1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include <trace/events/f2fs.h>
29 #include <trace/events/android_fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS 128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
44 return -ENOMEM;
45 return 0;
46 }
47
f2fs_destroy_bioset(void)48 void f2fs_destroy_bioset(void)
49 {
50 bioset_exit(&f2fs_bioset);
51 }
52
__is_cp_guaranteed(struct page * page)53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 struct address_space *mapping = page->mapping;
56 struct inode *inode;
57 struct f2fs_sb_info *sbi;
58
59 if (!mapping)
60 return false;
61
62 inode = mapping->host;
63 sbi = F2FS_I_SB(inode);
64
65 if (inode->i_ino == F2FS_META_INO(sbi) ||
66 inode->i_ino == F2FS_NODE_INO(sbi) ||
67 S_ISDIR(inode->i_mode))
68 return true;
69
70 if (f2fs_is_compressed_page(page))
71 return false;
72 if ((S_ISREG(inode->i_mode) &&
73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74 page_private_gcing(page))
75 return true;
76 return false;
77 }
78
__read_io_type(struct page * page)79 static enum count_type __read_io_type(struct page *page)
80 {
81 struct address_space *mapping = page_file_mapping(page);
82
83 if (mapping) {
84 struct inode *inode = mapping->host;
85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86
87 if (inode->i_ino == F2FS_META_INO(sbi))
88 return F2FS_RD_META;
89
90 if (inode->i_ino == F2FS_NODE_INO(sbi))
91 return F2FS_RD_NODE;
92 }
93 return F2FS_RD_DATA;
94 }
95
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99 STEP_DECRYPT = 1 << 0,
100 #else
101 STEP_DECRYPT = 0, /* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 STEP_DECOMPRESS = 1 << 1,
105 #else
106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109 STEP_VERITY = 1 << 2,
110 #else
111 STEP_VERITY = 0, /* compile out the verity-related code */
112 #endif
113 };
114
115 struct bio_post_read_ctx {
116 struct bio *bio;
117 struct f2fs_sb_info *sbi;
118 struct work_struct work;
119 unsigned int enabled_steps;
120 };
121
f2fs_finish_read_bio(struct bio * bio,bool in_task)122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
123 {
124 struct bio_vec *bv;
125 struct bvec_iter_all iter_all;
126
127 /*
128 * Update and unlock the bio's pagecache pages, and put the
129 * decompression context for any compressed pages.
130 */
131 bio_for_each_segment_all(bv, bio, iter_all) {
132 struct page *page = bv->bv_page;
133
134 if (f2fs_is_compressed_page(page)) {
135 if (bio->bi_status)
136 f2fs_end_read_compressed_page(page, true, 0,
137 in_task);
138 f2fs_put_page_dic(page, in_task);
139 continue;
140 }
141
142 /* PG_error was set if decryption or verity failed. */
143 if (bio->bi_status || PageError(page)) {
144 ClearPageUptodate(page);
145 /* will re-read again later */
146 ClearPageError(page);
147 } else {
148 SetPageUptodate(page);
149 }
150 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151 unlock_page(page);
152 }
153
154 if (bio->bi_private)
155 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156 bio_put(bio);
157 }
158
f2fs_verify_bio(struct work_struct * work)159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161 struct bio_post_read_ctx *ctx =
162 container_of(work, struct bio_post_read_ctx, work);
163 struct bio *bio = ctx->bio;
164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165
166 /*
167 * fsverity_verify_bio() may call readpages() again, and while verity
168 * will be disabled for this, decryption and/or decompression may still
169 * be needed, resulting in another bio_post_read_ctx being allocated.
170 * So to prevent deadlocks we need to release the current ctx to the
171 * mempool first. This assumes that verity is the last post-read step.
172 */
173 mempool_free(ctx, bio_post_read_ctx_pool);
174 bio->bi_private = NULL;
175
176 /*
177 * Verify the bio's pages with fs-verity. Exclude compressed pages,
178 * as those were handled separately by f2fs_end_read_compressed_page().
179 */
180 if (may_have_compressed_pages) {
181 struct bio_vec *bv;
182 struct bvec_iter_all iter_all;
183
184 bio_for_each_segment_all(bv, bio, iter_all) {
185 struct page *page = bv->bv_page;
186
187 if (!f2fs_is_compressed_page(page) &&
188 !PageError(page) && !fsverity_verify_page(page))
189 SetPageError(page);
190 }
191 } else {
192 fsverity_verify_bio(bio);
193 }
194
195 f2fs_finish_read_bio(bio, true);
196 }
197
198 /*
199 * If the bio's data needs to be verified with fs-verity, then enqueue the
200 * verity work for the bio. Otherwise finish the bio now.
201 *
202 * Note that to avoid deadlocks, the verity work can't be done on the
203 * decryption/decompression workqueue. This is because verifying the data pages
204 * can involve reading verity metadata pages from the file, and these verity
205 * metadata pages may be encrypted and/or compressed.
206 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
208 {
209 struct bio_post_read_ctx *ctx = bio->bi_private;
210
211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 INIT_WORK(&ctx->work, f2fs_verify_bio);
213 fsverity_enqueue_verify_work(&ctx->work);
214 } else {
215 f2fs_finish_read_bio(bio, in_task);
216 }
217 }
218
219 /*
220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221 * remaining page was read by @ctx->bio.
222 *
223 * Note that a bio may span clusters (even a mix of compressed and uncompressed
224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
225 * that the bio includes at least one compressed page. The actual decompression
226 * is done on a per-cluster basis, not a per-bio basis.
227 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
229 bool in_task)
230 {
231 struct bio_vec *bv;
232 struct bvec_iter_all iter_all;
233 bool all_compressed = true;
234 block_t blkaddr = SECTOR_TO_BLOCK(ctx->bio->bi_iter.bi_sector);
235
236 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
237 struct page *page = bv->bv_page;
238
239 /* PG_error was set if decryption failed. */
240 if (f2fs_is_compressed_page(page))
241 f2fs_end_read_compressed_page(page, PageError(page),
242 blkaddr, in_task);
243 else
244 all_compressed = false;
245
246 blkaddr++;
247 }
248
249 /*
250 * Optimization: if all the bio's pages are compressed, then scheduling
251 * the per-bio verity work is unnecessary, as verity will be fully
252 * handled at the compression cluster level.
253 */
254 if (all_compressed)
255 ctx->enabled_steps &= ~STEP_VERITY;
256 }
257
f2fs_post_read_work(struct work_struct * work)258 static void f2fs_post_read_work(struct work_struct *work)
259 {
260 struct bio_post_read_ctx *ctx =
261 container_of(work, struct bio_post_read_ctx, work);
262
263 if (ctx->enabled_steps & STEP_DECRYPT)
264 fscrypt_decrypt_bio(ctx->bio);
265
266 if (ctx->enabled_steps & STEP_DECOMPRESS)
267 f2fs_handle_step_decompress(ctx, true);
268
269 f2fs_verify_and_finish_bio(ctx->bio, true);
270 }
271
f2fs_read_end_io(struct bio * bio)272 static void f2fs_read_end_io(struct bio *bio)
273 {
274 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
275 struct bio_post_read_ctx *ctx = bio->bi_private;
276 bool intask = in_task();
277
278 if (time_to_inject(sbi, FAULT_READ_IO)) {
279 f2fs_show_injection_info(sbi, FAULT_READ_IO);
280 bio->bi_status = BLK_STS_IOERR;
281 }
282
283 if (bio->bi_status) {
284 f2fs_finish_read_bio(bio, intask);
285 return;
286 }
287
288 if (ctx) {
289 unsigned int enabled_steps = ctx->enabled_steps &
290 (STEP_DECRYPT | STEP_DECOMPRESS);
291
292 /*
293 * If we have only decompression step between decompression and
294 * decrypt, we don't need post processing for this.
295 */
296 if (enabled_steps == STEP_DECOMPRESS &&
297 !f2fs_low_mem_mode(sbi)) {
298 f2fs_handle_step_decompress(ctx, intask);
299 } else if (enabled_steps) {
300 INIT_WORK(&ctx->work, f2fs_post_read_work);
301 queue_work(ctx->sbi->post_read_wq, &ctx->work);
302 return;
303 }
304 }
305
306 f2fs_verify_and_finish_bio(bio, intask);
307 }
308
f2fs_write_end_io(struct bio * bio)309 static void f2fs_write_end_io(struct bio *bio)
310 {
311 struct f2fs_sb_info *sbi = bio->bi_private;
312 struct bio_vec *bvec;
313 struct bvec_iter_all iter_all;
314
315 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
316 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
317 bio->bi_status = BLK_STS_IOERR;
318 }
319
320 bio_for_each_segment_all(bvec, bio, iter_all) {
321 struct page *page = bvec->bv_page;
322 enum count_type type = WB_DATA_TYPE(page);
323
324 if (page_private_dummy(page)) {
325 clear_page_private_dummy(page);
326 unlock_page(page);
327 mempool_free(page, sbi->write_io_dummy);
328
329 if (unlikely(bio->bi_status))
330 f2fs_stop_checkpoint(sbi, true,
331 STOP_CP_REASON_WRITE_FAIL);
332 continue;
333 }
334
335 fscrypt_finalize_bounce_page(&page);
336
337 #ifdef CONFIG_F2FS_FS_COMPRESSION
338 if (f2fs_is_compressed_page(page)) {
339 f2fs_compress_write_end_io(bio, page);
340 continue;
341 }
342 #endif
343
344 if (unlikely(bio->bi_status)) {
345 mapping_set_error(page->mapping, -EIO);
346 if (type == F2FS_WB_CP_DATA)
347 f2fs_stop_checkpoint(sbi, true,
348 STOP_CP_REASON_WRITE_FAIL);
349 }
350
351 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
352 page->index != nid_of_node(page));
353
354 dec_page_count(sbi, type);
355 if (f2fs_in_warm_node_list(sbi, page))
356 f2fs_del_fsync_node_entry(sbi, page);
357 clear_page_private_gcing(page);
358 end_page_writeback(page);
359 }
360 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
361 wq_has_sleeper(&sbi->cp_wait))
362 wake_up(&sbi->cp_wait);
363
364 bio_put(bio);
365 }
366
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)367 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
368 block_t blk_addr, struct bio *bio)
369 {
370 struct block_device *bdev = sbi->sb->s_bdev;
371 int i;
372
373 if (f2fs_is_multi_device(sbi)) {
374 for (i = 0; i < sbi->s_ndevs; i++) {
375 if (FDEV(i).start_blk <= blk_addr &&
376 FDEV(i).end_blk >= blk_addr) {
377 blk_addr -= FDEV(i).start_blk;
378 bdev = FDEV(i).bdev;
379 break;
380 }
381 }
382 }
383 if (bio) {
384 bio_set_dev(bio, bdev);
385 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
386 }
387 return bdev;
388 }
389
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)390 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
391 {
392 int i;
393
394 if (!f2fs_is_multi_device(sbi))
395 return 0;
396
397 for (i = 0; i < sbi->s_ndevs; i++)
398 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
399 return i;
400 return 0;
401 }
402
403 /*
404 * Return true, if pre_bio's bdev is same as its target device.
405 */
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)406 static bool __same_bdev(struct f2fs_sb_info *sbi,
407 block_t blk_addr, struct bio *bio)
408 {
409 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
410 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
411 }
412
__bio_alloc(struct f2fs_io_info * fio,int npages)413 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
414 {
415 struct f2fs_sb_info *sbi = fio->sbi;
416 struct bio *bio;
417
418 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
419
420 f2fs_target_device(sbi, fio->new_blkaddr, bio);
421 if (is_read_io(fio->op)) {
422 bio->bi_end_io = f2fs_read_end_io;
423 bio->bi_private = NULL;
424 } else {
425 bio->bi_end_io = f2fs_write_end_io;
426 bio->bi_private = sbi;
427 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
428 fio->type, fio->temp);
429 }
430 if (fio->io_wbc)
431 wbc_init_bio(fio->io_wbc, bio);
432
433 return bio;
434 }
435
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)436 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
437 pgoff_t first_idx,
438 const struct f2fs_io_info *fio,
439 gfp_t gfp_mask)
440 {
441 /*
442 * The f2fs garbage collector sets ->encrypted_page when it wants to
443 * read/write raw data without encryption.
444 */
445 if (!fio || !fio->encrypted_page)
446 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
447 else if (fscrypt_inode_should_skip_dm_default_key(inode))
448 bio_set_skip_dm_default_key(bio);
449 }
450
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)451 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
452 pgoff_t next_idx,
453 const struct f2fs_io_info *fio)
454 {
455 /*
456 * The f2fs garbage collector sets ->encrypted_page when it wants to
457 * read/write raw data without encryption.
458 */
459 if (fio && fio->encrypted_page)
460 return !bio_has_crypt_ctx(bio) &&
461 (bio_should_skip_dm_default_key(bio) ==
462 fscrypt_inode_should_skip_dm_default_key(inode));
463
464 return fscrypt_mergeable_bio(bio, inode, next_idx);
465 }
466
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)467 static inline void __submit_bio(struct f2fs_sb_info *sbi,
468 struct bio *bio, enum page_type type)
469 {
470 if (!is_read_io(bio_op(bio))) {
471 unsigned int start;
472
473 if (type != DATA && type != NODE)
474 goto submit_io;
475
476 if (f2fs_lfs_mode(sbi) && current->plug)
477 blk_finish_plug(current->plug);
478
479 if (!F2FS_IO_ALIGNED(sbi))
480 goto submit_io;
481
482 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
483 start %= F2FS_IO_SIZE(sbi);
484
485 if (start == 0)
486 goto submit_io;
487
488 /* fill dummy pages */
489 for (; start < F2FS_IO_SIZE(sbi); start++) {
490 struct page *page =
491 mempool_alloc(sbi->write_io_dummy,
492 GFP_NOIO | __GFP_NOFAIL);
493 f2fs_bug_on(sbi, !page);
494
495 lock_page(page);
496
497 zero_user_segment(page, 0, PAGE_SIZE);
498 set_page_private_dummy(page);
499
500 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
501 f2fs_bug_on(sbi, 1);
502 }
503 /*
504 * In the NODE case, we lose next block address chain. So, we
505 * need to do checkpoint in f2fs_sync_file.
