1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include <trace/events/f2fs.h>
21
22 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 static struct kmem_cache *nat_entry_set_slab;
27 static struct kmem_cache *fsync_node_entry_slab;
28
29 /*
30 * Check whether the given nid is within node id range.
31 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)32 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33 {
34 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35 set_sbi_flag(sbi, SBI_NEED_FSCK);
36 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37 __func__, nid);
38 return -EFSCORRUPTED;
39 }
40 return 0;
41 }
42
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)43 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44 {
45 struct f2fs_nm_info *nm_i = NM_I(sbi);
46 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 if (!nm_i)
53 return true;
54
55 si_meminfo(&val);
56
57 /* only uses low memory */
58 avail_ram = val.totalram - val.totalhigh;
59
60 /*
61 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
62 */
63 if (type == FREE_NIDS) {
64 mem_size = (nm_i->nid_cnt[FREE_NID] *
65 sizeof(struct free_nid)) >> PAGE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67 } else if (type == NAT_ENTRIES) {
68 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
69 sizeof(struct nat_entry)) >> PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71 if (excess_cached_nats(sbi))
72 res = false;
73 } else if (type == DIRTY_DENTS) {
74 if (sbi->sb->s_bdi->wb.dirty_exceeded)
75 return false;
76 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78 } else if (type == INO_ENTRIES) {
79 int i;
80
81 for (i = 0; i < MAX_INO_ENTRY; i++)
82 mem_size += sbi->im[i].ino_num *
83 sizeof(struct ino_entry);
84 mem_size >>= PAGE_SHIFT;
85 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
87 enum extent_type etype = type == READ_EXTENT_CACHE ?
88 EX_READ : EX_BLOCK_AGE;
89 struct extent_tree_info *eti = &sbi->extent_tree[etype];
90
91 mem_size = (atomic_read(&eti->total_ext_tree) *
92 sizeof(struct extent_tree) +
93 atomic_read(&eti->total_ext_node) *
94 sizeof(struct extent_node)) >> PAGE_SHIFT;
95 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
96 } else if (type == INMEM_PAGES) {
97 /* it allows 20% / total_ram for inmemory pages */
98 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
99 res = mem_size < (val.totalram / 5);
100 } else if (type == DISCARD_CACHE) {
101 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
102 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
103 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
104 } else if (type == COMPRESS_PAGE) {
105 #ifdef CONFIG_F2FS_FS_COMPRESSION
106 unsigned long free_ram = val.freeram;
107
108 /*
109 * free memory is lower than watermark or cached page count
110 * exceed threshold, deny caching compress page.
111 */
112 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
113 (COMPRESS_MAPPING(sbi)->nrpages <
114 free_ram * sbi->compress_percent / 100);
115 #else
116 res = false;
117 #endif
118 } else {
119 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
120 return true;
121 }
122 return res;
123 }
124
clear_node_page_dirty(struct page * page)125 static void clear_node_page_dirty(struct page *page)
126 {
127 if (PageDirty(page)) {
128 f2fs_clear_page_cache_dirty_tag(page);
129 clear_page_dirty_for_io(page);
130 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
131 }
132 ClearPageUptodate(page);
133 }
134
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)135 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
136 {
137 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
138 }
139
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)140 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
141 {
142 struct page *src_page;
143 struct page *dst_page;
144 pgoff_t dst_off;
145 void *src_addr;
146 void *dst_addr;
147 struct f2fs_nm_info *nm_i = NM_I(sbi);
148
149 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
150
151 /* get current nat block page with lock */
152 src_page = get_current_nat_page(sbi, nid);
153 if (IS_ERR(src_page))
154 return src_page;
155 dst_page = f2fs_grab_meta_page(sbi, dst_off);
156 f2fs_bug_on(sbi, PageDirty(src_page));
157
158 src_addr = page_address(src_page);
159 dst_addr = page_address(dst_page);
160 memcpy(dst_addr, src_addr, PAGE_SIZE);
161 set_page_dirty(dst_page);
162 f2fs_put_page(src_page, 1);
163
164 set_to_next_nat(nm_i, nid);
165
166 return dst_page;
167 }
168
__alloc_nat_entry(nid_t nid,bool no_fail)169 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
170 {
171 struct nat_entry *new;
172
173 if (no_fail)
174 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
175 else
176 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
177 if (new) {
178 nat_set_nid(new, nid);
179 nat_reset_flag(new);
180 }
181 return new;
182 }
183
__free_nat_entry(struct nat_entry * e)184 static void __free_nat_entry(struct nat_entry *e)
185 {
186 kmem_cache_free(nat_entry_slab, e);
187 }
188
189 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)190 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
191 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
192 {
193 if (no_fail)
194 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
195 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
196 return NULL;
197
198 if (raw_ne)
199 node_info_from_raw_nat(&ne->ni, raw_ne);
200
201 spin_lock(&nm_i->nat_list_lock);
202 list_add_tail(&ne->list, &nm_i->nat_entries);
203 spin_unlock(&nm_i->nat_list_lock);
204
205 nm_i->nat_cnt[TOTAL_NAT]++;
206 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
207 return ne;
208 }
209
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)210 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
211 {
212 struct nat_entry *ne;
213
214 ne = radix_tree_lookup(&nm_i->nat_root, n);
215
216 /* for recent accessed nat entry, move it to tail of lru list */
217 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
218 spin_lock(&nm_i->nat_list_lock);
219 if (!list_empty(&ne->list))
220 list_move_tail(&ne->list, &nm_i->nat_entries);
221 spin_unlock(&nm_i->nat_list_lock);
222 }
223
224 return ne;
225 }
226
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)227 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
228 nid_t start, unsigned int nr, struct nat_entry **ep)
229 {
230 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
231 }
232
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)233 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
234 {
235 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
236 nm_i->nat_cnt[TOTAL_NAT]--;
237 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
238 __free_nat_entry(e);
239 }
240
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)241 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
242 struct nat_entry *ne)
243 {
244 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
245 struct nat_entry_set *head;
246
247 head = radix_tree_lookup(&nm_i->nat_set_root, set);
248 if (!head) {
249 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
250
251 INIT_LIST_HEAD(&head->entry_list);
252 INIT_LIST_HEAD(&head->set_list);
253 head->set = set;
254 head->entry_cnt = 0;
255 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
256 }
257 return head;
258 }
259
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)260 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
261 struct nat_entry *ne)
262 {
263 struct nat_entry_set *head;
264 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
265
266 if (!new_ne)
267 head = __grab_nat_entry_set(nm_i, ne);
268
269 /*
270 * update entry_cnt in below condition:
271 * 1. update NEW_ADDR to valid block address;
272 * 2. update old block address to new one;
273 */
274 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
275 !get_nat_flag(ne, IS_DIRTY)))
276 head->entry_cnt++;
277
278 set_nat_flag(ne, IS_PREALLOC, new_ne);
279
280 if (get_nat_flag(ne, IS_DIRTY))
281 goto refresh_list;
282
283 nm_i->nat_cnt[DIRTY_NAT]++;
284 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
285 set_nat_flag(ne, IS_DIRTY, true);
286 refresh_list:
287 spin_lock(&nm_i->nat_list_lock);
288 if (new_ne)
289 list_del_init(&ne->list);
290 else
291 list_move_tail(&ne->list, &head->entry_list);
292 spin_unlock(&nm_i->nat_list_lock);
293 }
294
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)295 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
296 struct nat_entry_set *set, struct nat_entry *ne)
297 {
298 spin_lock(&nm_i->nat_list_lock);
299 list_move_tail(&ne->list, &nm_i->nat_entries);
300 spin_unlock(&nm_i->nat_list_lock);
301
302 set_nat_flag(ne, IS_DIRTY, false);
303 set->entry_cnt--;
304 nm_i->nat_cnt[DIRTY_NAT]--;
305 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
306 }
307
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)308 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
309 nid_t start, unsigned int nr, struct nat_entry_set **ep)
310 {
311 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
312 start, nr);
313 }
314
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)315 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
316 {
317 return NODE_MAPPING(sbi) == page->mapping &&
318 IS_DNODE(page) && is_cold_node(page);
319 }
320
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)321 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
322 {
323 spin_lock_init(&sbi->fsync_node_lock);
324 INIT_LIST_HEAD(&sbi->fsync_node_list);
325 sbi->fsync_seg_id = 0;
326 sbi->fsync_node_num = 0;
327 }
328
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)329 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
330 struct page *page)
331 {
332 struct fsync_node_entry *fn;
333 unsigned long flags;
334 unsigned int seq_id;
335
336 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
337
338 get_page(page);
339 fn->page = page;
340 INIT_LIST_HEAD(&fn->list);
341
342 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
343 list_add_tail(&fn->list, &sbi->fsync_node_list);
344 fn->seq_id = sbi->fsync_seg_id++;
345 seq_id = fn->seq_id;
346 sbi->fsync_node_num++;
347 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
348
349 return seq_id;
350 }
351
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)352 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
353 {
354 struct fsync_node_entry *fn;
355 unsigned long flags;
356
357 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
358 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
359 if (fn->page == page) {
360 list_del(&fn->list);
361 sbi->fsync_node_num--;
362 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
363 kmem_cache_free(fsync_node_entry_slab, fn);
364 put_page(page);
365 return;
366 }
367 }
368 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
369 f2fs_bug_on(sbi, 1);
370 }
371
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)372 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
373 {
374 unsigned long flags;
375
376 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
377 sbi->fsync_seg_id = 0;
378 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
379 }
380
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)381 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
382 {
383 struct f2fs_nm_info *nm_i = NM_I(sbi);
384 struct nat_entry *e;
385 bool need = false;
386
387 f2fs_down_read(&nm_i->nat_tree_lock);
388 e = __lookup_nat_cache(nm_i, nid);
389 if (e) {
390 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
391 !get_nat_flag(e, HAS_FSYNCED_INODE))
392 need = true;
393 }
394 f2fs_up_read(&nm_i->nat_tree_lock);
395 return need;
396 }
397
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)398 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
399 {
400 struct f2fs_nm_info *nm_i = NM_I(sbi);
401 struct nat_entry *e;
402 bool is_cp = true;
403
404 f2fs_down_read(&nm_i->nat_tree_lock);
405 e = __lookup_nat_cache(nm_i, nid);
406 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
407 is_cp = false;
408 f2fs_up_read(&nm_i->nat_tree_lock);
409 return is_cp;
410 }
411
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)412 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
413 {
414 struct f2fs_nm_info *nm_i = NM_I(sbi);
415 struct nat_entry *e;
416 bool need_update = true;
417
418 f2fs_down_read(&nm_i->nat_tree_lock);
419 e = __lookup_nat_cache(nm_i, ino);
420 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
421 (get_nat_flag(e, IS_CHECKPOINTED) ||
422 get_nat_flag(e, HAS_FSYNCED_INODE)))
423 need_update = false;
424 f2fs_up_read(&nm_i->nat_tree_lock);
425 return need_update;
426 }
427
428 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)429 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
430 struct f2fs_nat_entry *ne)
431 {
432 struct f2fs_nm_info *nm_i = NM_I(sbi);
433 struct nat_entry *new, *e;
434
435 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
436 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
437 return;
438
439 new = __alloc_nat_entry(nid, false);
440 if (!new)
441 return;
442
443 f2fs_down_write(&nm_i->nat_tree_lock);
444 e = __lookup_nat_cache(nm_i, nid);
445 if (!e)
446 e = __init_nat_entry(nm_i, new, ne, false);
447 else
448 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
449 nat_get_blkaddr(e) !=
450 le32_to_cpu(ne->block_addr) ||
451 nat_get_version(e) != ne->version);
452 f2fs_up_write(&nm_i->nat_tree_lock);
453 if (e != new)
454 __free_nat_entry(new);
455 }
456
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)457 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
458 block_t new_blkaddr, bool fsync_done)
459 {
460 struct f2fs_nm_info *nm_i = NM_I(sbi);
461 struct nat_entry *e;
462 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
463
464 f2fs_down_write(&nm_i->nat_tree_lock);
465 e = __lookup_nat_cache(nm_i, ni->nid);
466 if (!e) {
467 e = __init_nat_entry(nm_i, new, NULL, true);
468 copy_node_info(&e->ni, ni);
469 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
470 } else if (new_blkaddr == NEW_ADDR) {
471 /*
472 * when nid is reallocated,
473 * previous nat entry can be remained in nat cache.
