• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 			      struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 			      ext4_lblk_t end, int *reserved,
151 			      struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 		       struct ext4_inode_info *locked_ei);
155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 			    ext4_lblk_t len,
157 			    struct pending_reservation **prealloc);
158 
ext4_init_es(void)159 int __init ext4_init_es(void)
160 {
161 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
162 					   sizeof(struct extent_status),
163 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
164 	if (ext4_es_cachep == NULL)
165 		return -ENOMEM;
166 	return 0;
167 }
168 
ext4_exit_es(void)169 void ext4_exit_es(void)
170 {
171 	kmem_cache_destroy(ext4_es_cachep);
172 }
173 
ext4_es_init_tree(struct ext4_es_tree * tree)174 void ext4_es_init_tree(struct ext4_es_tree *tree)
175 {
176 	tree->root = RB_ROOT;
177 	tree->cache_es = NULL;
178 }
179 
180 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)181 static void ext4_es_print_tree(struct inode *inode)
182 {
183 	struct ext4_es_tree *tree;
184 	struct rb_node *node;
185 
186 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
187 	tree = &EXT4_I(inode)->i_es_tree;
188 	node = rb_first(&tree->root);
189 	while (node) {
190 		struct extent_status *es;
191 		es = rb_entry(node, struct extent_status, rb_node);
192 		printk(KERN_DEBUG " [%u/%u) %llu %x",
193 		       es->es_lblk, es->es_len,
194 		       ext4_es_pblock(es), ext4_es_status(es));
195 		node = rb_next(node);
196 	}
197 	printk(KERN_DEBUG "\n");
198 }
199 #else
200 #define ext4_es_print_tree(inode)
201 #endif
202 
ext4_es_end(struct extent_status * es)203 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
204 {
205 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
206 	return es->es_lblk + es->es_len - 1;
207 }
208 
209 /*
210  * search through the tree for an delayed extent with a given offset.  If
211  * it can't be found, try to find next extent.
212  */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)213 static struct extent_status *__es_tree_search(struct rb_root *root,
214 					      ext4_lblk_t lblk)
215 {
216 	struct rb_node *node = root->rb_node;
217 	struct extent_status *es = NULL;
218 
219 	while (node) {
220 		es = rb_entry(node, struct extent_status, rb_node);
221 		if (lblk < es->es_lblk)
222 			node = node->rb_left;
223 		else if (lblk > ext4_es_end(es))
224 			node = node->rb_right;
225 		else
226 			return es;
227 	}
228 
229 	if (es && lblk < es->es_lblk)
230 		return es;
231 
232 	if (es && lblk > ext4_es_end(es)) {
233 		node = rb_next(&es->rb_node);
234 		return node ? rb_entry(node, struct extent_status, rb_node) :
235 			      NULL;
236 	}
237 
238 	return NULL;
239 }
240 
241 /*
242  * ext4_es_find_extent_range - find extent with specified status within block
243  *                             range or next extent following block range in
244  *                             extents status tree
245  *
246  * @inode - file containing the range
247  * @matching_fn - pointer to function that matches extents with desired status
248  * @lblk - logical block defining start of range
249  * @end - logical block defining end of range
250  * @es - extent found, if any
251  *
252  * Find the first extent within the block range specified by @lblk and @end
253  * in the extents status tree that satisfies @matching_fn.  If a match
254  * is found, it's returned in @es.  If not, and a matching extent is found
255  * beyond the block range, it's returned in @es.  If no match is found, an
256  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
257  * are 0.
258  */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)259 static void __es_find_extent_range(struct inode *inode,
260 				   int (*matching_fn)(struct extent_status *es),
261 				   ext4_lblk_t lblk, ext4_lblk_t end,
262 				   struct extent_status *es)
263 {
264 	struct ext4_es_tree *tree = NULL;
265 	struct extent_status *es1 = NULL;
266 	struct rb_node *node;
267 
268 	WARN_ON(es == NULL);
269 	WARN_ON(end < lblk);
270 
271 	tree = &EXT4_I(inode)->i_es_tree;
272 
273 	/* see if the extent has been cached */
274 	es->es_lblk = es->es_len = es->es_pblk = 0;
275 	es1 = READ_ONCE(tree->cache_es);
276 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
277 		es_debug("%u cached by [%u/%u) %llu %x\n",
278 			 lblk, es1->es_lblk, es1->es_len,
279 			 ext4_es_pblock(es1), ext4_es_status(es1));
280 		goto out;
281 	}
282 
283 	es1 = __es_tree_search(&tree->root, lblk);
284 
285 out:
286 	if (es1 && !matching_fn(es1)) {
287 		while ((node = rb_next(&es1->rb_node)) != NULL) {
288 			es1 = rb_entry(node, struct extent_status, rb_node);
289 			if (es1->es_lblk > end) {
290 				es1 = NULL;
291 				break;
292 			}
293 			if (matching_fn(es1))
294 				break;
295 		}
296 	}
297 
298 	if (es1 && matching_fn(es1)) {
299 		WRITE_ONCE(tree->cache_es, es1);
300 		es->es_lblk = es1->es_lblk;
301 		es->es_len = es1->es_len;
302 		es->es_pblk = es1->es_pblk;
303 	}
304 
305 }
306 
307 /*
308  * Locking for __es_find_extent_range() for external use
309  */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)310 void ext4_es_find_extent_range(struct inode *inode,
311 			       int (*matching_fn)(struct extent_status *es),
312 			       ext4_lblk_t lblk, ext4_lblk_t end,
313 			       struct extent_status *es)
314 {
315 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
316 		return;
317 
318 	trace_ext4_es_find_extent_range_enter(inode, lblk);
319 
320 	read_lock(&EXT4_I(inode)->i_es_lock);
321 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
322 	read_unlock(&EXT4_I(inode)->i_es_lock);
323 
324 	trace_ext4_es_find_extent_range_exit(inode, es);
325 }
326 
327 /*
328  * __es_scan_range - search block range for block with specified status
329  *                   in extents status tree
330  *
331  * @inode - file containing the range
332  * @matching_fn - pointer to function that matches extents with desired status
333  * @lblk - logical block defining start of range
334  * @end - logical block defining end of range
335  *
336  * Returns true if at least one block in the specified block range satisfies
337  * the criterion specified by @matching_fn, and false if not.  If at least
338  * one extent has the specified status, then there is at least one block
339  * in the cluster with that status.  Should only be called by code that has
340  * taken i_es_lock.
341  */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)342 static bool __es_scan_range(struct inode *inode,
343 			    int (*matching_fn)(struct extent_status *es),
344 			    ext4_lblk_t start, ext4_lblk_t end)
345 {
346 	struct extent_status es;
347 
348 	__es_find_extent_range(inode, matching_fn, start, end, &es);
349 	if (es.es_len == 0)
350 		return false;   /* no matching extent in the tree */
351 	else if (es.es_lblk <= start &&
352 		 start < es.es_lblk + es.es_len)
353 		return true;
354 	else if (start <= es.es_lblk && es.es_lblk <= end)
355 		return true;
356 	else
357 		return false;
358 }
359 /*
360  * Locking for __es_scan_range() for external use
361  */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)362 bool ext4_es_scan_range(struct inode *inode,
363 			int (*matching_fn)(struct extent_status *es),
364 			ext4_lblk_t lblk, ext4_lblk_t end)
365 {
366 	bool ret;
367 
368 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
369 		return false;
370 
371 	read_lock(&EXT4_I(inode)->i_es_lock);
372 	ret = __es_scan_range(inode, matching_fn, lblk, end);
373 	read_unlock(&EXT4_I(inode)->i_es_lock);
374 
375 	return ret;
376 }
377 
378 /*
379  * __es_scan_clu - search cluster for block with specified status in
380  *                 extents status tree
381  *
382  * @inode - file containing the cluster
383  * @matching_fn - pointer to function that matches extents with desired status
384  * @lblk - logical block in cluster to be searched
385  *
386  * Returns true if at least one extent in the cluster containing @lblk
387  * satisfies the criterion specified by @matching_fn, and false if not.  If at
388  * least one extent has the specified status, then there is at least one block
389  * in the cluster with that status.  Should only be called by code that has
390  * taken i_es_lock.