506 */
507 if (type == NODE)
508 set_sbi_flag(sbi, SBI_NEED_CP);
509 }
510 submit_io:
511 if (is_read_io(bio_op(bio)))
512 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
513 else
514 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
515 submit_bio(bio);
516 }
517
f2fs_submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)518 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
519 struct bio *bio, enum page_type type)
520 {
521 __submit_bio(sbi, bio, type);
522 }
523
__attach_io_flag(struct f2fs_io_info * fio)524 static void __attach_io_flag(struct f2fs_io_info *fio)
525 {
526 struct f2fs_sb_info *sbi = fio->sbi;
527 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
528 unsigned int io_flag, fua_flag, meta_flag;
529
530 if (fio->type == DATA)
531 io_flag = sbi->data_io_flag;
532 else if (fio->type == NODE)
533 io_flag = sbi->node_io_flag;
534 else
535 return;
536
537 fua_flag = io_flag & temp_mask;
538 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
539
540 /*
541 * data/node io flag bits per temp:
542 * REQ_META | REQ_FUA |
543 * 5 | 4 | 3 | 2 | 1 | 0 |
544 * Cold | Warm | Hot | Cold | Warm | Hot |
545 */
546 if ((1 << fio->temp) & meta_flag)
547 fio->op_flags |= REQ_META;
548 if ((1 << fio->temp) & fua_flag)
549 fio->op_flags |= REQ_FUA;
550 }
551
__submit_merged_bio(struct f2fs_bio_info * io)552 static void __submit_merged_bio(struct f2fs_bio_info *io)
553 {
554 struct f2fs_io_info *fio = &io->fio;
555
556 if (!io->bio)
557 return;
558
559 __attach_io_flag(fio);
560 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
561
562 if (is_read_io(fio->op))
563 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
564 else
565 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
566
567 __submit_bio(io->sbi, io->bio, fio->type);
568 io->bio = NULL;
569 }
570
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)571 static bool __has_merged_page(struct bio *bio, struct inode *inode,
572 struct page *page, nid_t ino)
573 {
574 struct bio_vec *bvec;
575 struct bvec_iter_all iter_all;
576
577 if (!bio)
578 return false;
579
580 if (!inode && !page && !ino)
581 return true;
582
583 bio_for_each_segment_all(bvec, bio, iter_all) {
584 struct page *target = bvec->bv_page;
585
586 if (fscrypt_is_bounce_page(target)) {
587 target = fscrypt_pagecache_page(target);
588 if (IS_ERR(target))
589 continue;
590 }
591 if (f2fs_is_compressed_page(target)) {
592 target = f2fs_compress_control_page(target);
593 if (IS_ERR(target))
594 continue;
595 }
596
597 if (inode && inode == target->mapping->host)
598 return true;
599 if (page && page == target)
600 return true;
601 if (ino && ino == ino_of_node(target))
602 return true;
603 }
604
605 return false;
606 }
607
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)608 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
609 enum page_type type, enum temp_type temp)
610 {
611 enum page_type btype = PAGE_TYPE_OF_BIO(type);
612 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
613
614 f2fs_down_write(&io->io_rwsem);
615
616 /* change META to META_FLUSH in the checkpoint procedure */
617 if (type >= META_FLUSH) {
618 io->fio.type = META_FLUSH;
619 io->fio.op = REQ_OP_WRITE;
620 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
621 if (!test_opt(sbi, NOBARRIER))
622 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
623 }
624 __submit_merged_bio(io);
625 f2fs_up_write(&io->io_rwsem);
626 }
627
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)628 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
629 struct inode *inode, struct page *page,
630 nid_t ino, enum page_type type, bool force)
631 {
632 enum temp_type temp;
633 bool ret = true;
634
635 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
636 if (!force) {
637 enum page_type btype = PAGE_TYPE_OF_BIO(type);
638 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
639
640 f2fs_down_read(&io->io_rwsem);
641 ret = __has_merged_page(io->bio, inode, page, ino);
642 f2fs_up_read(&io->io_rwsem);
643 }
644 if (ret)
645 __f2fs_submit_merged_write(sbi, type, temp);
646
647 /* TODO: use HOT temp only for meta pages now. */
648 if (type >= META)
649 break;
650 }
651 }
652
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)653 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
654 {
655 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
656 }
657
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)658 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
659 struct inode *inode, struct page *page,
660 nid_t ino, enum page_type type)
661 {
662 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
663 }
664
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)665 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
666 {
667 f2fs_submit_merged_write(sbi, DATA);
668 f2fs_submit_merged_write(sbi, NODE);
669 f2fs_submit_merged_write(sbi, META);
670 }
671
672 /*
673 * Fill the locked page with data located in the block address.
674 * A caller needs to unlock the page on failure.
675 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)676 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
677 {
678 struct bio *bio;
679 struct page *page = fio->encrypted_page ?
680 fio->encrypted_page : fio->page;
681
682 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
683 fio->is_por ? META_POR : (__is_meta_io(fio) ?
684 META_GENERIC : DATA_GENERIC_ENHANCE)))
685 return -EFSCORRUPTED;
686
687 trace_f2fs_submit_page_bio(page, fio);
688
689 /* Allocate a new bio */
690 bio = __bio_alloc(fio, 1);
691
692 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
693 fio->page->index, fio, GFP_NOIO);
694
695 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
696 bio_put(bio);
697 return -EFAULT;
698 }
699
700 if (fio->io_wbc && !is_read_io(fio->op))
701 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
702
703 __attach_io_flag(fio);
704 bio_set_op_attrs(bio, fio->op, fio->op_flags);
705
706 inc_page_count(fio->sbi, is_read_io(fio->op) ?
707 __read_io_type(page): WB_DATA_TYPE(fio->page));
708
709 __submit_bio(fio->sbi, bio, fio->type);
710 return 0;
711 }
712
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)713 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
714 block_t last_blkaddr, block_t cur_blkaddr)
715 {
716 if (unlikely(sbi->max_io_bytes &&
717 bio->bi_iter.bi_size >= sbi->max_io_bytes))
718 return false;
719 if (last_blkaddr + 1 != cur_blkaddr)
720 return false;
721 return __same_bdev(sbi, cur_blkaddr, bio);
722 }
723
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)724 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
725 struct f2fs_io_info *fio)
726 {
727 if (io->fio.op != fio->op)
728 return false;
729 return io->fio.op_flags == fio->op_flags;
730 }
731
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)732 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
733 struct f2fs_bio_info *io,
734 struct f2fs_io_info *fio,
735 block_t last_blkaddr,
736 block_t cur_blkaddr)
737 {
738 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
739 unsigned int filled_blocks =
740 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
741 unsigned int io_size = F2FS_IO_SIZE(sbi);
742 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
743
744 /* IOs in bio is aligned and left space of vectors is not enough */
745 if (!(filled_blocks % io_size) && left_vecs < io_size)
746 return false;
747 }
748 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
749 return false;
750 return io_type_is_mergeable(io, fio);
751 }
752
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)753 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
754 struct page *page, enum temp_type temp)
755 {
756 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
757 struct bio_entry *be;
758
759 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
760 be->bio = bio;
761 bio_get(bio);
762
763 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
764 f2fs_bug_on(sbi, 1);
765
766 f2fs_down_write(&io->bio_list_lock);
767 list_add_tail(&be->list, &io->bio_list);
768 f2fs_up_write(&io->bio_list_lock);
769 }
770
del_bio_entry(struct bio_entry * be)771 static void del_bio_entry(struct bio_entry *be)
772 {
773 list_del(&be->list);
774 kmem_cache_free(bio_entry_slab, be);
775 }
776
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)777 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
778 struct page *page)
779 {
780 struct f2fs_sb_info *sbi = fio->sbi;
781 enum temp_type temp;
782 bool found = false;
783 int ret = -EAGAIN;
784
785 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
786 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
787 struct list_head *head = &io->bio_list;
788 struct bio_entry *be;
789
790 f2fs_down_write(&io->bio_list_lock);
791 list_for_each_entry(be, head, list) {
792 if (be->bio != *bio)
793 continue;
794
795 found = true;
796
797 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
798 *fio->last_block,
799 fio->new_blkaddr));
800 if (f2fs_crypt_mergeable_bio(*bio,
801 fio->page->mapping->host,
802 fio->page->index, fio) &&
803 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
804 PAGE_SIZE) {
805 ret = 0;
806 break;
807 }
808
809 /* page can't be merged into bio; submit the bio */
810 del_bio_entry(be);
811 __submit_bio(sbi, *bio, DATA);
812 break;
813 }
814 f2fs_up_write(&io->bio_list_lock);
815 }
816
817 if (ret) {
818 bio_put(*bio);
819 *bio = NULL;
820 }
821
822 return ret;
823 }
824
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)825 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
826 struct bio **bio, struct page *page)
827 {
828 enum temp_type temp;
829 bool found = false;
830 struct bio *target = bio ? *bio : NULL;
831
832 f2fs_bug_on(sbi, !target && !page);
833
834 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
835 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
836 struct list_head *head = &io->bio_list;
837 struct bio_entry *be;
838
839 if (list_empty(head))
840 continue;
841
842 f2fs_down_read(&io->bio_list_lock);
843 list_for_each_entry(be, head, list) {
844 if (target)
845 found = (target == be->bio);
846 else
847 found = __has_merged_page(be->bio, NULL,
848 page, 0);
849 if (found)
850 break;
851 }
852 f2fs_up_read(&io->bio_list_lock);
853
854 if (!found)
855 continue;
856
857 found = false;
858
859 f2fs_down_write(&io->bio_list_lock);
860 list_for_each_entry(be, head, list) {
861 if (target)
862 found = (target == be->bio);
863 else
864 found = __has_merged_page(be->bio, NULL,
865 page, 0);
866 if (found) {
867 target = be->bio;
868 del_bio_entry(be);
869 break;
870 }
871 }
872 f2fs_up_write(&io->bio_list_lock);
873 }
874
875 if (found)
876 __submit_bio(sbi, target, DATA);
877 if (bio && *bio) {
878 bio_put(*bio);
879 *bio = NULL;
880 }
881 }
882
f2fs_merge_page_bio(struct f2fs_io_info * fio)883 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
884 {
885 struct bio *bio = *fio->bio;
886 struct page *page = fio->encrypted_page ?
887 fio->encrypted_page : fio->page;
888
889 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
890 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
891 return -EFSCORRUPTED;
892
893 trace_f2fs_submit_page_bio(page, fio);
894
895 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
896 fio->new_blkaddr))
897 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
898 alloc_new:
899 if (!bio) {
900 bio = __bio_alloc(fio, BIO_MAX_PAGES);
901 __attach_io_flag(fio);
902 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
903 fio->page->index, fio, GFP_NOIO);
904 bio_set_op_attrs(bio, fio->op, fio->op_flags);
905
906 add_bio_entry(fio->sbi, bio, page, fio->temp);
907 } else {
908 if (add_ipu_page(fio, &bio, page))
909 goto alloc_new;
910 }
911
912 if (fio->io_wbc)
913 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
914
915 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
916
917 *fio->last_block = fio->new_blkaddr;
918 *fio->bio = bio;
919
920 return 0;
921 }
922
f2fs_submit_page_write(struct f2fs_io_info * fio)923 void f2fs_submit_page_write(struct f2fs_io_info *fio)
924 {
925 struct f2fs_sb_info *sbi = fio->sbi;
926 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
927 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
928 struct page *bio_page;
929
930 f2fs_bug_on(sbi, is_read_io(fio->op));
931
932 f2fs_down_write(&io->io_rwsem);
933 next:
934 if (fio->in_list) {
935 spin_lock(&io->io_lock);
936 if (list_empty(&io->io_list)) {
937 spin_unlock(&io->io_lock);
938 goto out;
939 }
940 fio = list_first_entry(&io->io_list,
941 struct f2fs_io_info, list);
942 list_del(&fio->list);
943 spin_unlock(&io->io_lock);
944 }
945
946 verify_fio_blkaddr(fio);
947
948 if (fio->encrypted_page)
949 bio_page = fio->encrypted_page;
950 else if (fio->compressed_page)
951 bio_page = fio->compressed_page;
952 else
953 bio_page = fio->page;
954
955 /* set submitted = true as a return value */
956 fio->submitted = true;
957
958 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
959
960 if (io->bio &&
961 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
962 fio->new_blkaddr) ||
963 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
964 bio_page->index, fio)))
965 __submit_merged_bio(io);
966 alloc_new:
967 if (io->bio == NULL) {
968 if (F2FS_IO_ALIGNED(sbi) &&
969 (fio->type == DATA || fio->type == NODE) &&
970 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
971 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
972 fio->retry = true;
973 goto skip;
974 }
975 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
976 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
977 bio_page->index, fio, GFP_NOIO);
978 io->fio = *fio;
979 }
980
981 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
982 __submit_merged_bio(io);
983 goto alloc_new;
984 }
985
986 if (fio->io_wbc)
987 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
988
989 io->last_block_in_bio = fio->new_blkaddr;
990
991 trace_f2fs_submit_page_write(fio->page, fio);
992 skip:
993 if (fio->in_list)
994 goto next;
995 out:
996 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
997 !f2fs_is_checkpoint_ready(sbi))
998 __submit_merged_bio(io);
999 f2fs_up_write(&io->io_rwsem);
1000 }
1001
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write)1002 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1003 unsigned nr_pages, unsigned op_flag,
1004 pgoff_t first_idx, bool for_write)
1005 {
1006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 struct bio *bio;
1008 struct bio_post_read_ctx *ctx;
1009 unsigned int post_read_steps = 0;
1010
1011 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
1012 min_t(int, nr_pages, BIO_MAX_PAGES),
1013 &f2fs_bioset);
1014 if (!bio)
1015 return ERR_PTR(-ENOMEM);
1016
1017 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1018
1019 f2fs_target_device(sbi, blkaddr, bio);
1020 bio->bi_end_io = f2fs_read_end_io;
1021 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1022
1023 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1024 post_read_steps |= STEP_DECRYPT;
1025
1026 if (f2fs_need_verity(inode, first_idx))
1027 post_read_steps |= STEP_VERITY;
