 	return false;
810 #endif
811 }
812 
debug_read_clear_dr6(void)813 static __always_inline unsigned long debug_read_clear_dr6(void)
814 {
815 	unsigned long dr6;
816 
817 	/*
818 	 * The Intel SDM says:
819 	 *
820 	 *   Certain debug exceptions may clear bits 0-3. The remaining
821 	 *   contents of the DR6 register are never cleared by the
822 	 *   processor. To avoid confusion in identifying debug
823 	 *   exceptions, debug handlers should clear the register before
824 	 *   returning to the interrupted task.
825 	 *
826 	 * Keep it simple: clear DR6 immediately.
827 	 */
828 	get_debugreg(dr6, 6);
829 	set_debugreg(DR6_RESERVED, 6);
830 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
831 
832 	return dr6;
833 }
834 
835 /*
836  * Our handling of the processor debug registers is non-trivial.
837  * We do not clear them on entry and exit from the kernel. Therefore
838  * it is possible to get a watchpoint trap here from inside the kernel.
839  * However, the code in ./ptrace.c has ensured that the user can
840  * only set watchpoints on userspace addresses. Therefore the in-kernel
841  * watchpoint trap can only occur in code which is reading/writing
842  * from user space. Such code must not hold kernel locks (since it
843  * can equally take a page fault), therefore it is safe to call
844  * force_sig_info even though that claims and releases locks.
845  *
846  * Code in ./signal.c ensures that the debug control register
847  * is restored before we deliver any signal, and therefore that
848  * user code runs with the correct debug control register even though
849  * we clear it here.
850  *
851  * Being careful here means that we don't have to be as careful in a
852  * lot of more complicated places (task switching can be a bit lazy
853  * about restoring all the debug state, and ptrace doesn't have to
854  * find every occurrence of the TF bit that could be saved away even
855  * by user code)
856  *
857  * May run on IST stack.
858  */
859 
notify_debug(struct pt_regs * regs,unsigned long * dr6)860 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
861 {
862 	/*
863 	 * Notifiers will clear bits in @dr6 to indicate the event has been
864 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
865 	 *
866 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
867 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
868 	 */
869 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
870 		return true;
871 
872 	return false;
873 }
874 
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)875 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
876 					     unsigned long dr6)
877 {
878 	/*
879 	 * Disable breakpoints during exception handling; recursive exceptions
880 	 * are exceedingly 'fun'.
881 	 *
882 	 * Since this function is NOKPROBE, and that also applies to
883 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
884 	 * HW_BREAKPOINT_W on our stack)
885 	 *
886 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
887 	 * includes the entry stack is excluded for everything.
888 	 */
889 	unsigned long dr7 = local_db_save();
890 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
891 	instrumentation_begin();
892 
893 	/*
894 	 * If something gets miswired and we end up here for a user mode
895 	 * #DB, we will malfunction.
896 	 */
897 	WARN_ON_ONCE(user_mode(regs));
898 
899 	if (test_thread_flag(TIF_BLOCKSTEP)) {
900 		/*
901 		 * The SDM says "The processor clears the BTF flag when it
902 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
903 		 * it for userspace, but we just took a kernel #DB, so re-set
904 		 * BTF.
905 		 */
906 		unsigned long debugctl;
907 
908 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
909 		debugctl |= DEBUGCTLMSR_BTF;
910 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
911 	}
912 
913 	/*
914 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
915 	 * watchpoint at the same time then that will still be handled.
916 	 */
917 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
918 		dr6 &= ~DR_STEP;
919 
920 	/*
921 	 * The kernel doesn't use INT1
922 	 */
923 	if (!dr6)
924 		goto out;
925 
926 	if (notify_debug(regs, &dr6))
927 		goto out;
928 
929 	/*
930 	 * The kernel doesn't use TF single-step outside of:
931 	 *
932 	 *  - Kprobes, consumed through kprobe_debug_handler()
933 	 *  - KGDB, consumed through notify_debug()
934 	 *
935 	 * So if we get here with DR_STEP set, something is wonky.
