• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * f2fs compress support
4  *
5  * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 #include <linux/lzo.h>
13 #include <linux/lz4.h>
14 #include <linux/zstd.h>
15 #include <linux/pagevec.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include <trace/events/f2fs.h>
21 
22 static struct kmem_cache *cic_entry_slab;
23 static struct kmem_cache *dic_entry_slab;
24 
page_array_alloc(struct inode * inode,int nr)25 static void *page_array_alloc(struct inode *inode, int nr)
26 {
27 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
28 	unsigned int size = sizeof(struct page *) * nr;
29 
30 	if (likely(size <= sbi->page_array_slab_size))
31 		return kmem_cache_zalloc(sbi->page_array_slab, GFP_NOFS);
32 	return f2fs_kzalloc(sbi, size, GFP_NOFS);
33 }
34 
page_array_free(struct inode * inode,void * pages,int nr)35 static void page_array_free(struct inode *inode, void *pages, int nr)
36 {
37 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
38 	unsigned int size = sizeof(struct page *) * nr;
39 
40 	if (!pages)
41 		return;
42 
43 	if (likely(size <= sbi->page_array_slab_size))
44 		kmem_cache_free(sbi->page_array_slab, pages);
45 	else
46 		kfree(pages);
47 }
48 
49 struct f2fs_compress_ops {
50 	int (*init_compress_ctx)(struct compress_ctx *cc);
51 	void (*destroy_compress_ctx)(struct compress_ctx *cc);
52 	int (*compress_pages)(struct compress_ctx *cc);
53 	int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
54 	void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
55 	int (*decompress_pages)(struct decompress_io_ctx *dic);
56 };
57 
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)58 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
59 {
60 	return index & (cc->cluster_size - 1);
61 }
62 
cluster_idx(struct compress_ctx * cc,pgoff_t index)63 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
64 {
65 	return index >> cc->log_cluster_size;
66 }
67 
start_idx_of_cluster(struct compress_ctx * cc)68 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
69 {
70 	return cc->cluster_idx << cc->log_cluster_size;
71 }
72 
f2fs_is_compressed_page(struct page * page)73 bool f2fs_is_compressed_page(struct page *page)
74 {
75 	if (!PagePrivate(page))
76 		return false;
77 	if (!page_private(page))
78 		return false;
79 	if (page_private_nonpointer(page))
80 		return false;
81 
82 	f2fs_bug_on(F2FS_M_SB(page->mapping),
83 		*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
84 	return true;
85 }
86 
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)87 static void f2fs_set_compressed_page(struct page *page,
88 		struct inode *inode, pgoff_t index, void *data)
89 {
90 	attach_page_private(page, (void *)data);
91 
92 	/* i_crypto_info and iv index */
93 	page->index = index;
94 	page->mapping = inode->i_mapping;
95 }
96 
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)97 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
98 {
99 	int i;
100 
101 	for (i = 0; i < len; i++) {
102 		if (!cc->rpages[i])
103 			continue;
104 		if (unlock)
105 			unlock_page(cc->rpages[i]);
106 		else
107 			put_page(cc->rpages[i]);
108 	}
109 }
110 
f2fs_put_rpages(struct compress_ctx * cc)111 static void f2fs_put_rpages(struct compress_ctx *cc)
112 {
113 	f2fs_drop_rpages(cc, cc->cluster_size, false);
114 }
115 
f2fs_unlock_rpages(struct compress_ctx * cc,int len)116 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
117 {
118 	f2fs_drop_rpages(cc, len, true);
119 }
120 
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)121 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
122 		struct writeback_control *wbc, bool redirty, int unlock)
123 {
124 	unsigned int i;
125 
126 	for (i = 0; i < cc->cluster_size; i++) {
127 		if (!cc->rpages[i])
128 			continue;
129 		if (redirty)
130 			redirty_page_for_writepage(wbc, cc->rpages[i]);
131 		f2fs_put_page(cc->rpages[i], unlock);
132 	}
133 }
134 
f2fs_compress_control_page(struct page * page)135 struct page *f2fs_compress_control_page(struct page *page)
136 {
137 	return ((struct compress_io_ctx *)page_private(page))->rpages[0];
138 }
139 
f2fs_init_compress_ctx(struct compress_ctx * cc)140 int f2fs_init_compress_ctx(struct compress_ctx *cc)
141 {
142 	if (cc->rpages)
143 		return 0;
144 
145 	cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
146 	return cc->rpages ? 0 : -ENOMEM;
147 }
148 
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)149 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
150 {
151 	page_array_free(cc->inode, cc->rpages, cc->cluster_size);
152 	cc->rpages = NULL;
153 	cc->nr_rpages = 0;
154 	cc->nr_cpages = 0;
155 	if (!reuse)
156 		cc->cluster_idx = NULL_CLUSTER;
157 }
158 
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct page * page)159 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
160 {
161 	unsigned int cluster_ofs;
162 
163 	if (!f2fs_cluster_can_merge_page(cc, page->index))
164 		f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
165 
166 	cluster_ofs = offset_in_cluster(cc, page->index);
167 	cc->rpages[cluster_ofs] = page;
168 	cc->nr_rpages++;
169 	cc->cluster_idx = cluster_idx(cc, page->index);
170 }
171 
172 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)173 static int lzo_init_compress_ctx(struct compress_ctx *cc)
174 {
175 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
176 				LZO1X_MEM_COMPRESS, GFP_NOFS);
177 	if (!cc->private)
178 		return -ENOMEM;
179 
180 	cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
181 	return 0;
182 }
183 
lzo_destroy_compress_ctx(struct compress_ctx * cc)184 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
185 {
186 	kvfree(cc->private);
187 	cc->private = NULL;
188 }
189 
lzo_compress_pages(struct compress_ctx * cc)190 static int lzo_compress_pages(struct compress_ctx *cc)
191 {
192 	int ret;
193 
194 	ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
195 					&cc->clen, cc->private);
196 	if (ret != LZO_E_OK) {
197 		printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
198 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
199 		return -EIO;
200 	}
201 	return 0;
202 }
203 
lzo_decompress_pages(struct decompress_io_ctx * dic)204 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
205 {
206 	int ret;
207 
208 	ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
209 						dic->rbuf, &dic->rlen);
210 	if (ret != LZO_E_OK) {
211 		printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
212 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
213 		return -EIO;
214 	}
215 
216 	if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
217 		printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
218 					"expected:%lu\n", KERN_ERR,
219 					F2FS_I_SB(dic->inode)->sb->s_id,
220 					dic->rlen,
221 					PAGE_SIZE << dic->log_cluster_size);
222 		return -EIO;
223 	}
224 	return 0;
225 }
226 
227 static const struct f2fs_compress_ops f2fs_lzo_ops = {
228 	.init_compress_ctx	= lzo_init_compress_ctx,
229 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
230 	.compress_pages		= lzo_compress_pages,
231 	.decompress_pages	= lzo_decompress_pages,
232 };
233 #endif
234 
235 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)236 static int lz4_init_compress_ctx(struct compress_ctx *cc)
237 {
238 	unsigned int size = LZ4_MEM_COMPRESS;
239 
240 #ifdef CONFIG_F2FS_FS_LZ4HC
241 	if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
242 		size = LZ4HC_MEM_COMPRESS;
243 #endif
244 
245 	cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
246 	if (!cc->private)
247 		return -ENOMEM;
248 
249 	/*
250 	 * we do not change cc->clen to LZ4_compressBound(inputsize) to
251 	 * adapt worst compress case, because lz4 compressor can handle
252 	 * output budget properly.