1028
1029 /*
1030 * STEP_DECOMPRESS is handled specially, since a compressed file might
1031 * contain both compressed and uncompressed clusters. We'll allocate a
1032 * bio_post_read_ctx if the file is compressed, but the caller is
1033 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1034 */
1035
1036 if (post_read_steps || f2fs_compressed_file(inode)) {
1037 /* Due to the mempool, this never fails. */
1038 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1039 ctx->bio = bio;
1040 ctx->sbi = sbi;
1041 ctx->enabled_steps = post_read_steps;
1042 bio->bi_private = ctx;
1043 }
1044
1045 return bio;
1046 }
1047
1048 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,int op_flags,bool for_write)1049 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1050 block_t blkaddr, int op_flags, bool for_write)
1051 {
1052 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1053 struct bio *bio;
1054
1055 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1056 page->index, for_write);
1057 if (IS_ERR(bio))
1058 return PTR_ERR(bio);
1059
1060 /* wait for GCed page writeback via META_MAPPING */
1061 f2fs_wait_on_block_writeback(inode, blkaddr);
1062
1063 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1064 bio_put(bio);
1065 return -EFAULT;
1066 }
1067 ClearPageError(page);
1068 inc_page_count(sbi, F2FS_RD_DATA);
1069 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1070 __submit_bio(sbi, bio, DATA);
1071 return 0;
1072 }
1073
__set_data_blkaddr(struct dnode_of_data * dn)1074 static void __set_data_blkaddr(struct dnode_of_data *dn)
1075 {
1076 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1077 __le32 *addr_array;
1078 int base = 0;
1079
1080 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1081 base = get_extra_isize(dn->inode);
1082
1083 /* Get physical address of data block */
1084 addr_array = blkaddr_in_node(rn);
1085 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1086 }
1087
1088 /*
1089 * Lock ordering for the change of data block address:
1090 * ->data_page
1091 * ->node_page
1092 * update block addresses in the node page
1093 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1094 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1095 {
1096 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1097 __set_data_blkaddr(dn);
1098 if (set_page_dirty(dn->node_page))
1099 dn->node_changed = true;
1100 }
1101
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1102 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1103 {
1104 dn->data_blkaddr = blkaddr;
1105 f2fs_set_data_blkaddr(dn);
1106 f2fs_update_read_extent_cache(dn);
1107 }
1108
1109 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1110 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1111 {
1112 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1113 int err;
1114
1115 if (!count)
1116 return 0;
1117
1118 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1119 return -EPERM;
1120 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1121 return err;
1122
1123 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1124 dn->ofs_in_node, count);
1125
1126 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1127
1128 for (; count > 0; dn->ofs_in_node++) {
1129 block_t blkaddr = f2fs_data_blkaddr(dn);
1130
1131 if (blkaddr == NULL_ADDR) {
1132 dn->data_blkaddr = NEW_ADDR;
1133 __set_data_blkaddr(dn);
1134 count--;
1135 }
1136 }
1137
1138 if (set_page_dirty(dn->node_page))
1139 dn->node_changed = true;
1140 return 0;
1141 }
1142
1143 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1144 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1145 {
1146 unsigned int ofs_in_node = dn->ofs_in_node;
1147 int ret;
1148
1149 ret = f2fs_reserve_new_blocks(dn, 1);
1150 dn->ofs_in_node = ofs_in_node;
1151 return ret;
1152 }
1153
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1154 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1155 {
1156 bool need_put = dn->inode_page ? false : true;
1157 int err;
1158
1159 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1160 if (err)
1161 return err;
1162
1163 if (dn->data_blkaddr == NULL_ADDR)
1164 err = f2fs_reserve_new_block(dn);
1165 if (err || need_put)
1166 f2fs_put_dnode(dn);
1167 return err;
1168 }
1169
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)1170 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1171 {
1172 struct extent_info ei = {0, };
1173 struct inode *inode = dn->inode;
1174
1175 if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1176 dn->data_blkaddr = ei.blk + index - ei.fofs;
1177 return 0;
1178 }
1179
1180 return f2fs_reserve_block(dn, index);
1181 }
1182
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)1183 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1184 int op_flags, bool for_write)
1185 {
1186 struct address_space *mapping = inode->i_mapping;
1187 struct dnode_of_data dn;
1188 struct page *page;
1189 struct extent_info ei = {0, };
1190 int err;
1191
1192 page = f2fs_grab_cache_page(mapping, index, for_write);
1193 if (!page)
1194 return ERR_PTR(-ENOMEM);
1195
1196 if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1197 dn.data_blkaddr = ei.blk + index - ei.fofs;
1198 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1199 DATA_GENERIC_ENHANCE_READ)) {
1200 err = -EFSCORRUPTED;
1201 goto put_err;
1202 }
1203 goto got_it;
1204 }
1205
1206 set_new_dnode(&dn, inode, NULL, NULL, 0);
1207 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1208 if (err)
1209 goto put_err;
1210 f2fs_put_dnode(&dn);
1211
1212 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1213 err = -ENOENT;
1214 goto put_err;
1215 }
1216 if (dn.data_blkaddr != NEW_ADDR &&
1217 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1218 dn.data_blkaddr,
1219 DATA_GENERIC_ENHANCE)) {
1220 err = -EFSCORRUPTED;
1221 goto put_err;
1222 }
1223 got_it:
1224 if (PageUptodate(page)) {
1225 unlock_page(page);
1226 return page;
1227 }
1228
1229 /*
1230 * A new dentry page is allocated but not able to be written, since its
1231 * new inode page couldn't be allocated due to -ENOSPC.
1232 * In such the case, its blkaddr can be remained as NEW_ADDR.
1233 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1234 * f2fs_init_inode_metadata.
1235 */
1236 if (dn.data_blkaddr == NEW_ADDR) {
1237 zero_user_segment(page, 0, PAGE_SIZE);
1238 if (!PageUptodate(page))
1239 SetPageUptodate(page);
1240 unlock_page(page);
1241 return page;
1242 }
1243
1244 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1245 op_flags, for_write);
1246 if (err)
1247 goto put_err;
1248 return page;
1249
1250 put_err:
1251 f2fs_put_page(page, 1);
1252 return ERR_PTR(err);
1253 }
1254
f2fs_find_data_page(struct inode * inode,pgoff_t index)1255 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1256 {
1257 struct address_space *mapping = inode->i_mapping;
1258 struct page *page;
1259
1260 page = find_get_page(mapping, index);
1261 if (page && PageUptodate(page))
1262 return page;
1263 f2fs_put_page(page, 0);
1264
1265 page = f2fs_get_read_data_page(inode, index, 0, false);
1266 if (IS_ERR(page))
1267 return page;
1268
1269 if (PageUptodate(page))
1270 return page;
1271
1272 wait_on_page_locked(page);
1273 if (unlikely(!PageUptodate(page))) {
1274 f2fs_put_page(page, 0);
1275 return ERR_PTR(-EIO);
1276 }
1277 return page;
1278 }
1279
1280 /*
1281 * If it tries to access a hole, return an error.
1282 * Because, the callers, functions in dir.c and GC, should be able to know
1283 * whether this page exists or not.
1284 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1285 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1286 bool for_write)
1287 {
1288 struct address_space *mapping = inode->i_mapping;
1289 struct page *page;
1290 repeat:
1291 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1292 if (IS_ERR(page))
1293 return page;
1294
1295 /* wait for read completion */
1296 lock_page(page);
1297 if (unlikely(page->mapping != mapping)) {
1298 f2fs_put_page(page, 1);
1299 goto repeat;
1300 }
1301 if (unlikely(!PageUptodate(page))) {
1302 f2fs_put_page(page, 1);
1303 return ERR_PTR(-EIO);
1304 }
1305 return page;
1306 }
1307
1308 /*
1309 * Caller ensures that this data page is never allocated.
1310 * A new zero-filled data page is allocated in the page cache.
1311 *
1312 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1313 * f2fs_unlock_op().
1314 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1315 * ipage should be released by this function.
1316 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1317 struct page *f2fs_get_new_data_page(struct inode *inode,
1318 struct page *ipage, pgoff_t index, bool new_i_size)
1319 {
1320 struct address_space *mapping = inode->i_mapping;
1321 struct page *page;
1322 struct dnode_of_data dn;
1323 int err;
1324
1325 page = f2fs_grab_cache_page(mapping, index, true);
1326 if (!page) {
1327 /*
1328 * before exiting, we should make sure ipage will be released
1329 * if any error occur.
1330 */
1331 f2fs_put_page(ipage, 1);
1332 return ERR_PTR(-ENOMEM);
1333 }
1334
1335 set_new_dnode(&dn, inode, ipage, NULL, 0);
1336 err = f2fs_reserve_block(&dn, index);
1337 if (err) {
1338 f2fs_put_page(page, 1);
1339 return ERR_PTR(err);
1340 }
1341 if (!ipage)
1342 f2fs_put_dnode(&dn);
1343
1344 if (PageUptodate(page))
1345 goto got_it;
1346
1347 if (dn.data_blkaddr == NEW_ADDR) {
1348 zero_user_segment(page, 0, PAGE_SIZE);
1349 if (!PageUptodate(page))
1350 SetPageUptodate(page);
1351 } else {
1352 f2fs_put_page(page, 1);
1353
1354 /* if ipage exists, blkaddr should be NEW_ADDR */
1355 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1356 page = f2fs_get_lock_data_page(inode, index, true);
1357 if (IS_ERR(page))
1358 return page;
1359 }
1360 got_it:
1361 if (new_i_size && i_size_read(inode) <
1362 ((loff_t)(index + 1) << PAGE_SHIFT))
1363 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1364 return page;
1365 }
1366
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1367 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1368 {
1369 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1370 struct f2fs_summary sum;
1371 struct node_info ni;
1372 block_t old_blkaddr;
1373 blkcnt_t count = 1;
1374 int err;
1375
1376 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1377 return -EPERM;
1378
1379 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1380 if (err)
1381 return err;
1382
1383 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1384 if (dn->data_blkaddr != NULL_ADDR)
1385 goto alloc;
1386
1387 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1388 return err;
1389
1390 alloc:
1391 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1392 old_blkaddr = dn->data_blkaddr;
1393 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1394 &sum, seg_type, NULL);
1395 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1396 invalidate_mapping_pages(META_MAPPING(sbi),
1397 old_blkaddr, old_blkaddr);
1398 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1399 }
1400 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1401
1402 /*
1403 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1404 * data from unwritten block via dio_read.
1405 */
1406 return 0;
1407 }
1408
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)1409 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1410 {
1411 struct inode *inode = file_inode(iocb->ki_filp);
1412 struct f2fs_map_blocks map;
1413 int flag;
1414 int err = 0;
1415 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1416
1417 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1418 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1419 if (map.m_len > map.m_lblk)
1420 map.m_len -= map.m_lblk;
1421 else
1422 map.m_len = 0;
1423
1424 map.m_next_pgofs = NULL;
1425 map.m_next_extent = NULL;
1426 map.m_seg_type = NO_CHECK_TYPE;
1427 map.m_may_create = true;
1428
1429 if (direct_io) {
1430 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1431 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1432 F2FS_GET_BLOCK_PRE_AIO :
1433 F2FS_GET_BLOCK_PRE_DIO;
1434 goto map_blocks;
1435 }
1436 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1437 err = f2fs_convert_inline_inode(inode);
1438 if (err)
1439 return err;
1440 }
1441 if (f2fs_has_inline_data(inode))
1442 return err;
1443
1444 flag = F2FS_GET_BLOCK_PRE_AIO;
1445
1446 map_blocks:
1447 err = f2fs_map_blocks(inode, &map, 1, flag);
1448 if (map.m_len > 0 && err == -ENOSPC) {
1449 if (!direct_io)
1450 set_inode_flag(inode, FI_NO_PREALLOC);
1451 err = 0;
1452 }
1453 return err;
1454 }
1455
f2fs_do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1456 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1457 {
1458 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1459 if (lock)
1460 f2fs_down_read(&sbi->node_change);
1461 else
1462 f2fs_up_read(&sbi->node_change);
1463 } else {
1464 if (lock)
1465 f2fs_lock_op(sbi);
1466 else
1467 f2fs_unlock_op(sbi);
1468 }
1469 }
1470
1471 /*
1472 * f2fs_map_blocks() tries to find or build mapping relationship which
1473 * maps continuous logical blocks to physical blocks, and return such
1474 * info via f2fs_map_blocks structure.
1475 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1476 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1477 int create, int flag)
1478 {
1479 unsigned int maxblocks = map->m_len;
1480 struct dnode_of_data dn;
1481 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1482 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1483 pgoff_t pgofs, end_offset, end;
1484 int err = 0, ofs = 1;
1485 unsigned int ofs_in_node, last_ofs_in_node;
1486 blkcnt_t prealloc;
1487 struct extent_info ei = {0, };
1488 block_t blkaddr;
1489 unsigned int start_pgofs;
1490
1491 if (!maxblocks)
1492 return 0;
1493
1494 map->m_len = 0;
1495 map->m_flags = 0;
1496
1497 /* it only supports block size == page size */
1498 pgofs = (pgoff_t)map->m_lblk;
1499 end = pgofs + maxblocks;
1500
1501 if (!create && f2fs_lookup_read_extent_cache(inode, pgofs, &ei)) {
1502 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1503 map->m_may_create)
1504 goto next_dnode;
1505
1506 map->m_pblk = ei.blk + pgofs - ei.fofs;
1507 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1508 map->m_flags = F2FS_MAP_MAPPED;
1509 if (map->m_next_extent)
1510 *map->m_next_extent = pgofs + map->m_len;
1511
1512 /* for hardware encryption, but to avoid potential issue in future */
1513 if (flag == F2FS_GET_BLOCK_DIO)
1514 f2fs_wait_on_block_writeback_range(inode,
1515 map->m_pblk, map->m_len);
1516 goto out;
1517 }
1518
1519 next_dnode:
1520 if (map->m_may_create)
1521 f2fs_do_map_lock(sbi, flag, true);
1522
1523 /* When reading holes, we need its node page */
1524 set_new_dnode(&dn, inode, NULL, NULL, 0);
1525 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1526 if (err) {
1527 if (flag == F2FS_GET_BLOCK_BMAP)
1528 map->m_pblk = 0;
1529
1530 if (err == -ENOENT) {
1531 /*
1532 * There is one exceptional case that read_node_page()
1533 * may return -ENOENT due to filesystem has been
1534 * shutdown or cp_error, so force to convert error
1535 * number to EIO for such case.