391  */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)392 static bool __es_scan_clu(struct inode *inode,
393 			  int (*matching_fn)(struct extent_status *es),
394 			  ext4_lblk_t lblk)
395 {
396 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
397 	ext4_lblk_t lblk_start, lblk_end;
398 
399 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
400 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
401 
402 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
403 }
404 
405 /*
406  * Locking for __es_scan_clu() for external use
407  */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)408 bool ext4_es_scan_clu(struct inode *inode,
409 		      int (*matching_fn)(struct extent_status *es),
410 		      ext4_lblk_t lblk)
411 {
412 	bool ret;
413 
414 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
415 		return false;
416 
417 	read_lock(&EXT4_I(inode)->i_es_lock);
418 	ret = __es_scan_clu(inode, matching_fn, lblk);
419 	read_unlock(&EXT4_I(inode)->i_es_lock);
420 
421 	return ret;
422 }
423 
ext4_es_list_add(struct inode * inode)424 static void ext4_es_list_add(struct inode *inode)
425 {
426 	struct ext4_inode_info *ei = EXT4_I(inode);
427 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
428 
429 	if (!list_empty(&ei->i_es_list))
430 		return;
431 
432 	spin_lock(&sbi->s_es_lock);
433 	if (list_empty(&ei->i_es_list)) {
434 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
435 		sbi->s_es_nr_inode++;
436 	}
437 	spin_unlock(&sbi->s_es_lock);
438 }
439 
ext4_es_list_del(struct inode * inode)440 static void ext4_es_list_del(struct inode *inode)
441 {
442 	struct ext4_inode_info *ei = EXT4_I(inode);
443 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
444 
445 	spin_lock(&sbi->s_es_lock);
446 	if (!list_empty(&ei->i_es_list)) {
447 		list_del_init(&ei->i_es_list);
448 		sbi->s_es_nr_inode--;
449 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
450 	}
451 	spin_unlock(&sbi->s_es_lock);
452 }
453 
__alloc_pending(bool nofail)454 static inline struct pending_reservation *__alloc_pending(bool nofail)
455 {
456 	if (!nofail)
457 		return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
458 
459 	return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
460 }
461 
__free_pending(struct pending_reservation * pr)462 static inline void __free_pending(struct pending_reservation *pr)
463 {
464 	kmem_cache_free(ext4_pending_cachep, pr);
465 }
466 
467 /*
468  * Returns true if we cannot fail to allocate memory for this extent_status
469  * entry and cannot reclaim it until its status changes.
470  */
ext4_es_must_keep(struct extent_status * es)471 static inline bool ext4_es_must_keep(struct extent_status *es)
472 {
473 	/* fiemap, bigalloc, and seek_data/hole need to use it. */
474 	if (ext4_es_is_delayed(es))
475 		return true;
476 
477 	return false;
478 }
479 
__es_alloc_extent(bool nofail)480 static inline struct extent_status *__es_alloc_extent(bool nofail)
481 {
482 	if (!nofail)
483 		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
484 
485 	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
486 }
487 
ext4_es_init_extent(struct inode * inode,struct extent_status * es,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)488 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
489 		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
490 {
491 	es->es_lblk = lblk;
492 	es->es_len = len;
493 	es->es_pblk = pblk;
494 
495 	/* We never try to reclaim a must kept extent, so we don't count it. */
496 	if (!ext4_es_must_keep(es)) {
497 		if (!EXT4_I(inode)->i_es_shk_nr++)
498 			ext4_es_list_add(inode);
499 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
500 					s_es_stats.es_stats_shk_cnt);
501 	}
502 
503 	EXT4_I(inode)->i_es_all_nr++;
504 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
505 }
506 
__es_free_extent(struct extent_status * es)507 static inline void __es_free_extent(struct extent_status *es)
508 {
509 	kmem_cache_free(ext4_es_cachep, es);
510 }
511 
ext4_es_free_extent(struct inode * inode,struct extent_status * es)512 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
513 {
514 	EXT4_I(inode)->i_es_all_nr--;
515 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
516 
517 	/* Decrease the shrink counter when we can reclaim the extent. */
518 	if (!ext4_es_must_keep(es)) {
519 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
520 		if (!--EXT4_I(inode)->i_es_shk_nr)
521 			ext4_es_list_del(inode);
522 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
523 					s_es_stats.es_stats_shk_cnt);
524 	}
525 
526 	__es_free_extent(es);
527 }
528 
529 /*
530  * Check whether or not two extents can be merged
531  * Condition:
532  *  - logical block number is contiguous
533  *  - physical block number is contiguous
534  *  - status is equal
535  */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)536 static int ext4_es_can_be_merged(struct extent_status *es1,
537 				 struct extent_status *es2)
538 {
539 	if (ext4_es_type(es1) != ext4_es_type(es2))
540 		return 0;
541 
542 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
543 		pr_warn("ES assertion failed when merging extents. "
544 			"The sum of lengths of es1 (%d) and es2 (%d) "
545 			"is bigger than allowed file size (%d)\n",
546 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
547 		WARN_ON(1);
548 		return 0;
549 	}
550 
551 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
552 		return 0;
553 
554 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
555 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
556 		return 1;
557 
558 	if (ext4_es_is_hole(es1))
559 		return 1;
560 
561 	/* we need to check delayed extent is without unwritten status */
562 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
563 		return 1;
564 
565 	return 0;
566 }
567 
568 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)569 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
570 {
571 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
572 	struct extent_status *es1;
573 	struct rb_node *node;
574 
575 	node = rb_prev(&es->rb_node);
576 	if (!node)
577 		return es;
578 
579 	es1 = rb_entry(node, struct extent_status, rb_node);
580 	if (ext4_es_can_be_merged(es1, es)) {
581 		es1->es_len += es->es_len;
582 		if (ext4_es_is_referenced(es))
583 			ext4_es_set_referenced(es1);
584 		rb_erase(&es->rb_node, &tree->root);
585 		ext4_es_free_extent(inode, es);
586 		es = es1;
587 	}
588 
589 	return es;
590 }
591 
592 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)593 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
594 {
595 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
596 	struct extent_status *es1;
597 	struct rb_node *node;
598 
599 	node = rb_next(&es->rb_node);
600 	if (!node)
601 		return es;
602 
603 	es1 = rb_entry(node, struct extent_status, rb_node);
604 	if (ext4_es_can_be_merged(es, es1)) {
605 		es->es_len += es1->es_len;
606 		if (ext4_es_is_referenced(es1))
607 			ext4_es_set_referenced(es);
608 		rb_erase(node, &tree->root);
609 		ext4_es_free_extent(inode, es1);
610 	}
611 
612 	return es;
613 }
614 
615 #ifdef ES_AGGRESSIVE_TEST
616 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
617 
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)618 static void ext4_es_insert_extent_ext_check(struct inode *inode,
619 					    struct extent_status *es)
620 {
621 	struct ext4_ext_path *path = NULL;
622 	struct ext4_extent *ex;
623 	ext4_lblk_t ee_block;
624 	ext4_fsblk_t ee_start;
625 	unsigned short ee_len;
626 	int depth, ee_status, es_status;
627 
628 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
629 	if (IS_ERR(path))
630 		return;
631 
632 	depth = ext_depth(inode);
633 	ex = path[depth].p_ext;
634 
635 	if (ex) {
636 
637 		ee_block = le32_to_cpu(ex->ee_block);
638 		ee_start = ext4_ext_pblock(ex);
639 		ee_len = ext4_ext_get_actual_len(ex);
640 
641 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
642 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
643 
644 		/*
645 		 * Make sure ex and es are not overlap when we try to insert
646 		 * a delayed/hole extent.
647 		 */
648 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
649 			if (in_range(es->es_lblk, ee_block, ee_len)) {
650 				pr_warn("ES insert assertion failed for "
651 					"inode: %lu we can find an extent "
652 					"at block [%d/%d/%llu/%c], but we "
653 					"want to add a delayed/hole extent "
654 					"[%d/%d/%llu/%x]\n",
655 					inode->i_ino, ee_block, ee_len,
656 					ee_start, ee_status ? 'u' : 'w',
657 					es->es_lblk, es->es_len,
658 					ext4_es_pblock(es), ext4_es_status(es));
659 			}
660 			goto out;
661 		}
662 
663 		/*
664 		 * We don't check ee_block == es->es_lblk, etc. because es
665 		 * might be a part of whole extent, vice versa.
666 		 */
667 		if (es->es_lblk < ee_block ||
668 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
669 			pr_warn("ES insert assertion failed for inode: %lu "
670 				"ex_status [%d/%d/%llu/%c] != "
671 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
672 				ee_block, ee_len, ee_start,
673 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
674 				ext4_es_pblock(es), es_status ? 'u' : 'w');
675 			goto out;
676 		}
677 
678 		if (ee_status ^ es_status) {
679 			pr_warn("ES insert assertion failed for inode: %lu "
680 				"ex_status [%d/%d/%llu/%c] != "
681 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
682 				ee_block, ee_len, ee_start,
683 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
684 				ext4_es_pblock(es), es_status ? 'u' : 'w');
685 		}
686 	} else {
687 		/*
688 		 * We can't find an extent on disk.  So we need to make sure
689 		 * that we don't want to add an written/unwritten extent.