936 	 *
937 	 * A known way to trigger this is through QEMU's GDB stub,
938 	 * which leaks #DB into the guest and causes IST recursion.
939 	 */
940 	if (WARN_ON_ONCE(dr6 & DR_STEP))
941 		regs->flags &= ~X86_EFLAGS_TF;
942 out:
943 	instrumentation_end();
944 	irqentry_nmi_exit(regs, irq_state);
945 
946 	local_db_restore(dr7);
947 }
948 
exc_debug_user(struct pt_regs * regs,unsigned long dr6)949 static __always_inline void exc_debug_user(struct pt_regs *regs,
950 					   unsigned long dr6)
951 {
952 	bool icebp;
953 
954 	/*
955 	 * If something gets miswired and we end up here for a kernel mode
956 	 * #DB, we will malfunction.
957 	 */
958 	WARN_ON_ONCE(!user_mode(regs));
959 
960 	/*
961 	 * NB: We can't easily clear DR7 here because
962 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
963 	 * user memory, etc.  This means that a recursive #DB is possible.  If
964 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
965 	 * Since we're not on the IST stack right now, everything will be
966 	 * fine.
967 	 */
968 
969 	irqentry_enter_from_user_mode(regs);
970 	instrumentation_begin();
971 
972 	/*
973 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
974 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
975 	 *
976 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
977 	 * even if it is not the result of PTRACE_SINGLESTEP.
978 	 */
979 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
980 
981 	/*
982 	 * The SDM says "The processor clears the BTF flag when it
983 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
984 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
985 	 */
986 	clear_thread_flag(TIF_BLOCKSTEP);
987 
988 	/*
989 	 * If dr6 has no reason to give us about the origin of this trap,
990 	 * then it's very likely the result of an icebp/int01 trap.
991 	 * User wants a sigtrap for that.
992 	 */
993 	icebp = !dr6;
994 
995 	if (notify_debug(regs, &dr6))
996 		goto out;
997 
998 	/* It's safe to allow irq's after DR6 has been saved */
999 	local_irq_enable();
1000 
1001 	if (v8086_mode(regs)) {
1002 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1003 		goto out_irq;
1004 	}
1005 
1006 	/* Add the virtual_dr6 bits for signals. */
1007 	dr6 |= current->thread.virtual_dr6;
1008 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1009 		send_sigtrap(regs, 0, get_si_code(dr6));
1010 
1011 out_irq:
1012 	local_irq_disable();
1013 out:
1014 	instrumentation_end();
1015 	irqentry_exit_to_user_mode(regs);
1016 }
1017 
1018 #ifdef CONFIG_X86_64
1019 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1020 DEFINE_IDTENTRY_DEBUG(exc_debug)
1021 {
1022 	exc_debug_kernel(regs, debug_read_clear_dr6());
1023 }
1024 
1025 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1026 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1027 {
1028 	exc_debug_user(regs, debug_read_clear_dr6());
1029 }
1030 #else
1031 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1032 DEFINE_IDTENTRY_RAW(exc_debug)
1033 {
1034 	unsigned long dr6 = debug_read_clear_dr6();
1035 
1036 	if (user_mode(regs))
1037 		exc_debug_user(regs, dr6);
1038 	else
1039 		exc_debug_kernel(regs, dr6);
1040 }
1041 #endif
1042 
1043 /*
1044  * Note that we play around with the 'TS' bit in an attempt to get
1045  * the correct behaviour even in the presence of the asynchronous
1046  * IRQ13 behaviour
1047  */
math_error(struct pt_regs * regs,int trapnr)1048 static void math_error(struct pt_regs *regs, int trapnr)
1049 {
1050 	struct task_struct *task = current;
1051 	struct fpu *fpu = &task->thread.fpu;
1052 	int si_code;
1053 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1054 						"simd exception";
1055 
1056 	cond_local_irq_enable(regs);
1057 
1058 	if (!user_mode(regs)) {
1059 		if (fixup_exception(regs, trapnr, 0, 0))
1060 			goto exit;
1061 
1062 		task->thread.error_code = 0;
1063 		task->thread.trap_nr = trapnr;
1064 
1065 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1066 			       SIGFPE) != NOTIFY_STOP)
1067 			die(str, regs, 0);
1068 		goto exit;
1069 	}
1070 
1071 	/*
1072 	 * Save the info for the exception handler and clear the error.