1536 */
1537 if (map->m_may_create &&
1538 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1539 f2fs_cp_error(sbi))) {
1540 err = -EIO;
1541 goto unlock_out;
1542 }
1543
1544 err = 0;
1545 if (map->m_next_pgofs)
1546 *map->m_next_pgofs =
1547 f2fs_get_next_page_offset(&dn, pgofs);
1548 if (map->m_next_extent)
1549 *map->m_next_extent =
1550 f2fs_get_next_page_offset(&dn, pgofs);
1551 }
1552 goto unlock_out;
1553 }
1554
1555 start_pgofs = pgofs;
1556 prealloc = 0;
1557 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1558 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1559
1560 next_block:
1561 blkaddr = f2fs_data_blkaddr(&dn);
1562
1563 if (__is_valid_data_blkaddr(blkaddr) &&
1564 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1565 err = -EFSCORRUPTED;
1566 goto sync_out;
1567 }
1568
1569 if (__is_valid_data_blkaddr(blkaddr)) {
1570 /* use out-place-update for driect IO under LFS mode */
1571 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1572 map->m_may_create) {
1573 err = __allocate_data_block(&dn, map->m_seg_type);
1574 if (err)
1575 goto sync_out;
1576 blkaddr = dn.data_blkaddr;
1577 set_inode_flag(inode, FI_APPEND_WRITE);
1578 }
1579 } else {
1580 if (create) {
1581 if (unlikely(f2fs_cp_error(sbi))) {
1582 err = -EIO;
1583 goto sync_out;
1584 }
1585 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1586 if (blkaddr == NULL_ADDR) {
1587 prealloc++;
1588 last_ofs_in_node = dn.ofs_in_node;
1589 }
1590 } else {
1591 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1592 flag != F2FS_GET_BLOCK_DIO);
1593 err = __allocate_data_block(&dn,
1594 map->m_seg_type);
1595 if (!err)
1596 set_inode_flag(inode, FI_APPEND_WRITE);
1597 }
1598 if (err)
1599 goto sync_out;
1600 map->m_flags |= F2FS_MAP_NEW;
1601 blkaddr = dn.data_blkaddr;
1602 } else {
1603 if (flag == F2FS_GET_BLOCK_BMAP) {
1604 map->m_pblk = 0;
1605 goto sync_out;
1606 }
1607 if (flag == F2FS_GET_BLOCK_PRECACHE)
1608 goto sync_out;
1609 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1610 blkaddr == NULL_ADDR) {
1611 if (map->m_next_pgofs)
1612 *map->m_next_pgofs = pgofs + 1;
1613 goto sync_out;
1614 }
1615 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1616 /* for defragment case */
1617 if (map->m_next_pgofs)
1618 *map->m_next_pgofs = pgofs + 1;
1619 goto sync_out;
1620 }
1621 }
1622 }
1623
1624 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1625 goto skip;
1626
1627 if (map->m_len == 0) {
1628 /* preallocated unwritten block should be mapped for fiemap. */
1629 if (blkaddr == NEW_ADDR)
1630 map->m_flags |= F2FS_MAP_UNWRITTEN;
1631 map->m_flags |= F2FS_MAP_MAPPED;
1632
1633 map->m_pblk = blkaddr;
1634 map->m_len = 1;
1635 } else if ((map->m_pblk != NEW_ADDR &&
1636 blkaddr == (map->m_pblk + ofs)) ||
1637 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1638 flag == F2FS_GET_BLOCK_PRE_DIO) {
1639 ofs++;
1640 map->m_len++;
1641 } else {
1642 goto sync_out;
1643 }
1644
1645 skip:
1646 dn.ofs_in_node++;
1647 pgofs++;
1648
1649 /* preallocate blocks in batch for one dnode page */
1650 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1651 (pgofs == end || dn.ofs_in_node == end_offset)) {
1652
1653 dn.ofs_in_node = ofs_in_node;
1654 err = f2fs_reserve_new_blocks(&dn, prealloc);
1655 if (err)
1656 goto sync_out;
1657
1658 map->m_len += dn.ofs_in_node - ofs_in_node;
1659 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1660 err = -ENOSPC;
1661 goto sync_out;
1662 }
1663 dn.ofs_in_node = end_offset;
1664 }
1665
1666 if (pgofs >= end)
1667 goto sync_out;
1668 else if (dn.ofs_in_node < end_offset)
1669 goto next_block;
1670
1671 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1672 if (map->m_flags & F2FS_MAP_MAPPED) {
1673 unsigned int ofs = start_pgofs - map->m_lblk;
1674
1675 f2fs_update_read_extent_cache_range(&dn,
1676 start_pgofs, map->m_pblk + ofs,
1677 map->m_len - ofs);
1678 }
1679 }
1680
1681 f2fs_put_dnode(&dn);
1682
1683 if (map->m_may_create) {
1684 f2fs_do_map_lock(sbi, flag, false);
1685 f2fs_balance_fs(sbi, dn.node_changed);
1686 }
1687 goto next_dnode;
1688
1689 sync_out:
1690
1691 /* for hardware encryption, but to avoid potential issue in future */
1692 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1693 f2fs_wait_on_block_writeback_range(inode,
1694 map->m_pblk, map->m_len);
1695
1696 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1697 if (map->m_flags & F2FS_MAP_MAPPED) {
1698 unsigned int ofs = start_pgofs - map->m_lblk;
1699
1700 f2fs_update_read_extent_cache_range(&dn,
1701 start_pgofs, map->m_pblk + ofs,
1702 map->m_len - ofs);
1703 }
1704 if (map->m_next_extent)
1705 *map->m_next_extent = pgofs + 1;
1706 }
1707 f2fs_put_dnode(&dn);
1708 unlock_out:
1709 if (map->m_may_create) {
1710 f2fs_do_map_lock(sbi, flag, false);
1711 f2fs_balance_fs(sbi, dn.node_changed);
1712 }
1713 out:
1714 trace_f2fs_map_blocks(inode, map, err);
1715 return err;
1716 }
1717
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1718 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1719 {
1720 struct f2fs_map_blocks map;
1721 block_t last_lblk;
1722 int err;
1723
1724 if (pos + len > i_size_read(inode))
1725 return false;
1726
1727 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1728 map.m_next_pgofs = NULL;
1729 map.m_next_extent = NULL;
1730 map.m_seg_type = NO_CHECK_TYPE;
1731 map.m_may_create = false;
1732 last_lblk = F2FS_BLK_ALIGN(pos + len);
1733
1734 while (map.m_lblk < last_lblk) {
1735 map.m_len = last_lblk - map.m_lblk;
1736 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1737 if (err || map.m_len == 0)
1738 return false;
1739 map.m_lblk += map.m_len;
1740 }
1741 return true;
1742 }
1743
bytes_to_blks(struct inode * inode,u64 bytes)1744 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1745 {
1746 return (bytes >> inode->i_blkbits);
1747 }
1748
blks_to_bytes(struct inode * inode,u64 blks)1749 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1750 {
1751 return (blks << inode->i_blkbits);
1752 }
1753
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type,bool may_write)1754 static int __get_data_block(struct inode *inode, sector_t iblock,
1755 struct buffer_head *bh, int create, int flag,
1756 pgoff_t *next_pgofs, int seg_type, bool may_write)
1757 {
1758 struct f2fs_map_blocks map;
1759 int err;
1760
1761 map.m_lblk = iblock;
1762 map.m_len = bytes_to_blks(inode, bh->b_size);
1763 map.m_next_pgofs = next_pgofs;
1764 map.m_next_extent = NULL;
1765 map.m_seg_type = seg_type;
1766 map.m_may_create = may_write;
1767
1768 err = f2fs_map_blocks(inode, &map, create, flag);
1769 if (!err) {
1770 map_bh(bh, inode->i_sb, map.m_pblk);
1771 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1772 bh->b_size = blks_to_bytes(inode, map.m_len);
1773 }
1774 return err;
1775 }
1776
get_data_block_dio_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1777 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1778 struct buffer_head *bh_result, int create)
1779 {
1780 return __get_data_block(inode, iblock, bh_result, create,
1781 F2FS_GET_BLOCK_DIO, NULL,
1782 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1783 true);
1784 }
1785
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1786 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1787 struct buffer_head *bh_result, int create)
1788 {
1789 return __get_data_block(inode, iblock, bh_result, create,
1790 F2FS_GET_BLOCK_DIO, NULL,
1791 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1792 false);
1793 }
1794
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1795 static int f2fs_xattr_fiemap(struct inode *inode,
1796 struct fiemap_extent_info *fieinfo)
1797 {
1798 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1799 struct page *page;
1800 struct node_info ni;
1801 __u64 phys = 0, len;
1802 __u32 flags;
1803 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1804 int err = 0;
1805
1806 if (f2fs_has_inline_xattr(inode)) {
1807 int offset;
1808
1809 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1810 inode->i_ino, false);
1811 if (!page)
1812 return -ENOMEM;
1813
1814 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1815 if (err) {
1816 f2fs_put_page(page, 1);
1817 return err;
1818 }
1819
1820 phys = blks_to_bytes(inode, ni.blk_addr);
1821 offset = offsetof(struct f2fs_inode, i_addr) +
1822 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1823 get_inline_xattr_addrs(inode));
1824
1825 phys += offset;
1826 len = inline_xattr_size(inode);
1827
1828 f2fs_put_page(page, 1);
1829
1830 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1831
1832 if (!xnid)
1833 flags |= FIEMAP_EXTENT_LAST;
1834
1835 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1836 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1837 if (err || err == 1)
1838 return err;
1839 }
1840
1841 if (xnid) {
1842 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1843 if (!page)
1844 return -ENOMEM;
1845
1846 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1847 if (err) {
1848 f2fs_put_page(page, 1);
1849 return err;
1850 }
1851
1852 phys = blks_to_bytes(inode, ni.blk_addr);
1853 len = inode->i_sb->s_blocksize;
1854
1855 f2fs_put_page(page, 1);
1856
1857 flags = FIEMAP_EXTENT_LAST;
1858 }
1859
1860 if (phys) {
1861 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1862 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1863 }
1864
1865 return (err < 0 ? err : 0);
1866 }
1867
max_inode_blocks(struct inode * inode)1868 static loff_t max_inode_blocks(struct inode *inode)
1869 {
1870 loff_t result = ADDRS_PER_INODE(inode);
1871 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1872
1873 /* two direct node blocks */
1874 result += (leaf_count * 2);
1875
1876 /* two indirect node blocks */
1877 leaf_count *= NIDS_PER_BLOCK;
1878 result += (leaf_count * 2);
1879
1880 /* one double indirect node block */
1881 leaf_count *= NIDS_PER_BLOCK;
1882 result += leaf_count;
1883
1884 return result;
1885 }
1886
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1887 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1888 u64 start, u64 len)
1889 {
1890 struct f2fs_map_blocks map;
1891 sector_t start_blk, last_blk;
1892 pgoff_t next_pgofs;
1893 u64 logical = 0, phys = 0, size = 0;
1894 u32 flags = 0;
1895 int ret = 0;
1896 bool compr_cluster = false, compr_appended;
1897 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1898 unsigned int count_in_cluster = 0;
1899 loff_t maxbytes;
1900
1901 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1902 ret = f2fs_precache_extents(inode);
1903 if (ret)
1904 return ret;
1905 }
1906
1907 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1908 if (ret)
1909 return ret;
1910
1911 inode_lock(inode);
1912
1913 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1914 if (start > maxbytes) {
1915 ret = -EFBIG;
1916 goto out;
1917 }
1918
1919 if (len > maxbytes || (maxbytes - len) < start)
1920 len = maxbytes - start;
1921
1922 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1923 ret = f2fs_xattr_fiemap(inode, fieinfo);
1924 goto out;
1925 }
1926
1927 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1928 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1929 if (ret != -EAGAIN)
1930 goto out;
1931 }
1932
1933 if (bytes_to_blks(inode, len) == 0)
1934 len = blks_to_bytes(inode, 1);
1935
1936 start_blk = bytes_to_blks(inode, start);
1937 last_blk = bytes_to_blks(inode, start + len - 1);
1938
1939 next:
1940 memset(&map, 0, sizeof(map));
1941 map.m_lblk = start_blk;
1942 map.m_len = bytes_to_blks(inode, len);
1943 map.m_next_pgofs = &next_pgofs;
1944 map.m_seg_type = NO_CHECK_TYPE;
1945
1946 if (compr_cluster) {
1947 map.m_lblk += 1;
1948 map.m_len = cluster_size - count_in_cluster;
1949 }
1950
1951 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1952 if (ret)
1953 goto out;
1954
1955 /* HOLE */
1956 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1957 start_blk = next_pgofs;
1958
1959 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1960 max_inode_blocks(inode)))
1961 goto prep_next;
1962
1963 flags |= FIEMAP_EXTENT_LAST;
1964 }
1965
1966 compr_appended = false;
1967 /* In a case of compressed cluster, append this to the last extent */
1968 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1969 !(map.m_flags & F2FS_MAP_FLAGS))) {
1970 compr_appended = true;
1971 goto skip_fill;
1972 }
1973
1974 if (size) {
1975 flags |= FIEMAP_EXTENT_MERGED;
1976 if (IS_ENCRYPTED(inode))
1977 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1978
1979 ret = fiemap_fill_next_extent(fieinfo, logical,
1980 phys, size, flags);
1981 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1982 if (ret)
1983 goto out;
1984 size = 0;
1985 }
1986
1987 if (start_blk > last_blk)
1988 goto out;
1989
1990 skip_fill:
1991 if (map.m_pblk == COMPRESS_ADDR) {
1992 compr_cluster = true;
1993 count_in_cluster = 1;
1994 } else if (compr_appended) {
1995 unsigned int appended_blks = cluster_size -
1996 count_in_cluster + 1;
1997 size += blks_to_bytes(inode, appended_blks);
1998 start_blk += appended_blks;
1999 compr_cluster = false;
2000 } else {
2001 logical = blks_to_bytes(inode, start_blk);
2002 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2003 blks_to_bytes(inode, map.m_pblk) : 0;
2004 size = blks_to_bytes(inode, map.m_len);
2005 flags = 0;
2006
2007 if (compr_cluster) {
2008 flags = FIEMAP_EXTENT_ENCODED;
2009 count_in_cluster += map.m_len;
2010 if (count_in_cluster == cluster_size) {
2011 compr_cluster = false;
2012 size += blks_to_bytes(inode, 1);
2013 }
2014 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2015 flags = FIEMAP_EXTENT_UNWRITTEN;
2016 }
2017
2018 start_blk += bytes_to_blks(inode, size);
2019 }
2020
2021 prep_next:
2022 cond_resched();
2023 if (fatal_signal_pending(current))
2024 ret = -EINTR;
2025 else
2026 goto next;
2027 out:
2028 if (ret == 1)
2029 ret = 0;
2030
2031 inode_unlock(inode);
2032 return ret;
2033 }
2034
f2fs_readpage_limit(struct inode * inode)2035 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2036 {
2037 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2038 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2039 return inode->i_sb->s_maxbytes;
2040
2041 return i_size_read(inode);
2042 }
2043
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2044 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2045 unsigned nr_pages,
2046 struct f2fs_map_blocks *map,
2047 struct bio **bio_ret,
2048 sector_t *last_block_in_bio,
2049 bool is_readahead)
2050 {
2051 struct bio *bio = *bio_ret;
2052 const unsigned blocksize = blks_to_bytes(inode, 1);
2053 sector_t block_in_file;
2054 sector_t last_block;
2055 sector_t last_block_in_file;
2056 sector_t block_nr;
2057 int ret = 0;
2058
2059 block_in_file = (sector_t)page_index(page);
2060 last_block = block_in_file + nr_pages;
2061 last_block_in_file = bytes_to_blks(inode,
2062 f2fs_readpage_limit(inode) + blocksize - 1);
2063 if (last_block > last_block_in_file)
2064 last_block = last_block_in_file;
2065
2066 /* just zeroing out page which is beyond EOF */
2067 if (block_in_file >= last_block)
2068 goto zero_out;
2069 /*
2070 * Map blocks using the previous result first.