253 	 */
254 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
255 	return 0;
256 }
257 
lz4_destroy_compress_ctx(struct compress_ctx * cc)258 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
259 {
260 	kvfree(cc->private);
261 	cc->private = NULL;
262 }
263 
264 #ifdef CONFIG_F2FS_FS_LZ4HC
lz4hc_compress_pages(struct compress_ctx * cc)265 static int lz4hc_compress_pages(struct compress_ctx *cc)
266 {
267 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
268 						COMPRESS_LEVEL_OFFSET;
269 	int len;
270 
271 	if (level)
272 		len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
273 					cc->clen, level, cc->private);
274 	else
275 		len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276 						cc->clen, cc->private);
277 	if (!len)
278 		return -EAGAIN;
279 
280 	cc->clen = len;
281 	return 0;
282 }
283 #endif
284 
lz4_compress_pages(struct compress_ctx * cc)285 static int lz4_compress_pages(struct compress_ctx *cc)
286 {
287 	int len;
288 
289 #ifdef CONFIG_F2FS_FS_LZ4HC
290 	return lz4hc_compress_pages(cc);
291 #endif
292 	len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
293 						cc->clen, cc->private);
294 	if (!len)
295 		return -EAGAIN;
296 
297 	cc->clen = len;
298 	return 0;
299 }
300 
lz4_decompress_pages(struct decompress_io_ctx * dic)301 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
302 {
303 	int ret;
304 
305 	ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
306 						dic->clen, dic->rlen);
307 	if (ret < 0) {
308 		printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
309 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
310 		return -EIO;
311 	}
312 
313 	if (ret != PAGE_SIZE << dic->log_cluster_size) {
314 		printk_ratelimited("%sF2FS-fs (%s): lz4 invalid ret:%d, "
315 					"expected:%lu\n", KERN_ERR,
316 					F2FS_I_SB(dic->inode)->sb->s_id, ret,
317 					PAGE_SIZE << dic->log_cluster_size);
318 		return -EIO;
319 	}
320 	return 0;
321 }
322 
323 static const struct f2fs_compress_ops f2fs_lz4_ops = {
324 	.init_compress_ctx	= lz4_init_compress_ctx,
325 	.destroy_compress_ctx	= lz4_destroy_compress_ctx,
326 	.compress_pages		= lz4_compress_pages,
327 	.decompress_pages	= lz4_decompress_pages,
328 };
329 #endif
330 
331 #ifdef CONFIG_F2FS_FS_ZSTD
332 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
333 
zstd_init_compress_ctx(struct compress_ctx * cc)334 static int zstd_init_compress_ctx(struct compress_ctx *cc)
335 {
336 	ZSTD_parameters params;
337 	ZSTD_CStream *stream;
338 	void *workspace;
339 	unsigned int workspace_size;
340 	unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
341 						COMPRESS_LEVEL_OFFSET;
342 
343 	if (!level)
344 		level = F2FS_ZSTD_DEFAULT_CLEVEL;
345 
346 	params = ZSTD_getParams(level, cc->rlen, 0);
347 	workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams);
348 
349 	workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
350 					workspace_size, GFP_NOFS);
351 	if (!workspace)
352 		return -ENOMEM;
353 
354 	stream = ZSTD_initCStream(params, 0, workspace, workspace_size);
355 	if (!stream) {
356 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n",
357 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
358 				__func__);
359 		kvfree(workspace);
360 		return -EIO;
361 	}
362 
363 	cc->private = workspace;
364 	cc->private2 = stream;
365 
366 	cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
367 	return 0;
368 }
369 
zstd_destroy_compress_ctx(struct compress_ctx * cc)370 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
371 {
372 	kvfree(cc->private);
373 	cc->private = NULL;
374 	cc->private2 = NULL;
375 }
376 
zstd_compress_pages(struct compress_ctx * cc)377 static int zstd_compress_pages(struct compress_ctx *cc)
378 {
379 	ZSTD_CStream *stream = cc->private2;
380 	ZSTD_inBuffer inbuf;
381 	ZSTD_outBuffer outbuf;
382 	int src_size = cc->rlen;
383 	int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
384 	int ret;
385 
386 	inbuf.pos = 0;
387 	inbuf.src = cc->rbuf;
388 	inbuf.size = src_size;
389 
390 	outbuf.pos = 0;
391 	outbuf.dst = cc->cbuf->cdata;
392 	outbuf.size = dst_size;
393 
394 	ret = ZSTD_compressStream(stream, &outbuf, &inbuf);
395 	if (ZSTD_isError(ret)) {
396 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
397 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
398 				__func__, ZSTD_getErrorCode(ret));
399 		return -EIO;
400 	}
401 
402 	ret = ZSTD_endStream(stream, &outbuf);
403 	if (ZSTD_isError(ret)) {
404 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n",
405 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
406 				__func__, ZSTD_getErrorCode(ret));
407 		return -EIO;
408 	}
409 
410 	/*
411 	 * there is compressed data remained in intermediate buffer due to
412 	 * no more space in cbuf.cdata
413 	 */
414 	if (ret)
415 		return -EAGAIN;
416 
417 	cc->clen = outbuf.pos;
418 	return 0;
419 }
420 
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)421 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
422 {
423 	ZSTD_DStream *stream;
424 	void *workspace;
425 	unsigned int workspace_size;
426 	unsigned int max_window_size =
427 			MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
428 
429 	workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size);
430 
431 	workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
432 					workspace_size, GFP_NOFS);
433 	if (!workspace)
434 		return -ENOMEM;
435 
436 	stream = ZSTD_initDStream(max_window_size, workspace, workspace_size);
437 	if (!stream) {
438 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n",
439 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
440 				__func__);
441 		kvfree(workspace);
442 		return -EIO;
443 	}
444 
445 	dic->private = workspace;
446 	dic->private2 = stream;
447 
448 	return 0;
449 }
450 
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)451 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
452 {
453 	kvfree(dic->private);
454 	dic->private = NULL;
455 	dic->private2 = NULL;
456 }
457 
zstd_decompress_pages(struct decompress_io_ctx * dic)458 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
459 {
460 	ZSTD_DStream *stream = dic->private2;
461 	ZSTD_inBuffer inbuf;
462 	ZSTD_outBuffer outbuf;
463 	int ret;
464 
465 	inbuf.pos = 0;
466 	inbuf.src = dic->cbuf->cdata;
467 	inbuf.size = dic->clen;
468 
469 	outbuf.pos = 0;
470 	outbuf.dst = dic->rbuf;
471 	outbuf.size = dic->rlen;
472 
473 	ret = ZSTD_decompressStream(stream, &outbuf, &inbuf);
474 	if (ZSTD_isError(ret)) {
475 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
476 				KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
477 				__func__, ZSTD_getErrorCode(ret));
478 		return -EIO;
479 	}
480 
481 	if (dic->rlen != outbuf.pos) {
482 		printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
483 				"expected:%lu\n", KERN_ERR,
484 				F2FS_I_SB(dic->inode)->sb->s_id,
485 				__func__, dic->rlen,
486 				PAGE_SIZE << dic->log_cluster_size);
487 		return -EIO;
488 	}
489 
490 	return 0;
491 }
492 
493 static const struct f2fs_compress_ops f2fs_zstd_ops = {
494 	.init_compress_ctx	= zstd_init_compress_ctx,
495 	.destroy_compress_ctx	= zstd_destroy_compress_ctx,
496 	.compress_pages		= zstd_compress_pages,
497 	.init_decompress_ctx	= zstd_init_decompress_ctx,
498 	.destroy_decompress_ctx	= zstd_destroy_decompress_ctx,
499 	.decompress_pages	= zstd_decompress_pages,
500 };
501 #endif
502 
503 #ifdef CONFIG_F2FS_FS_LZO
504 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)505 static int lzorle_compress_pages(struct compress_ctx *cc)
506 {
507 	int ret;
508 
509 	ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
510 					&cc->clen, cc->private);
511 	if (ret != LZO_E_OK) {
512 		printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
513 				KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
514 		return -EIO;
515 	}
516 	return 0;
517 }
518 
519 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
520 	.init_compress_ctx	= lzo_init_compress_ctx,
521 	.destroy_compress_ctx	= lzo_destroy_compress_ctx,
522 	.compress_pages		= lzorle_compress_pages,
523 	.decompress_pages	= lzo_decompress_pages,
524 };
525 #endif
526 #endif
527 