690 		 */
691 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
692 			pr_warn("ES insert assertion failed for inode: %lu "
693 				"can't find an extent at block %d but we want "
694 				"to add a written/unwritten extent "
695 				"[%d/%d/%llu/%x]\n", inode->i_ino,
696 				es->es_lblk, es->es_lblk, es->es_len,
697 				ext4_es_pblock(es), ext4_es_status(es));
698 		}
699 	}
700 out:
701 	ext4_ext_drop_refs(path);
702 	kfree(path);
703 }
704 
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)705 static void ext4_es_insert_extent_ind_check(struct inode *inode,
706 					    struct extent_status *es)
707 {
708 	struct ext4_map_blocks map;
709 	int retval;
710 
711 	/*
712 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
713 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
714 	 * access direct/indirect tree from outside.  It is too dirty to define
715 	 * this function in indirect.c file.
716 	 */
717 
718 	map.m_lblk = es->es_lblk;
719 	map.m_len = es->es_len;
720 
721 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
722 	if (retval > 0) {
723 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
724 			/*
725 			 * We want to add a delayed/hole extent but this
726 			 * block has been allocated.
727 			 */
728 			pr_warn("ES insert assertion failed for inode: %lu "
729 				"We can find blocks but we want to add a "
730 				"delayed/hole extent [%d/%d/%llu/%x]\n",
731 				inode->i_ino, es->es_lblk, es->es_len,
732 				ext4_es_pblock(es), ext4_es_status(es));
733 			return;
734 		} else if (ext4_es_is_written(es)) {
735 			if (retval != es->es_len) {
736 				pr_warn("ES insert assertion failed for "
737 					"inode: %lu retval %d != es_len %d\n",
738 					inode->i_ino, retval, es->es_len);
739 				return;
740 			}
741 			if (map.m_pblk != ext4_es_pblock(es)) {
742 				pr_warn("ES insert assertion failed for "
743 					"inode: %lu m_pblk %llu != "
744 					"es_pblk %llu\n",
745 					inode->i_ino, map.m_pblk,
746 					ext4_es_pblock(es));
747 				return;
748 			}
749 		} else {
750 			/*
751 			 * We don't need to check unwritten extent because
752 			 * indirect-based file doesn't have it.
753 			 */
754 			BUG();
755 		}
756 	} else if (retval == 0) {
757 		if (ext4_es_is_written(es)) {
758 			pr_warn("ES insert assertion failed for inode: %lu "
759 				"We can't find the block but we want to add "
760 				"a written extent [%d/%d/%llu/%x]\n",
761 				inode->i_ino, es->es_lblk, es->es_len,
762 				ext4_es_pblock(es), ext4_es_status(es));
763 			return;
764 		}
765 	}
766 }
767 
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)768 static inline void ext4_es_insert_extent_check(struct inode *inode,
769 					       struct extent_status *es)
770 {
771 	/*
772 	 * We don't need to worry about the race condition because
773 	 * caller takes i_data_sem locking.
774 	 */
775 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
776 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
777 		ext4_es_insert_extent_ext_check(inode, es);
778 	else
779 		ext4_es_insert_extent_ind_check(inode, es);
780 }
781 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)782 static inline void ext4_es_insert_extent_check(struct inode *inode,
783 					       struct extent_status *es)
784 {
785 }
786 #endif
787 
__es_insert_extent(struct inode * inode,struct extent_status * newes,struct extent_status * prealloc)788 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
789 			      struct extent_status *prealloc)
790 {
791 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
792 	struct rb_node **p = &tree->root.rb_node;
793 	struct rb_node *parent = NULL;
794 	struct extent_status *es;
795 
796 	while (*p) {
797 		parent = *p;
798 		es = rb_entry(parent, struct extent_status, rb_node);
799 
800 		if (newes->es_lblk < es->es_lblk) {
801 			if (ext4_es_can_be_merged(newes, es)) {
802 				/*
803 				 * Here we can modify es_lblk directly
804 				 * because it isn't overlapped.
805 				 */
806 				es->es_lblk = newes->es_lblk;
807 				es->es_len += newes->es_len;
808 				if (ext4_es_is_written(es) ||
809 				    ext4_es_is_unwritten(es))
810 					ext4_es_store_pblock(es,
811 							     newes->es_pblk);
812 				es = ext4_es_try_to_merge_left(inode, es);
813 				goto out;
814 			}
815 			p = &(*p)->rb_left;
816 		} else if (newes->es_lblk > ext4_es_end(es)) {
817 			if (ext4_es_can_be_merged(es, newes)) {
818 				es->es_len += newes->es_len;
819 				es = ext4_es_try_to_merge_right(inode, es);
820 				goto out;
821 			}
822 			p = &(*p)->rb_right;
823 		} else {
824 			BUG();
825 			return -EINVAL;
826 		}
827 	}
828 
829 	if (prealloc)
830 		es = prealloc;
831 	else
832 		es = __es_alloc_extent(false);
833 	if (!es)
834 		return -ENOMEM;
835 	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
836 			    newes->es_pblk);
837 
838 	rb_link_node(&es->rb_node, parent, p);
839 	rb_insert_color(&es->rb_node, &tree->root);
840 
841 out:
842 	tree->cache_es = es;
843 	return 0;
844 }
845 
846 /*
847  * ext4_es_insert_extent() adds information to an inode's extent
848  * status tree.
849  */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)850 void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
851 			   ext4_lblk_t len, ext4_fsblk_t pblk,
852 			   unsigned int status)
853 {
854 	struct extent_status newes;
855 	ext4_lblk_t end = lblk + len - 1;
856 	int err1 = 0, err2 = 0, err3 = 0;
857 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
858 	struct extent_status *es1 = NULL;
859 	struct extent_status *es2 = NULL;
860 	struct pending_reservation *pr = NULL;
861 	bool revise_pending = false;
862 
863 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
864 		return;
865 
866 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
867 		 lblk, len, pblk, status, inode->i_ino);
868 
869 	if (!len)
870 		return;
871 
872 	BUG_ON(end < lblk);
873 
874 	if ((status & EXTENT_STATUS_DELAYED) &&
875 	    (status & EXTENT_STATUS_WRITTEN)) {
876 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
877 				" delayed and written which can potentially "
878 				" cause data loss.", lblk, len);
879 		WARN_ON(1);
880 	}
881 
882 	newes.es_lblk = lblk;
883 	newes.es_len = len;
884 	ext4_es_store_pblock_status(&newes, pblk, status);
885 	trace_ext4_es_insert_extent(inode, &newes);
886 
887 	ext4_es_insert_extent_check(inode, &newes);
888 
889 	revise_pending = sbi->s_cluster_ratio > 1 &&
890 			 test_opt(inode->i_sb, DELALLOC) &&
891 			 (status & (EXTENT_STATUS_WRITTEN |
892 				    EXTENT_STATUS_UNWRITTEN));
893 retry:
894 	if (err1 && !es1)
895 		es1 = __es_alloc_extent(true);
896 	if ((err1 || err2) && !es2)
897 		es2 = __es_alloc_extent(true);
898 	if ((err1 || err2 || err3) && revise_pending && !pr)
899 		pr = __alloc_pending(true);
900 	write_lock(&EXT4_I(inode)->i_es_lock);
901 
902 	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
903 	if (err1 != 0)
904 		goto error;
905 	/* Free preallocated extent if it didn't get used. */
906 	if (es1) {
907 		if (!es1->es_len)
908 			__es_free_extent(es1);
909 		es1 = NULL;
910 	}
911 
912 	err2 = __es_insert_extent(inode, &newes, es2);
913 	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
914 		err2 = 0;
915 	if (err2 != 0)
916 		goto error;
917 	/* Free preallocated extent if it didn't get used. */
918 	if (es2) {
919 		if (!es2->es_len)
920 			__es_free_extent(es2);
921 		es2 = NULL;
922 	}
923 
924 	if (revise_pending) {
925 		err3 = __revise_pending(inode, lblk, len, &pr);
926 		if (err3 != 0)
927 			goto error;
928 		if (pr) {
929 			__free_pending(pr);
930 			pr = NULL;
931 		}
932 	}
933 error:
934 	write_unlock(&EXT4_I(inode)->i_es_lock);
935 	if (err1 || err2 || err3)
936 		goto retry;
937 
938 	ext4_es_print_tree(inode);
939 	return;
940 }
941 
942 /*
943  * ext4_es_cache_extent() inserts information into the extent status
944  * tree if and only if there isn't information about the range in
945  * question already.