2071 */
2072 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2073 block_in_file > map->m_lblk &&
2074 block_in_file < (map->m_lblk + map->m_len))
2075 goto got_it;
2076
2077 /*
2078 * Then do more f2fs_map_blocks() calls until we are
2079 * done with this page.
2080 */
2081 map->m_lblk = block_in_file;
2082 map->m_len = last_block - block_in_file;
2083
2084 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2085 if (ret)
2086 goto out;
2087 got_it:
2088 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2089 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2090 SetPageMappedToDisk(page);
2091
2092 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2093 !cleancache_get_page(page))) {
2094 SetPageUptodate(page);
2095 goto confused;
2096 }
2097
2098 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2099 DATA_GENERIC_ENHANCE_READ)) {
2100 ret = -EFSCORRUPTED;
2101 goto out;
2102 }
2103 } else {
2104 zero_out:
2105 zero_user_segment(page, 0, PAGE_SIZE);
2106 if (f2fs_need_verity(inode, page->index) &&
2107 !fsverity_verify_page(page)) {
2108 ret = -EIO;
2109 goto out;
2110 }
2111 if (!PageUptodate(page))
2112 SetPageUptodate(page);
2113 unlock_page(page);
2114 goto out;
2115 }
2116
2117 /*
2118 * This page will go to BIO. Do we need to send this
2119 * BIO off first?
2120 */
2121 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2122 *last_block_in_bio, block_nr) ||
2123 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2124 submit_and_realloc:
2125 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2126 bio = NULL;
2127 }
2128 if (bio == NULL) {
2129 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2130 is_readahead ? REQ_RAHEAD : 0, page->index,
2131 false);
2132 if (IS_ERR(bio)) {
2133 ret = PTR_ERR(bio);
2134 bio = NULL;
2135 goto out;
2136 }
2137 }
2138
2139 /*
2140 * If the page is under writeback, we need to wait for
2141 * its completion to see the correct decrypted data.
2142 */
2143 f2fs_wait_on_block_writeback(inode, block_nr);
2144
2145 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2146 goto submit_and_realloc;
2147
2148 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2149 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2150 ClearPageError(page);
2151 *last_block_in_bio = block_nr;
2152 goto out;
2153 confused:
2154 if (bio) {
2155 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2156 bio = NULL;
2157 }
2158 unlock_page(page);
2159 out:
2160 *bio_ret = bio;
2161 return ret;
2162 }
2163
2164 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2165 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2166 unsigned nr_pages, sector_t *last_block_in_bio,
2167 bool is_readahead, bool for_write)
2168 {
2169 struct dnode_of_data dn;
2170 struct inode *inode = cc->inode;
2171 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2172 struct bio *bio = *bio_ret;
2173 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2174 sector_t last_block_in_file;
2175 const unsigned blocksize = blks_to_bytes(inode, 1);
2176 struct decompress_io_ctx *dic = NULL;
2177 struct extent_info ei = {};
2178 bool from_dnode = true;
2179 int i;
2180 int ret = 0;
2181
2182 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2183
2184 last_block_in_file = bytes_to_blks(inode,
2185 f2fs_readpage_limit(inode) + blocksize - 1);
2186
2187 /* get rid of pages beyond EOF */
2188 for (i = 0; i < cc->cluster_size; i++) {
2189 struct page *page = cc->rpages[i];
2190
2191 if (!page)
2192 continue;
2193 if ((sector_t)page->index >= last_block_in_file) {
2194 zero_user_segment(page, 0, PAGE_SIZE);
2195 if (!PageUptodate(page))
2196 SetPageUptodate(page);
2197 } else if (!PageUptodate(page)) {
2198 continue;
2199 }
2200 unlock_page(page);
2201 if (for_write)
2202 put_page(page);
2203 cc->rpages[i] = NULL;
2204 cc->nr_rpages--;
2205 }
2206
2207 /* we are done since all pages are beyond EOF */
2208 if (f2fs_cluster_is_empty(cc))
2209 goto out;
2210
2211 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2212 from_dnode = false;
2213
2214 if (!from_dnode)
2215 goto skip_reading_dnode;
2216
2217 set_new_dnode(&dn, inode, NULL, NULL, 0);
2218 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2219 if (ret)
2220 goto out;
2221
2222 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2223
2224 skip_reading_dnode:
2225 for (i = 1; i < cc->cluster_size; i++) {
2226 block_t blkaddr;
2227
2228 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2229 dn.ofs_in_node + i) :
2230 ei.blk + i - 1;
2231
2232 if (!__is_valid_data_blkaddr(blkaddr))
2233 break;
2234
2235 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2236 ret = -EFAULT;
2237 goto out_put_dnode;
2238 }
2239 cc->nr_cpages++;
2240
2241 if (!from_dnode && i >= ei.c_len)
2242 break;
2243 }
2244
2245 /* nothing to decompress */
2246 if (cc->nr_cpages == 0) {
2247 ret = 0;
2248 goto out_put_dnode;
2249 }
2250
2251 dic = f2fs_alloc_dic(cc);
2252 if (IS_ERR(dic)) {
2253 ret = PTR_ERR(dic);
2254 goto out_put_dnode;
2255 }
2256
2257 for (i = 0; i < cc->nr_cpages; i++) {
2258 struct page *page = dic->cpages[i];
2259 block_t blkaddr;
2260 struct bio_post_read_ctx *ctx;
2261
2262 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2263 dn.ofs_in_node + i + 1) :
2264 ei.blk + i;
2265
2266 f2fs_wait_on_block_writeback(inode, blkaddr);
2267
2268 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2269 if (atomic_dec_and_test(&dic->remaining_pages))
2270 f2fs_decompress_cluster(dic, true);
2271 continue;
2272 }
2273
2274 if (bio && (!page_is_mergeable(sbi, bio,
2275 *last_block_in_bio, blkaddr) ||
2276 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2277 submit_and_realloc:
2278 __submit_bio(sbi, bio, DATA);
2279 bio = NULL;
2280 }
2281
2282 if (!bio) {
2283 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2284 is_readahead ? REQ_RAHEAD : 0,
2285 page->index, for_write);
2286 if (IS_ERR(bio)) {
2287 ret = PTR_ERR(bio);
2288 f2fs_decompress_end_io(dic, ret, true);
2289 f2fs_put_dnode(&dn);
2290 *bio_ret = NULL;
2291 return ret;
2292 }
2293 }
2294
2295 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2296 goto submit_and_realloc;
2297
2298 ctx = bio->bi_private;
2299 ctx->enabled_steps |= STEP_DECOMPRESS;
2300 refcount_inc(&dic->refcnt);
2301
2302 inc_page_count(sbi, F2FS_RD_DATA);
2303 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2304 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2305 ClearPageError(page);
2306 *last_block_in_bio = blkaddr;
2307 }
2308
2309 if (from_dnode)
2310 f2fs_put_dnode(&dn);
2311
2312 *bio_ret = bio;
2313 return 0;
2314
2315 out_put_dnode:
2316 if (from_dnode)
2317 f2fs_put_dnode(&dn);
2318 out:
2319 for (i = 0; i < cc->cluster_size; i++) {
2320 if (cc->rpages[i]) {
2321 ClearPageUptodate(cc->rpages[i]);
2322 ClearPageError(cc->rpages[i]);
2323 unlock_page(cc->rpages[i]);
2324 }
2325 }
2326 *bio_ret = bio;
2327 return ret;
2328 }
2329 #endif
2330
2331 /*
2332 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2333 * Major change was from block_size == page_size in f2fs by default.
2334 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2335 static int f2fs_mpage_readpages(struct inode *inode,
2336 struct readahead_control *rac, struct page *page)
2337 {
2338 struct bio *bio = NULL;
2339 sector_t last_block_in_bio = 0;
2340 struct f2fs_map_blocks map;
2341 #ifdef CONFIG_F2FS_FS_COMPRESSION
2342 struct compress_ctx cc = {
2343 .inode = inode,
2344 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2345 .cluster_size = F2FS_I(inode)->i_cluster_size,
2346 .cluster_idx = NULL_CLUSTER,
2347 .rpages = NULL,
2348 .cpages = NULL,
2349 .nr_rpages = 0,
2350 .nr_cpages = 0,
2351 };
2352 #endif
2353 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2354 unsigned max_nr_pages = nr_pages;
2355 int ret = 0;
2356
2357 map.m_pblk = 0;
2358 map.m_lblk = 0;
2359 map.m_len = 0;
2360 map.m_flags = 0;
2361 map.m_next_pgofs = NULL;
2362 map.m_next_extent = NULL;
2363 map.m_seg_type = NO_CHECK_TYPE;
2364 map.m_may_create = false;
2365
2366 for (; nr_pages; nr_pages--) {
2367 if (rac) {
2368 page = readahead_page(rac);
2369 prefetchw(&page->flags);
2370 }
2371
2372 #ifdef CONFIG_F2FS_FS_COMPRESSION
2373 if (f2fs_compressed_file(inode)) {
2374 /* there are remained comressed pages, submit them */
2375 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2376 ret = f2fs_read_multi_pages(&cc, &bio,
2377 max_nr_pages,
2378 &last_block_in_bio,
2379 rac != NULL, false);
2380 f2fs_destroy_compress_ctx(&cc, false);
2381 if (ret)
2382 goto set_error_page;
2383 }
2384 ret = f2fs_is_compressed_cluster(inode, page->index);
2385 if (ret < 0)
2386 goto set_error_page;
2387 else if (!ret)
2388 goto read_single_page;
2389
2390 ret = f2fs_init_compress_ctx(&cc);
2391 if (ret)
2392 goto set_error_page;
2393
2394 f2fs_compress_ctx_add_page(&cc, page);
2395
2396 goto next_page;
2397 }
2398 read_single_page:
2399 #endif
2400
2401 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2402 &bio, &last_block_in_bio, rac);
2403 if (ret) {
2404 #ifdef CONFIG_F2FS_FS_COMPRESSION
2405 set_error_page:
2406 #endif
2407 SetPageError(page);
2408 zero_user_segment(page, 0, PAGE_SIZE);
2409 unlock_page(page);
2410 }
2411 #ifdef CONFIG_F2FS_FS_COMPRESSION
2412 next_page:
2413 #endif
2414 if (rac)
2415 put_page(page);
2416
2417 #ifdef CONFIG_F2FS_FS_COMPRESSION
2418 if (f2fs_compressed_file(inode)) {
2419 /* last page */
2420 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2421 ret = f2fs_read_multi_pages(&cc, &bio,
2422 max_nr_pages,
2423 &last_block_in_bio,
2424 rac != NULL, false);
2425 f2fs_destroy_compress_ctx(&cc, false);
2426 }
2427 }
2428 #endif
2429 }
2430 if (bio)
2431 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2432 return ret;
2433 }
2434
f2fs_read_data_page(struct file * file,struct page * page)2435 static int f2fs_read_data_page(struct file *file, struct page *page)
2436 {
2437 struct inode *inode = page_file_mapping(page)->host;
2438 int ret = -EAGAIN;
2439
2440 trace_f2fs_readpage(page, DATA);
2441
2442 if (!f2fs_is_compress_backend_ready(inode)) {
2443 unlock_page(page);
2444 return -EOPNOTSUPP;
2445 }
2446
2447 /* If the file has inline data, try to read it directly */
2448 if (f2fs_has_inline_data(inode))
2449 ret = f2fs_read_inline_data(inode, page);
2450 if (ret == -EAGAIN)
2451 ret = f2fs_mpage_readpages(inode, NULL, page);
2452 return ret;
2453 }
2454
f2fs_readahead(struct readahead_control * rac)2455 static void f2fs_readahead(struct readahead_control *rac)
2456 {
2457 struct inode *inode = rac->mapping->host;
2458
2459 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2460
2461 if (!f2fs_is_compress_backend_ready(inode))
2462 return;
2463
2464 /* If the file has inline data, skip readpages */
2465 if (f2fs_has_inline_data(inode))
2466 return;
2467
2468 f2fs_mpage_readpages(inode, rac, NULL);
2469 }
2470
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2471 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2472 {
2473 struct inode *inode = fio->page->mapping->host;
2474 struct page *mpage, *page;
2475 gfp_t gfp_flags = GFP_NOFS;
2476
2477 if (!f2fs_encrypted_file(inode))
2478 return 0;
2479
2480 page = fio->compressed_page ? fio->compressed_page : fio->page;
2481
2482 /* wait for GCed page writeback via META_MAPPING */
2483 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2484
2485 if (fscrypt_inode_uses_inline_crypto(inode))
2486 return 0;
2487
2488 retry_encrypt:
2489 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2490 PAGE_SIZE, 0, gfp_flags);
2491 if (IS_ERR(fio->encrypted_page)) {
2492 /* flush pending IOs and wait for a while in the ENOMEM case */
2493 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2494 f2fs_flush_merged_writes(fio->sbi);
2495 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2496 gfp_flags |= __GFP_NOFAIL;
2497 goto retry_encrypt;
2498 }
2499 return PTR_ERR(fio->encrypted_page);
2500 }
2501
2502 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2503 if (mpage) {
2504 if (PageUptodate(mpage))
2505 memcpy(page_address(mpage),
2506 page_address(fio->encrypted_page), PAGE_SIZE);
2507 f2fs_put_page(mpage, 1);
2508 }
2509 return 0;
2510 }
2511
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2512 static inline bool check_inplace_update_policy(struct inode *inode,
2513 struct f2fs_io_info *fio)
2514 {
2515 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2516 unsigned int policy = SM_I(sbi)->ipu_policy;
2517
2518 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2519 is_inode_flag_set(inode, FI_OPU_WRITE))
2520 return false;
2521 if (policy & (0x1 << F2FS_IPU_FORCE))
2522 return true;
2523 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2524 return true;
2525 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2526 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2527 return true;
2528 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2529 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2530 return true;
2531
2532 /*
2533 * IPU for rewrite async pages
2534 */
2535 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2536 fio && fio->op == REQ_OP_WRITE &&
2537 !(fio->op_flags & REQ_SYNC) &&
2538 !IS_ENCRYPTED(inode))
2539 return true;
2540
2541 /* this is only set during fdatasync */
2542 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2543 is_inode_flag_set(inode, FI_NEED_IPU))
2544 return true;
2545
2546 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2547 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2548 return true;
2549
2550 return false;
2551 }
2552
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2553 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2554 {
2555 /* swap file is migrating in aligned write mode */
2556 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2557 return false;
2558
2559 if (f2fs_is_pinned_file(inode))
2560 return true;
2561
2562 /* if this is cold file, we should overwrite to avoid fragmentation */
2563 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2564 return true;
2565
2566 return check_inplace_update_policy(inode, fio);
2567 }
2568
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2569 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2570 {
2571 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2572
2573 /* The below cases were checked when setting it. */
2574 if (f2fs_is_pinned_file(inode))
2575 return false;
2576 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2577 return true;
2578 if (f2fs_lfs_mode(sbi))
2579 return true;
2580 if (S_ISDIR(inode->i_mode))
2581 return true;
2582 if (IS_NOQUOTA(inode))
2583 return true;
2584 if (f2fs_is_atomic_file(inode))
2585 return true;
2586
2587 /* swap file is migrating in aligned write mode */
2588 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2589 return true;
2590
2591 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2592 return true;
2593
2594 if (fio) {
2595 if (page_private_gcing(fio->page))
2596 return true;
2597 if (page_private_dummy(fio->page))
2598 return true;
2599 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2600 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2601 return true;
2602 }
2603 return false;
2604 }
2605
need_inplace_update(struct f2fs_io_info * fio)2606 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2607 {
2608 struct inode *inode = fio->page->mapping->host;
2609
2610 if (f2fs_should_update_outplace(inode, fio))
2611 return false;
2612
2613 return f2fs_should_update_inplace(inode, fio);
2614 }
2615
f2fs_do_write_data_page(struct f2fs_io_info * fio)2616 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2617 {
2618 struct page *page = fio->page;
2619 struct inode *inode = page->mapping->host;
2620 struct dnode_of_data dn;
2621 struct extent_info ei = {0, };
2622 struct node_info ni;
2623 bool ipu_force = false;
2624 int err = 0;
2625
2626 set_new_dnode(&dn, inode, NULL, NULL, 0);
2627 if (need_inplace_update(fio) &&
2628 f2fs_lookup_read_extent_cache(inode, page->index, &ei)) {
2629 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2630
2631 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2632 DATA_GENERIC_ENHANCE))
2633 return -EFSCORRUPTED;
2634
2635 ipu_force = true;
2636 fio->need_lock = LOCK_DONE;
2637 goto got_it;
2638 }
2639
2640 /* Deadlock due to between page->lock and f2fs_lock_op */
2641 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2642 return -EAGAIN;
2643
2644 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2645 if (err)
2646 goto out;
2647
2648 fio->old_blkaddr = dn.data_blkaddr;
2649
2650 /* This page is already truncated */
2651 if (fio->old_blkaddr == NULL_ADDR) {
2652 ClearPageUptodate(page);
2653 clear_page_private_gcing(page);
2654 goto out_writepage;
2655 }
2656 got_it:
2657 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2658 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2659 DATA_GENERIC_ENHANCE)) {
2660 err = -EFSCORRUPTED;
2661 goto out_writepage;
2662 }
2663 /*
2664 * If current allocation needs SSR,
2665 * it had better in-place writes for updated data.