528 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
529 #ifdef CONFIG_F2FS_FS_LZO
530 	&f2fs_lzo_ops,
531 #else
532 	NULL,
533 #endif
534 #ifdef CONFIG_F2FS_FS_LZ4
535 	&f2fs_lz4_ops,
536 #else
537 	NULL,
538 #endif
539 #ifdef CONFIG_F2FS_FS_ZSTD
540 	&f2fs_zstd_ops,
541 #else
542 	NULL,
543 #endif
544 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
545 	&f2fs_lzorle_ops,
546 #else
547 	NULL,
548 #endif
549 };
550 
f2fs_is_compress_backend_ready(struct inode * inode)551 bool f2fs_is_compress_backend_ready(struct inode *inode)
552 {
553 	if (!f2fs_compressed_file(inode))
554 		return true;
555 	return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
556 }
557 
558 static mempool_t *compress_page_pool;
559 static int num_compress_pages = 512;
560 module_param(num_compress_pages, uint, 0444);
561 MODULE_PARM_DESC(num_compress_pages,
562 		"Number of intermediate compress pages to preallocate");
563 
f2fs_init_compress_mempool(void)564 int f2fs_init_compress_mempool(void)
565 {
566 	compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
567 	if (!compress_page_pool)
568 		return -ENOMEM;
569 
570 	return 0;
571 }
572 
f2fs_destroy_compress_mempool(void)573 void f2fs_destroy_compress_mempool(void)
574 {
575 	mempool_destroy(compress_page_pool);
576 }
577 
f2fs_compress_alloc_page(void)578 static struct page *f2fs_compress_alloc_page(void)
579 {
580 	struct page *page;
581 
582 	page = mempool_alloc(compress_page_pool, GFP_NOFS);
583 	lock_page(page);
584 
585 	return page;
586 }
587 
f2fs_compress_free_page(struct page * page)588 static void f2fs_compress_free_page(struct page *page)
589 {
590 	if (!page)
591 		return;
592 	detach_page_private(page);
593 	page->mapping = NULL;
594 	unlock_page(page);
595 	mempool_free(page, compress_page_pool);
596 }
597 
598 #define MAX_VMAP_RETRIES	3
599 
f2fs_vmap(struct page ** pages,unsigned int count)600 static void *f2fs_vmap(struct page **pages, unsigned int count)
601 {
602 	int i;
603 	void *buf = NULL;
604 
605 	for (i = 0; i < MAX_VMAP_RETRIES; i++) {
606 		buf = vm_map_ram(pages, count, -1);
607 		if (buf)
608 			break;
609 		vm_unmap_aliases();
610 	}
611 	return buf;
612 }
613 
f2fs_compress_pages(struct compress_ctx * cc)614 static int f2fs_compress_pages(struct compress_ctx *cc)
615 {
616 	struct f2fs_inode_info *fi = F2FS_I(cc->inode);
617 	const struct f2fs_compress_ops *cops =
618 				f2fs_cops[fi->i_compress_algorithm];
619 	unsigned int max_len, new_nr_cpages;
620 	struct page **new_cpages;
621 	u32 chksum = 0;
622 	int i, ret;
623 
624 	trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
625 				cc->cluster_size, fi->i_compress_algorithm);
626 
627 	if (cops->init_compress_ctx) {
628 		ret = cops->init_compress_ctx(cc);
629 		if (ret)
630 			goto out;
631 	}
632 
633 	max_len = COMPRESS_HEADER_SIZE + cc->clen;
634 	cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
635 
636 	cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
637 	if (!cc->cpages) {
638 		ret = -ENOMEM;
639 		goto destroy_compress_ctx;
640 	}
641 
642 	for (i = 0; i < cc->nr_cpages; i++) {
643 		cc->cpages[i] = f2fs_compress_alloc_page();
644 		if (!cc->cpages[i]) {
645 			ret = -ENOMEM;
646 			goto out_free_cpages;
647 		}
648 	}
649 
650 	cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
651 	if (!cc->rbuf) {
652 		ret = -ENOMEM;
653 		goto out_free_cpages;
654 	}
655 
656 	cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
657 	if (!cc->cbuf) {
658 		ret = -ENOMEM;
659 		goto out_vunmap_rbuf;
660 	}
661 
662 	ret = cops->compress_pages(cc);
663 	if (ret)
664 		goto out_vunmap_cbuf;
665 
666 	max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
667 
668 	if (cc->clen > max_len) {
669 		ret = -EAGAIN;
670 		goto out_vunmap_cbuf;
671 	}
672 
673 	cc->cbuf->clen = cpu_to_le32(cc->clen);
674 
675 	if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
676 		chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
677 					cc->cbuf->cdata, cc->clen);
678 	cc->cbuf->chksum = cpu_to_le32(chksum);
679 
680 	for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
681 		cc->cbuf->reserved[i] = cpu_to_le32(0);
682 
683 	new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
684 
685 	/* Now we're going to cut unnecessary tail pages */
686 	new_cpages = page_array_alloc(cc->inode, new_nr_cpages);
687 	if (!new_cpages) {
688 		ret = -ENOMEM;
689 		goto out_vunmap_cbuf;
690 	}
691 
692 	/* zero out any unused part of the last page */
693 	memset(&cc->cbuf->cdata[cc->clen], 0,
694 			(new_nr_cpages * PAGE_SIZE) -
695 			(cc->clen + COMPRESS_HEADER_SIZE));
696 
697 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
698 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
699 
700 	for (i = 0; i < cc->nr_cpages; i++) {
701 		if (i < new_nr_cpages) {
702 			new_cpages[i] = cc->cpages[i];
703 			continue;
704 		}
705 		f2fs_compress_free_page(cc->cpages[i]);
706 		cc->cpages[i] = NULL;
707 	}
708 
709 	if (cops->destroy_compress_ctx)
710 		cops->destroy_compress_ctx(cc);
711 
712 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
713 	cc->cpages = new_cpages;
714 	cc->nr_cpages = new_nr_cpages;
715 
716 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
717 							cc->clen, ret);
718 	return 0;
719 
720 out_vunmap_cbuf:
721 	vm_unmap_ram(cc->cbuf, cc->nr_cpages);
722 out_vunmap_rbuf:
723 	vm_unmap_ram(cc->rbuf, cc->cluster_size);
724 out_free_cpages:
725 	for (i = 0; i < cc->nr_cpages; i++) {
726 		if (cc->cpages[i])
727 			f2fs_compress_free_page(cc->cpages[i]);
728 	}
729 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
730 	cc->cpages = NULL;
731 destroy_compress_ctx:
732 	if (cops->destroy_compress_ctx)
733 		cops->destroy_compress_ctx(cc);
734 out:
735 	trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
736 							cc->clen, ret);
737 	return ret;
738 }
739 
740 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
741 		bool pre_alloc);
742 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
743 		bool bypass_destroy_callback, bool pre_alloc);
744 
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)745 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
746 {
747 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
748 	struct f2fs_inode_info *fi = F2FS_I(dic->inode);
749 	const struct f2fs_compress_ops *cops =
750 			f2fs_cops[fi->i_compress_algorithm];
751 	bool bypass_callback = false;
752 	int ret;
753 
754 	trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
755 				dic->cluster_size, fi->i_compress_algorithm);
756 
757 	if (dic->failed) {
758 		ret = -EIO;
759 		goto out_end_io;
760 	}
761 
762 	ret = f2fs_prepare_decomp_mem(dic, false);
763 	if (ret) {
764 		bypass_callback = true;
765 		goto out_release;
766 	}
767 
768 	dic->clen = le32_to_cpu(dic->cbuf->clen);
769 	dic->rlen = PAGE_SIZE << dic->log_cluster_size;
770 
771 	if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
772 		ret = -EFSCORRUPTED;
773 		goto out_release;
774 	}
775 
776 	ret = cops->decompress_pages(dic);
777 
778 	if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
779 		u32 provided = le32_to_cpu(dic->cbuf->chksum);
780 		u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
781 
782 		if (provided != calculated) {
783 			if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
784 				set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
785 				printk_ratelimited(
786 					"%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
787 					KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
788 					provided, calculated);
789 			}
790 			set_sbi_flag(sbi, SBI_NEED_FSCK);
791 		}
792 	}
793 
794 out_release:
795 	f2fs_release_decomp_mem(dic, bypass_callback, false);
796 
797 out_end_io:
798 	trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
799 							dic->clen, ret);
800 	f2fs_decompress_end_io(dic, ret, in_task);
801 }
802 
803 /*
804  * This is called when a page of a compressed cluster has been read from disk
805  * (or failed to be read from disk).  It checks whether this page was the last
806  * page being waited on in the cluster, and if so, it decompresses the cluster
807  * (or in the case of a failure, cleans up without actually decompressing).