474 * So, reinitialize it with new information.
475 */
476 copy_node_info(&e->ni, ni);
477 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
478 }
479 /* let's free early to reduce memory consumption */
480 if (e != new)
481 __free_nat_entry(new);
482
483 /* sanity check */
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
485 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
486 new_blkaddr == NULL_ADDR);
487 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
488 new_blkaddr == NEW_ADDR);
489 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
490 new_blkaddr == NEW_ADDR);
491
492 /* increment version no as node is removed */
493 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
494 unsigned char version = nat_get_version(e);
495
496 nat_set_version(e, inc_node_version(version));
497 }
498
499 /* change address */
500 nat_set_blkaddr(e, new_blkaddr);
501 if (!__is_valid_data_blkaddr(new_blkaddr))
502 set_nat_flag(e, IS_CHECKPOINTED, false);
503 __set_nat_cache_dirty(nm_i, e);
504
505 /* update fsync_mark if its inode nat entry is still alive */
506 if (ni->nid != ni->ino)
507 e = __lookup_nat_cache(nm_i, ni->ino);
508 if (e) {
509 if (fsync_done && ni->nid == ni->ino)
510 set_nat_flag(e, HAS_FSYNCED_INODE, true);
511 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
512 }
513 f2fs_up_write(&nm_i->nat_tree_lock);
514 }
515
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)516 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
517 {
518 struct f2fs_nm_info *nm_i = NM_I(sbi);
519 int nr = nr_shrink;
520
521 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
522 return 0;
523
524 spin_lock(&nm_i->nat_list_lock);
525 while (nr_shrink) {
526 struct nat_entry *ne;
527
528 if (list_empty(&nm_i->nat_entries))
529 break;
530
531 ne = list_first_entry(&nm_i->nat_entries,
532 struct nat_entry, list);
533 list_del(&ne->list);
534 spin_unlock(&nm_i->nat_list_lock);
535
536 __del_from_nat_cache(nm_i, ne);
537 nr_shrink--;
538
539 spin_lock(&nm_i->nat_list_lock);
540 }
541 spin_unlock(&nm_i->nat_list_lock);
542
543 f2fs_up_write(&nm_i->nat_tree_lock);
544 return nr - nr_shrink;
545 }
546
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)547 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
548 struct node_info *ni, bool checkpoint_context)
549 {
550 struct f2fs_nm_info *nm_i = NM_I(sbi);
551 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
552 struct f2fs_journal *journal = curseg->journal;
553 nid_t start_nid = START_NID(nid);
554 struct f2fs_nat_block *nat_blk;
555 struct page *page = NULL;
556 struct f2fs_nat_entry ne;
557 struct nat_entry *e;
558 pgoff_t index;
559 block_t blkaddr;
560 int i;
561
562 ni->nid = nid;
563 retry:
564 /* Check nat cache */
565 f2fs_down_read(&nm_i->nat_tree_lock);
566 e = __lookup_nat_cache(nm_i, nid);
567 if (e) {
568 ni->ino = nat_get_ino(e);
569 ni->blk_addr = nat_get_blkaddr(e);
570 ni->version = nat_get_version(e);
571 f2fs_up_read(&nm_i->nat_tree_lock);
572 return 0;
573 }
574
575 /*
576 * Check current segment summary by trying to grab journal_rwsem first.
577 * This sem is on the critical path on the checkpoint requiring the above
578 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
579 * while not bothering checkpoint.
580 */
581 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
582 down_read(&curseg->journal_rwsem);
583 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
584 !down_read_trylock(&curseg->journal_rwsem)) {
585 f2fs_up_read(&nm_i->nat_tree_lock);
586 goto retry;
587 }
588
589 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 if (i >= 0) {
591 ne = nat_in_journal(journal, i);
592 node_info_from_raw_nat(ni, &ne);
593 }
594 up_read(&curseg->journal_rwsem);
595 if (i >= 0) {
596 f2fs_up_read(&nm_i->nat_tree_lock);
597 goto cache;
598 }
599
600 /* Fill node_info from nat page */
601 index = current_nat_addr(sbi, nid);
602 f2fs_up_read(&nm_i->nat_tree_lock);
603
604 page = f2fs_get_meta_page(sbi, index);
605 if (IS_ERR(page))
606 return PTR_ERR(page);
607
608 nat_blk = (struct f2fs_nat_block *)page_address(page);
609 ne = nat_blk->entries[nid - start_nid];
610 node_info_from_raw_nat(ni, &ne);
611 f2fs_put_page(page, 1);
612 cache:
613 blkaddr = le32_to_cpu(ne.block_addr);
614 if (__is_valid_data_blkaddr(blkaddr) &&
615 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
616 return -EFAULT;
617
618 /* cache nat entry */
619 cache_nat_entry(sbi, nid, &ne);
620 return 0;
621 }
622
623 /*
624 * readahead MAX_RA_NODE number of node pages.
625 */
f2fs_ra_node_pages(struct page * parent,int start,int n)626 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
627 {
628 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
629 struct blk_plug plug;
630 int i, end;
631 nid_t nid;
632
633 blk_start_plug(&plug);
634
635 /* Then, try readahead for siblings of the desired node */
636 end = start + n;
637 end = min(end, NIDS_PER_BLOCK);
638 for (i = start; i < end; i++) {
639 nid = get_nid(parent, i, false);
640 f2fs_ra_node_page(sbi, nid);
641 }
642
643 blk_finish_plug(&plug);
644 }
645
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647 {
648 const long direct_index = ADDRS_PER_INODE(dn->inode);
649 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
650 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
651 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
652 int cur_level = dn->cur_level;
653 int max_level = dn->max_level;
654 pgoff_t base = 0;
655
656 if (!dn->max_level)
657 return pgofs + 1;
658
659 while (max_level-- > cur_level)
660 skipped_unit *= NIDS_PER_BLOCK;
661
662 switch (dn->max_level) {
663 case 3:
664 base += 2 * indirect_blks;
665 fallthrough;
666 case 2:
667 base += 2 * direct_blks;
668 fallthrough;
669 case 1:
670 base += direct_index;
671 break;
672 default:
673 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
674 }
675
676 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
677 }
678
679 /*
680 * The maximum depth is four.
681 * Offset[0] will have raw inode offset.
682 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])683 static int get_node_path(struct inode *inode, long block,
684 int offset[4], unsigned int noffset[4])
685 {
686 const long direct_index = ADDRS_PER_INODE(inode);
687 const long direct_blks = ADDRS_PER_BLOCK(inode);
688 const long dptrs_per_blk = NIDS_PER_BLOCK;
689 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
690 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
691 int n = 0;
692 int level = 0;
693
694 noffset[0] = 0;
695
696 if (block < direct_index) {
697 offset[n] = block;
698 goto got;
699 }
700 block -= direct_index;
701 if (block < direct_blks) {
702 offset[n++] = NODE_DIR1_BLOCK;
703 noffset[n] = 1;
704 offset[n] = block;
705 level = 1;
706 goto got;
707 }
708 block -= direct_blks;
709 if (block < direct_blks) {
710 offset[n++] = NODE_DIR2_BLOCK;
711 noffset[n] = 2;
712 offset[n] = block;
713 level = 1;
714 goto got;
715 }
716 block -= direct_blks;
717 if (block < indirect_blks) {
718 offset[n++] = NODE_IND1_BLOCK;
719 noffset[n] = 3;
720 offset[n++] = block / direct_blks;
721 noffset[n] = 4 + offset[n - 1];
722 offset[n] = block % direct_blks;
723 level = 2;
724 goto got;
725 }
726 block -= indirect_blks;
727 if (block < indirect_blks) {
728 offset[n++] = NODE_IND2_BLOCK;
729 noffset[n] = 4 + dptrs_per_blk;
730 offset[n++] = block / direct_blks;
731 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
732 offset[n] = block % direct_blks;
733 level = 2;
734 goto got;
735 }
736 block -= indirect_blks;
737 if (block < dindirect_blks) {
738 offset[n++] = NODE_DIND_BLOCK;
739 noffset[n] = 5 + (dptrs_per_blk * 2);
740 offset[n++] = block / indirect_blks;
741 noffset[n] = 6 + (dptrs_per_blk * 2) +
742 offset[n - 1] * (dptrs_per_blk + 1);
743 offset[n++] = (block / direct_blks) % dptrs_per_blk;
744 noffset[n] = 7 + (dptrs_per_blk * 2) +
745 offset[n - 2] * (dptrs_per_blk + 1) +
746 offset[n - 1];
747 offset[n] = block % direct_blks;
748 level = 3;
749 goto got;
750 } else {
751 return -E2BIG;
752 }
753 got:
754 return level;
755 }
756
757 /*
758 * Caller should call f2fs_put_dnode(dn).