2666 */
2667 if (ipu_force ||
2668 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2669 need_inplace_update(fio))) {
2670 err = f2fs_encrypt_one_page(fio);
2671 if (err)
2672 goto out_writepage;
2673
2674 set_page_writeback(page);
2675 ClearPageError(page);
2676 f2fs_put_dnode(&dn);
2677 if (fio->need_lock == LOCK_REQ)
2678 f2fs_unlock_op(fio->sbi);
2679 err = f2fs_inplace_write_data(fio);
2680 if (err) {
2681 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2682 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2683 if (PageWriteback(page))
2684 end_page_writeback(page);
2685 } else {
2686 set_inode_flag(inode, FI_UPDATE_WRITE);
2687 }
2688 trace_f2fs_do_write_data_page(fio->page, IPU);
2689 return err;
2690 }
2691
2692 if (fio->need_lock == LOCK_RETRY) {
2693 if (!f2fs_trylock_op(fio->sbi)) {
2694 err = -EAGAIN;
2695 goto out_writepage;
2696 }
2697 fio->need_lock = LOCK_REQ;
2698 }
2699
2700 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2701 if (err)
2702 goto out_writepage;
2703
2704 fio->version = ni.version;
2705
2706 err = f2fs_encrypt_one_page(fio);
2707 if (err)
2708 goto out_writepage;
2709
2710 set_page_writeback(page);
2711 ClearPageError(page);
2712
2713 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2714 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2715
2716 /* LFS mode write path */
2717 f2fs_outplace_write_data(&dn, fio);
2718 trace_f2fs_do_write_data_page(page, OPU);
2719 set_inode_flag(inode, FI_APPEND_WRITE);
2720 if (page->index == 0)
2721 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2722 out_writepage:
2723 f2fs_put_dnode(&dn);
2724 out:
2725 if (fio->need_lock == LOCK_REQ)
2726 f2fs_unlock_op(fio->sbi);
2727 return err;
2728 }
2729
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2730 int f2fs_write_single_data_page(struct page *page, int *submitted,
2731 struct bio **bio,
2732 sector_t *last_block,
2733 struct writeback_control *wbc,
2734 enum iostat_type io_type,
2735 int compr_blocks,
2736 bool allow_balance)
2737 {
2738 struct inode *inode = page->mapping->host;
2739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2740 loff_t i_size = i_size_read(inode);
2741 const pgoff_t end_index = ((unsigned long long)i_size)
2742 >> PAGE_SHIFT;
2743 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2744 unsigned offset = 0;
2745 bool need_balance_fs = false;
2746 int err = 0;
2747 struct f2fs_io_info fio = {
2748 .sbi = sbi,
2749 .ino = inode->i_ino,
2750 .type = DATA,
2751 .op = REQ_OP_WRITE,
2752 .op_flags = wbc_to_write_flags(wbc),
2753 .old_blkaddr = NULL_ADDR,
2754 .page = page,
2755 .encrypted_page = NULL,
2756 .submitted = false,
2757 .compr_blocks = compr_blocks,
2758 .need_lock = LOCK_RETRY,
2759 .post_read = f2fs_post_read_required(inode),
2760 .io_type = io_type,
2761 .io_wbc = wbc,
2762 .bio = bio,
2763 .last_block = last_block,
2764 };
2765
2766 trace_f2fs_writepage(page, DATA);
2767
2768 /* we should bypass data pages to proceed the kworkder jobs */
2769 if (unlikely(f2fs_cp_error(sbi))) {
2770 mapping_set_error(page->mapping, -EIO);
2771 /*
2772 * don't drop any dirty dentry pages for keeping lastest
2773 * directory structure.
2774 */
2775 if (S_ISDIR(inode->i_mode) &&
2776 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2777 goto redirty_out;
2778 goto out;
2779 }
2780
2781 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2782 goto redirty_out;
2783
2784 if (page->index < end_index ||
2785 f2fs_verity_in_progress(inode) ||
2786 compr_blocks)
2787 goto write;
2788
2789 /*
2790 * If the offset is out-of-range of file size,
2791 * this page does not have to be written to disk.
2792 */
2793 offset = i_size & (PAGE_SIZE - 1);
2794 if ((page->index >= end_index + 1) || !offset)
2795 goto out;
2796
2797 zero_user_segment(page, offset, PAGE_SIZE);
2798 write:
2799 if (f2fs_is_drop_cache(inode))
2800 goto out;
2801 /* we should not write 0'th page having journal header */
2802 if (f2fs_is_volatile_file(inode) && (!page->index ||
2803 (!wbc->for_reclaim &&
2804 f2fs_available_free_memory(sbi, BASE_CHECK))))
2805 goto redirty_out;
2806
2807 /* Dentry/quota blocks are controlled by checkpoint */
2808 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2809 /*
2810 * We need to wait for node_write to avoid block allocation during
2811 * checkpoint. This can only happen to quota writes which can cause
2812 * the below discard race condition.
2813 */
2814 if (IS_NOQUOTA(inode))
2815 f2fs_down_read(&sbi->node_write);
2816
2817 fio.need_lock = LOCK_DONE;
2818 err = f2fs_do_write_data_page(&fio);
2819
2820 if (IS_NOQUOTA(inode))
2821 f2fs_up_read(&sbi->node_write);
2822
2823 goto done;
2824 }
2825
2826 if (!wbc->for_reclaim)
2827 need_balance_fs = true;
2828 else if (has_not_enough_free_secs(sbi, 0, 0))
2829 goto redirty_out;
2830 else
2831 set_inode_flag(inode, FI_HOT_DATA);
2832
2833 err = -EAGAIN;
2834 if (f2fs_has_inline_data(inode)) {
2835 err = f2fs_write_inline_data(inode, page);
2836 if (!err)
2837 goto out;
2838 }
2839
2840 if (err == -EAGAIN) {
2841 err = f2fs_do_write_data_page(&fio);
2842 if (err == -EAGAIN) {
2843 fio.need_lock = LOCK_REQ;
2844 err = f2fs_do_write_data_page(&fio);
2845 }
2846 }
2847
2848 if (err) {
2849 file_set_keep_isize(inode);
2850 } else {
2851 spin_lock(&F2FS_I(inode)->i_size_lock);
2852 if (F2FS_I(inode)->last_disk_size < psize)
2853 F2FS_I(inode)->last_disk_size = psize;
2854 spin_unlock(&F2FS_I(inode)->i_size_lock);
2855 }
2856
2857 done:
2858 if (err && err != -ENOENT)
2859 goto redirty_out;
2860
2861 out:
2862 inode_dec_dirty_pages(inode);
2863 if (err) {
2864 ClearPageUptodate(page);
2865 clear_page_private_gcing(page);
2866 }
2867
2868 if (wbc->for_reclaim) {
2869 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2870 clear_inode_flag(inode, FI_HOT_DATA);
2871 f2fs_remove_dirty_inode(inode);
2872 submitted = NULL;
2873 }
2874 unlock_page(page);
2875 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2876 !F2FS_I(inode)->wb_task && allow_balance)
2877 f2fs_balance_fs(sbi, need_balance_fs);
2878
2879 if (unlikely(f2fs_cp_error(sbi))) {
2880 f2fs_submit_merged_write(sbi, DATA);
2881 if (bio && *bio)
2882 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2883 submitted = NULL;
2884 }
2885
2886 if (submitted)
2887 *submitted = fio.submitted ? 1 : 0;
2888
2889 return 0;
2890
2891 redirty_out:
2892 redirty_page_for_writepage(wbc, page);
2893 /*
2894 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2895 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2896 * file_write_and_wait_range() will see EIO error, which is critical
2897 * to return value of fsync() followed by atomic_write failure to user.
2898 */
2899 if (!err || wbc->for_reclaim)
2900 return AOP_WRITEPAGE_ACTIVATE;
2901 unlock_page(page);
2902 return err;
2903 }
2904
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2905 static int f2fs_write_data_page(struct page *page,
2906 struct writeback_control *wbc)
2907 {
2908 #ifdef CONFIG_F2FS_FS_COMPRESSION
2909 struct inode *inode = page->mapping->host;
2910
2911 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2912 goto out;
2913
2914 if (f2fs_compressed_file(inode)) {
2915 if (f2fs_is_compressed_cluster(inode, page->index)) {
2916 redirty_page_for_writepage(wbc, page);
2917 return AOP_WRITEPAGE_ACTIVATE;
2918 }
2919 }
2920 out:
2921 #endif
2922
2923 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2924 wbc, FS_DATA_IO, 0, true);
2925 }
2926
2927 /*
2928 * This function was copied from write_cche_pages from mm/page-writeback.c.
2929 * The major change is making write step of cold data page separately from
2930 * warm/hot data page.