808  */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)809 void f2fs_end_read_compressed_page(struct page *page, bool failed,
810 		block_t blkaddr, bool in_task)
811 {
812 	struct decompress_io_ctx *dic =
813 			(struct decompress_io_ctx *)page_private(page);
814 	struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
815 
816 	dec_page_count(sbi, F2FS_RD_DATA);
817 
818 	if (failed)
819 		WRITE_ONCE(dic->failed, true);
820 	else if (blkaddr && in_task)
821 		f2fs_cache_compressed_page(sbi, page,
822 					dic->inode->i_ino, blkaddr);
823 
824 	if (atomic_dec_and_test(&dic->remaining_pages))
825 		f2fs_decompress_cluster(dic, in_task);
826 }
827 
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)828 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
829 {
830 	if (cc->cluster_idx == NULL_CLUSTER)
831 		return true;
832 	return cc->cluster_idx == cluster_idx(cc, index);
833 }
834 
f2fs_cluster_is_empty(struct compress_ctx * cc)835 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
836 {
837 	return cc->nr_rpages == 0;
838 }
839 
f2fs_cluster_is_full(struct compress_ctx * cc)840 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
841 {
842 	return cc->cluster_size == cc->nr_rpages;
843 }
844 
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)845 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
846 {
847 	if (f2fs_cluster_is_empty(cc))
848 		return true;
849 	return is_page_in_cluster(cc, index);
850 }
851 
cluster_has_invalid_data(struct compress_ctx * cc)852 static bool cluster_has_invalid_data(struct compress_ctx *cc)
853 {
854 	loff_t i_size = i_size_read(cc->inode);
855 	unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
856 	int i;
857 
858 	for (i = 0; i < cc->cluster_size; i++) {
859 		struct page *page = cc->rpages[i];
860 
861 		f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
862 
863 		/* beyond EOF */
864 		if (page->index >= nr_pages)
865 			return true;
866 	}
867 	return false;
868 }
869 
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,bool compr)870 static int __f2fs_cluster_blocks(struct inode *inode,
871 				unsigned int cluster_idx, bool compr)
872 {
873 	struct dnode_of_data dn;
874 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
875 	unsigned int start_idx = cluster_idx <<
876 				F2FS_I(inode)->i_log_cluster_size;
877 	int ret;
878 
879 	set_new_dnode(&dn, inode, NULL, NULL, 0);
880 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
881 	if (ret) {
882 		if (ret == -ENOENT)
883 			ret = 0;
884 		goto fail;
885 	}
886 
887 	if (dn.data_blkaddr == COMPRESS_ADDR) {
888 		int i;
889 
890 		ret = 1;
891 		for (i = 1; i < cluster_size; i++) {
892 			block_t blkaddr;
893 
894 			blkaddr = data_blkaddr(dn.inode,
895 					dn.node_page, dn.ofs_in_node + i);
896 			if (compr) {
897 				if (__is_valid_data_blkaddr(blkaddr))
898 					ret++;
899 			} else {
900 				if (blkaddr != NULL_ADDR)
901 					ret++;
902 			}
903 		}
904 
905 		f2fs_bug_on(F2FS_I_SB(inode),
906 			!compr && ret != cluster_size &&
907 			!is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
908 	}
909 fail:
910 	f2fs_put_dnode(&dn);
911 	return ret;
912 }
913 
914 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)915 static int f2fs_compressed_blocks(struct compress_ctx *cc)
916 {
917 	return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
918 }
919 
920 /* return # of valid blocks in compressed cluster */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)921 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
922 {
923 	return __f2fs_cluster_blocks(inode,
924 		index >> F2FS_I(inode)->i_log_cluster_size,
925 		false);
926 }
927 
cluster_may_compress(struct compress_ctx * cc)928 static bool cluster_may_compress(struct compress_ctx *cc)
929 {
930 	if (!f2fs_need_compress_data(cc->inode))
931 		return false;
932 	if (f2fs_is_atomic_file(cc->inode))
933 		return false;
934 	if (!f2fs_cluster_is_full(cc))
935 		return false;
936 	if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
937 		return false;
938 	return !cluster_has_invalid_data(cc);
939 }
940 
set_cluster_writeback(struct compress_ctx * cc)941 static void set_cluster_writeback(struct compress_ctx *cc)
942 {
943 	int i;
944 
945 	for (i = 0; i < cc->cluster_size; i++) {
946 		if (cc->rpages[i])
947 			set_page_writeback(cc->rpages[i]);
948 	}
949 }
950 
set_cluster_dirty(struct compress_ctx * cc)951 static void set_cluster_dirty(struct compress_ctx *cc)
952 {
953 	int i;
954 
955 	for (i = 0; i < cc->cluster_size; i++)
956 		if (cc->rpages[i])
957 			set_page_dirty(cc->rpages[i]);
958 }
959 
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)960 static int prepare_compress_overwrite(struct compress_ctx *cc,
961 		struct page **pagep, pgoff_t index, void **fsdata)
962 {
963 	struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
964 	struct address_space *mapping = cc->inode->i_mapping;
965 	struct page *page;
966 	sector_t last_block_in_bio;
967 	unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
968 	pgoff_t start_idx = start_idx_of_cluster(cc);
969 	int i, ret;
970 
971 retry:
972 	ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
973 	if (ret <= 0)
974 		return ret;
975 
976 	ret = f2fs_init_compress_ctx(cc);
977 	if (ret)
978 		return ret;
979 
980 	/* keep page reference to avoid page reclaim */
981 	for (i = 0; i < cc->cluster_size; i++) {
982 		page = f2fs_pagecache_get_page(mapping, start_idx + i,
983 							fgp_flag, GFP_NOFS);
984 		if (!page) {
985 			ret = -ENOMEM;
986 			goto unlock_pages;
987 		}
988 