759 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
760 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
761 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)762 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
763 {
764 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
765 struct page *npage[4];
766 struct page *parent = NULL;
767 int offset[4];
768 unsigned int noffset[4];
769 nid_t nids[4];
770 int level, i = 0;
771 int err = 0;
772
773 level = get_node_path(dn->inode, index, offset, noffset);
774 if (level < 0)
775 return level;
776
777 nids[0] = dn->inode->i_ino;
778 npage[0] = dn->inode_page;
779
780 if (!npage[0]) {
781 npage[0] = f2fs_get_node_page(sbi, nids[0]);
782 if (IS_ERR(npage[0]))
783 return PTR_ERR(npage[0]);
784 }
785
786 /* if inline_data is set, should not report any block indices */
787 if (f2fs_has_inline_data(dn->inode) && index) {
788 err = -ENOENT;
789 f2fs_put_page(npage[0], 1);
790 goto release_out;
791 }
792
793 parent = npage[0];
794 if (level != 0)
795 nids[1] = get_nid(parent, offset[0], true);
796 dn->inode_page = npage[0];
797 dn->inode_page_locked = true;
798
799 /* get indirect or direct nodes */
800 for (i = 1; i <= level; i++) {
801 bool done = false;
802
803 if (!nids[i] && mode == ALLOC_NODE) {
804 /* alloc new node */
805 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
806 err = -ENOSPC;
807 goto release_pages;
808 }
809
810 dn->nid = nids[i];
811 npage[i] = f2fs_new_node_page(dn, noffset[i]);
812 if (IS_ERR(npage[i])) {
813 f2fs_alloc_nid_failed(sbi, nids[i]);
814 err = PTR_ERR(npage[i]);
815 goto release_pages;
816 }
817
818 set_nid(parent, offset[i - 1], nids[i], i == 1);
819 f2fs_alloc_nid_done(sbi, nids[i]);
820 done = true;
821 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
822 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
823 if (IS_ERR(npage[i])) {
824 err = PTR_ERR(npage[i]);
825 goto release_pages;
826 }
827 done = true;
828 }
829 if (i == 1) {
830 dn->inode_page_locked = false;
831 unlock_page(parent);
832 } else {
833 f2fs_put_page(parent, 1);
834 }
835
836 if (!done) {
837 npage[i] = f2fs_get_node_page(sbi, nids[i]);
838 if (IS_ERR(npage[i])) {
839 err = PTR_ERR(npage[i]);
840 f2fs_put_page(npage[0], 0);
841 goto release_out;
842 }
843 }
844 if (i < level) {
845 parent = npage[i];
846 nids[i + 1] = get_nid(parent, offset[i], false);
847 }
848 }
849 dn->nid = nids[level];
850 dn->ofs_in_node = offset[level];
851 dn->node_page = npage[level];
852 dn->data_blkaddr = f2fs_data_blkaddr(dn);
853
854 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
855 f2fs_sb_has_readonly(sbi)) {
856 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
857 block_t blkaddr;
858
859 if (!c_len)
860 goto out;
861
862 blkaddr = f2fs_data_blkaddr(dn);
863 if (blkaddr == COMPRESS_ADDR)
864 blkaddr = data_blkaddr(dn->inode, dn->node_page,
865 dn->ofs_in_node + 1);
866
867 f2fs_update_read_extent_tree_range_compressed(dn->inode,
868 index, blkaddr,
869 F2FS_I(dn->inode)->i_cluster_size,
870 c_len);
871 }
872 out:
873 return 0;
874
875 release_pages:
876 f2fs_put_page(parent, 1);
877 if (i > 1)
878 f2fs_put_page(npage[0], 0);
879 release_out:
880 dn->inode_page = NULL;
881 dn->node_page = NULL;
882 if (err == -ENOENT) {
883 dn->cur_level = i;
884 dn->max_level = level;
885 dn->ofs_in_node = offset[level];
886 }
887 return err;
888 }
889
truncate_node(struct dnode_of_data * dn)890 static int truncate_node(struct dnode_of_data *dn)
891 {
892 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
893 struct node_info ni;
894 int err;
895 pgoff_t index;
896
897 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
898 if (err)
899 return err;
900
901 /* Deallocate node address */
902 f2fs_invalidate_blocks(sbi, ni.blk_addr);
903 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
904 set_node_addr(sbi, &ni, NULL_ADDR, false);
905
906 if (dn->nid == dn->inode->i_ino) {
907 f2fs_remove_orphan_inode(sbi, dn->nid);
908 dec_valid_inode_count(sbi);
909 f2fs_inode_synced(dn->inode);
910 }
911
912 clear_node_page_dirty(dn->node_page);
913 set_sbi_flag(sbi, SBI_IS_DIRTY);
914
915 index = dn->node_page->index;
916 f2fs_put_page(dn->node_page, 1);
917
918 invalidate_mapping_pages(NODE_MAPPING(sbi),
919 index, index);
920
921 dn->node_page = NULL;
922 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
923
924 return 0;
925 }
926
truncate_dnode(struct dnode_of_data * dn)927 static int truncate_dnode(struct dnode_of_data *dn)
928 {
929 struct page *page;
930 int err;
931
932 if (dn->nid == 0)
933 return 1;
934
935 /* get direct node */
936 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
937 if (PTR_ERR(page) == -ENOENT)
938 return 1;
939 else if (IS_ERR(page))
940 return PTR_ERR(page);
941
942 /* Make dnode_of_data for parameter */
943 dn->node_page = page;
944 dn->ofs_in_node = 0;
945 f2fs_truncate_data_blocks(dn);
946 err = truncate_node(dn);
947 if (err) {
948 f2fs_put_page(page, 1);
949 return err;
950 }
951
952 return 1;
953 }
954
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)955 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
956 int ofs, int depth)
957 {
958 struct dnode_of_data rdn = *dn;
959 struct page *page;
960 struct f2fs_node *rn;
961 nid_t child_nid;
962 unsigned int child_nofs;
963 int freed = 0;
964 int i, ret;
965
966 if (dn->nid == 0)
967 return NIDS_PER_BLOCK + 1;
968
969 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
970
971 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
972 if (IS_ERR(page)) {
973 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
974 return PTR_ERR(page);
975 }
976
977 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
978
979 rn = F2FS_NODE(page);
980 if (depth < 3) {
981 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
982 child_nid = le32_to_cpu(rn->in.nid[i]);
983 if (child_nid == 0)
984 continue;
985 rdn.nid = child_nid;
986 ret = truncate_dnode(&rdn);
987 if (ret < 0)
988 goto out_err;
989 if (set_nid(page, i, 0, false))
990 dn->node_changed = true;
991 }
992 } else {
993 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
994 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
995 child_nid = le32_to_cpu(rn->in.nid[i]);
996 if (child_nid == 0) {
997 child_nofs += NIDS_PER_BLOCK + 1;
998 continue;
999 }
1000 rdn.nid = child_nid;
1001 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1002 if (ret == (NIDS_PER_BLOCK + 1)) {
1003 if (set_nid(page, i, 0, false))
1004 dn->node_changed = true;
1005 child_nofs += ret;
1006 } else if (ret < 0 && ret != -ENOENT) {
1007 goto out_err;
1008 }
1009 }
1010 freed = child_nofs;
1011 }
1012
1013 if (!ofs) {
1014 /* remove current indirect node */
1015 dn->node_page = page;
1016 ret = truncate_node(dn);
1017 if (ret)
1018 goto out_err;
1019 freed++;
1020 } else {
1021 f2fs_put_page(page, 1);
1022 }
1023 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1024 return freed;
1025
1026 out_err:
1027 f2fs_put_page(page, 1);
1028 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1029 return ret;
1030 }
1031
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1032 static int truncate_partial_nodes(struct dnode_of_data *dn,
1033 struct f2fs_inode *ri, int *offset, int depth)
1034 {
1035 struct page *pages[2];
1036 nid_t nid[3];
1037 nid_t child_nid;
1038 int err = 0;
1039 int i;
1040 int idx = depth - 2;
1041
1042 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1043 if (!nid[0])
1044 return 0;
1045
1046 /* get indirect nodes in the path */
1047 for (i = 0; i < idx + 1; i++) {
1048 /* reference count'll be increased */
1049 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1050 if (IS_ERR(pages[i])) {
1051 err = PTR_ERR(pages[i]);
1052 idx = i - 1;
1053 goto fail;
1054 }
1055 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1056 }
1057
1058 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1059
1060 /* free direct nodes linked to a partial indirect node */
1061 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1062 child_nid = get_nid(pages[idx], i, false);
1063 if (!child_nid)
1064 continue;
1065 dn->nid = child_nid;
1066 err = truncate_dnode(dn);
1067 if (err < 0)
1068 goto fail;
1069 if (set_nid(pages[idx], i, 0, false))
1070 dn->node_changed = true;
1071 }
1072
1073 if (offset[idx + 1] == 0) {
1074 dn->node_page = pages[idx];
1075 dn->nid = nid[idx];
1076 err = truncate_node(dn);
1077 if (err)
1078 goto fail;
1079 } else {
1080 f2fs_put_page(pages[idx], 1);
1081 }
1082 offset[idx]++;
1083 offset[idx + 1] = 0;
1084 idx--;
1085 fail:
1086 for (i = idx; i >= 0; i--)
1087 f2fs_put_page(pages[i], 1);
1088
1089 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1090
1091 return err;
1092 }
1093
1094 /*
1095 * All the block addresses of data and nodes should be nullified.
1096 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1097 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1098 {
1099 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1100 int err = 0, cont = 1;
1101 int level, offset[4], noffset[4];
1102 unsigned int nofs = 0;
1103 struct f2fs_inode *ri;
1104 struct dnode_of_data dn;
1105 struct page *page;
1106
1107 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1108
1109 level = get_node_path(inode, from, offset, noffset);
1110 if (level < 0) {
1111 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1112 return level;
1113 }
1114
1115 page = f2fs_get_node_page(sbi, inode->i_ino);
1116 if (IS_ERR(page)) {
1117 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1118 return PTR_ERR(page);
1119 }
1120
1121 set_new_dnode(&dn, inode, page, NULL, 0);
1122 unlock_page(page);
1123
1124 ri = F2FS_INODE(page);
1125 switch (level) {
1126 case 0:
1127 case 1:
1128 nofs = noffset[1];
1129 break;
1130 case 2:
1131 nofs = noffset[1];
1132 if (!offset[level - 1])
1133 goto skip_partial;
1134 err = truncate_partial_nodes(&dn, ri, offset, level);
1135 if (err < 0 && err != -ENOENT)
1136 goto fail;
1137 nofs += 1 + NIDS_PER_BLOCK;
1138 break;
1139 case 3:
1140 nofs = 5 + 2 * NIDS_PER_BLOCK;
1141 if (!offset[level - 1])
1142 goto skip_partial;
1143 err = truncate_partial_nodes(&dn, ri, offset, level);
1144 if (err < 0 && err != -ENOENT)
1145 goto fail;
1146 break;
1147 default:
1148 BUG();
1149 }
1150
1151 skip_partial:
1152 while (cont) {
1153 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1154 switch (offset[0]) {
1155 case NODE_DIR1_BLOCK:
1156 case NODE_DIR2_BLOCK:
1157 err = truncate_dnode(&dn);
1158 break;
1159
1160 case NODE_IND1_BLOCK:
1161 case NODE_IND2_BLOCK:
1162 err = truncate_nodes(&dn, nofs, offset[1], 2);
1163 break;
1164
1165 case NODE_DIND_BLOCK:
1166 err = truncate_nodes(&dn, nofs, offset[1], 3);
1167 cont = 0;
1168 break;
1169
1170 default:
1171 BUG();
1172 }
1173 if (err < 0 && err != -ENOENT)
1174 goto fail;
1175 if (offset[1] == 0 &&
1176 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1177 lock_page(page);
1178 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1179 f2fs_wait_on_page_writeback(page, NODE, true, true);
1180 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1181 set_page_dirty(page);
1182 unlock_page(page);
1183 }
1184 offset[1] = 0;
1185 offset[0]++;
1186 nofs += err;
1187 }
1188 fail:
1189 f2fs_put_page(page, 0);
1190 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1191 return err > 0 ? 0 : err;
1192 }
1193
1194 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1195 int f2fs_truncate_xattr_node(struct inode *inode)
1196 {
1197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1198 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1199 struct dnode_of_data dn;
1200 struct page *npage;
1201 int err;
1202
1203 if (!nid)
1204 return 0;
1205
1206 npage = f2fs_get_node_page(sbi, nid);
1207 if (IS_ERR(npage))
1208 return PTR_ERR(npage);
1209
1210 set_new_dnode(&dn, inode, NULL, npage, nid);
1211 err = truncate_node(&dn);
1212 if (err) {
1213 f2fs_put_page(npage, 1);
1214 return err;
1215 }
1216
1217 f2fs_i_xnid_write(inode, 0);
1218
1219 return 0;
1220 }
1221
1222 /*
1223 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1224 * f2fs_unlock_op().
1225 */
f2fs_remove_inode_page(struct inode * inode)1226 int f2fs_remove_inode_page(struct inode *inode)
1227 {
1228 struct dnode_of_data dn;
1229 int err;
1230
1231 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1232 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1233 if (err)
1234 return err;
1235
1236 err = f2fs_truncate_xattr_node(inode);
1237 if (err) {
1238 f2fs_put_dnode(&dn);
1239 return err;
1240 }
1241
1242 /* remove potential inline_data blocks */
1243 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1244 S_ISLNK(inode->i_mode))
1245 f2fs_truncate_data_blocks_range(&dn, 1);
1246
1247 /* 0 is possible, after f2fs_new_inode() has failed */
1248 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1249 f2fs_put_dnode(&dn);
1250 return -EIO;
1251 }
1252
1253 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1254 f2fs_warn(F2FS_I_SB(inode),
1255 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1256 inode->i_ino, (unsigned long long)inode->i_blocks);
1257 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1258 }
1259
1260 /* will put inode & node pages */
1261 err = truncate_node(&dn);
1262 if (err) {
1263 f2fs_put_dnode(&dn);
1264 return err;
1265 }
1266 return 0;
1267 }
1268
f2fs_new_inode_page(struct inode * inode)1269 struct page *f2fs_new_inode_page(struct inode *inode)
1270 {
1271 struct dnode_of_data dn;
1272
1273 /* allocate inode page for new inode */
1274 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1275
1276 /* caller should f2fs_put_page(page, 1); */
1277 return f2fs_new_node_page(&dn, 0);
1278 }
1279
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1280 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1281 {
1282 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1283 struct node_info new_ni;
1284 struct page *page;
1285 int err;
1286
1287 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1288 return ERR_PTR(-EPERM);
1289
1290 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1291 if (!page)
1292 return ERR_PTR(-ENOMEM);
1293
1294 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1295 goto fail;
1296
1297 #ifdef CONFIG_F2FS_CHECK_FS
1298 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1299 if (err) {
1300 dec_valid_node_count(sbi, dn->inode, !ofs);
1301 goto fail;
1302 }
1303 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1304 err = -EFSCORRUPTED;
1305 set_sbi_flag(sbi, SBI_NEED_FSCK);
1306 goto fail;
1307 }
1308 #endif
1309 new_ni.nid = dn->nid;
1310 new_ni.ino = dn->inode->i_ino;
1311 new_ni.blk_addr = NULL_ADDR;
1312 new_ni.flag = 0;
1313 new_ni.version = 0;
1314 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1315
1316 f2fs_wait_on_page_writeback(page, NODE, true, true);
1317 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1318 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1319 if (!PageUptodate(page))
1320 SetPageUptodate(page);
1321 if (set_page_dirty(page))
1322 dn->node_changed = true;
1323
1324 if (f2fs_has_xattr_block(ofs))
1325 f2fs_i_xnid_write(dn->inode, dn->nid);
1326
1327 if (ofs == 0)
1328 inc_valid_inode_count(sbi);
1329 return page;
1330
1331 fail:
1332 clear_node_page_dirty(page);
1333 f2fs_put_page(page, 1);
1334 return ERR_PTR(err);
1335 }
1336
1337 /*
1338 * Caller should do after getting the following values.