2931 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2932 static int f2fs_write_cache_pages(struct address_space *mapping,
2933 struct writeback_control *wbc,
2934 enum iostat_type io_type)
2935 {
2936 int ret = 0;
2937 int done = 0, retry = 0;
2938 struct pagevec pvec;
2939 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2940 struct bio *bio = NULL;
2941 sector_t last_block;
2942 #ifdef CONFIG_F2FS_FS_COMPRESSION
2943 struct inode *inode = mapping->host;
2944 struct compress_ctx cc = {
2945 .inode = inode,
2946 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2947 .cluster_size = F2FS_I(inode)->i_cluster_size,
2948 .cluster_idx = NULL_CLUSTER,
2949 .rpages = NULL,
2950 .nr_rpages = 0,
2951 .cpages = NULL,
2952 .rbuf = NULL,
2953 .cbuf = NULL,
2954 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2955 .private = NULL,
2956 };
2957 #endif
2958 int nr_pages;
2959 pgoff_t index;
2960 pgoff_t end; /* Inclusive */
2961 pgoff_t done_index;
2962 int range_whole = 0;
2963 xa_mark_t tag;
2964 int nwritten = 0;
2965 int submitted = 0;
2966 int i;
2967
2968 pagevec_init(&pvec);
2969
2970 if (get_dirty_pages(mapping->host) <=
2971 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2972 set_inode_flag(mapping->host, FI_HOT_DATA);
2973 else
2974 clear_inode_flag(mapping->host, FI_HOT_DATA);
2975
2976 if (wbc->range_cyclic) {
2977 index = mapping->writeback_index; /* prev offset */
2978 end = -1;
2979 } else {
2980 index = wbc->range_start >> PAGE_SHIFT;
2981 end = wbc->range_end >> PAGE_SHIFT;
2982 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2983 range_whole = 1;
2984 }
2985 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2986 tag = PAGECACHE_TAG_TOWRITE;
2987 else
2988 tag = PAGECACHE_TAG_DIRTY;
2989 retry:
2990 retry = 0;
2991 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2992 tag_pages_for_writeback(mapping, index, end);
2993 done_index = index;
2994 while (!done && !retry && (index <= end)) {
2995 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2996 tag);
2997 if (nr_pages == 0)
2998 break;
2999
3000 for (i = 0; i < nr_pages; i++) {
3001 struct page *page = pvec.pages[i];
3002 bool need_readd;
3003 readd:
3004 need_readd = false;
3005 #ifdef CONFIG_F2FS_FS_COMPRESSION
3006 if (f2fs_compressed_file(inode)) {
3007 ret = f2fs_init_compress_ctx(&cc);
3008 if (ret) {
3009 done = 1;
3010 break;
3011 }
3012
3013 if (!f2fs_cluster_can_merge_page(&cc,
3014 page->index)) {
3015 ret = f2fs_write_multi_pages(&cc,
3016 &submitted, wbc, io_type);
3017 if (!ret)
3018 need_readd = true;
3019 goto result;
3020 }
3021
3022 if (unlikely(f2fs_cp_error(sbi)))
3023 goto lock_page;
3024
3025 if (f2fs_cluster_is_empty(&cc)) {
3026 void *fsdata = NULL;
3027 struct page *pagep;
3028 int ret2;
3029
3030 ret2 = f2fs_prepare_compress_overwrite(
3031 inode, &pagep,
3032 page->index, &fsdata);
3033 if (ret2 < 0) {
3034 ret = ret2;
3035 done = 1;
3036 break;
3037 } else if (ret2 &&
3038 !f2fs_compress_write_end(inode,
3039 fsdata, page->index,
3040 1)) {
3041 retry = 1;
3042 break;
3043 }
3044 } else {
3045 goto lock_page;
3046 }
3047 }
3048 #endif
3049 /* give a priority to WB_SYNC threads */
3050 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3051 wbc->sync_mode == WB_SYNC_NONE) {
3052 done = 1;
3053 break;
3054 }
3055 #ifdef CONFIG_F2FS_FS_COMPRESSION
3056 lock_page:
3057 #endif
3058 done_index = page->index;
3059 retry_write:
3060 lock_page(page);
3061
3062 if (unlikely(page->mapping != mapping)) {
3063 continue_unlock:
3064 unlock_page(page);
3065 continue;
3066 }
3067
3068 if (!PageDirty(page)) {
3069 /* someone wrote it for us */
3070 goto continue_unlock;
3071 }
3072
3073 if (PageWriteback(page)) {
3074 if (wbc->sync_mode != WB_SYNC_NONE)
3075 f2fs_wait_on_page_writeback(page,
3076 DATA, true, true);
3077 else
3078 goto continue_unlock;
3079 }
3080
3081 if (!clear_page_dirty_for_io(page))
3082 goto continue_unlock;
3083
3084 #ifdef CONFIG_F2FS_FS_COMPRESSION
3085 if (f2fs_compressed_file(inode)) {
3086 get_page(page);
3087 f2fs_compress_ctx_add_page(&cc, page);
3088 continue;
3089 }
3090 #endif
3091 ret = f2fs_write_single_data_page(page, &submitted,
3092 &bio, &last_block, wbc, io_type,
3093 0, true);
3094 if (ret == AOP_WRITEPAGE_ACTIVATE)
3095 unlock_page(page);
3096 #ifdef CONFIG_F2FS_FS_COMPRESSION
3097 result:
3098 #endif
3099 nwritten += submitted;
3100 wbc->nr_to_write -= submitted;
3101
3102 if (unlikely(ret)) {
3103 /*
3104 * keep nr_to_write, since vfs uses this to
3105 * get # of written pages.
3106 */
3107 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3108 ret = 0;
3109 goto next;
3110 } else if (ret == -EAGAIN) {
3111 ret = 0;
3112 if (wbc->sync_mode == WB_SYNC_ALL) {
3113 cond_resched();
3114 congestion_wait(BLK_RW_ASYNC,
3115 DEFAULT_IO_TIMEOUT);
3116 goto retry_write;
3117 }
3118 goto next;
3119 }
3120 done_index = page->index + 1;
3121 done = 1;
3122 break;
3123 }
3124
3125 if (wbc->nr_to_write <= 0 &&
3126 wbc->sync_mode == WB_SYNC_NONE) {
3127 done = 1;
3128 break;
3129 }
3130 next:
3131 if (need_readd)
3132 goto readd;
3133 }
3134 pagevec_release(&pvec);
3135 cond_resched();
3136 }
3137 #ifdef CONFIG_F2FS_FS_COMPRESSION
3138 /* flush remained pages in compress cluster */
3139 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3140 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3141 nwritten += submitted;
3142 wbc->nr_to_write -= submitted;
3143 if (ret) {
3144 done = 1;
3145 retry = 0;
3146 }
3147 }
3148 if (f2fs_compressed_file(inode))
3149 f2fs_destroy_compress_ctx(&cc, false);
3150 #endif
3151 if (retry) {
3152 index = 0;
3153 end = -1;
3154 goto retry;
3155 }
3156 if (wbc->range_cyclic && !done)
3157 done_index = 0;
3158 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3159 mapping->writeback_index = done_index;
3160
3161 if (nwritten)
3162 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3163 NULL, 0, DATA);
3164 /* submit cached bio of IPU write */
3165 if (bio)
3166 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3167
3168 return ret;
3169 }
3170
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3171 static inline bool __should_serialize_io(struct inode *inode,
3172 struct writeback_control *wbc)
3173 {
3174 /* to avoid deadlock in path of data flush */
3175 if (F2FS_I(inode)->wb_task)
3176 return false;
3177
3178 if (!S_ISREG(inode->i_mode))
3179 return false;
3180 if (IS_NOQUOTA(inode))
3181 return false;
3182
3183 if (f2fs_need_compress_data(inode))
3184 return true;
3185 if (wbc->sync_mode != WB_SYNC_ALL)
3186 return true;
3187 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3188 return true;
3189 return false;
3190 }
3191
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3192 static int __f2fs_write_data_pages(struct address_space *mapping,
3193 struct writeback_control *wbc,
3194 enum iostat_type io_type)
3195 {
3196 struct inode *inode = mapping->host;
3197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3198 struct blk_plug plug;
3199 int ret;
3200 bool locked = false;
3201
3202 /* deal with chardevs and other special file */
3203 if (!mapping->a_ops->writepage)
3204 return 0;
3205
3206 /* skip writing if there is no dirty page in this inode */
3207 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3208 return 0;
3209
3210 /* during POR, we don't need to trigger writepage at all. */
3211 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3212 goto skip_write;
3213
3214 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3215 wbc->sync_mode == WB_SYNC_NONE &&
3216 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3217 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3218 goto skip_write;
3219
3220 /* skip writing in file defragment preparing stage */
3221 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3222 goto skip_write;
3223
3224 trace_f2fs_writepages(mapping->host, wbc, DATA);
3225
3226 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3227 if (wbc->sync_mode == WB_SYNC_ALL)
3228 atomic_inc(&sbi->wb_sync_req[DATA]);
3229 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3230 /* to avoid potential deadlock */
3231 if (current->plug)
3232 blk_finish_plug(current->plug);
3233 goto skip_write;
3234 }
3235
3236 if (__should_serialize_io(inode, wbc)) {
3237 mutex_lock(&sbi->writepages);
3238 locked = true;
3239 }
3240
3241 blk_start_plug(&plug);
3242 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3243 blk_finish_plug(&plug);
3244
3245 if (locked)
3246 mutex_unlock(&sbi->writepages);
3247
3248 if (wbc->sync_mode == WB_SYNC_ALL)
3249 atomic_dec(&sbi->wb_sync_req[DATA]);
3250 /*
3251 * if some pages were truncated, we cannot guarantee its mapping->host
3252 * to detect pending bios.
3253 */
3254
3255 f2fs_remove_dirty_inode(inode);
3256 return ret;
3257
3258 skip_write:
3259 wbc->pages_skipped += get_dirty_pages(inode);
3260 trace_f2fs_writepages(mapping->host, wbc, DATA);
3261 return 0;
3262 }
3263
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3264 static int f2fs_write_data_pages(struct address_space *mapping,
3265 struct writeback_control *wbc)
3266 {
3267 struct inode *inode = mapping->host;
3268
3269 return __f2fs_write_data_pages(mapping, wbc,
3270 F2FS_I(inode)->cp_task == current ?
3271 FS_CP_DATA_IO : FS_DATA_IO);
3272 }
3273
f2fs_write_failed(struct address_space * mapping,loff_t to)3274 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3275 {
3276 struct inode *inode = mapping->host;
3277 loff_t i_size = i_size_read(inode);
3278
3279 if (IS_NOQUOTA(inode))
3280 return;
3281
3282 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3283 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3284 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3285 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
3286
3287 truncate_pagecache(inode, i_size);
3288 f2fs_truncate_blocks(inode, i_size, true);
3289
3290 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
3291 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3292 }
3293 }
3294
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3295 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3296 struct page *page, loff_t pos, unsigned len,
3297 block_t *blk_addr, bool *node_changed)
3298 {
3299 struct inode *inode = page->mapping->host;
3300 pgoff_t index = page->index;
3301 struct dnode_of_data dn;
3302 struct page *ipage;
3303 bool locked = false;
3304 struct extent_info ei = {0, };
3305 int err = 0;
3306 int flag;
3307
3308 /*
3309 * we already allocated all the blocks, so we don't need to get
3310 * the block addresses when there is no need to fill the page.
3311 */
3312 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3313 !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3314 !f2fs_verity_in_progress(inode))
3315 return 0;
3316
3317 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3318 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3319 flag = F2FS_GET_BLOCK_DEFAULT;
3320 else
3321 flag = F2FS_GET_BLOCK_PRE_AIO;
3322
3323 if (f2fs_has_inline_data(inode) ||
3324 (pos & PAGE_MASK) >= i_size_read(inode)) {
3325 f2fs_do_map_lock(sbi, flag, true);
3326 locked = true;
3327 }
3328
3329 restart:
3330 /* check inline_data */
3331 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3332 if (IS_ERR(ipage)) {
3333 err = PTR_ERR(ipage);
3334 goto unlock_out;
3335 }
3336
3337 set_new_dnode(&dn, inode, ipage, ipage, 0);
3338
3339 if (f2fs_has_inline_data(inode)) {
3340 if (pos + len <= MAX_INLINE_DATA(inode)) {
3341 f2fs_do_read_inline_data(page, ipage);
3342 set_inode_flag(inode, FI_DATA_EXIST);
3343 if (inode->i_nlink)
3344 set_page_private_inline(ipage);
3345 } else {
3346 err = f2fs_convert_inline_page(&dn, page);
3347 if (err)
3348 goto out;
3349 if (dn.data_blkaddr == NULL_ADDR)
3350 err = f2fs_get_block(&dn, index);
3351 }
3352 } else if (locked) {
3353 err = f2fs_get_block(&dn, index);
3354 } else {
3355 if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
3356 dn.data_blkaddr = ei.blk + index - ei.fofs;
3357 } else {
3358 /* hole case */
3359 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3360 if (err || dn.data_blkaddr == NULL_ADDR) {
3361 f2fs_put_dnode(&dn);
3362 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3363 true);
3364 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3365 locked = true;
3366 goto restart;
3367 }
3368 }
3369 }
3370
3371 /* convert_inline_page can make node_changed */
3372 *blk_addr = dn.data_blkaddr;
3373 *node_changed = dn.node_changed;
3374 out:
3375 f2fs_put_dnode(&dn);
3376 unlock_out:
3377 if (locked)
3378 f2fs_do_map_lock(sbi, flag, false);
3379 return err;
3380 }
3381
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3382 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3383 loff_t pos, unsigned len, unsigned flags,
3384 struct page **pagep, void **fsdata)
3385 {
3386 struct inode *inode = mapping->host;
3387 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3388 struct page *page = NULL;
3389 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3390 bool need_balance = false, drop_atomic = false;
3391 block_t blkaddr = NULL_ADDR;
3392 int err = 0;
3393
3394 /*
3395 * Should avoid quota operations which can make deadlock:
3396 * kswapd -> f2fs_evict_inode -> dquot_drop ->
3397 * f2fs_dquot_commit -> f2fs_write_begin ->
3398 * d_obtain_alias -> __d_alloc -> kmem_cache_alloc(GFP_KERNEL)
3399 */
3400 if (trace_android_fs_datawrite_start_enabled() && !IS_NOQUOTA(inode)) {
3401 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3402
3403 path = android_fstrace_get_pathname(pathbuf,
3404 MAX_TRACE_PATHBUF_LEN,
3405 inode);
3406 trace_android_fs_datawrite_start(inode, pos, len,
3407 current->pid, path,
3408 current->comm);
3409 }
3410 trace_f2fs_write_begin(inode, pos, len, flags);
3411
3412 if (!f2fs_is_checkpoint_ready(sbi)) {
3413 err = -ENOSPC;
3414 goto fail;
3415 }
3416
3417 if ((f2fs_is_atomic_file(inode) &&
3418 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3419 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3420 err = -ENOMEM;
3421 drop_atomic = true;
3422 goto fail;
3423 }
3424
3425 /*
3426 * We should check this at this moment to avoid deadlock on inode page
3427 * and #0 page. The locking rule for inline_data conversion should be:
3428 * lock_page(page #0) -> lock_page(inode_page)
3429 */
3430 if (index != 0) {
3431 err = f2fs_convert_inline_inode(inode);
3432 if (err)
3433 goto fail;
3434 }
3435
3436 #ifdef CONFIG_F2FS_FS_COMPRESSION
3437 if (f2fs_compressed_file(inode)) {
3438 int ret;
3439
3440 *fsdata = NULL;
3441
3442 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3443 goto repeat;
3444
3445 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3446 index, fsdata);
3447 if (ret < 0) {
3448 err = ret;
3449 goto fail;
3450 } else if (ret) {
3451 return 0;
3452 }
3453 }
3454 #endif
3455
3456 repeat:
3457 /*
3458 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3459 * wait_for_stable_page. Will wait that below with our IO control.