989 		if (PageUptodate(page))
990 			f2fs_put_page(page, 1);
991 		else
992 			f2fs_compress_ctx_add_page(cc, page);
993 	}
994 
995 	if (!f2fs_cluster_is_empty(cc)) {
996 		struct bio *bio = NULL;
997 
998 		ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
999 					&last_block_in_bio, false, true);
1000 		f2fs_put_rpages(cc);
1001 		f2fs_destroy_compress_ctx(cc, true);
1002 		if (ret)
1003 			goto out;
1004 		if (bio)
1005 			f2fs_submit_bio(sbi, bio, DATA);
1006 
1007 		ret = f2fs_init_compress_ctx(cc);
1008 		if (ret)
1009 			goto out;
1010 	}
1011 
1012 	for (i = 0; i < cc->cluster_size; i++) {
1013 		f2fs_bug_on(sbi, cc->rpages[i]);
1014 
1015 		page = find_lock_page(mapping, start_idx + i);
1016 		if (!page) {
1017 			/* page can be truncated */
1018 			goto release_and_retry;
1019 		}
1020 
1021 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1022 		f2fs_compress_ctx_add_page(cc, page);
1023 
1024 		if (!PageUptodate(page)) {
1025 release_and_retry:
1026 			f2fs_put_rpages(cc);
1027 			f2fs_unlock_rpages(cc, i + 1);
1028 			f2fs_destroy_compress_ctx(cc, true);
1029 			goto retry;
1030 		}
1031 	}
1032 
1033 	if (likely(!ret)) {
1034 		*fsdata = cc->rpages;
1035 		*pagep = cc->rpages[offset_in_cluster(cc, index)];
1036 		return cc->cluster_size;
1037 	}
1038 
1039 unlock_pages:
1040 	f2fs_put_rpages(cc);
1041 	f2fs_unlock_rpages(cc, i);
1042 	f2fs_destroy_compress_ctx(cc, true);
1043 out:
1044 	return ret;
1045 }
1046 
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1047 int f2fs_prepare_compress_overwrite(struct inode *inode,
1048 		struct page **pagep, pgoff_t index, void **fsdata)
1049 {
1050 	struct compress_ctx cc = {
1051 		.inode = inode,
1052 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1053 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1054 		.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1055 		.rpages = NULL,
1056 		.nr_rpages = 0,
1057 	};
1058 
1059 	return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1060 }
1061 
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1062 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1063 					pgoff_t index, unsigned copied)
1064 
1065 {
1066 	struct compress_ctx cc = {
1067 		.inode = inode,
1068 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1069 		.cluster_size = F2FS_I(inode)->i_cluster_size,
1070 		.rpages = fsdata,
1071 	};
1072 	bool first_index = (index == cc.rpages[0]->index);
1073 
1074 	if (copied)
1075 		set_cluster_dirty(&cc);
1076 
1077 	f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1078 	f2fs_destroy_compress_ctx(&cc, false);
1079 
1080 	return first_index;
1081 }
1082 
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1083 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1084 {
1085 	void *fsdata = NULL;
1086 	struct page *pagep;
1087 	int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1088 	pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1089 							log_cluster_size;
1090 	int err;
1091 
1092 	err = f2fs_is_compressed_cluster(inode, start_idx);
1093 	if (err < 0)
1094 		return err;
1095 
1096 	/* truncate normal cluster */
1097 	if (!err)
1098 		return f2fs_do_truncate_blocks(inode, from, lock);
1099 
1100 	/* truncate compressed cluster */
1101 	err = f2fs_prepare_compress_overwrite(inode, &pagep,
1102 						start_idx, &fsdata);
1103 
1104 	/* should not be a normal cluster */
1105 	f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1106 
1107 	if (err <= 0)
1108 		return err;
1109 
1110 	if (err > 0) {
1111 		struct page **rpages = fsdata;
1112 		int cluster_size = F2FS_I(inode)->i_cluster_size;
1113 		int i;
1114 
1115 		for (i = cluster_size - 1; i >= 0; i--) {
1116 			loff_t start = rpages[i]->index << PAGE_SHIFT;
1117 
1118 			if (from <= start) {
1119 				zero_user_segment(rpages[i], 0, PAGE_SIZE);
1120 			} else {
1121 				zero_user_segment(rpages[i], from - start,
1122 								PAGE_SIZE);
1123 				break;
1124 			}
1125 		}
1126 
1127 		f2fs_compress_write_end(inode, fsdata, start_idx, true);
1128 	}
1129 	return 0;
1130 }
1131 
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1132 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1133 					int *submitted,
1134 					struct writeback_control *wbc,
1135 					enum iostat_type io_type)
1136 {
1137 	struct inode *inode = cc->inode;
1138 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1139 	struct f2fs_inode_info *fi = F2FS_I(inode);
1140 	struct f2fs_io_info fio = {
1141 		.sbi = sbi,
1142 		.ino = cc->inode->i_ino,
1143 		.type = DATA,
1144 		.op = REQ_OP_WRITE,
1145 		.op_flags = wbc_to_write_flags(wbc),
1146 		.old_blkaddr = NEW_ADDR,
1147 		.page = NULL,
1148 		.encrypted_page = NULL,
1149 		.compressed_page = NULL,
1150 		.submitted = false,
1151 		.io_type = io_type,
1152 		.io_wbc = wbc,
1153 		.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1154 	};
1155 	struct dnode_of_data dn;
1156 	struct node_info ni;
1157 	struct compress_io_ctx *cic;
1158 	pgoff_t start_idx = start_idx_of_cluster(cc);
1159 	unsigned int last_index = cc->cluster_size - 1;
1160 	loff_t psize;
1161 	int i, err;
1162 
1163 	/* we should bypass data pages to proceed the kworkder jobs */
1164 	if (unlikely(f2fs_cp_error(sbi))) {
1165 		mapping_set_error(cc->rpages[0]->mapping, -EIO);
1166 		goto out_free;
1167 	}
1168 
1169 	if (IS_NOQUOTA(inode)) {
1170 		/*
1171 		 * We need to wait for node_write to avoid block allocation during
1172 		 * checkpoint. This can only happen to quota writes which can cause
1173 		 * the below discard race condition.