1339 * 0: f2fs_put_page(page, 0)
1340 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1341 */
read_node_page(struct page * page,int op_flags)1342 static int read_node_page(struct page *page, int op_flags)
1343 {
1344 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1345 struct node_info ni;
1346 struct f2fs_io_info fio = {
1347 .sbi = sbi,
1348 .type = NODE,
1349 .op = REQ_OP_READ,
1350 .op_flags = op_flags,
1351 .page = page,
1352 .encrypted_page = NULL,
1353 };
1354 int err;
1355
1356 if (PageUptodate(page)) {
1357 if (!f2fs_inode_chksum_verify(sbi, page)) {
1358 ClearPageUptodate(page);
1359 return -EFSBADCRC;
1360 }
1361 return LOCKED_PAGE;
1362 }
1363
1364 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1365 if (err)
1366 return err;
1367
1368 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1369 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1370 ClearPageUptodate(page);
1371 return -ENOENT;
1372 }
1373
1374 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1375
1376 err = f2fs_submit_page_bio(&fio);
1377
1378 if (!err)
1379 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1380
1381 return err;
1382 }
1383
1384 /*
1385 * Readahead a node page
1386 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1387 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1388 {
1389 struct page *apage;
1390 int err;
1391
1392 if (!nid)
1393 return;
1394 if (f2fs_check_nid_range(sbi, nid))
1395 return;
1396
1397 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1398 if (apage)
1399 return;
1400
1401 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1402 if (!apage)
1403 return;
1404
1405 err = read_node_page(apage, REQ_RAHEAD);
1406 f2fs_put_page(apage, err ? 1 : 0);
1407 }
1408
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1409 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1410 struct page *parent, int start)
1411 {
1412 struct page *page;
1413 int err;
1414
1415 if (!nid)
1416 return ERR_PTR(-ENOENT);
1417 if (f2fs_check_nid_range(sbi, nid))
1418 return ERR_PTR(-EINVAL);
1419 repeat:
1420 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1421 if (!page)
1422 return ERR_PTR(-ENOMEM);
1423
1424 err = read_node_page(page, 0);
1425 if (err < 0) {
1426 f2fs_put_page(page, 1);
1427 return ERR_PTR(err);
1428 } else if (err == LOCKED_PAGE) {
1429 err = 0;
1430 goto page_hit;
1431 }
1432
1433 if (parent)
1434 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1435
1436 lock_page(page);
1437
1438 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1439 f2fs_put_page(page, 1);
1440 goto repeat;
1441 }
1442
1443 if (unlikely(!PageUptodate(page))) {
1444 err = -EIO;
1445 goto out_err;
1446 }
1447
1448 if (!f2fs_inode_chksum_verify(sbi, page)) {
1449 err = -EFSBADCRC;
1450 goto out_err;
1451 }
1452 page_hit:
1453 if (unlikely(nid != nid_of_node(page))) {
1454 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1455 nid, nid_of_node(page), ino_of_node(page),
1456 ofs_of_node(page), cpver_of_node(page),
1457 next_blkaddr_of_node(page));
1458 set_sbi_flag(sbi, SBI_NEED_FSCK);
1459 err = -EINVAL;
1460 out_err:
1461 ClearPageUptodate(page);
1462 f2fs_put_page(page, 1);
1463 return ERR_PTR(err);
1464 }
1465 return page;
1466 }
1467
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1468 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1469 {
1470 return __get_node_page(sbi, nid, NULL, 0);
1471 }
1472
f2fs_get_node_page_ra(struct page * parent,int start)1473 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1474 {
1475 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1476 nid_t nid = get_nid(parent, start, false);
1477
1478 return __get_node_page(sbi, nid, parent, start);
1479 }
1480
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1481 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1482 {
1483 struct inode *inode;
1484 struct page *page;
1485 int ret;
1486
1487 /* should flush inline_data before evict_inode */
1488 inode = ilookup(sbi->sb, ino);
1489 if (!inode)
1490 return;
1491
1492 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1493 FGP_LOCK|FGP_NOWAIT, 0);
1494 if (!page)
1495 goto iput_out;
1496
1497 if (!PageUptodate(page))
1498 goto page_out;
1499
1500 if (!PageDirty(page))
1501 goto page_out;
1502
1503 if (!clear_page_dirty_for_io(page))
1504 goto page_out;
1505
1506 ret = f2fs_write_inline_data(inode, page);
1507 inode_dec_dirty_pages(inode);
1508 f2fs_remove_dirty_inode(inode);
1509 if (ret)
1510 set_page_dirty(page);
1511 page_out:
1512 f2fs_put_page(page, 1);
1513 iput_out:
1514 iput(inode);
1515 }
1516
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1517 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1518 {
1519 pgoff_t index;
1520 struct pagevec pvec;
1521 struct page *last_page = NULL;
1522 int nr_pages;
1523
1524 pagevec_init(&pvec);
1525 index = 0;
1526
1527 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1528 PAGECACHE_TAG_DIRTY))) {
1529 int i;
1530
1531 for (i = 0; i < nr_pages; i++) {
1532 struct page *page = pvec.pages[i];
1533
1534 if (unlikely(f2fs_cp_error(sbi))) {
1535 f2fs_put_page(last_page, 0);
1536 pagevec_release(&pvec);
1537 return ERR_PTR(-EIO);
1538 }
1539
1540 if (!IS_DNODE(page) || !is_cold_node(page))
1541 continue;
1542 if (ino_of_node(page) != ino)
1543 continue;
1544
1545 lock_page(page);
1546
1547 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1548 continue_unlock:
1549 unlock_page(page);
1550 continue;
1551 }
1552 if (ino_of_node(page) != ino)
1553 goto continue_unlock;
1554
1555 if (!PageDirty(page)) {
1556 /* someone wrote it for us */
1557 goto continue_unlock;
1558 }
1559
1560 if (last_page)
1561 f2fs_put_page(last_page, 0);
1562
1563 get_page(page);
1564 last_page = page;
1565 unlock_page(page);
1566 }
1567 pagevec_release(&pvec);
1568 cond_resched();
1569 }
1570 return last_page;
1571 }
1572
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1573 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1574 struct writeback_control *wbc, bool do_balance,
1575 enum iostat_type io_type, unsigned int *seq_id)
1576 {
1577 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1578 nid_t nid;
1579 struct node_info ni;
1580 struct f2fs_io_info fio = {
1581 .sbi = sbi,
1582 .ino = ino_of_node(page),
1583 .type = NODE,
1584 .op = REQ_OP_WRITE,
1585 .op_flags = wbc_to_write_flags(wbc),
1586 .page = page,
1587 .encrypted_page = NULL,
1588 .submitted = false,
1589 .io_type = io_type,
1590 .io_wbc = wbc,
1591 };
1592 unsigned int seq;
1593
1594 trace_f2fs_writepage(page, NODE);
1595
1596 if (unlikely(f2fs_cp_error(sbi))) {
1597 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1598 ClearPageUptodate(page);
1599 dec_page_count(sbi, F2FS_DIRTY_NODES);
1600 unlock_page(page);
1601 return 0;
1602 }
1603 goto redirty_out;
1604 }
1605
1606 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1607 goto redirty_out;
1608
1609 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1610 wbc->sync_mode == WB_SYNC_NONE &&
1611 IS_DNODE(page) && is_cold_node(page))
1612 goto redirty_out;
1613
1614 /* get old block addr of this node page */
1615 nid = nid_of_node(page);
1616 f2fs_bug_on(sbi, page->index != nid);
1617
1618 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1619 goto redirty_out;
1620
1621 if (wbc->for_reclaim) {
1622 if (!f2fs_down_read_trylock(&sbi->node_write))
1623 goto redirty_out;
1624 } else {
1625 f2fs_down_read(&sbi->node_write);
1626 }
1627
1628 /* This page is already truncated */
1629 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1630 ClearPageUptodate(page);
1631 dec_page_count(sbi, F2FS_DIRTY_NODES);
1632 f2fs_up_read(&sbi->node_write);
1633 unlock_page(page);
1634 return 0;
1635 }
1636
1637 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1638 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1639 DATA_GENERIC_ENHANCE)) {
1640 f2fs_up_read(&sbi->node_write);
1641 goto redirty_out;
1642 }
1643
1644 if (atomic && !test_opt(sbi, NOBARRIER))
1645 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1646
1647 /* should add to global list before clearing PAGECACHE status */
1648 if (f2fs_in_warm_node_list(sbi, page)) {
1649 seq = f2fs_add_fsync_node_entry(sbi, page);
1650 if (seq_id)
1651 *seq_id = seq;
1652 }
1653
1654 set_page_writeback(page);
1655 ClearPageError(page);
1656
1657 fio.old_blkaddr = ni.blk_addr;
1658 f2fs_do_write_node_page(nid, &fio);
1659 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1660 dec_page_count(sbi, F2FS_DIRTY_NODES);
1661 f2fs_up_read(&sbi->node_write);
1662
1663 if (wbc->for_reclaim) {
1664 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1665 submitted = NULL;
1666 }
1667
1668 unlock_page(page);
1669
1670 if (unlikely(f2fs_cp_error(sbi))) {
1671 f2fs_submit_merged_write(sbi, NODE);
1672 submitted = NULL;
1673 }
1674 if (submitted)
1675 *submitted = fio.submitted;
1676
1677 if (do_balance)
1678 f2fs_balance_fs(sbi, false);
1679 return 0;
1680
1681 redirty_out:
1682 redirty_page_for_writepage(wbc, page);
1683 return AOP_WRITEPAGE_ACTIVATE;
1684 }
1685
f2fs_move_node_page(struct page * node_page,int gc_type)1686 int f2fs_move_node_page(struct page *node_page, int gc_type)
1687 {
1688 int err = 0;
1689
1690 if (gc_type == FG_GC) {
1691 struct writeback_control wbc = {
1692 .sync_mode = WB_SYNC_ALL,
1693 .nr_to_write = 1,
1694 .for_reclaim = 0,
1695 };
1696
1697 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1698
1699 set_page_dirty(node_page);
1700
1701 if (!clear_page_dirty_for_io(node_page)) {
1702 err = -EAGAIN;
1703 goto out_page;
1704 }
1705
1706 if (__write_node_page(node_page, false, NULL,
1707 &wbc, false, FS_GC_NODE_IO, NULL)) {
1708 err = -EAGAIN;
1709 unlock_page(node_page);
1710 }
1711 goto release_page;
1712 } else {
1713 /* set page dirty and write it */
1714 if (!PageWriteback(node_page))
1715 set_page_dirty(node_page);
1716 }
1717 out_page:
1718 unlock_page(node_page);
1719 release_page:
1720 f2fs_put_page(node_page, 0);
1721 return err;
1722 }
1723
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1724 static int f2fs_write_node_page(struct page *page,
1725 struct writeback_control *wbc)
1726 {
1727 return __write_node_page(page, false, NULL, wbc, false,
1728 FS_NODE_IO, NULL);
1729 }
1730
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1731 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1732 struct writeback_control *wbc, bool atomic,
1733 unsigned int *seq_id)
1734 {
1735 pgoff_t index;
1736 struct pagevec pvec;
1737 int ret = 0;
1738 struct page *last_page = NULL;
1739 bool marked = false;
1740 nid_t ino = inode->i_ino;
1741 int nr_pages;
1742 int nwritten = 0;
1743
1744 if (atomic) {
1745 last_page = last_fsync_dnode(sbi, ino);
1746 if (IS_ERR_OR_NULL(last_page))
1747 return PTR_ERR_OR_ZERO(last_page);
1748 }
1749 retry:
1750 pagevec_init(&pvec);
1751 index = 0;
1752
1753 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1754 PAGECACHE_TAG_DIRTY))) {
1755 int i;
1756
1757 for (i = 0; i < nr_pages; i++) {
1758 struct page *page = pvec.pages[i];
1759 bool submitted = false;
1760
1761 if (unlikely(f2fs_cp_error(sbi))) {
1762 f2fs_put_page(last_page, 0);
1763 pagevec_release(&pvec);
1764 ret = -EIO;
1765 goto out;
1766 }
1767
1768 if (!IS_DNODE(page) || !is_cold_node(page))