946  */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)947 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
948 			  ext4_lblk_t len, ext4_fsblk_t pblk,
949 			  unsigned int status)
950 {
951 	struct extent_status *es;
952 	struct extent_status newes;
953 	ext4_lblk_t end = lblk + len - 1;
954 
955 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
956 		return;
957 
958 	newes.es_lblk = lblk;
959 	newes.es_len = len;
960 	ext4_es_store_pblock_status(&newes, pblk, status);
961 	trace_ext4_es_cache_extent(inode, &newes);
962 
963 	if (!len)
964 		return;
965 
966 	BUG_ON(end < lblk);
967 
968 	write_lock(&EXT4_I(inode)->i_es_lock);
969 
970 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
971 	if (!es || es->es_lblk > end)
972 		__es_insert_extent(inode, &newes, NULL);
973 	write_unlock(&EXT4_I(inode)->i_es_lock);
974 }
975 
976 /*
977  * ext4_es_lookup_extent() looks up an extent in extent status tree.
978  *
979  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
980  *
981  * Return: 1 on found, 0 on not
982  */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)983 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
984 			  ext4_lblk_t *next_lblk,
985 			  struct extent_status *es)
986 {
987 	struct ext4_es_tree *tree;
988 	struct ext4_es_stats *stats;
989 	struct extent_status *es1 = NULL;
990 	struct rb_node *node;
991 	int found = 0;
992 
993 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
994 		return 0;
995 
996 	trace_ext4_es_lookup_extent_enter(inode, lblk);
997 	es_debug("lookup extent in block %u\n", lblk);
998 
999 	tree = &EXT4_I(inode)->i_es_tree;
1000 	read_lock(&EXT4_I(inode)->i_es_lock);
1001 
1002 	/* find extent in cache firstly */
1003 	es->es_lblk = es->es_len = es->es_pblk = 0;
1004 	es1 = READ_ONCE(tree->cache_es);
1005 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1006 		es_debug("%u cached by [%u/%u)\n",
1007 			 lblk, es1->es_lblk, es1->es_len);
1008 		found = 1;
1009 		goto out;
1010 	}
1011 
1012 	node = tree->root.rb_node;
1013 	while (node) {
1014 		es1 = rb_entry(node, struct extent_status, rb_node);
1015 		if (lblk < es1->es_lblk)
1016 			node = node->rb_left;
1017 		else if (lblk > ext4_es_end(es1))
1018 			node = node->rb_right;
1019 		else {
1020 			found = 1;
1021 			break;
1022 		}
1023 	}
1024 
1025 out:
1026 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1027 	if (found) {
1028 		BUG_ON(!es1);
1029 		es->es_lblk = es1->es_lblk;
1030 		es->es_len = es1->es_len;
1031 		es->es_pblk = es1->es_pblk;
1032 		if (!ext4_es_is_referenced(es1))
1033 			ext4_es_set_referenced(es1);
1034 		percpu_counter_inc(&stats->es_stats_cache_hits);
1035 		if (next_lblk) {
1036 			node = rb_next(&es1->rb_node);
1037 			if (node) {
1038 				es1 = rb_entry(node, struct extent_status,
1039 					       rb_node);
1040 				*next_lblk = es1->es_lblk;
1041 			} else
1042 				*next_lblk = 0;
1043 		}
1044 	} else {
1045 		percpu_counter_inc(&stats->es_stats_cache_misses);
1046 	}
1047 
1048 	read_unlock(&EXT4_I(inode)->i_es_lock);
1049 
1050 	trace_ext4_es_lookup_extent_exit(inode, es, found);
1051 	return found;
1052 }
1053 
1054 struct rsvd_count {
1055 	int ndelonly;
1056 	bool first_do_lblk_found;
1057 	ext4_lblk_t first_do_lblk;
1058 	ext4_lblk_t last_do_lblk;
1059 	struct extent_status *left_es;
1060 	bool partial;
1061 	ext4_lblk_t lclu;
1062 };
1063 
1064 /*
1065  * init_rsvd - initialize reserved count data before removing block range
1066  *	       in file from extent status tree
1067  *
1068  * @inode - file containing range
1069  * @lblk - first block in range
1070  * @es - pointer to first extent in range
1071  * @rc - pointer to reserved count data
1072  *
1073  * Assumes es is not NULL
1074  */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1075 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1076 		      struct extent_status *es, struct rsvd_count *rc)
1077 {
1078 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1079 	struct rb_node *node;
1080 
1081 	rc->ndelonly = 0;
1082 
1083 	/*
1084 	 * for bigalloc, note the first delonly block in the range has not
1085 	 * been found, record the extent containing the block to the left of
1086 	 * the region to be removed, if any, and note that there's no partial
1087 	 * cluster to track
1088 	 */
1089 	if (sbi->s_cluster_ratio > 1) {
1090 		rc->first_do_lblk_found = false;
1091 		if (lblk > es->es_lblk) {
1092 			rc->left_es = es;
1093 		} else {
1094 			node = rb_prev(&es->rb_node);
1095 			rc->left_es = node ? rb_entry(node,
1096 						      struct extent_status,
1097 						      rb_node) : NULL;
1098 		}
1099 		rc->partial = false;
1100 	}
1101 }
1102 
1103 /*
1104  * count_rsvd - count the clusters containing delayed and not unwritten
1105  *		(delonly) blocks in a range within an extent and add to
1106  *	        the running tally in rsvd_count
1107  *
1108  * @inode - file containing extent
1109  * @lblk - first block in range
1110  * @len - length of range in blocks
1111  * @es - pointer to extent containing clusters to be counted
1112  * @rc - pointer to reserved count data
1113  *
1114  * Tracks partial clusters found at the beginning and end of extents so
1115  * they aren't overcounted when they span adjacent extents
1116  */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1117 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1118 		       struct extent_status *es, struct rsvd_count *rc)
1119 {
1120 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1121 	ext4_lblk_t i, end, nclu;
1122 
1123 	if (!ext4_es_is_delonly(es))
1124 		return;
1125 
1126 	WARN_ON(len <= 0);
1127 
1128 	if (sbi->s_cluster_ratio == 1) {
1129 		rc->ndelonly += (int) len;
1130 		return;
1131 	}
1132 
1133 	/* bigalloc */
1134 
1135 	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1136 	end = lblk + (ext4_lblk_t) len - 1;
1137 	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1138 
1139 	/* record the first block of the first delonly extent seen */
1140 	if (!rc->first_do_lblk_found) {
1141 		rc->first_do_lblk = i;
1142 		rc->first_do_lblk_found = true;
1143 	}
1144 
1145 	/* update the last lblk in the region seen so far */
1146 	rc->last_do_lblk = end;
1147 
1148 	/*
1149 	 * if we're tracking a partial cluster and the current extent
1150 	 * doesn't start with it, count it and stop tracking
1151 	 */
1152 	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1153 		rc->ndelonly++;
1154 		rc->partial = false;
1155 	}
1156 
1157 	/*
1158 	 * if the first cluster doesn't start on a cluster boundary but
1159 	 * ends on one, count it
1160 	 */
1161 	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1162 		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1163 			rc->ndelonly++;
1164 			rc->partial = false;
1165 			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * if the current cluster starts on a cluster boundary, count the
1171 	 * number of whole delonly clusters in the extent
1172 	 */
1173 	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1174 		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1175 		rc->ndelonly += nclu;
1176 		i += nclu << sbi->s_cluster_bits;
1177 	}
1178 
1179 	/*
1180 	 * start tracking a partial cluster if there's a partial at the end
1181 	 * of the current extent and we're not already tracking one
1182 	 */
1183 	if (!rc->partial && i <= end) {
1184 		rc->partial = true;
1185 		rc->lclu = EXT4_B2C(sbi, i);
1186 	}
1187 }
1188 
1189 /*
1190  * __pr_tree_search - search for a pending cluster reservation
1191  *
1192  * @root - root of pending reservation tree
1193  * @lclu - logical cluster to search for
1194  *
1195  * Returns the pending reservation for the cluster identified by @lclu
1196  * if found.  If not, returns a reservation for the next cluster if any,
1197  * and if not, returns NULL.
1198  */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1199 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1200 						    ext4_lblk_t lclu)
1201 {
1202 	struct rb_node *node = root->rb_node;
1203 	struct pending_reservation *pr = NULL;
1204 
1205 	while (node) {
1206 		pr = rb_entry(node, struct pending_reservation, rb_node);
1207 		if (lclu < pr->lclu)
1208 			node = node->rb_left;
1209 		else if (lclu > pr->lclu)
1210 			node = node->rb_right;
1211 		else
1212 			return pr;
1213 	}
1214 	if (pr && lclu < pr->lclu)
1215 		return pr;
1216 	if (pr && lclu > pr->lclu) {
1217 		node = rb_next(&pr->rb_node);
1218 		return node ? rb_entry(node, struct pending_reservation,
1219 				       rb_node) : NULL;
1220 	}
1221 	return NULL;
1222 }
1223 
1224 /*
1225  * get_rsvd - calculates and returns the number of cluster reservations to be
1226  *	      released when removing a block range from the extent status tree
1227  *	      and releases any pending reservations within the range
1228  *
1229  * @inode - file containing block range
1230  * @end - last block in range
1231  * @right_es - pointer to extent containing next block beyond end or NULL
1232  * @rc - pointer to reserved count data
1233  *
1234  * The number of reservations to be released is equal to the number of
1235  * clusters containing delayed and not unwritten (delonly) blocks within
1236  * the range, minus the number of clusters still containing delonly blocks
1237  * at the ends of the range, and minus the number of pending reservations
1238  * within the range.