1174 		 */
1175 		f2fs_down_read(&sbi->node_write);
1176 	} else if (!f2fs_trylock_op(sbi)) {
1177 		goto out_free;
1178 	}
1179 
1180 	set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1181 
1182 	err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1183 	if (err)
1184 		goto out_unlock_op;
1185 
1186 	for (i = 0; i < cc->cluster_size; i++) {
1187 		if (data_blkaddr(dn.inode, dn.node_page,
1188 					dn.ofs_in_node + i) == NULL_ADDR)
1189 			goto out_put_dnode;
1190 	}
1191 
1192 	psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1193 
1194 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1195 	if (err)
1196 		goto out_put_dnode;
1197 
1198 	fio.version = ni.version;
1199 
1200 	cic = kmem_cache_zalloc(cic_entry_slab, GFP_NOFS);
1201 	if (!cic)
1202 		goto out_put_dnode;
1203 
1204 	cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1205 	cic->inode = inode;
1206 	atomic_set(&cic->pending_pages, cc->nr_cpages);
1207 	cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1208 	if (!cic->rpages)
1209 		goto out_put_cic;
1210 
1211 	cic->nr_rpages = cc->cluster_size;
1212 
1213 	for (i = 0; i < cc->nr_cpages; i++) {
1214 		f2fs_set_compressed_page(cc->cpages[i], inode,
1215 					cc->rpages[i + 1]->index, cic);
1216 		fio.compressed_page = cc->cpages[i];
1217 
1218 		fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1219 						dn.ofs_in_node + i + 1);
1220 
1221 		/* wait for GCed page writeback via META_MAPPING */
1222 		f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1223 
1224 		if (fio.encrypted) {
1225 			fio.page = cc->rpages[i + 1];
1226 			err = f2fs_encrypt_one_page(&fio);
1227 			if (err)
1228 				goto out_destroy_crypt;
1229 			cc->cpages[i] = fio.encrypted_page;
1230 		}
1231 	}
1232 
1233 	set_cluster_writeback(cc);
1234 
1235 	for (i = 0; i < cc->cluster_size; i++)
1236 		cic->rpages[i] = cc->rpages[i];
1237 
1238 	for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1239 		block_t blkaddr;
1240 
1241 		blkaddr = f2fs_data_blkaddr(&dn);
1242 		fio.page = cc->rpages[i];
1243 		fio.old_blkaddr = blkaddr;
1244 
1245 		/* cluster header */
1246 		if (i == 0) {
1247 			if (blkaddr == COMPRESS_ADDR)
1248 				fio.compr_blocks++;
1249 			if (__is_valid_data_blkaddr(blkaddr))
1250 				f2fs_invalidate_blocks(sbi, blkaddr);
1251 			f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1252 			goto unlock_continue;
1253 		}
1254 
1255 		if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1256 			fio.compr_blocks++;
1257 
1258 		if (i > cc->nr_cpages) {
1259 			if (__is_valid_data_blkaddr(blkaddr)) {
1260 				f2fs_invalidate_blocks(sbi, blkaddr);
1261 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1262 			}
1263 			goto unlock_continue;
1264 		}
1265 
1266 		f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1267 
1268 		if (fio.encrypted)
1269 			fio.encrypted_page = cc->cpages[i - 1];
1270 		else
1271 			fio.compressed_page = cc->cpages[i - 1];
1272 
1273 		cc->cpages[i - 1] = NULL;
1274 		f2fs_outplace_write_data(&dn, &fio);
1275 		(*submitted)++;
1276 unlock_continue:
1277 		inode_dec_dirty_pages(cc->inode);
1278 		unlock_page(fio.page);
1279 	}
1280 
1281 	if (fio.compr_blocks)
1282 		f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1283 	f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true);
1284 	add_compr_block_stat(inode, cc->nr_cpages);
1285 
1286 	set_inode_flag(cc->inode, FI_APPEND_WRITE);
1287 	if (cc->cluster_idx == 0)
1288 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1289 
1290 	f2fs_put_dnode(&dn);
1291 	if (IS_NOQUOTA(inode))
1292 		f2fs_up_read(&sbi->node_write);
1293 	else
1294 		f2fs_unlock_op(sbi);
1295 
1296 	spin_lock(&fi->i_size_lock);
1297 	if (fi->last_disk_size < psize)
1298 		fi->last_disk_size = psize;
1299 	spin_unlock(&fi->i_size_lock);
1300 
1301 	f2fs_put_rpages(cc);
1302 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1303 	cc->cpages = NULL;
1304 	f2fs_destroy_compress_ctx(cc, false);
1305 	return 0;
1306 
1307 out_destroy_crypt:
1308 	page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1309 
1310 	for (--i; i >= 0; i--)
1311 		fscrypt_finalize_bounce_page(&cc->cpages[i]);
1312 out_put_cic:
1313 	kmem_cache_free(cic_entry_slab, cic);
1314 out_put_dnode:
1315 	f2fs_put_dnode(&dn);
1316 out_unlock_op:
1317 	if (IS_NOQUOTA(inode))
1318 		f2fs_up_read(&sbi->node_write);
1319 	else
1320 		f2fs_unlock_op(sbi);
1321 out_free:
1322 	for (i = 0; i < cc->nr_cpages; i++) {
1323 		if (!cc->cpages[i])
1324 			continue;
1325 		f2fs_compress_free_page(cc->cpages[i]);
1326 		cc->cpages[i] = NULL;
1327 	}
1328 	page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1329 	cc->cpages = NULL;
1330 	return -EAGAIN;
1331 }
1332 
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1333 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1334 {
1335 	struct f2fs_sb_info *sbi = bio->bi_private;
1336 	struct compress_io_ctx *cic =
1337 			(struct compress_io_ctx *)page_private(page);
1338 	int i;
1339 
1340 	if (unlikely(bio->bi_status))
1341 		mapping_set_error(cic->inode->i_mapping, -EIO);
1342 
1343 	f2fs_compress_free_page(page);
1344 
1345 	dec_page_count(sbi, F2FS_WB_DATA);
1346 
1347 	if (atomic_dec_return(&cic->pending_pages))
1348 		return;
1349 
1350 	for (i = 0; i < cic->nr_rpages; i++) {
1351 		WARN_ON(!cic->rpages[i]);
1352 		clear_page_private_gcing(cic->rpages[i]);
1353 		end_page_writeback(cic->rpages[i]);
1354 	}
1355 
1356 	page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1357 	kmem_cache_free(cic_entry_slab, cic);
1358 }
1359 
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1360 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1361 					int *submitted,
1362 					struct writeback_control *wbc,
1363 					enum iostat_type io_type)
1364 {
1365 	struct address_space *mapping = cc->inode->i_mapping;
1366 	int _submitted, compr_blocks, ret, i;
1367 
1368 	compr_blocks = f2fs_compressed_blocks(cc);
1369 
1370 	for (i = 0; i < cc->cluster_size; i++) {
1371 		if (!cc->rpages[i])
1372 			continue;
1373 
1374 		redirty_page_for_writepage(wbc, cc->rpages[i]);
1375 		unlock_page(cc->rpages[i]);
1376 	}
1377 
1378 	if (compr_blocks < 0)
1379 		return compr_blocks;
1380 
1381 	for (i = 0; i < cc->cluster_size; i++) {
1382 		if (!cc->rpages[i])
1383 			continue;
1384 retry_write:
1385 		lock_page(cc->rpages[i]);
1386 
1387 		if (cc->rpages[i]->mapping != mapping) {
1388 continue_unlock:
1389 			unlock_page(cc->rpages[i]);
1390 			continue;
1391 		}
1392 
1393 		if (!PageDirty(cc->rpages[i]))
1394 			goto continue_unlock;
1395 
1396 		if (PageWriteback(cc->rpages[i])) {
1397 			if (wbc->sync_mode == WB_SYNC_NONE)
1398 				goto continue_unlock;
1399 			f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1400 		}
1401 
1402 		if (!clear_page_dirty_for_io(cc->rpages[i]))
1403 			goto continue_unlock;
1404 
1405 		ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1406 						NULL, NULL, wbc, io_type,
1407 						compr_blocks, false);
1408 		if (ret) {
1409 			if (ret == AOP_WRITEPAGE_ACTIVATE) {
1410 				unlock_page(cc->rpages[i]);
1411 				ret = 0;
1412 			} else if (ret == -EAGAIN) {
1413 				/*
1414 				 * for quota file, just redirty left pages to
1415 				 * avoid deadlock caused by cluster update race
1416 				 * from foreground operation.