1769 continue;
1770 if (ino_of_node(page) != ino)
1771 continue;
1772
1773 lock_page(page);
1774
1775 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1776 continue_unlock:
1777 unlock_page(page);
1778 continue;
1779 }
1780 if (ino_of_node(page) != ino)
1781 goto continue_unlock;
1782
1783 if (!PageDirty(page) && page != last_page) {
1784 /* someone wrote it for us */
1785 goto continue_unlock;
1786 }
1787
1788 f2fs_wait_on_page_writeback(page, NODE, true, true);
1789
1790 set_fsync_mark(page, 0);
1791 set_dentry_mark(page, 0);
1792
1793 if (!atomic || page == last_page) {
1794 set_fsync_mark(page, 1);
1795 if (IS_INODE(page)) {
1796 if (is_inode_flag_set(inode,
1797 FI_DIRTY_INODE))
1798 f2fs_update_inode(inode, page);
1799 set_dentry_mark(page,
1800 f2fs_need_dentry_mark(sbi, ino));
1801 }
1802 /* may be written by other thread */
1803 if (!PageDirty(page))
1804 set_page_dirty(page);
1805 }
1806
1807 if (!clear_page_dirty_for_io(page))
1808 goto continue_unlock;
1809
1810 ret = __write_node_page(page, atomic &&
1811 page == last_page,
1812 &submitted, wbc, true,
1813 FS_NODE_IO, seq_id);
1814 if (ret) {
1815 unlock_page(page);
1816 f2fs_put_page(last_page, 0);
1817 break;
1818 } else if (submitted) {
1819 nwritten++;
1820 }
1821
1822 if (page == last_page) {
1823 f2fs_put_page(page, 0);
1824 marked = true;
1825 break;
1826 }
1827 }
1828 pagevec_release(&pvec);
1829 cond_resched();
1830
1831 if (ret || marked)
1832 break;
1833 }
1834 if (!ret && atomic && !marked) {
1835 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1836 ino, last_page->index);
1837 lock_page(last_page);
1838 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1839 set_page_dirty(last_page);
1840 unlock_page(last_page);
1841 goto retry;
1842 }
1843 out:
1844 if (nwritten)
1845 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1846 return ret ? -EIO : 0;
1847 }
1848
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1849 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1850 {
1851 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1852 bool clean;
1853
1854 if (inode->i_ino != ino)
1855 return 0;
1856
1857 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1858 return 0;
1859
1860 spin_lock(&sbi->inode_lock[DIRTY_META]);
1861 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1862 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1863
1864 if (clean)
1865 return 0;
1866
1867 inode = igrab(inode);
1868 if (!inode)
1869 return 0;
1870 return 1;
1871 }
1872
flush_dirty_inode(struct page * page)1873 static bool flush_dirty_inode(struct page *page)
1874 {
1875 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1876 struct inode *inode;
1877 nid_t ino = ino_of_node(page);
1878
1879 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1880 if (!inode)
1881 return false;
1882
1883 f2fs_update_inode(inode, page);
1884 unlock_page(page);
1885
1886 iput(inode);
1887 return true;
1888 }
1889
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1890 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1891 {
1892 pgoff_t index = 0;
1893 struct pagevec pvec;
1894 int nr_pages;
1895
1896 pagevec_init(&pvec);
1897
1898 while ((nr_pages = pagevec_lookup_tag(&pvec,
1899 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1900 int i;
1901
1902 for (i = 0; i < nr_pages; i++) {
1903 struct page *page = pvec.pages[i];
1904
1905 if (!IS_DNODE(page))
1906 continue;
1907
1908 lock_page(page);
1909
1910 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1911 continue_unlock:
1912 unlock_page(page);
1913 continue;
1914 }
1915
1916 if (!PageDirty(page)) {
1917 /* someone wrote it for us */
1918 goto continue_unlock;
1919 }
1920
1921 /* flush inline_data, if it's async context. */
1922 if (page_private_inline(page)) {
1923 clear_page_private_inline(page);
1924 unlock_page(page);
1925 flush_inline_data(sbi, ino_of_node(page));
1926 continue;
1927 }
1928 unlock_page(page);
1929 }
1930 pagevec_release(&pvec);
1931 cond_resched();
1932 }
1933 }
1934
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1935 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1936 struct writeback_control *wbc,
1937 bool do_balance, enum iostat_type io_type)
1938 {
1939 pgoff_t index;
1940 struct pagevec pvec;
1941 int step = 0;
1942 int nwritten = 0;
1943 int ret = 0;
1944 int nr_pages, done = 0;
1945
1946 pagevec_init(&pvec);
1947
1948 next_step:
1949 index = 0;
1950
1951 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1952 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1953 int i;
1954
1955 for (i = 0; i < nr_pages; i++) {
1956 struct page *page = pvec.pages[i];
1957 bool submitted = false;
1958 bool may_dirty = true;
1959
1960 /* give a priority to WB_SYNC threads */
1961 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1962 wbc->sync_mode == WB_SYNC_NONE) {
1963 done = 1;
1964 break;
1965 }
1966
1967 /*
1968 * flushing sequence with step:
1969 * 0. indirect nodes
1970 * 1. dentry dnodes
1971 * 2. file dnodes
1972 */
1973 if (step == 0 && IS_DNODE(page))
1974 continue;
1975 if (step == 1 && (!IS_DNODE(page) ||
1976 is_cold_node(page)))
1977 continue;
1978 if (step == 2 && (!IS_DNODE(page) ||
1979 !is_cold_node(page)))
1980 continue;
1981 lock_node:
1982 if (wbc->sync_mode == WB_SYNC_ALL)
1983 lock_page(page);
1984 else if (!trylock_page(page))
1985 continue;
1986
1987 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1988 continue_unlock:
1989 unlock_page(page);
1990 continue;
1991 }
1992
1993 if (!PageDirty(page)) {
1994 /* someone wrote it for us */
1995 goto continue_unlock;
1996 }
1997
1998 /* flush inline_data/inode, if it's async context. */
1999 if (!do_balance)
2000 goto write_node;
2001
2002 /* flush inline_data */
2003 if (page_private_inline(page)) {
2004 clear_page_private_inline(page);
2005 unlock_page(page);
2006 flush_inline_data(sbi, ino_of_node(page));
2007 goto lock_node;
2008 }
2009
2010 /* flush dirty inode */
2011 if (IS_INODE(page) && may_dirty) {
2012 may_dirty = false;
2013 if (flush_dirty_inode(page))
2014 goto lock_node;
2015 }
2016 write_node:
2017 f2fs_wait_on_page_writeback(page, NODE, true, true);
2018
2019 if (!clear_page_dirty_for_io(page))
2020 goto continue_unlock;
2021
2022 set_fsync_mark(page, 0);
2023 set_dentry_mark(page, 0);
2024
2025 ret = __write_node_page(page, false, &submitted,
2026 wbc, do_balance, io_type, NULL);
2027 if (ret)
2028 unlock_page(page);
2029 else if (submitted)
2030 nwritten++;
2031
2032 if (--wbc->nr_to_write == 0)
2033 break;
2034 }
2035 pagevec_release(&pvec);
2036 cond_resched();
2037
2038 if (wbc->nr_to_write == 0) {
2039 step = 2;
2040 break;
2041 }
2042 }
2043
2044 if (step < 2) {
2045 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2046 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2047 goto out;
2048 step++;
2049 goto next_step;
2050 }
2051 out:
2052 if (nwritten)
2053 f2fs_submit_merged_write(sbi, NODE);
2054
2055 if (unlikely(f2fs_cp_error(sbi)))
2056 return -EIO;
2057 return ret;
2058 }
2059
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2060 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2061 unsigned int seq_id)
2062 {
2063 struct fsync_node_entry *fn;
2064 struct page *page;
2065 struct list_head *head = &sbi->fsync_node_list;
2066 unsigned long flags;
2067 unsigned int cur_seq_id = 0;
2068 int ret2, ret = 0;
2069
2070 while (seq_id && cur_seq_id < seq_id) {
2071 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2072 if (list_empty(head)) {
2073 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2074 break;
2075 }
2076 fn = list_first_entry(head, struct fsync_node_entry, list);
2077 if (fn->seq_id > seq_id) {
2078 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2079 break;
2080 }
2081 cur_seq_id = fn->seq_id;
2082 page = fn->page;
2083 get_page(page);
2084 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2085
2086 f2fs_wait_on_page_writeback(page, NODE, true, false);
2087 if (TestClearPageError(page))
2088 ret = -EIO;
2089
2090 put_page(page);
2091
2092 if (ret)
2093 break;
2094 }
2095
2096 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2097 if (!ret)
2098 ret = ret2;
2099
2100 return ret;
2101 }
2102
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2103 static int f2fs_write_node_pages(struct address_space *mapping,
2104 struct writeback_control *wbc)
2105 {
2106 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2107 struct blk_plug plug;
2108 long diff;
2109
2110 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2111 goto skip_write;
2112
2113 /* balancing f2fs's metadata in background */
2114 f2fs_balance_fs_bg(sbi, true);
2115
2116 /* collect a number of dirty node pages and write together */
2117 if (wbc->sync_mode != WB_SYNC_ALL &&
2118 get_pages(sbi, F2FS_DIRTY_NODES) <
2119 nr_pages_to_skip(sbi, NODE))
2120 goto skip_write;
2121
2122 if (wbc->sync_mode == WB_SYNC_ALL)
2123 atomic_inc(&sbi->wb_sync_req[NODE]);
2124 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2125 /* to avoid potential deadlock */
2126 if (current->plug)
2127 blk_finish_plug(current->plug);
2128 goto skip_write;
2129 }
2130
2131 trace_f2fs_writepages(mapping->host, wbc, NODE);
2132
2133 diff = nr_pages_to_write(sbi, NODE, wbc);
2134 blk_start_plug(&plug);
2135 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2136 blk_finish_plug(&plug);
2137 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2138
2139 if (wbc->sync_mode == WB_SYNC_ALL)
2140 atomic_dec(&sbi->wb_sync_req[NODE]);
2141 return 0;
2142
2143 skip_write:
2144 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2145 trace_f2fs_writepages(mapping->host, wbc, NODE);
2146 return 0;
2147 }
2148
f2fs_set_node_page_dirty(struct page * page)2149 static int f2fs_set_node_page_dirty(struct page *page)
2150 {
2151 trace_f2fs_set_page_dirty(page, NODE);
2152
2153 if (!PageUptodate(page))
2154 SetPageUptodate(page);
2155 #ifdef CONFIG_F2FS_CHECK_FS
2156 if (IS_INODE(page))
2157 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2158 #endif
2159 if (!PageDirty(page)) {
2160 __set_page_dirty_nobuffers(page);
2161 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2162 set_page_private_reference(page);
2163 return 1;
2164 }
2165 return 0;
2166 }
2167
2168 /*
2169 * Structure of the f2fs node operations
2170 */
2171 const struct address_space_operations f2fs_node_aops = {
2172 .writepage = f2fs_write_node_page,
2173 .writepages = f2fs_write_node_pages,
2174 .set_page_dirty = f2fs_set_node_page_dirty,
2175 .invalidatepage = f2fs_invalidate_page,
2176 .releasepage = f2fs_release_page,
2177 #ifdef CONFIG_MIGRATION
2178 .migratepage = f2fs_migrate_page,
2179 #endif
2180 };
2181
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2182 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2183 nid_t n)
2184 {
2185 return radix_tree_lookup(&nm_i->free_nid_root, n);
2186 }
2187
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2188 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2189 struct free_nid *i)
2190 {
2191 struct f2fs_nm_info *nm_i = NM_I(sbi);
2192 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2193
2194 if (err)
2195 return err;
2196
2197 nm_i->nid_cnt[FREE_NID]++;
2198 list_add_tail(&i->list, &nm_i->free_nid_list);