1239  */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1240 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1241 			     struct extent_status *right_es,
1242 			     struct rsvd_count *rc)
1243 {
1244 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1245 	struct pending_reservation *pr;
1246 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1247 	struct rb_node *node;
1248 	ext4_lblk_t first_lclu, last_lclu;
1249 	bool left_delonly, right_delonly, count_pending;
1250 	struct extent_status *es;
1251 
1252 	if (sbi->s_cluster_ratio > 1) {
1253 		/* count any remaining partial cluster */
1254 		if (rc->partial)
1255 			rc->ndelonly++;
1256 
1257 		if (rc->ndelonly == 0)
1258 			return 0;
1259 
1260 		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1261 		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1262 
1263 		/*
1264 		 * decrease the delonly count by the number of clusters at the
1265 		 * ends of the range that still contain delonly blocks -
1266 		 * these clusters still need to be reserved
1267 		 */
1268 		left_delonly = right_delonly = false;
1269 
1270 		es = rc->left_es;
1271 		while (es && ext4_es_end(es) >=
1272 		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1273 			if (ext4_es_is_delonly(es)) {
1274 				rc->ndelonly--;
1275 				left_delonly = true;
1276 				break;
1277 			}
1278 			node = rb_prev(&es->rb_node);
1279 			if (!node)
1280 				break;
1281 			es = rb_entry(node, struct extent_status, rb_node);
1282 		}
1283 		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1284 			if (end < ext4_es_end(right_es)) {
1285 				es = right_es;
1286 			} else {
1287 				node = rb_next(&right_es->rb_node);
1288 				es = node ? rb_entry(node, struct extent_status,
1289 						     rb_node) : NULL;
1290 			}
1291 			while (es && es->es_lblk <=
1292 			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1293 				if (ext4_es_is_delonly(es)) {
1294 					rc->ndelonly--;
1295 					right_delonly = true;
1296 					break;
1297 				}
1298 				node = rb_next(&es->rb_node);
1299 				if (!node)
1300 					break;
1301 				es = rb_entry(node, struct extent_status,
1302 					      rb_node);
1303 			}
1304 		}
1305 
1306 		/*
1307 		 * Determine the block range that should be searched for
1308 		 * pending reservations, if any.  Clusters on the ends of the
1309 		 * original removed range containing delonly blocks are
1310 		 * excluded.  They've already been accounted for and it's not
1311 		 * possible to determine if an associated pending reservation
1312 		 * should be released with the information available in the
1313 		 * extents status tree.
1314 		 */
1315 		if (first_lclu == last_lclu) {
1316 			if (left_delonly | right_delonly)
1317 				count_pending = false;
1318 			else
1319 				count_pending = true;
1320 		} else {
1321 			if (left_delonly)
1322 				first_lclu++;
1323 			if (right_delonly)
1324 				last_lclu--;
1325 			if (first_lclu <= last_lclu)
1326 				count_pending = true;
1327 			else
1328 				count_pending = false;
1329 		}
1330 
1331 		/*
1332 		 * a pending reservation found between first_lclu and last_lclu
1333 		 * represents an allocated cluster that contained at least one
1334 		 * delonly block, so the delonly total must be reduced by one
1335 		 * for each pending reservation found and released
1336 		 */
1337 		if (count_pending) {
1338 			pr = __pr_tree_search(&tree->root, first_lclu);
1339 			while (pr && pr->lclu <= last_lclu) {
1340 				rc->ndelonly--;
1341 				node = rb_next(&pr->rb_node);
1342 				rb_erase(&pr->rb_node, &tree->root);
1343 				__free_pending(pr);
1344 				if (!node)
1345 					break;
1346 				pr = rb_entry(node, struct pending_reservation,
1347 					      rb_node);
1348 			}
1349 		}
1350 	}
1351 	return rc->ndelonly;
1352 }
1353 
1354 
1355 /*
1356  * __es_remove_extent - removes block range from extent status tree
1357  *
1358  * @inode - file containing range
1359  * @lblk - first block in range
1360  * @end - last block in range
1361  * @reserved - number of cluster reservations released
1362  * @prealloc - pre-allocated es to avoid memory allocation failures
1363  *
1364  * If @reserved is not NULL and delayed allocation is enabled, counts
1365  * block/cluster reservations freed by removing range and if bigalloc
1366  * enabled cancels pending reservations as needed. Returns 0 on success,
1367  * error code on failure.
1368  */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved,struct extent_status * prealloc)1369 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1370 			      ext4_lblk_t end, int *reserved,
1371 			      struct extent_status *prealloc)
1372 {
1373 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1374 	struct rb_node *node;
1375 	struct extent_status *es;
1376 	struct extent_status orig_es;
1377 	ext4_lblk_t len1, len2;
1378 	ext4_fsblk_t block;
1379 	int err = 0;
1380 	bool count_reserved = true;
1381 	struct rsvd_count rc;
1382 
1383 	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1384 		count_reserved = false;
1385 
1386 	es = __es_tree_search(&tree->root, lblk);
1387 	if (!es)
1388 		goto out;
1389 	if (es->es_lblk > end)
1390 		goto out;
1391 
1392 	/* Simply invalidate cache_es. */
1393 	tree->cache_es = NULL;
1394 	if (count_reserved)
1395 		init_rsvd(inode, lblk, es, &rc);
1396 
1397 	orig_es.es_lblk = es->es_lblk;
1398 	orig_es.es_len = es->es_len;
1399 	orig_es.es_pblk = es->es_pblk;
1400 
1401 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1402 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1403 	if (len1 > 0)
1404 		es->es_len = len1;
1405 	if (len2 > 0) {
1406 		if (len1 > 0) {
1407 			struct extent_status newes;
1408 
1409 			newes.es_lblk = end + 1;
1410 			newes.es_len = len2;
1411 			block = 0x7FDEADBEEFULL;
1412 			if (ext4_es_is_written(&orig_es) ||
1413 			    ext4_es_is_unwritten(&orig_es))
1414 				block = ext4_es_pblock(&orig_es) +
1415 					orig_es.es_len - len2;
1416 			ext4_es_store_pblock_status(&newes, block,
1417 						    ext4_es_status(&orig_es));
1418 			err = __es_insert_extent(inode, &newes, prealloc);
1419 			if (err) {
1420 				if (!ext4_es_must_keep(&newes))
1421 					return 0;
1422 
1423 				es->es_lblk = orig_es.es_lblk;
1424 				es->es_len = orig_es.es_len;
1425 				goto out;
1426 			}
1427 		} else {
1428 			es->es_lblk = end + 1;
1429 			es->es_len = len2;
1430 			if (ext4_es_is_written(es) ||
1431 			    ext4_es_is_unwritten(es)) {
1432 				block = orig_es.es_pblk + orig_es.es_len - len2;
1433 				ext4_es_store_pblock(es, block);
1434 			}
1435 		}
1436 		if (count_reserved)
1437 			count_rsvd(inode, orig_es.es_lblk + len1,
1438 				   orig_es.es_len - len1 - len2, &orig_es, &rc);
1439 		goto out_get_reserved;
1440 	}
1441 
1442 	if (len1 > 0) {
1443 		if (count_reserved)
1444 			count_rsvd(inode, lblk, orig_es.es_len - len1,
1445 				   &orig_es, &rc);
1446 		node = rb_next(&es->rb_node);
1447 		if (node)
1448 			es = rb_entry(node, struct extent_status, rb_node);
1449 		else
1450 			es = NULL;
1451 	}
1452 
1453 	while (es && ext4_es_end(es) <= end) {
1454 		if (count_reserved)
1455 			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1456 		node = rb_next(&es->rb_node);
1457 		rb_erase(&es->rb_node, &tree->root);
1458 		ext4_es_free_extent(inode, es);
1459 		if (!node) {
1460 			es = NULL;
1461 			break;
1462 		}
1463 		es = rb_entry(node, struct extent_status, rb_node);
1464 	}
1465 
1466 	if (es && es->es_lblk < end + 1) {
1467 		ext4_lblk_t orig_len = es->es_len;
1468 
1469 		len1 = ext4_es_end(es) - end;
1470 		if (count_reserved)
1471 			count_rsvd(inode, es->es_lblk, orig_len - len1,
1472 				   es, &rc);
1473 		es->es_lblk = end + 1;
1474 		es->es_len = len1;
1475 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1476 			block = es->es_pblk + orig_len - len1;
1477 			ext4_es_store_pblock(es, block);
1478 		}
1479 	}
1480 
1481 out_get_reserved:
1482 	if (count_reserved)
1483 		*reserved = get_rsvd(inode, end, es, &rc);
1484 out:
1485 	return err;
1486 }
1487 
1488 /*
1489  * ext4_es_remove_extent - removes block range from extent status tree
1490  *
1491  * @inode - file containing range
1492  * @lblk - first block in range
1493  * @len - number of blocks to remove
1494  *
1495  * Reduces block/cluster reservation count and for bigalloc cancels pending
1496  * reservations as needed. Returns 0 on success, error code on failure.