1073 	 */
1074 	fpu__save(fpu);
1075 
1076 	task->thread.trap_nr	= trapnr;
1077 	task->thread.error_code = 0;
1078 
1079 	si_code = fpu__exception_code(fpu, trapnr);
1080 	/* Retry when we get spurious exceptions: */
1081 	if (!si_code)
1082 		goto exit;
1083 
1084 	force_sig_fault(SIGFPE, si_code,
1085 			(void __user *)uprobe_get_trap_addr(regs));
1086 exit:
1087 	cond_local_irq_disable(regs);
1088 }
1089 
DEFINE_IDTENTRY(exc_coprocessor_error)1090 DEFINE_IDTENTRY(exc_coprocessor_error)
1091 {
1092 	math_error(regs, X86_TRAP_MF);
1093 }
1094 
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1095 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1096 {
1097 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1098 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1099 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1100 			__exc_general_protection(regs, 0);
1101 			return;
1102 		}
1103 	}
1104 	math_error(regs, X86_TRAP_XF);
1105 }
1106 
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1107 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1108 {
1109 	/*
1110 	 * This addresses a Pentium Pro Erratum:
1111 	 *
1112 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1113 	 * Virtual Wire mode implemented through the local APIC, an
1114 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1115 	 * generated by the local APIC (Int 15).  This vector may be
1116 	 * generated upon receipt of a spurious interrupt (an interrupt
1117 	 * which is removed before the system receives the INTA sequence)
1118 	 * instead of the programmed 8259 spurious interrupt vector.
1119 	 *
1120 	 * IMPLICATION: The spurious interrupt vector programmed in the
1121 	 * 8259 is normally handled by an operating system's spurious
1122 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1123 	 * operating systems, which would crash if this erratum occurred.
1124 	 *
1125 	 * In theory this could be limited to 32bit, but the handler is not
1126 	 * hurting and who knows which other CPUs suffer from this.
1127 	 */
1128 }
1129 
DEFINE_IDTENTRY(exc_device_not_available)1130 DEFINE_IDTENTRY(exc_device_not_available)
1131 {
1132 	unsigned long cr0 = read_cr0();
1133 
1134 #ifdef CONFIG_MATH_EMULATION
1135 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1136 		struct math_emu_info info = { };
1137 
1138 		cond_local_irq_enable(regs);
1139 
1140 		info.regs = regs;
1141 		math_emulate(&info);
1142 
1143 		cond_local_irq_disable(regs);
1144 		return;
1145 	}
1146 #endif
1147 
1148 	/* This should not happen. */
1149 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1150 		/* Try to fix it up and carry on. */
1151 		write_cr0(cr0 & ~X86_CR0_TS);
1152 	} else {
1153 		/*
1154 		 * Something terrible happened, and we're better off trying
1155 		 * to kill the task than getting stuck in a never-ending
1156 		 * loop of #NM faults.
1157 		 */
1158 		die("unexpected #NM exception", regs, 0);
1159 	}
1160 }
1161 
1162 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1163 DEFINE_IDTENTRY_SW(iret_error)
1164 {
1165 	local_irq_enable();
1166 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1167 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1168 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1169 			ILL_BADSTK, (void __user *)NULL);
1170 	}
1171 	local_irq_disable();
1172 }
1173 #endif
1174 
trap_init(void)1175 void __init trap_init(void)
1176 {
1177 	/* Init cpu_entry_area before IST entries are set up */
1178 	setup_cpu_entry_areas();
1179 
1180 	/* Init GHCB memory pages when running as an SEV-ES guest */
1181 	sev_es_init_vc_handling();
1182 
1183 	idt_setup_traps();
1184 
1185 	cpu_init_exception_handling();
1186 	cpu_init();
1187 
1188 	idt_setup_ist_traps();
1189 }
1190