2199 return 0;
2200 }
2201
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2202 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2203 struct free_nid *i, enum nid_state state)
2204 {
2205 struct f2fs_nm_info *nm_i = NM_I(sbi);
2206
2207 f2fs_bug_on(sbi, state != i->state);
2208 nm_i->nid_cnt[state]--;
2209 if (state == FREE_NID)
2210 list_del(&i->list);
2211 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2212 }
2213
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2214 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2215 enum nid_state org_state, enum nid_state dst_state)
2216 {
2217 struct f2fs_nm_info *nm_i = NM_I(sbi);
2218
2219 f2fs_bug_on(sbi, org_state != i->state);
2220 i->state = dst_state;
2221 nm_i->nid_cnt[org_state]--;
2222 nm_i->nid_cnt[dst_state]++;
2223
2224 switch (dst_state) {
2225 case PREALLOC_NID:
2226 list_del(&i->list);
2227 break;
2228 case FREE_NID:
2229 list_add_tail(&i->list, &nm_i->free_nid_list);
2230 break;
2231 default:
2232 BUG_ON(1);
2233 }
2234 }
2235
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2236 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2237 bool set, bool build)
2238 {
2239 struct f2fs_nm_info *nm_i = NM_I(sbi);
2240 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2241 unsigned int nid_ofs = nid - START_NID(nid);
2242
2243 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2244 return;
2245
2246 if (set) {
2247 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2248 return;
2249 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2250 nm_i->free_nid_count[nat_ofs]++;
2251 } else {
2252 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2253 return;
2254 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2255 if (!build)
2256 nm_i->free_nid_count[nat_ofs]--;
2257 }
2258 }
2259
2260 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2261 static bool add_free_nid(struct f2fs_sb_info *sbi,
2262 nid_t nid, bool build, bool update)
2263 {
2264 struct f2fs_nm_info *nm_i = NM_I(sbi);
2265 struct free_nid *i, *e;
2266 struct nat_entry *ne;
2267 int err = -EINVAL;
2268 bool ret = false;
2269
2270 /* 0 nid should not be used */
2271 if (unlikely(nid == 0))
2272 return false;
2273
2274 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2275 return false;
2276
2277 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2278 i->nid = nid;
2279 i->state = FREE_NID;
2280
2281 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2282
2283 spin_lock(&nm_i->nid_list_lock);
2284
2285 if (build) {
2286 /*
2287 * Thread A Thread B
2288 * - f2fs_create
2289 * - f2fs_new_inode
2290 * - f2fs_alloc_nid
2291 * - __insert_nid_to_list(PREALLOC_NID)
2292 * - f2fs_balance_fs_bg
2293 * - f2fs_build_free_nids
2294 * - __f2fs_build_free_nids
2295 * - scan_nat_page
2296 * - add_free_nid
2297 * - __lookup_nat_cache
2298 * - f2fs_add_link
2299 * - f2fs_init_inode_metadata
2300 * - f2fs_new_inode_page
2301 * - f2fs_new_node_page
2302 * - set_node_addr
2303 * - f2fs_alloc_nid_done
2304 * - __remove_nid_from_list(PREALLOC_NID)
2305 * - __insert_nid_to_list(FREE_NID)
2306 */
2307 ne = __lookup_nat_cache(nm_i, nid);
2308 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2309 nat_get_blkaddr(ne) != NULL_ADDR))
2310 goto err_out;
2311
2312 e = __lookup_free_nid_list(nm_i, nid);
2313 if (e) {
2314 if (e->state == FREE_NID)
2315 ret = true;
2316 goto err_out;
2317 }
2318 }
2319 ret = true;
2320 err = __insert_free_nid(sbi, i);
2321 err_out:
2322 if (update) {
2323 update_free_nid_bitmap(sbi, nid, ret, build);
2324 if (!build)
2325 nm_i->available_nids++;
2326 }
2327 spin_unlock(&nm_i->nid_list_lock);
2328 radix_tree_preload_end();
2329
2330 if (err)
2331 kmem_cache_free(free_nid_slab, i);
2332 return ret;
2333 }
2334
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2335 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2336 {
2337 struct f2fs_nm_info *nm_i = NM_I(sbi);
2338 struct free_nid *i;
2339 bool need_free = false;
2340
2341 spin_lock(&nm_i->nid_list_lock);
2342 i = __lookup_free_nid_list(nm_i, nid);
2343 if (i && i->state == FREE_NID) {
2344 __remove_free_nid(sbi, i, FREE_NID);
2345 need_free = true;
2346 }
2347 spin_unlock(&nm_i->nid_list_lock);
2348
2349 if (need_free)
2350 kmem_cache_free(free_nid_slab, i);
2351 }
2352
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2353 static int scan_nat_page(struct f2fs_sb_info *sbi,
2354 struct page *nat_page, nid_t start_nid)
2355 {
2356 struct f2fs_nm_info *nm_i = NM_I(sbi);
2357 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2358 block_t blk_addr;
2359 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2360 int i;
2361
2362 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2363
2364 i = start_nid % NAT_ENTRY_PER_BLOCK;
2365
2366 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2367 if (unlikely(start_nid >= nm_i->max_nid))
2368 break;
2369
2370 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2371
2372 if (blk_addr == NEW_ADDR)
2373 return -EINVAL;
2374
2375 if (blk_addr == NULL_ADDR) {
2376 add_free_nid(sbi, start_nid, true, true);
2377 } else {
2378 spin_lock(&NM_I(sbi)->nid_list_lock);
2379 update_free_nid_bitmap(sbi, start_nid, false, true);
2380 spin_unlock(&NM_I(sbi)->nid_list_lock);
2381 }
2382 }
2383
2384 return 0;
2385 }
2386
scan_curseg_cache(struct f2fs_sb_info * sbi)2387 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2388 {
2389 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2390 struct f2fs_journal *journal = curseg->journal;
2391 int i;
2392
2393 down_read(&curseg->journal_rwsem);
2394 for (i = 0; i < nats_in_cursum(journal); i++) {
2395 block_t addr;
2396 nid_t nid;
2397
2398 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2399 nid = le32_to_cpu(nid_in_journal(journal, i));
2400 if (addr == NULL_ADDR)
2401 add_free_nid(sbi, nid, true, false);
2402 else
2403 remove_free_nid(sbi, nid);
2404 }
2405 up_read(&curseg->journal_rwsem);
2406 }
2407
scan_free_nid_bits(struct f2fs_sb_info * sbi)2408 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2409 {
2410 struct f2fs_nm_info *nm_i = NM_I(sbi);
2411 unsigned int i, idx;
2412 nid_t nid;
2413
2414 f2fs_down_read(&nm_i->nat_tree_lock);
2415
2416 for (i = 0; i < nm_i->nat_blocks; i++) {
2417 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2418 continue;
2419 if (!nm_i->free_nid_count[i])
2420 continue;
2421 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2422 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2423 NAT_ENTRY_PER_BLOCK, idx);
2424 if (idx >= NAT_ENTRY_PER_BLOCK)
2425 break;
2426
2427 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2428 add_free_nid(sbi, nid, true, false);
2429
2430 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2431 goto out;
2432 }
2433 }
2434 out:
2435 scan_curseg_cache(sbi);
2436
2437 f2fs_up_read(&nm_i->nat_tree_lock);
2438 }
2439
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2440 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2441 bool sync, bool mount)
2442 {
2443 struct f2fs_nm_info *nm_i = NM_I(sbi);
2444 int i = 0, ret;
2445 nid_t nid = nm_i->next_scan_nid;
2446
2447 if (unlikely(nid >= nm_i->max_nid))
2448 nid = 0;
2449
2450 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2451 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2452
2453 /* Enough entries */
2454 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2455 return 0;
2456
2457 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2458 return 0;
2459
2460 if (!mount) {
2461 /* try to find free nids in free_nid_bitmap */
2462 scan_free_nid_bits(sbi);
2463
2464 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2465 return 0;
2466 }
2467
2468 /* readahead nat pages to be scanned */
2469 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2470 META_NAT, true);
2471
2472 f2fs_down_read(&nm_i->nat_tree_lock);
2473
2474 while (1) {
2475 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2476 nm_i->nat_block_bitmap)) {
2477 struct page *page = get_current_nat_page(sbi, nid);
2478
2479 if (IS_ERR(page)) {
2480 ret = PTR_ERR(page);
2481 } else {
2482 ret = scan_nat_page(sbi, page, nid);
2483 f2fs_put_page(page, 1);
2484 }
2485
2486 if (ret) {
2487 f2fs_up_read(&nm_i->nat_tree_lock);
2488 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2489 return ret;
2490 }
2491 }
2492
2493 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2494 if (unlikely(nid >= nm_i->max_nid))
2495 nid = 0;
2496
2497 if (++i >= FREE_NID_PAGES)
2498 break;
2499 }
2500
2501 /* go to the next free nat pages to find free nids abundantly */
2502 nm_i->next_scan_nid = nid;
2503
2504 /* find free nids from current sum_pages */
2505 scan_curseg_cache(sbi);
2506
2507 f2fs_up_read(&nm_i->nat_tree_lock);
2508
2509 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2510 nm_i->ra_nid_pages, META_NAT, false);
2511
2512 return 0;
2513 }
2514
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2515 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2516 {
2517 int ret;
2518
2519 mutex_lock(&NM_I(sbi)->build_lock);
2520 ret = __f2fs_build_free_nids(sbi, sync, mount);
2521 mutex_unlock(&NM_I(sbi)->build_lock);
2522
2523 return ret;
2524 }
2525
2526 /*
2527 * If this function returns success, caller can obtain a new nid
2528 * from second parameter of this function.
2529 * The returned nid could be used ino as well as nid when inode is created.
2530 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2531 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2532 {
2533 struct f2fs_nm_info *nm_i = NM_I(sbi);
2534 struct free_nid *i = NULL;
2535 retry:
2536 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2537 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2538 return false;
2539 }
2540
2541 spin_lock(&nm_i->nid_list_lock);
2542
2543 if (unlikely(nm_i->available_nids == 0)) {
2544 spin_unlock(&nm_i->nid_list_lock);
2545 return false;
2546 }
2547
2548 /* We should not use stale free nids created by f2fs_build_free_nids */
2549 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2550 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2551 i = list_first_entry(&nm_i->free_nid_list,
2552 struct free_nid, list);
2553 *nid = i->nid;
2554
2555 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2556 nm_i->available_nids--;
2557
2558 update_free_nid_bitmap(sbi, *nid, false, false);
2559
2560 spin_unlock(&nm_i->nid_list_lock);
2561 return true;
2562 }
2563 spin_unlock(&nm_i->nid_list_lock);
2564
2565 /* Let's scan nat pages and its caches to get free nids */
2566 if (!f2fs_build_free_nids(sbi, true, false))
2567 goto retry;
2568 return false;
2569 }
2570
2571 /*
2572 * f2fs_alloc_nid() should be called prior to this function.
2573 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2574 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2575 {
2576 struct f2fs_nm_info *nm_i = NM_I(sbi);
2577 struct free_nid *i;
2578
2579 spin_lock(&nm_i->nid_list_lock);
2580 i = __lookup_free_nid_list(nm_i, nid);
2581 f2fs_bug_on(sbi, !i);
2582 __remove_free_nid(sbi, i, PREALLOC_NID);
2583 spin_unlock(&nm_i->nid_list_lock);
2584
2585 kmem_cache_free(free_nid_slab, i);
2586 }
2587
2588 /*
2589 * f2fs_alloc_nid() should be called prior to this function.