1497  */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1498 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1499 			  ext4_lblk_t len)
1500 {
1501 	ext4_lblk_t end;
1502 	int err = 0;
1503 	int reserved = 0;
1504 	struct extent_status *es = NULL;
1505 
1506 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1507 		return 0;
1508 
1509 	trace_ext4_es_remove_extent(inode, lblk, len);
1510 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1511 		 lblk, len, inode->i_ino);
1512 
1513 	if (!len)
1514 		return err;
1515 
1516 	end = lblk + len - 1;
1517 	BUG_ON(end < lblk);
1518 
1519 retry:
1520 	if (err && !es)
1521 		es = __es_alloc_extent(true);
1522 	/*
1523 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1524 	 * so that we are sure __es_shrink() is done with the inode before it
1525 	 * is reclaimed.
1526 	 */
1527 	write_lock(&EXT4_I(inode)->i_es_lock);
1528 	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1529 	/* Free preallocated extent if it didn't get used. */
1530 	if (es) {
1531 		if (!es->es_len)
1532 			__es_free_extent(es);
1533 		es = NULL;
1534 	}
1535 	write_unlock(&EXT4_I(inode)->i_es_lock);
1536 	if (err)
1537 		goto retry;
1538 
1539 	ext4_es_print_tree(inode);
1540 	ext4_da_release_space(inode, reserved);
1541 	return 0;
1542 }
1543 
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1544 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1545 		       struct ext4_inode_info *locked_ei)
1546 {
1547 	struct ext4_inode_info *ei;
1548 	struct ext4_es_stats *es_stats;
1549 	ktime_t start_time;
1550 	u64 scan_time;
1551 	int nr_to_walk;
1552 	int nr_shrunk = 0;
1553 	int retried = 0, nr_skipped = 0;
1554 
1555 	es_stats = &sbi->s_es_stats;
1556 	start_time = ktime_get();
1557 
1558 retry:
1559 	spin_lock(&sbi->s_es_lock);
1560 	nr_to_walk = sbi->s_es_nr_inode;
1561 	while (nr_to_walk-- > 0) {
1562 		if (list_empty(&sbi->s_es_list)) {
1563 			spin_unlock(&sbi->s_es_lock);
1564 			goto out;
1565 		}
1566 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1567 				      i_es_list);
1568 		/* Move the inode to the tail */
1569 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1570 
1571 		/*
1572 		 * Normally we try hard to avoid shrinking precached inodes,
1573 		 * but we will as a last resort.
1574 		 */
1575 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1576 						EXT4_STATE_EXT_PRECACHED)) {
1577 			nr_skipped++;
1578 			continue;
1579 		}
1580 
1581 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1582 			nr_skipped++;
1583 			continue;
1584 		}
1585 		/*
1586 		 * Now we hold i_es_lock which protects us from inode reclaim
1587 		 * freeing inode under us
1588 		 */
1589 		spin_unlock(&sbi->s_es_lock);
1590 
1591 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1592 		write_unlock(&ei->i_es_lock);
1593 
1594 		if (nr_to_scan <= 0)
1595 			goto out;
1596 		spin_lock(&sbi->s_es_lock);
1597 	}
1598 	spin_unlock(&sbi->s_es_lock);
1599 
1600 	/*
1601 	 * If we skipped any inodes, and we weren't able to make any
1602 	 * forward progress, try again to scan precached inodes.
1603 	 */
1604 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1605 		retried++;
1606 		goto retry;
1607 	}
1608 
1609 	if (locked_ei && nr_shrunk == 0)
1610 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1611 
1612 out:
1613 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1614 	if (likely(es_stats->es_stats_scan_time))
1615 		es_stats->es_stats_scan_time = (scan_time +
1616 				es_stats->es_stats_scan_time*3) / 4;
1617 	else
1618 		es_stats->es_stats_scan_time = scan_time;
1619 	if (scan_time > es_stats->es_stats_max_scan_time)
1620 		es_stats->es_stats_max_scan_time = scan_time;
1621 	if (likely(es_stats->es_stats_shrunk))
1622 		es_stats->es_stats_shrunk = (nr_shrunk +
1623 				es_stats->es_stats_shrunk*3) / 4;
1624 	else
1625 		es_stats->es_stats_shrunk = nr_shrunk;
1626 
1627 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1628 			     nr_skipped, retried);
1629 	return nr_shrunk;
1630 }
1631 
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1632 static unsigned long ext4_es_count(struct shrinker *shrink,
1633 				   struct shrink_control *sc)
1634 {
1635 	unsigned long nr;
1636 	struct ext4_sb_info *sbi;
1637 
1638 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1639 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1640 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1641 	return nr;
1642 }
1643 
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1644 static unsigned long ext4_es_scan(struct shrinker *shrink,
1645 				  struct shrink_control *sc)
1646 {
1647 	struct ext4_sb_info *sbi = container_of(shrink,
1648 					struct ext4_sb_info, s_es_shrinker);
1649 	int nr_to_scan = sc->nr_to_scan;
1650 	int ret, nr_shrunk;
1651 
1652 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1653 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1654 
1655 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1656 
1657 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1658 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1659 	return nr_shrunk;
1660 }
1661 
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1662 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1663 {
1664 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1665 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1666 	struct ext4_inode_info *ei, *max = NULL;
1667 	unsigned int inode_cnt = 0;
1668 
1669 	if (v != SEQ_START_TOKEN)
1670 		return 0;
1671 
1672 	/* here we just find an inode that has the max nr. of objects */
1673 	spin_lock(&sbi->s_es_lock);
1674 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1675 		inode_cnt++;
1676 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1677 			max = ei;
1678 		else if (!max)
1679 			max = ei;
1680 	}
1681 	spin_unlock(&sbi->s_es_lock);
1682 
1683 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1684 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1685 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1686 	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1687 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1688 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1689 	if (inode_cnt)
1690 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1691 
1692 	seq_printf(seq, "average:\n  %llu us scan time\n",
1693 	    div_u64(es_stats->es_stats_scan_time, 1000));
1694 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1695 	if (inode_cnt)
1696 		seq_printf(seq,
1697 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1698 		    "  %llu us max scan time\n",
1699 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1700 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1701 
1702 	return 0;
1703 }
1704 
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1705 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1706 {
1707 	int err;
1708 
1709 	/* Make sure we have enough bits for physical block number */
1710 	BUILD_BUG_ON(ES_SHIFT < 48);
1711 	INIT_LIST_HEAD(&sbi->s_es_list);
1712 	sbi->s_es_nr_inode = 0;
1713 	spin_lock_init(&sbi->s_es_lock);
1714 	sbi->s_es_stats.es_stats_shrunk = 0;
1715 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1716 				  GFP_KERNEL);
1717 	if (err)
1718 		return err;
1719 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1720 				  GFP_KERNEL);
1721 	if (err)
1722 		goto err1;
1723 	sbi->s_es_stats.es_stats_scan_time = 0;
1724 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1725 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1726 	if (err)
1727 		goto err2;
1728 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1729 	if (err)
1730 		goto err3;
1731 
1732 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1733 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1734 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1735 	err = register_shrinker(&sbi->s_es_shrinker);
1736 	if (err)
1737 		goto err4;
1738 
1739 	return 0;
1740 err4:
1741 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1742 err3:
1743 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1744 err2:
1745 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1746 err1:
1747 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1748 	return err;
1749 }
1750 
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1751 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1752 {
1753 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1754 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1755 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1756 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1757 	unregister_shrinker(&sbi->s_es_shrinker);
1758 }
1759 
1760 /*
1761  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1762  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1763  *
1764  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1765  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1766  * ei->i_es_shrink_lblk to where we should continue scanning.