1417 				 */
1418 				if (IS_NOQUOTA(cc->inode))
1419 					return 0;
1420 				ret = 0;
1421 				cond_resched();
1422 				congestion_wait(BLK_RW_ASYNC,
1423 						DEFAULT_IO_TIMEOUT);
1424 				goto retry_write;
1425 			}
1426 			return ret;
1427 		}
1428 
1429 		*submitted += _submitted;
1430 	}
1431 
1432 	f2fs_balance_fs(F2FS_M_SB(mapping), true);
1433 
1434 	return 0;
1435 }
1436 
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1437 int f2fs_write_multi_pages(struct compress_ctx *cc,
1438 					int *submitted,
1439 					struct writeback_control *wbc,
1440 					enum iostat_type io_type)
1441 {
1442 	int err;
1443 
1444 	*submitted = 0;
1445 	if (cluster_may_compress(cc)) {
1446 		err = f2fs_compress_pages(cc);
1447 		if (err == -EAGAIN) {
1448 			add_compr_block_stat(cc->inode, cc->cluster_size);
1449 			goto write;
1450 		} else if (err) {
1451 			f2fs_put_rpages_wbc(cc, wbc, true, 1);
1452 			goto destroy_out;
1453 		}
1454 
1455 		err = f2fs_write_compressed_pages(cc, submitted,
1456 							wbc, io_type);
1457 		if (!err)
1458 			return 0;
1459 		f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1460 	}
1461 write:
1462 	f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1463 
1464 	err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1465 	f2fs_put_rpages_wbc(cc, wbc, false, 0);
1466 destroy_out:
1467 	f2fs_destroy_compress_ctx(cc, false);
1468 	return err;
1469 }
1470 
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1471 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1472 		bool pre_alloc)
1473 {
1474 	return pre_alloc ^ f2fs_low_mem_mode(sbi);
1475 }
1476 
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1477 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1478 		bool pre_alloc)
1479 {
1480 	const struct f2fs_compress_ops *cops =
1481 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1482 	int i;
1483 
1484 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1485 		return 0;
1486 
1487 	dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1488 	if (!dic->tpages)
1489 		return -ENOMEM;
1490 
1491 	for (i = 0; i < dic->cluster_size; i++) {
1492 		if (dic->rpages[i]) {
1493 			dic->tpages[i] = dic->rpages[i];
1494 			continue;
1495 		}
1496 
1497 		dic->tpages[i] = f2fs_compress_alloc_page();
1498 		if (!dic->tpages[i])
1499 			return -ENOMEM;
1500 	}
1501 
1502 	dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1503 	if (!dic->rbuf)
1504 		return -ENOMEM;
1505 
1506 	dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1507 	if (!dic->cbuf)
1508 		return -ENOMEM;
1509 
1510 	if (cops->init_decompress_ctx) {
1511 		int ret = cops->init_decompress_ctx(dic);
1512 
1513 		if (ret)
1514 			return ret;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1520 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1521 		bool bypass_destroy_callback, bool pre_alloc)
1522 {
1523 	const struct f2fs_compress_ops *cops =
1524 		f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1525 
1526 	if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1527 		return;
1528 
1529 	if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1530 		cops->destroy_decompress_ctx(dic);
1531 
1532 	if (dic->cbuf)
1533 		vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1534 
1535 	if (dic->rbuf)
1536 		vm_unmap_ram(dic->rbuf, dic->cluster_size);
1537 }
1538 
1539 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1540 		bool bypass_destroy_callback);
1541 
f2fs_alloc_dic(struct compress_ctx * cc)1542 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1543 {
1544 	struct decompress_io_ctx *dic;
1545 	pgoff_t start_idx = start_idx_of_cluster(cc);
1546 	int i, ret;
1547 
1548 	dic = kmem_cache_zalloc(dic_entry_slab, GFP_NOFS);
1549 	if (!dic)
1550 		return ERR_PTR(-ENOMEM);
1551 
1552 	dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1553 	if (!dic->rpages) {
1554 		kmem_cache_free(dic_entry_slab, dic);
1555 		return ERR_PTR(-ENOMEM);
1556 	}
1557 
1558 	dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1559 	dic->inode = cc->inode;
1560 	atomic_set(&dic->remaining_pages, cc->nr_cpages);
1561 	dic->cluster_idx = cc->cluster_idx;
1562 	dic->cluster_size = cc->cluster_size;
1563 	dic->log_cluster_size = cc->log_cluster_size;
1564 	dic->nr_cpages = cc->nr_cpages;
1565 	refcount_set(&dic->refcnt, 1);
1566 	dic->failed = false;
1567 	dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1568 
1569 	for (i = 0; i < dic->cluster_size; i++)
1570 		dic->rpages[i] = cc->rpages[i];
1571 	dic->nr_rpages = cc->cluster_size;
1572 
1573 	dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1574 	if (!dic->cpages) {
1575 		ret = -ENOMEM;
1576 		goto out_free;
1577 	}
1578 
1579 	for (i = 0; i < dic->nr_cpages; i++) {
1580 		struct page *page;
1581 
1582 		page = f2fs_compress_alloc_page();
1583 		if (!page) {
1584 			ret = -ENOMEM;
1585 			goto out_free;
1586 		}
1587 
1588 		f2fs_set_compressed_page(page, cc->inode,
1589 					start_idx + i + 1, dic);
1590 		dic->cpages[i] = page;
1591 	}
1592 
1593 	ret = f2fs_prepare_decomp_mem(dic, true);
1594 	if (ret)
1595 		goto out_free;
1596 
1597 	return dic;
1598 
1599 out_free:
1600 	f2fs_free_dic(dic, true);
1601 	return ERR_PTR(ret);
1602 }
1603 
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1604 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1605 		bool bypass_destroy_callback)
1606 {
1607 	int i;
1608 
1609 	f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1610 
1611 	if (dic->tpages) {
1612 		for (i = 0; i < dic->cluster_size; i++) {
1613 			if (dic->rpages[i])
1614 				continue;
1615 			if (!dic->tpages[i])
1616 				continue;
1617 			f2fs_compress_free_page(dic->tpages[i]);
1618 		}
1619 		page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1620 	}
1621 
1622 	if (dic->cpages) {
1623 		for (i = 0; i < dic->nr_cpages; i++) {
1624 			if (!dic->cpages[i])
1625 				continue;
1626 			f2fs_compress_free_page(dic->cpages[i]);
1627 		}
1628 		page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1629 	}
1630 
1631 	page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1632 	kmem_cache_free(dic_entry_slab, dic);
1633 }
1634 
f2fs_late_free_dic(struct work_struct * work)1635 static void f2fs_late_free_dic(struct work_struct *work)
1636 {
1637 	struct decompress_io_ctx *dic =
1638 		container_of(work, struct decompress_io_ctx, free_work);
1639 
1640 	f2fs_free_dic(dic, false);
1641 }
1642 
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1643 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1644 {
1645 	if (refcount_dec_and_test(&dic->refcnt)) {
1646 		if (in_task) {
1647 			f2fs_free_dic(dic, false);
1648 		} else {
1649 			INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1650 			queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1651 					&dic->free_work);
1652 		}
1653 	}
1654 }
1655 
1656 /*
1657  * Update and unlock the cluster's pagecache pages, and release the reference to
1658  * the decompress_io_ctx that was being held for I/O completion.
1659  */
__f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1660 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1661 				bool in_task)
1662 {
1663 	int i;
1664 
1665 	for (i = 0; i < dic->cluster_size; i++) {
1666 		struct page *rpage = dic->rpages[i];
1667 
1668 		if (!rpage)
1669 			continue;
1670 
1671 		/* PG_error was set if verity failed. */
1672 		if (failed || PageError(rpage)) {
1673 			ClearPageUptodate(rpage);
1674 			/* will re-read again later */
1675 			ClearPageError(rpage);
1676 		} else {
1677 			SetPageUptodate(rpage);
1678 		}
1679 		unlock_page(rpage);
1680 	}
1681 
1682 	f2fs_put_dic(dic, in_task);
1683 }
1684 
f2fs_verify_cluster(struct work_struct * work)1685 static void f2fs_verify_cluster(struct work_struct *work)
1686 {
1687 	struct decompress_io_ctx *dic =
1688 		container_of(work, struct decompress_io_ctx, verity_work);
1689 	int i;
1690 
1691 	/* Verify the cluster's decompressed pages with fs-verity. */
1692 	for (i = 0; i < dic->cluster_size; i++) {
1693 		struct page *rpage = dic->rpages[i];
1694 
1695 		if (rpage && !fsverity_verify_page(rpage))
1696 			SetPageError(rpage);
1697 	}
1698 
1699 	__f2fs_decompress_end_io(dic, false, true);
1700 }
1701 
1702 /*
1703  * This is called when a compressed cluster has been decompressed
1704  * (or failed to be read and/or decompressed).
1705  */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1706 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1707 				bool in_task)
1708 {
1709 	if (!failed && dic->need_verity) {
1710 		/*
1711 		 * Note that to avoid deadlocks, the verity work can't be done
1712 		 * on the decompression workqueue.  This is because verifying
1713 		 * the data pages can involve reading metadata pages from the
1714 		 * file, and these metadata pages may be compressed.