2590 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2591 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2592 {
2593 struct f2fs_nm_info *nm_i = NM_I(sbi);
2594 struct free_nid *i;
2595 bool need_free = false;
2596
2597 if (!nid)
2598 return;
2599
2600 spin_lock(&nm_i->nid_list_lock);
2601 i = __lookup_free_nid_list(nm_i, nid);
2602 f2fs_bug_on(sbi, !i);
2603
2604 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2605 __remove_free_nid(sbi, i, PREALLOC_NID);
2606 need_free = true;
2607 } else {
2608 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2609 }
2610
2611 nm_i->available_nids++;
2612
2613 update_free_nid_bitmap(sbi, nid, true, false);
2614
2615 spin_unlock(&nm_i->nid_list_lock);
2616
2617 if (need_free)
2618 kmem_cache_free(free_nid_slab, i);
2619 }
2620
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2621 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2622 {
2623 struct f2fs_nm_info *nm_i = NM_I(sbi);
2624 int nr = nr_shrink;
2625
2626 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2627 return 0;
2628
2629 if (!mutex_trylock(&nm_i->build_lock))
2630 return 0;
2631
2632 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2633 struct free_nid *i, *next;
2634 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2635
2636 spin_lock(&nm_i->nid_list_lock);
2637 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2638 if (!nr_shrink || !batch ||
2639 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2640 break;
2641 __remove_free_nid(sbi, i, FREE_NID);
2642 kmem_cache_free(free_nid_slab, i);
2643 nr_shrink--;
2644 batch--;
2645 }
2646 spin_unlock(&nm_i->nid_list_lock);
2647 }
2648
2649 mutex_unlock(&nm_i->build_lock);
2650
2651 return nr - nr_shrink;
2652 }
2653
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2654 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2655 {
2656 void *src_addr, *dst_addr;
2657 size_t inline_size;
2658 struct page *ipage;
2659 struct f2fs_inode *ri;
2660
2661 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2662 if (IS_ERR(ipage))
2663 return PTR_ERR(ipage);
2664
2665 ri = F2FS_INODE(page);
2666 if (ri->i_inline & F2FS_INLINE_XATTR) {
2667 if (!f2fs_has_inline_xattr(inode)) {
2668 set_inode_flag(inode, FI_INLINE_XATTR);
2669 stat_inc_inline_xattr(inode);
2670 }
2671 } else {
2672 if (f2fs_has_inline_xattr(inode)) {
2673 stat_dec_inline_xattr(inode);
2674 clear_inode_flag(inode, FI_INLINE_XATTR);
2675 }
2676 goto update_inode;
2677 }
2678
2679 dst_addr = inline_xattr_addr(inode, ipage);
2680 src_addr = inline_xattr_addr(inode, page);
2681 inline_size = inline_xattr_size(inode);
2682
2683 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2684 memcpy(dst_addr, src_addr, inline_size);
2685 update_inode:
2686 f2fs_update_inode(inode, ipage);
2687 f2fs_put_page(ipage, 1);
2688 return 0;
2689 }
2690
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2691 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2692 {
2693 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2694 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2695 nid_t new_xnid;
2696 struct dnode_of_data dn;
2697 struct node_info ni;
2698 struct page *xpage;
2699 int err;
2700
2701 if (!prev_xnid)
2702 goto recover_xnid;
2703
2704 /* 1: invalidate the previous xattr nid */
2705 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2706 if (err)
2707 return err;
2708
2709 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2710 dec_valid_node_count(sbi, inode, false);
2711 set_node_addr(sbi, &ni, NULL_ADDR, false);
2712
2713 recover_xnid:
2714 /* 2: update xattr nid in inode */
2715 if (!f2fs_alloc_nid(sbi, &new_xnid))
2716 return -ENOSPC;
2717
2718 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2719 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2720 if (IS_ERR(xpage)) {
2721 f2fs_alloc_nid_failed(sbi, new_xnid);
2722 return PTR_ERR(xpage);
2723 }
2724
2725 f2fs_alloc_nid_done(sbi, new_xnid);
2726 f2fs_update_inode_page(inode);
2727
2728 /* 3: update and set xattr node page dirty */
2729 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2730
2731 set_page_dirty(xpage);
2732 f2fs_put_page(xpage, 1);
2733
2734 return 0;
2735 }
2736
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2737 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2738 {
2739 struct f2fs_inode *src, *dst;
2740 nid_t ino = ino_of_node(page);
2741 struct node_info old_ni, new_ni;
2742 struct page *ipage;
2743 int err;
2744
2745 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2746 if (err)
2747 return err;
2748
2749 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2750 return -EINVAL;
2751 retry:
2752 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2753 if (!ipage) {
2754 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2755 goto retry;
2756 }
2757
2758 /* Should not use this inode from free nid list */
2759 remove_free_nid(sbi, ino);
2760
2761 if (!PageUptodate(ipage))
2762 SetPageUptodate(ipage);
2763 fill_node_footer(ipage, ino, ino, 0, true);
2764 set_cold_node(ipage, false);
2765
2766 src = F2FS_INODE(page);
2767 dst = F2FS_INODE(ipage);
2768
2769 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2770 dst->i_size = 0;
2771 dst->i_blocks = cpu_to_le64(1);
2772 dst->i_links = cpu_to_le32(1);
2773 dst->i_xattr_nid = 0;
2774 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2775 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2776 dst->i_extra_isize = src->i_extra_isize;
2777
2778 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2779 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2780 i_inline_xattr_size))
2781 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2782
2783 if (f2fs_sb_has_project_quota(sbi) &&
2784 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2785 i_projid))
2786 dst->i_projid = src->i_projid;
2787
2788 if (f2fs_sb_has_inode_crtime(sbi) &&
2789 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2790 i_crtime_nsec)) {
2791 dst->i_crtime = src->i_crtime;
2792 dst->i_crtime_nsec = src->i_crtime_nsec;
2793 }
2794 }
2795
2796 new_ni = old_ni;
2797 new_ni.ino = ino;
2798
2799 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2800 WARN_ON(1);
2801 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2802 inc_valid_inode_count(sbi);
2803 set_page_dirty(ipage);
2804 f2fs_put_page(ipage, 1);
2805 return 0;
2806 }
2807
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2808 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2809 unsigned int segno, struct f2fs_summary_block *sum)
2810 {
2811 struct f2fs_node *rn;
2812 struct f2fs_summary *sum_entry;
2813 block_t addr;
2814 int i, idx, last_offset, nrpages;
2815
2816 /* scan the node segment */
2817 last_offset = sbi->blocks_per_seg;
2818 addr = START_BLOCK(sbi, segno);
2819 sum_entry = &sum->entries[0];
2820
2821 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2822 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2823
2824 /* readahead node pages */
2825 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2826
2827 for (idx = addr; idx < addr + nrpages; idx++) {
2828 struct page *page = f2fs_get_tmp_page(sbi, idx);
2829
2830 if (IS_ERR(page))
2831 return PTR_ERR(page);
2832
2833 rn = F2FS_NODE(page);
2834 sum_entry->nid = rn->footer.nid;
2835 sum_entry->version = 0;
2836 sum_entry->ofs_in_node = 0;
2837 sum_entry++;
2838 f2fs_put_page(page, 1);
2839 }
2840
2841 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2842 addr + nrpages);
2843 }
2844 return 0;
2845 }
2846
remove_nats_in_journal(struct f2fs_sb_info * sbi)2847 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2848 {
2849 struct f2fs_nm_info *nm_i = NM_I(sbi);
2850 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2851 struct f2fs_journal *journal = curseg->journal;
2852 int i;
2853
2854 down_write(&curseg->journal_rwsem);
2855 for (i = 0; i < nats_in_cursum(journal); i++) {
2856 struct nat_entry *ne;
2857 struct f2fs_nat_entry raw_ne;
2858 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2859
2860 if (f2fs_check_nid_range(sbi, nid))
2861 continue;
2862
2863 raw_ne = nat_in_journal(journal, i);
2864
2865 ne = __lookup_nat_cache(nm_i, nid);
2866 if (!ne) {
2867 ne = __alloc_nat_entry(nid, true);
2868 __init_nat_entry(nm_i, ne, &raw_ne, true);
2869 }
2870
2871 /*
2872 * if a free nat in journal has not been used after last
2873 * checkpoint, we should remove it from available nids,
2874 * since later we will add it again.
2875 */
2876 if (!get_nat_flag(ne, IS_DIRTY) &&
2877 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2878 spin_lock(&nm_i->nid_list_lock);
2879 nm_i->available_nids--;
2880 spin_unlock(&nm_i->nid_list_lock);
2881 }
2882
2883 __set_nat_cache_dirty(nm_i, ne);
2884 }
2885 update_nats_in_cursum(journal, -i);
2886 up_write(&curseg->journal_rwsem);
2887 }
2888
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2889 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2890 struct list_head *head, int max)
2891 {
2892 struct nat_entry_set *cur;
2893
2894 if (nes->entry_cnt >= max)
2895 goto add_out;
2896
2897 list_for_each_entry(cur, head, set_list) {
2898 if (cur->entry_cnt >= nes->entry_cnt) {
2899 list_add(&nes->set_list, cur->set_list.prev);
2900 return;
2901 }
2902 }
2903 add_out:
2904 list_add_tail(&nes->set_list, head);
2905 }
2906
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2907 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2908 struct page *page)
2909 {
2910 struct f2fs_nm_info *nm_i = NM_I(sbi);
2911 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2912 struct f2fs_nat_block *nat_blk = page_address(page);
2913 int valid = 0;
2914 int i = 0;
2915
2916 if (!enabled_nat_bits(sbi, NULL))
2917 return;
2918
2919 if (nat_index == 0) {
2920 valid = 1;
2921 i = 1;
2922 }
2923 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2924 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2925 valid++;
2926 }
2927 if (valid == 0) {
2928 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2929 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2930 return;
2931 }
2932
2933 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2934 if (valid == NAT_ENTRY_PER_BLOCK)
2935 __set_bit_le(nat_index, nm_i->full_nat_bits);
2936 else
2937 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2938 }
2939
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2940 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2941 struct nat_entry_set *set, struct cp_control *cpc)
2942 {
2943 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2944 struct f2fs_journal *journal = curseg->journal;
2945 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2946 bool to_journal = true;
2947 struct f2fs_nat_block *nat_blk;
2948 struct nat_entry *ne, *cur;
2949 struct page *page = NULL;
2950
2951 /*
2952 * there are two steps to flush nat entries:
2953 * #1, flush nat entries to journal in current hot data summary block.
2954 * #2, flush nat entries to nat page.
2955 */
2956 if (enabled_nat_bits(sbi, cpc) ||
2957 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2958 to_journal = false;
2959
2960 if (to_journal) {
2961 down_write(&curseg->journal_rwsem);
2962 } else {
2963 page = get_next_nat_page(sbi, start_nid);
2964 if (IS_ERR(page))
2965 return PTR_ERR(page);
2966
2967 nat_blk = page_address(page);
2968 f2fs_bug_on(sbi, !nat_blk);
2969 }
2970
2971 /* flush dirty nats in nat entry set */
2972 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2973 struct f2fs_nat_entry *raw_ne;
2974 nid_t nid = nat_get_nid(ne);
2975 int offset;
2976
2977 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2978
2979 if (to_journal) {
2980 offset = f2fs_lookup_journal_in_cursum(journal,
2981 NAT_JOURNAL, nid, 1);
2982 f2fs_bug_on(sbi, offset < 0);
2983 raw_ne = &nat_in_journal(journal, offset);
2984 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2985 } else {
2986 raw_ne = &nat_blk->entries[nid - start_nid];
2987 }
2988 raw_nat_from_node_info(raw_ne, &ne->ni);
2989 nat_reset_flag(ne);
2990 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2991 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2992 add_free_nid(sbi, nid, false, true);
2993 } else {
2994 spin_lock(&NM_I(sbi)->nid_list_lock);
2995 update_free_nid_bitmap(sbi, nid, false, false);
2996 spin_unlock(&NM_I(sbi)->nid_list_lock);
2997 }
2998 }
2999
3000 if (to_journal) {
3001 up_write(&curseg->journal_rwsem);
3002 } else {
3003 __update_nat_bits(sbi, start_nid, page);
3004 f2fs_put_page(page, 1);
3005 }
3006
3007 /* Allow dirty nats by node block allocation in write_begin */
3008 if (!set->entry_cnt) {
3009 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3010 kmem_cache_free(nat_entry_set_slab, set);
3011 }
3012 return 0;
3013 }
3014
3015 /*
3016 * This function is called during the checkpointing process.