1767  */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1768 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1769 				 int *nr_to_scan, int *nr_shrunk)
1770 {
1771 	struct inode *inode = &ei->vfs_inode;
1772 	struct ext4_es_tree *tree = &ei->i_es_tree;
1773 	struct extent_status *es;
1774 	struct rb_node *node;
1775 
1776 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1777 	if (!es)
1778 		goto out_wrap;
1779 
1780 	while (*nr_to_scan > 0) {
1781 		if (es->es_lblk > end) {
1782 			ei->i_es_shrink_lblk = end + 1;
1783 			return 0;
1784 		}
1785 
1786 		(*nr_to_scan)--;
1787 		node = rb_next(&es->rb_node);
1788 
1789 		if (ext4_es_must_keep(es))
1790 			goto next;
1791 		if (ext4_es_is_referenced(es)) {
1792 			ext4_es_clear_referenced(es);
1793 			goto next;
1794 		}
1795 
1796 		rb_erase(&es->rb_node, &tree->root);
1797 		ext4_es_free_extent(inode, es);
1798 		(*nr_shrunk)++;
1799 next:
1800 		if (!node)
1801 			goto out_wrap;
1802 		es = rb_entry(node, struct extent_status, rb_node);
1803 	}
1804 	ei->i_es_shrink_lblk = es->es_lblk;
1805 	return 1;
1806 out_wrap:
1807 	ei->i_es_shrink_lblk = 0;
1808 	return 0;
1809 }
1810 
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1811 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1812 {
1813 	struct inode *inode = &ei->vfs_inode;
1814 	int nr_shrunk = 0;
1815 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1816 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1817 				      DEFAULT_RATELIMIT_BURST);
1818 
1819 	if (ei->i_es_shk_nr == 0)
1820 		return 0;
1821 
1822 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1823 	    __ratelimit(&_rs))
1824 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1825 
1826 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1827 	    start != 0)
1828 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1829 
1830 	ei->i_es_tree.cache_es = NULL;
1831 	return nr_shrunk;
1832 }
1833 
1834 /*
1835  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1836  * discretionary entries from the extent status cache.  (Some entries
1837  * must be present for proper operations.)
1838  */
ext4_clear_inode_es(struct inode * inode)1839 void ext4_clear_inode_es(struct inode *inode)
1840 {
1841 	struct ext4_inode_info *ei = EXT4_I(inode);
1842 	struct extent_status *es;
1843 	struct ext4_es_tree *tree;
1844 	struct rb_node *node;
1845 
1846 	write_lock(&ei->i_es_lock);
1847 	tree = &EXT4_I(inode)->i_es_tree;
1848 	tree->cache_es = NULL;
1849 	node = rb_first(&tree->root);
1850 	while (node) {
1851 		es = rb_entry(node, struct extent_status, rb_node);
1852 		node = rb_next(node);
1853 		if (!ext4_es_must_keep(es)) {
1854 			rb_erase(&es->rb_node, &tree->root);
1855 			ext4_es_free_extent(inode, es);
1856 		}
1857 	}
1858 	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1859 	write_unlock(&ei->i_es_lock);
1860 }
1861 
1862 #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1863 static void ext4_print_pending_tree(struct inode *inode)
1864 {
1865 	struct ext4_pending_tree *tree;
1866 	struct rb_node *node;
1867 	struct pending_reservation *pr;
1868 
1869 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1870 	tree = &EXT4_I(inode)->i_pending_tree;
1871 	node = rb_first(&tree->root);
1872 	while (node) {
1873 		pr = rb_entry(node, struct pending_reservation, rb_node);
1874 		printk(KERN_DEBUG " %u", pr->lclu);
1875 		node = rb_next(node);
1876 	}
1877 	printk(KERN_DEBUG "\n");
1878 }
1879 #else
1880 #define ext4_print_pending_tree(inode)
1881 #endif
1882 
ext4_init_pending(void)1883 int __init ext4_init_pending(void)
1884 {
1885 	ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1886 					   sizeof(struct pending_reservation),
1887 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
1888 	if (ext4_pending_cachep == NULL)
1889 		return -ENOMEM;
1890 	return 0;
1891 }
1892 
ext4_exit_pending(void)1893 void ext4_exit_pending(void)
1894 {
1895 	kmem_cache_destroy(ext4_pending_cachep);
1896 }
1897 
ext4_init_pending_tree(struct ext4_pending_tree * tree)1898 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1899 {
1900 	tree->root = RB_ROOT;
1901 }
1902 
1903 /*
1904  * __get_pending - retrieve a pointer to a pending reservation
1905  *
1906  * @inode - file containing the pending cluster reservation
1907  * @lclu - logical cluster of interest
1908  *
1909  * Returns a pointer to a pending reservation if it's a member of
1910  * the set, and NULL if not.  Must be called holding i_es_lock.
1911  */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1912 static struct pending_reservation *__get_pending(struct inode *inode,
1913 						 ext4_lblk_t lclu)
1914 {
1915 	struct ext4_pending_tree *tree;
1916 	struct rb_node *node;
1917 	struct pending_reservation *pr = NULL;
1918 
1919 	tree = &EXT4_I(inode)->i_pending_tree;
1920 	node = (&tree->root)->rb_node;
1921 
1922 	while (node) {
1923 		pr = rb_entry(node, struct pending_reservation, rb_node);
1924 		if (lclu < pr->lclu)
1925 			node = node->rb_left;
1926 		else if (lclu > pr->lclu)
1927 			node = node->rb_right;
1928 		else if (lclu == pr->lclu)
1929 			return pr;
1930 	}
1931 	return NULL;
1932 }
1933 
1934 /*
1935  * __insert_pending - adds a pending cluster reservation to the set of
1936  *                    pending reservations
1937  *
1938  * @inode - file containing the cluster
1939  * @lblk - logical block in the cluster to be added
1940  * @prealloc - preallocated pending entry
1941  *
1942  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1943  * pending reservation is already in the set, returns successfully.
1944  */
__insert_pending(struct inode * inode,ext4_lblk_t lblk,struct pending_reservation ** prealloc)1945 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1946 			    struct pending_reservation **prealloc)
1947 {
1948 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1949 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1950 	struct rb_node **p = &tree->root.rb_node;
1951 	struct rb_node *parent = NULL;
1952 	struct pending_reservation *pr;
1953 	ext4_lblk_t lclu;
1954 	int ret = 0;
1955 
1956 	lclu = EXT4_B2C(sbi, lblk);
1957 	/* search to find parent for insertion */
1958 	while (*p) {
1959 		parent = *p;
1960 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1961 
1962 		if (lclu < pr->lclu) {
1963 			p = &(*p)->rb_left;
1964 		} else if (lclu > pr->lclu) {
1965 			p = &(*p)->rb_right;
1966 		} else {
1967 			/* pending reservation already inserted */
1968 			goto out;
1969 		}
1970 	}
1971 
1972 	if (likely(*prealloc == NULL)) {
1973 		pr = __alloc_pending(false);
1974 		if (!pr) {
1975 			ret = -ENOMEM;
1976 			goto out;
1977 		}
1978 	} else {
1979 		pr = *prealloc;
1980 		*prealloc = NULL;
1981 	}
1982 	pr->lclu = lclu;
1983 
1984 	rb_link_node(&pr->rb_node, parent, p);
1985 	rb_insert_color(&pr->rb_node, &tree->root);
1986 
1987 out:
1988 	return ret;
1989 }
1990 
1991 /*
1992  * __remove_pending - removes a pending cluster reservation from the set
1993  *                    of pending reservations
1994  *
1995  * @inode - file containing the cluster
1996  * @lblk - logical block in the pending cluster reservation to be removed
1997  *
1998  * Returns successfully if pending reservation is not a member of the set.
1999  */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)2000 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
2001 {
2002 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2003 	struct pending_reservation *pr;
2004 	struct ext4_pending_tree *tree;
2005 
2006 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2007 	if (pr != NULL) {
2008 		tree = &EXT4_I(inode)->i_pending_tree;
2009 		rb_erase(&pr->rb_node, &tree->root);
2010 		__free_pending(pr);
2011 	}
2012 }
2013 
2014 /*
2015  * ext4_remove_pending - removes a pending cluster reservation from the set
2016  *                       of pending reservations
2017  *
2018  * @inode - file containing the cluster
2019  * @lblk - logical block in the pending cluster reservation to be removed
2020  *
2021  * Locking for external use of __remove_pending.
2022  */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)2023 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2024 {
2025 	struct ext4_inode_info *ei = EXT4_I(inode);
2026 
2027 	write_lock(&ei->i_es_lock);
2028 	__remove_pending(inode, lblk);
2029 	write_unlock(&ei->i_es_lock);
2030 }
2031 
2032 /*
2033  * ext4_is_pending - determine whether a cluster has a pending reservation
2034  *                   on it
2035  *
2036  * @inode - file containing the cluster
2037  * @lblk - logical block in the cluster
2038  *
2039  * Returns true if there's a pending reservation for the cluster in the
2040  * set of pending reservations, and false if not.