1715 		 */
1716 		INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1717 		fsverity_enqueue_verify_work(&dic->verity_work);
1718 	} else {
1719 		__f2fs_decompress_end_io(dic, failed, in_task);
1720 	}
1721 }
1722 
1723 /*
1724  * Put a reference to a compressed page's decompress_io_ctx.
1725  *
1726  * This is called when the page is no longer needed and can be freed.
1727  */
f2fs_put_page_dic(struct page * page,bool in_task)1728 void f2fs_put_page_dic(struct page *page, bool in_task)
1729 {
1730 	struct decompress_io_ctx *dic =
1731 			(struct decompress_io_ctx *)page_private(page);
1732 
1733 	f2fs_put_dic(dic, in_task);
1734 }
1735 
1736 /*
1737  * check whether cluster blocks are contiguous, and add extent cache entry
1738  * only if cluster blocks are logically and physically contiguous.
1739  */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)1740 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1741 {
1742 	bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1743 	int i = compressed ? 1 : 0;
1744 	block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1745 						dn->ofs_in_node + i);
1746 
1747 	for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1748 		block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1749 						dn->ofs_in_node + i);
1750 
1751 		if (!__is_valid_data_blkaddr(blkaddr))
1752 			break;
1753 		if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1754 			return 0;
1755 	}
1756 
1757 	return compressed ? i - 1 : i;
1758 }
1759 
1760 const struct address_space_operations f2fs_compress_aops = {
1761 	.releasepage = f2fs_release_page,
1762 	.invalidatepage = f2fs_invalidate_page,
1763 };
1764 
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1765 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1766 {
1767 	return sbi->compress_inode->i_mapping;
1768 }
1769 
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)1770 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1771 {
1772 	if (!sbi->compress_inode)
1773 		return;
1774 	invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1775 }
1776 
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1777 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1778 						nid_t ino, block_t blkaddr)
1779 {
1780 	struct page *cpage;
1781 	int ret;
1782 
1783 	if (!test_opt(sbi, COMPRESS_CACHE))
1784 		return;
1785 
1786 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1787 		return;
1788 
1789 	if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1790 		return;
1791 
1792 	cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1793 	if (cpage) {
1794 		f2fs_put_page(cpage, 0);
1795 		return;
1796 	}
1797 
1798 	cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1799 	if (!cpage)
1800 		return;
1801 
1802 	ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1803 						blkaddr, GFP_NOFS);
1804 	if (ret) {
1805 		f2fs_put_page(cpage, 0);
1806 		return;
1807 	}
1808 
1809 	set_page_private_data(cpage, ino);
1810 
1811 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1812 		goto out;
1813 
1814 	memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1815 	SetPageUptodate(cpage);
1816 out:
1817 	f2fs_put_page(cpage, 1);
1818 }
1819 
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1820 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1821 								block_t blkaddr)
1822 {
1823 	struct page *cpage;
1824 	bool hitted = false;
1825 
1826 	if (!test_opt(sbi, COMPRESS_CACHE))
1827 		return false;
1828 
1829 	cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1830 				blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1831 	if (cpage) {
1832 		if (PageUptodate(cpage)) {
1833 			atomic_inc(&sbi->compress_page_hit);
1834 			memcpy(page_address(page),
1835 				page_address(cpage), PAGE_SIZE);
1836 			hitted = true;
1837 		}
1838 		f2fs_put_page(cpage, 1);
1839 	}
1840 
1841 	return hitted;
1842 }
1843 
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1844 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1845 {
1846 	struct address_space *mapping = sbi->compress_inode->i_mapping;
1847 	struct pagevec pvec;
1848 	pgoff_t index = 0;
1849 	pgoff_t end = MAX_BLKADDR(sbi);
1850 
1851 	if (!mapping->nrpages)
1852 		return;
1853 
1854 	pagevec_init(&pvec);
1855 
1856 	do {
1857 		unsigned int nr_pages;
1858 		int i;
1859 
1860 		nr_pages = pagevec_lookup_range(&pvec, mapping,
1861 						&index, end - 1);
1862 		if (!nr_pages)
1863 			break;
1864 
1865 		for (i = 0; i < nr_pages; i++) {
1866 			struct page *page = pvec.pages[i];
1867 
1868 			if (page->index > end)
1869 				break;
1870 
1871 			lock_page(page);
1872 			if (page->mapping != mapping) {
1873 				unlock_page(page);
1874 				continue;
1875 			}
1876 
1877 			if (ino != get_page_private_data(page)) {
1878 				unlock_page(page);
1879 				continue;
1880 			}
1881 
1882 			generic_error_remove_page(mapping, page);
1883 			unlock_page(page);
1884 		}
1885 		pagevec_release(&pvec);
1886 		cond_resched();
1887 	} while (index < end);
1888 }
1889 
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)1890 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1891 {
1892 	struct inode *inode;
1893 
1894 	if (!test_opt(sbi, COMPRESS_CACHE))
1895 		return 0;
1896 
1897 	inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1898 	if (IS_ERR(inode))
1899 		return PTR_ERR(inode);
1900 	sbi->compress_inode = inode;
1901 
1902 	sbi->compress_percent = COMPRESS_PERCENT;
1903 	sbi->compress_watermark = COMPRESS_WATERMARK;
1904 
1905 	atomic_set(&sbi->compress_page_hit, 0);
1906 
1907 	return 0;
1908 }
1909 
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)1910 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1911 {
1912 	if (!sbi->compress_inode)
1913 		return;
1914 	iput(sbi->compress_inode);
1915 	sbi->compress_inode = NULL;
1916 }
1917 
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)1918 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1919 {
1920 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1921 	char slab_name[35];
1922 
1923 	sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1924 
1925 	sbi->page_array_slab_size = sizeof(struct page *) <<
1926 					F2FS_OPTION(sbi).compress_log_size;
1927 
1928 	sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1929 					sbi->page_array_slab_size);
1930 	if (!sbi->page_array_slab)
1931 		return -ENOMEM;
1932 	return 0;
1933 }
1934 
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)1935 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1936 {
1937 	kmem_cache_destroy(sbi->page_array_slab);
1938 }
1939 
f2fs_init_cic_cache(void)1940 static int __init f2fs_init_cic_cache(void)
1941 {
1942 	cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1943 					sizeof(struct compress_io_ctx));
1944 	if (!cic_entry_slab)
1945 		return -ENOMEM;
1946 	return 0;
1947 }
1948 
f2fs_destroy_cic_cache(void)1949 static void f2fs_destroy_cic_cache(void)
1950 {
1951 	kmem_cache_destroy(cic_entry_slab);
1952 }
1953 
f2fs_init_dic_cache(void)1954 static int __init f2fs_init_dic_cache(void)
1955 {
1956 	dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1957 					sizeof(struct decompress_io_ctx));
1958 	if (!dic_entry_slab)
1959 		return -ENOMEM;
1960 	return 0;
1961 }
1962 
f2fs_destroy_dic_cache(void)1963 static void f2fs_destroy_dic_cache(void)
1964 {
1965 	kmem_cache_destroy(dic_entry_slab);
1966 }
1967 
f2fs_init_compress_cache(void)1968 int __init f2fs_init_compress_cache(void)
1969 {
1970 	int err;
1971 
1972 	err = f2fs_init_cic_cache();
1973 	if (err)
1974 		goto out;
1975 	err = f2fs_init_dic_cache();
1976 	if (err)
1977 		goto free_cic;
1978 	return 0;
1979 free_cic:
1980 	f2fs_destroy_cic_cache();
1981 out:
1982 	return -ENOMEM;
1983 }
1984 
f2fs_destroy_compress_cache(void)1985 void f2fs_destroy_compress_cache(void)
1986 {
1987 	f2fs_destroy_dic_cache();
1988 	f2fs_destroy_cic_cache();
1989 }
1990