3017 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3018 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3019 {
3020 struct f2fs_nm_info *nm_i = NM_I(sbi);
3021 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3022 struct f2fs_journal *journal = curseg->journal;
3023 struct nat_entry_set *setvec[SETVEC_SIZE];
3024 struct nat_entry_set *set, *tmp;
3025 unsigned int found;
3026 nid_t set_idx = 0;
3027 LIST_HEAD(sets);
3028 int err = 0;
3029
3030 /*
3031 * during unmount, let's flush nat_bits before checking
3032 * nat_cnt[DIRTY_NAT].
3033 */
3034 if (enabled_nat_bits(sbi, cpc)) {
3035 f2fs_down_write(&nm_i->nat_tree_lock);
3036 remove_nats_in_journal(sbi);
3037 f2fs_up_write(&nm_i->nat_tree_lock);
3038 }
3039
3040 if (!nm_i->nat_cnt[DIRTY_NAT])
3041 return 0;
3042
3043 f2fs_down_write(&nm_i->nat_tree_lock);
3044
3045 /*
3046 * if there are no enough space in journal to store dirty nat
3047 * entries, remove all entries from journal and merge them
3048 * into nat entry set.
3049 */
3050 if (enabled_nat_bits(sbi, cpc) ||
3051 !__has_cursum_space(journal,
3052 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3053 remove_nats_in_journal(sbi);
3054
3055 while ((found = __gang_lookup_nat_set(nm_i,
3056 set_idx, SETVEC_SIZE, setvec))) {
3057 unsigned idx;
3058
3059 set_idx = setvec[found - 1]->set + 1;
3060 for (idx = 0; idx < found; idx++)
3061 __adjust_nat_entry_set(setvec[idx], &sets,
3062 MAX_NAT_JENTRIES(journal));
3063 }
3064
3065 /* flush dirty nats in nat entry set */
3066 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3067 err = __flush_nat_entry_set(sbi, set, cpc);
3068 if (err)
3069 break;
3070 }
3071
3072 f2fs_up_write(&nm_i->nat_tree_lock);
3073 /* Allow dirty nats by node block allocation in write_begin */
3074
3075 return err;
3076 }
3077
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3078 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3079 {
3080 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3081 struct f2fs_nm_info *nm_i = NM_I(sbi);
3082 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3083 unsigned int i;
3084 __u64 cp_ver = cur_cp_version(ckpt);
3085 block_t nat_bits_addr;
3086
3087 if (!enabled_nat_bits(sbi, NULL))
3088 return 0;
3089
3090 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3091 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3092 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3093 if (!nm_i->nat_bits)
3094 return -ENOMEM;
3095
3096 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3097 nm_i->nat_bits_blocks;
3098 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3099 struct page *page;
3100
3101 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3102 if (IS_ERR(page))
3103 return PTR_ERR(page);
3104
3105 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3106 page_address(page), F2FS_BLKSIZE);
3107 f2fs_put_page(page, 1);
3108 }
3109
3110 cp_ver |= (cur_cp_crc(ckpt) << 32);
3111 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3112 disable_nat_bits(sbi, true);
3113 return 0;
3114 }
3115
3116 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3117 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3118
3119 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3120 return 0;
3121 }
3122
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3123 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3124 {
3125 struct f2fs_nm_info *nm_i = NM_I(sbi);
3126 unsigned int i = 0;
3127 nid_t nid, last_nid;
3128
3129 if (!enabled_nat_bits(sbi, NULL))
3130 return;
3131
3132 for (i = 0; i < nm_i->nat_blocks; i++) {
3133 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3134 if (i >= nm_i->nat_blocks)
3135 break;
3136
3137 __set_bit_le(i, nm_i->nat_block_bitmap);
3138
3139 nid = i * NAT_ENTRY_PER_BLOCK;
3140 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3141
3142 spin_lock(&NM_I(sbi)->nid_list_lock);
3143 for (; nid < last_nid; nid++)
3144 update_free_nid_bitmap(sbi, nid, true, true);
3145 spin_unlock(&NM_I(sbi)->nid_list_lock);
3146 }
3147
3148 for (i = 0; i < nm_i->nat_blocks; i++) {
3149 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3150 if (i >= nm_i->nat_blocks)
3151 break;
3152
3153 __set_bit_le(i, nm_i->nat_block_bitmap);
3154 }
3155 }
3156
init_node_manager(struct f2fs_sb_info * sbi)3157 static int init_node_manager(struct f2fs_sb_info *sbi)
3158 {
3159 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3160 struct f2fs_nm_info *nm_i = NM_I(sbi);
3161 unsigned char *version_bitmap;
3162 unsigned int nat_segs;
3163 int err;
3164
3165 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3166
3167 /* segment_count_nat includes pair segment so divide to 2. */
3168 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3169 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3170 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3171
3172 /* not used nids: 0, node, meta, (and root counted as valid node) */
3173 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3174 F2FS_RESERVED_NODE_NUM;
3175 nm_i->nid_cnt[FREE_NID] = 0;
3176 nm_i->nid_cnt[PREALLOC_NID] = 0;
3177 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3178 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3179 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3180
3181 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3182 INIT_LIST_HEAD(&nm_i->free_nid_list);
3183 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3184 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3185 INIT_LIST_HEAD(&nm_i->nat_entries);
3186 spin_lock_init(&nm_i->nat_list_lock);
3187
3188 mutex_init(&nm_i->build_lock);
3189 spin_lock_init(&nm_i->nid_list_lock);
3190 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3191
3192 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3193 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3194 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3195 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3196 GFP_KERNEL);
3197 if (!nm_i->nat_bitmap)
3198 return -ENOMEM;
3199
3200 err = __get_nat_bitmaps(sbi);
3201 if (err)
3202 return err;
3203
3204 #ifdef CONFIG_F2FS_CHECK_FS
3205 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3206 GFP_KERNEL);
3207 if (!nm_i->nat_bitmap_mir)
3208 return -ENOMEM;
3209 #endif
3210
3211 return 0;
3212 }
3213
init_free_nid_cache(struct f2fs_sb_info * sbi)3214 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3215 {
3216 struct f2fs_nm_info *nm_i = NM_I(sbi);
3217 int i;
3218
3219 nm_i->free_nid_bitmap =
3220 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3221 nm_i->nat_blocks),
3222 GFP_KERNEL);
3223 if (!nm_i->free_nid_bitmap)
3224 return -ENOMEM;
3225
3226 for (i = 0; i < nm_i->nat_blocks; i++) {
3227 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3228 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3229 if (!nm_i->free_nid_bitmap[i])
3230 return -ENOMEM;
3231 }
3232
3233 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3234 GFP_KERNEL);
3235 if (!nm_i->nat_block_bitmap)
3236 return -ENOMEM;
3237
3238 nm_i->free_nid_count =
3239 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3240 nm_i->nat_blocks),
3241 GFP_KERNEL);
3242 if (!nm_i->free_nid_count)
3243 return -ENOMEM;
3244 return 0;
3245 }
3246
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3247 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3248 {
3249 int err;
3250
3251 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3252 GFP_KERNEL);
3253 if (!sbi->nm_info)
3254 return -ENOMEM;
3255
3256 err = init_node_manager(sbi);
3257 if (err)
3258 return err;
3259
3260 err = init_free_nid_cache(sbi);
3261 if (err)
3262 return err;
3263
3264 /* load free nid status from nat_bits table */
3265 load_free_nid_bitmap(sbi);
3266
3267 return f2fs_build_free_nids(sbi, true, true);
3268 }
3269
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3270 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3271 {
3272 struct f2fs_nm_info *nm_i = NM_I(sbi);
3273 struct free_nid *i, *next_i;
3274 struct nat_entry *natvec[NATVEC_SIZE];
3275 struct nat_entry_set *setvec[SETVEC_SIZE];
3276 nid_t nid = 0;
3277 unsigned int found;
3278
3279 if (!nm_i)
3280 return;
3281
3282 /* destroy free nid list */
3283 spin_lock(&nm_i->nid_list_lock);
3284 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3285 __remove_free_nid(sbi, i, FREE_NID);
3286 spin_unlock(&nm_i->nid_list_lock);
3287 kmem_cache_free(free_nid_slab, i);
3288 spin_lock(&nm_i->nid_list_lock);
3289 }
3290 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3291 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3292 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3293 spin_unlock(&nm_i->nid_list_lock);
3294
3295 /* destroy nat cache */
3296 f2fs_down_write(&nm_i->nat_tree_lock);
3297 while ((found = __gang_lookup_nat_cache(nm_i,
3298 nid, NATVEC_SIZE, natvec))) {
3299 unsigned idx;
3300
3301 nid = nat_get_nid(natvec[found - 1]) + 1;
3302 for (idx = 0; idx < found; idx++) {
3303 spin_lock(&nm_i->nat_list_lock);
3304 list_del(&natvec[idx]->list);
3305 spin_unlock(&nm_i->nat_list_lock);
3306
3307 __del_from_nat_cache(nm_i, natvec[idx]);
3308 }
3309 }
3310 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3311
3312 /* destroy nat set cache */
3313 nid = 0;
3314 while ((found = __gang_lookup_nat_set(nm_i,
3315 nid, SETVEC_SIZE, setvec))) {
3316 unsigned idx;
3317
3318 nid = setvec[found - 1]->set + 1;
3319 for (idx = 0; idx < found; idx++) {
3320 /* entry_cnt is not zero, when cp_error was occurred */
3321 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3322 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3323 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3324 }
3325 }
3326 f2fs_up_write(&nm_i->nat_tree_lock);
3327
3328 kvfree(nm_i->nat_block_bitmap);
3329 if (nm_i->free_nid_bitmap) {
3330 int i;
3331
3332 for (i = 0; i < nm_i->nat_blocks; i++)
3333 kvfree(nm_i->free_nid_bitmap[i]);
3334 kvfree(nm_i->free_nid_bitmap);
3335 }
3336 kvfree(nm_i->free_nid_count);
3337
3338 kvfree(nm_i->nat_bitmap);
3339 kvfree(nm_i->nat_bits);
3340 #ifdef CONFIG_F2FS_CHECK_FS
3341 kvfree(nm_i->nat_bitmap_mir);
3342 #endif
3343 sbi->nm_info = NULL;
3344 kfree(nm_i);
3345 }
3346
f2fs_create_node_manager_caches(void)3347 int __init f2fs_create_node_manager_caches(void)
3348 {
3349 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3350 sizeof(struct nat_entry));
3351 if (!nat_entry_slab)
3352 goto fail;
3353
3354 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3355 sizeof(struct free_nid));
3356 if (!free_nid_slab)
3357 goto destroy_nat_entry;
3358
3359 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3360 sizeof(struct nat_entry_set));
3361 if (!nat_entry_set_slab)
3362 goto destroy_free_nid;
3363
3364 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3365 sizeof(struct fsync_node_entry));
3366 if (!fsync_node_entry_slab)
3367 goto destroy_nat_entry_set;
3368 return 0;
3369
3370 destroy_nat_entry_set:
3371 kmem_cache_destroy(nat_entry_set_slab);
3372 destroy_free_nid:
3373 kmem_cache_destroy(free_nid_slab);
3374 destroy_nat_entry:
3375 kmem_cache_destroy(nat_entry_slab);
3376 fail:
3377 return -ENOMEM;
3378 }
3379
f2fs_destroy_node_manager_caches(void)3380 void f2fs_destroy_node_manager_caches(void)
3381 {
3382 kmem_cache_destroy(fsync_node_entry_slab);
3383 kmem_cache_destroy(nat_entry_set_slab);
3384 kmem_cache_destroy(free_nid_slab);
3385 kmem_cache_destroy(nat_entry_slab);
3386 }
3387