2041  */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)2042 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2043 {
2044 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2045 	struct ext4_inode_info *ei = EXT4_I(inode);
2046 	bool ret;
2047 
2048 	read_lock(&ei->i_es_lock);
2049 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2050 	read_unlock(&ei->i_es_lock);
2051 
2052 	return ret;
2053 }
2054 
2055 /*
2056  * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2057  *                                tree, adding a pending reservation where
2058  *                                needed
2059  *
2060  * @inode - file containing the newly added block
2061  * @lblk - logical block to be added
2062  * @allocated - indicates whether a physical cluster has been allocated for
2063  *              the logical cluster that contains the block
2064  *
2065  * Returns 0 on success, negative error code on failure.
2066  */
ext4_es_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk,bool allocated)2067 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2068 				 bool allocated)
2069 {
2070 	struct extent_status newes;
2071 	int err1 = 0, err2 = 0, err3 = 0;
2072 	struct extent_status *es1 = NULL;
2073 	struct extent_status *es2 = NULL;
2074 	struct pending_reservation *pr = NULL;
2075 
2076 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2077 		return 0;
2078 
2079 	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2080 		 lblk, inode->i_ino);
2081 
2082 	newes.es_lblk = lblk;
2083 	newes.es_len = 1;
2084 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2085 	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2086 
2087 	ext4_es_insert_extent_check(inode, &newes);
2088 
2089 retry:
2090 	if (err1 && !es1)
2091 		es1 = __es_alloc_extent(true);
2092 	if ((err1 || err2) && !es2)
2093 		es2 = __es_alloc_extent(true);
2094 	if ((err1 || err2 || err3) && allocated && !pr)
2095 		pr = __alloc_pending(true);
2096 	write_lock(&EXT4_I(inode)->i_es_lock);
2097 
2098 	err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2099 	if (err1 != 0)
2100 		goto error;
2101 	/* Free preallocated extent if it didn't get used. */
2102 	if (es1) {
2103 		if (!es1->es_len)
2104 			__es_free_extent(es1);
2105 		es1 = NULL;
2106 	}
2107 
2108 	err2 = __es_insert_extent(inode, &newes, es2);
2109 	if (err2 != 0)
2110 		goto error;
2111 	/* Free preallocated extent if it didn't get used. */
2112 	if (es2) {
2113 		if (!es2->es_len)
2114 			__es_free_extent(es2);
2115 		es2 = NULL;
2116 	}
2117 
2118 	if (allocated) {
2119 		err3 = __insert_pending(inode, lblk, &pr);
2120 		if (err3 != 0)
2121 			goto error;
2122 		if (pr) {
2123 			__free_pending(pr);
2124 			pr = NULL;
2125 		}
2126 	}
2127 error:
2128 	write_unlock(&EXT4_I(inode)->i_es_lock);
2129 	if (err1 || err2 || err3)
2130 		goto retry;
2131 
2132 	ext4_es_print_tree(inode);
2133 	ext4_print_pending_tree(inode);
2134 	return 0;
2135 }
2136 
2137 /*
2138  * __es_delayed_clu - count number of clusters containing blocks that
2139  *                    are delayed only
2140  *
2141  * @inode - file containing block range
2142  * @start - logical block defining start of range
2143  * @end - logical block defining end of range
2144  *
2145  * Returns the number of clusters containing only delayed (not delayed
2146  * and unwritten) blocks in the range specified by @start and @end.  Any
2147  * cluster or part of a cluster within the range and containing a delayed
2148  * and not unwritten block within the range is counted as a whole cluster.
2149  */
__es_delayed_clu(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2150 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2151 				     ext4_lblk_t end)
2152 {
2153 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2154 	struct extent_status *es;
2155 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2156 	struct rb_node *node;
2157 	ext4_lblk_t first_lclu, last_lclu;
2158 	unsigned long long last_counted_lclu;
2159 	unsigned int n = 0;
2160 
2161 	/* guaranteed to be unequal to any ext4_lblk_t value */
2162 	last_counted_lclu = ~0ULL;
2163 
2164 	es = __es_tree_search(&tree->root, start);
2165 
2166 	while (es && (es->es_lblk <= end)) {
2167 		if (ext4_es_is_delonly(es)) {
2168 			if (es->es_lblk <= start)
2169 				first_lclu = EXT4_B2C(sbi, start);
2170 			else
2171 				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2172 
2173 			if (ext4_es_end(es) >= end)
2174 				last_lclu = EXT4_B2C(sbi, end);
2175 			else
2176 				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2177 
2178 			if (first_lclu == last_counted_lclu)
2179 				n += last_lclu - first_lclu;
2180 			else
2181 				n += last_lclu - first_lclu + 1;
2182 			last_counted_lclu = last_lclu;
2183 		}
2184 		node = rb_next(&es->rb_node);
2185 		if (!node)
2186 			break;
2187 		es = rb_entry(node, struct extent_status, rb_node);
2188 	}
2189 
2190 	return n;
2191 }
2192 
2193 /*
2194  * ext4_es_delayed_clu - count number of clusters containing blocks that
2195  *                       are both delayed and unwritten
2196  *
2197  * @inode - file containing block range
2198  * @lblk - logical block defining start of range
2199  * @len - number of blocks in range
2200  *
2201  * Locking for external use of __es_delayed_clu().
2202  */
ext4_es_delayed_clu(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2203 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2204 				 ext4_lblk_t len)
2205 {
2206 	struct ext4_inode_info *ei = EXT4_I(inode);
2207 	ext4_lblk_t end;
2208 	unsigned int n;
2209 
2210 	if (len == 0)
2211 		return 0;
2212 
2213 	end = lblk + len - 1;
2214 	WARN_ON(end < lblk);
2215 
2216 	read_lock(&ei->i_es_lock);
2217 
2218 	n = __es_delayed_clu(inode, lblk, end);
2219 
2220 	read_unlock(&ei->i_es_lock);
2221 
2222 	return n;
2223 }
2224 
2225 /*
2226  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2227  *                    reservations for a specified block range depending
2228  *                    upon the presence or absence of delayed blocks
2229  *                    outside the range within clusters at the ends of the
2230  *                    range
2231  *
2232  * @inode - file containing the range
2233  * @lblk - logical block defining the start of range
2234  * @len  - length of range in blocks
2235  * @prealloc - preallocated pending entry
2236  *
2237  * Used after a newly allocated extent is added to the extents status tree.
2238  * Requires that the extents in the range have either written or unwritten
2239  * status.  Must be called while holding i_es_lock.
2240  */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,struct pending_reservation ** prealloc)2241 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2242 			    ext4_lblk_t len,
2243 			    struct pending_reservation **prealloc)
2244 {
2245 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2246 	ext4_lblk_t end = lblk + len - 1;
2247 	ext4_lblk_t first, last;
2248 	bool f_del = false, l_del = false;
2249 	int ret = 0;
2250 
2251 	if (len == 0)
2252 		return 0;
2253 
2254 	/*
2255 	 * Two cases - block range within single cluster and block range
2256 	 * spanning two or more clusters.  Note that a cluster belonging
2257 	 * to a range starting and/or ending on a cluster boundary is treated
2258 	 * as if it does not contain a delayed extent.  The new range may
2259 	 * have allocated space for previously delayed blocks out to the
2260 	 * cluster boundary, requiring that any pre-existing pending
2261 	 * reservation be canceled.  Because this code only looks at blocks
2262 	 * outside the range, it should revise pending reservations
2263 	 * correctly even if the extent represented by the range can't be
2264 	 * inserted in the extents status tree due to ENOSPC.
2265 	 */
2266 
2267 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2268 		first = EXT4_LBLK_CMASK(sbi, lblk);
2269 		if (first != lblk)
2270 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2271 						first, lblk - 1);
2272 		if (f_del) {
2273 			ret = __insert_pending(inode, first, prealloc);
2274 			if (ret < 0)
2275 				goto out;
2276 		} else {
2277 			last = EXT4_LBLK_CMASK(sbi, end) +
2278 			       sbi->s_cluster_ratio - 1;
2279 			if (last != end)
2280 				l_del = __es_scan_range(inode,
2281 							&ext4_es_is_delonly,
2282 							end + 1, last);
2283 			if (l_del) {
2284 				ret = __insert_pending(inode, last, prealloc);
2285 				if (ret < 0)
2286 					goto out;
2287 			} else
2288 				__remove_pending(inode, last);
2289 		}
2290 	} else {
2291 		first = EXT4_LBLK_CMASK(sbi, lblk);
2292 		if (first != lblk)
2293 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2294 						first, lblk - 1);
2295 		if (f_del) {
2296 			ret = __insert_pending(inode, first, prealloc);
2297 			if (ret < 0)
2298 				goto out;
2299 		} else
2300 			__remove_pending(inode, first);
2301 
2302 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2303 		if (last != end)
2304 			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2305 						end + 1, last);
2306 		if (l_del) {
2307 			ret = __insert_pending(inode, last, prealloc);
2308 			if (ret < 0)
2309 				goto out;
2310 		} else
2311 			__remove_pending(inode, last);
2312 	}
2313 out:
2314 	return ret;
2315 }
2316