3460 */
3461 page = f2fs_pagecache_get_page(mapping, index,
3462 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3463 if (!page) {
3464 err = -ENOMEM;
3465 goto fail;
3466 }
3467
3468 /* TODO: cluster can be compressed due to race with .writepage */
3469
3470 *pagep = page;
3471
3472 err = prepare_write_begin(sbi, page, pos, len,
3473 &blkaddr, &need_balance);
3474 if (err)
3475 goto fail;
3476
3477 if (need_balance && !IS_NOQUOTA(inode) &&
3478 has_not_enough_free_secs(sbi, 0, 0)) {
3479 unlock_page(page);
3480 f2fs_balance_fs(sbi, true);
3481 lock_page(page);
3482 if (page->mapping != mapping) {
3483 /* The page got truncated from under us */
3484 f2fs_put_page(page, 1);
3485 goto repeat;
3486 }
3487 }
3488
3489 f2fs_wait_on_page_writeback(page, DATA, false, true);
3490
3491 if (len == PAGE_SIZE || PageUptodate(page))
3492 return 0;
3493
3494 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3495 !f2fs_verity_in_progress(inode)) {
3496 zero_user_segment(page, len, PAGE_SIZE);
3497 return 0;
3498 }
3499
3500 if (blkaddr == NEW_ADDR) {
3501 zero_user_segment(page, 0, PAGE_SIZE);
3502 SetPageUptodate(page);
3503 } else {
3504 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3505 DATA_GENERIC_ENHANCE_READ)) {
3506 err = -EFSCORRUPTED;
3507 goto fail;
3508 }
3509 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3510 if (err)
3511 goto fail;
3512
3513 lock_page(page);
3514 if (unlikely(page->mapping != mapping)) {
3515 f2fs_put_page(page, 1);
3516 goto repeat;
3517 }
3518 if (unlikely(!PageUptodate(page))) {
3519 err = -EIO;
3520 goto fail;
3521 }
3522 }
3523 return 0;
3524
3525 fail:
3526 f2fs_put_page(page, 1);
3527 f2fs_write_failed(mapping, pos + len);
3528 if (drop_atomic)
3529 f2fs_drop_inmem_pages_all(sbi, false);
3530 return err;
3531 }
3532
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3533 static int f2fs_write_end(struct file *file,
3534 struct address_space *mapping,
3535 loff_t pos, unsigned len, unsigned copied,
3536 struct page *page, void *fsdata)
3537 {
3538 struct inode *inode = page->mapping->host;
3539
3540 trace_android_fs_datawrite_end(inode, pos, len);
3541 trace_f2fs_write_end(inode, pos, len, copied);
3542
3543 /*
3544 * This should be come from len == PAGE_SIZE, and we expect copied
3545 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3546 * let generic_perform_write() try to copy data again through copied=0.
3547 */
3548 if (!PageUptodate(page)) {
3549 if (unlikely(copied != len))
3550 copied = 0;
3551 else
3552 SetPageUptodate(page);
3553 }
3554
3555 #ifdef CONFIG_F2FS_FS_COMPRESSION
3556 /* overwrite compressed file */
3557 if (f2fs_compressed_file(inode) && fsdata) {
3558 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3559 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3560
3561 if (pos + copied > i_size_read(inode) &&
3562 !f2fs_verity_in_progress(inode))
3563 f2fs_i_size_write(inode, pos + copied);
3564 return copied;
3565 }
3566 #endif
3567
3568 if (!copied)
3569 goto unlock_out;
3570
3571 set_page_dirty(page);
3572
3573 if (pos + copied > i_size_read(inode) &&
3574 !f2fs_verity_in_progress(inode))
3575 f2fs_i_size_write(inode, pos + copied);
3576 unlock_out:
3577 f2fs_put_page(page, 1);
3578 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3579 return copied;
3580 }
3581
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)3582 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3583 loff_t offset)
3584 {
3585 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3586 unsigned blkbits = i_blkbits;
3587 unsigned blocksize_mask = (1 << blkbits) - 1;
3588 unsigned long align = offset | iov_iter_alignment(iter);
3589 struct block_device *bdev = inode->i_sb->s_bdev;
3590
3591 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3592 return 1;
3593
3594 if (align & blocksize_mask) {
3595 if (bdev)
3596 blkbits = blksize_bits(bdev_logical_block_size(bdev));
3597 blocksize_mask = (1 << blkbits) - 1;
3598 if (align & blocksize_mask)
3599 return -EINVAL;
3600 return 1;
3601 }
3602 return 0;
3603 }
3604
f2fs_dio_end_io(struct bio * bio)3605 static void f2fs_dio_end_io(struct bio *bio)
3606 {
3607 struct f2fs_private_dio *dio = bio->bi_private;
3608
3609 dec_page_count(F2FS_I_SB(dio->inode),
3610 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3611
3612 bio->bi_private = dio->orig_private;
3613 bio->bi_end_io = dio->orig_end_io;
3614
3615 kfree(dio);
3616
3617 bio_endio(bio);
3618 }
3619
f2fs_dio_submit_bio(struct bio * bio,struct inode * inode,loff_t file_offset)3620 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3621 loff_t file_offset)
3622 {
3623 struct f2fs_private_dio *dio;
3624 bool write = (bio_op(bio) == REQ_OP_WRITE);
3625
3626 dio = f2fs_kzalloc(F2FS_I_SB(inode),
3627 sizeof(struct f2fs_private_dio), GFP_NOFS);
3628 if (!dio)
3629 goto out;
3630
3631 dio->inode = inode;
3632 dio->orig_end_io = bio->bi_end_io;
3633 dio->orig_private = bio->bi_private;
3634 dio->write = write;
3635
3636 bio->bi_end_io = f2fs_dio_end_io;
3637 bio->bi_private = dio;
3638
3639 inc_page_count(F2FS_I_SB(inode),
3640 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3641
3642 submit_bio(bio);
3643 return;
3644 out:
3645 bio->bi_status = BLK_STS_IOERR;
3646 bio_endio(bio);
3647 }
3648
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3649 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3650 {
3651 struct address_space *mapping = iocb->ki_filp->f_mapping;
3652 struct inode *inode = mapping->host;
3653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3654 struct f2fs_inode_info *fi = F2FS_I(inode);
3655 size_t count = iov_iter_count(iter);
3656 loff_t offset = iocb->ki_pos;
3657 int rw = iov_iter_rw(iter);
3658 int err;
3659 enum rw_hint hint = iocb->ki_hint;
3660 int whint_mode = F2FS_OPTION(sbi).whint_mode;
3661 bool do_opu;
3662
3663 err = check_direct_IO(inode, iter, offset);
3664 if (err)
3665 return err < 0 ? err : 0;
3666
3667 if (f2fs_force_buffered_io(inode, iocb, iter))
3668 return 0;
3669
3670 do_opu = allow_outplace_dio(inode, iocb, iter);
3671
3672 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3673
3674 if (trace_android_fs_dataread_start_enabled() &&
3675 (rw == READ)) {
3676 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3677
3678 path = android_fstrace_get_pathname(pathbuf,
3679 MAX_TRACE_PATHBUF_LEN,
3680 inode);
3681 trace_android_fs_dataread_start(inode, offset,
3682 count, current->pid, path,
3683 current->comm);
3684 }
3685 if (trace_android_fs_datawrite_start_enabled() &&
3686 (rw == WRITE)) {
3687 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3688
3689 path = android_fstrace_get_pathname(pathbuf,
3690 MAX_TRACE_PATHBUF_LEN,
3691 inode);
3692 trace_android_fs_datawrite_start(inode, offset, count,
3693 current->pid, path,
3694 current->comm);
3695 }
3696
3697 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3698 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3699
3700 if (iocb->ki_flags & IOCB_NOWAIT) {
3701 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[rw])) {
3702 iocb->ki_hint = hint;
3703 err = -EAGAIN;
3704 goto out;
3705 }
3706 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
3707 f2fs_up_read(&fi->i_gc_rwsem[rw]);
3708 iocb->ki_hint = hint;
3709 err = -EAGAIN;
3710 goto out;
3711 }
3712 } else {
3713 f2fs_down_read(&fi->i_gc_rwsem[rw]);
3714 if (do_opu)
3715 f2fs_down_read(&fi->i_gc_rwsem[READ]);
3716 }
3717
3718 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3719 iter, rw == WRITE ? get_data_block_dio_write :
3720 get_data_block_dio, NULL, f2fs_dio_submit_bio,
3721 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3722 DIO_SKIP_HOLES);
3723
3724 if (do_opu)
3725 f2fs_up_read(&fi->i_gc_rwsem[READ]);
3726
3727 f2fs_up_read(&fi->i_gc_rwsem[rw]);
3728
3729 if (rw == WRITE) {
3730 if (whint_mode == WHINT_MODE_OFF)
3731 iocb->ki_hint = hint;
3732 if (err > 0) {
3733 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3734 err);
3735 if (!do_opu)
3736 set_inode_flag(inode, FI_UPDATE_WRITE);
3737 } else if (err == -EIOCBQUEUED) {
3738 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3739 count - iov_iter_count(iter));
3740 } else if (err < 0) {
3741 f2fs_write_failed(mapping, offset + count);
3742 }
3743 } else {
3744 if (err > 0)
3745 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3746 else if (err == -EIOCBQUEUED)
3747 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3748 count - iov_iter_count(iter));
3749 }
3750
3751 out:
3752 if (trace_android_fs_dataread_start_enabled() &&
3753 (rw == READ))
3754 trace_android_fs_dataread_end(inode, offset, count);
3755 if (trace_android_fs_datawrite_start_enabled() &&
3756 (rw == WRITE))
3757 trace_android_fs_datawrite_end(inode, offset, count);
3758
3759 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3760
3761 return err;
3762 }
3763
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3764 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3765 unsigned int length)
3766 {
3767 struct inode *inode = page->mapping->host;
3768 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3769
3770 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3771 (offset % PAGE_SIZE || length != PAGE_SIZE))
3772 return;
3773
3774 if (PageDirty(page)) {
3775 if (inode->i_ino == F2FS_META_INO(sbi)) {
3776 dec_page_count(sbi, F2FS_DIRTY_META);
3777 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3778 dec_page_count(sbi, F2FS_DIRTY_NODES);
3779 } else {
3780 inode_dec_dirty_pages(inode);
3781 f2fs_remove_dirty_inode(inode);
3782 }
3783 }
3784
3785 clear_page_private_gcing(page);
3786
3787 if (test_opt(sbi, COMPRESS_CACHE)) {
3788 if (f2fs_compressed_file(inode))
3789 f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3790 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3791 clear_page_private_data(page);
3792 }
3793
3794 if (page_private_atomic(page))
3795 return f2fs_drop_inmem_page(inode, page);
3796
3797 detach_page_private(page);
3798 set_page_private(page, 0);
3799 }
3800
f2fs_release_page(struct page * page,gfp_t wait)3801 int f2fs_release_page(struct page *page, gfp_t wait)
3802 {
3803 /* If this is dirty page, keep PagePrivate */
3804 if (PageDirty(page))
3805 return 0;
3806
3807 /* This is atomic written page, keep Private */
3808 if (page_private_atomic(page))
3809 return 0;
3810
3811 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3812 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3813 struct inode *inode = page->mapping->host;
3814
3815 if (f2fs_compressed_file(inode))
3816 f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3817 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3818 clear_page_private_data(page);
3819 }
3820
3821 clear_page_private_gcing(page);
3822
3823 detach_page_private(page);
3824 set_page_private(page, 0);
3825 return 1;
3826 }
3827
f2fs_set_data_page_dirty(struct page * page)3828 static int f2fs_set_data_page_dirty(struct page *page)
3829 {
3830 struct inode *inode = page_file_mapping(page)->host;
3831
3832 trace_f2fs_set_page_dirty(page, DATA);
3833
3834 if (!PageUptodate(page))
3835 SetPageUptodate(page);
3836 if (PageSwapCache(page))
3837 return __set_page_dirty_nobuffers(page);
3838
3839 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3840 if (!page_private_atomic(page)) {
3841 f2fs_register_inmem_page(inode, page);
3842 return 1;
3843 }
3844 /*
3845 * Previously, this page has been registered, we just
3846 * return here.
3847 */
3848 return 0;
3849 }
3850
3851 if (!PageDirty(page)) {
3852 __set_page_dirty_nobuffers(page);
3853 f2fs_update_dirty_page(inode, page);
3854 return 1;
3855 }
3856 return 0;
3857 }
3858
3859
f2fs_bmap_compress(struct inode * inode,sector_t block)3860 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3861 {
3862 #ifdef CONFIG_F2FS_FS_COMPRESSION
3863 struct dnode_of_data dn;
3864 sector_t start_idx, blknr = 0;
3865 int ret;
3866
3867 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3868
3869 set_new_dnode(&dn, inode, NULL, NULL, 0);
3870 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3871 if (ret)
3872 return 0;
3873
3874 if (dn.data_blkaddr != COMPRESS_ADDR) {
3875 dn.ofs_in_node += block - start_idx;
3876 blknr = f2fs_data_blkaddr(&dn);
3877 if (!__is_valid_data_blkaddr(blknr))
3878 blknr = 0;
3879 }
3880
3881 f2fs_put_dnode(&dn);
3882 return blknr;
3883 #else
3884 return 0;
3885 #endif
3886 }
3887
3888
f2fs_bmap(struct address_space * mapping,sector_t block)3889 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3890 {
3891 struct inode *inode = mapping->host;
3892 sector_t blknr = 0;
3893
3894 if (f2fs_has_inline_data(inode))
3895 goto out;
3896
3897 /* make sure allocating whole blocks */
3898 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3899 filemap_write_and_wait(mapping);
3900
3901 /* Block number less than F2FS MAX BLOCKS */
3902 if (unlikely(block >= max_file_blocks(inode)))
3903 goto out;
3904
3905 if (f2fs_compressed_file(inode)) {
3906 blknr = f2fs_bmap_compress(inode, block);
3907 } else {
3908 struct f2fs_map_blocks map;
3909
3910 memset(&map, 0, sizeof(map));
3911 map.m_lblk = block;
3912 map.m_len = 1;
3913 map.m_next_pgofs = NULL;
3914 map.m_seg_type = NO_CHECK_TYPE;
3915
3916 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3917 blknr = map.m_pblk;
3918 }
3919 out:
3920 trace_f2fs_bmap(inode, block, blknr);
3921 return blknr;
3922 }
3923
3924 #ifdef CONFIG_MIGRATION
3925 #include <linux/migrate.h>
3926
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3927 int f2fs_migrate_page(struct address_space *mapping,
3928 struct page *newpage, struct page *page, enum migrate_mode mode)
3929 {
3930 int rc, extra_count;
3931 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3932 bool atomic_written = page_private_atomic(page);
3933
3934 BUG_ON(PageWriteback(page));
3935
3936 /* migrating an atomic written page is safe with the inmem_lock hold */
3937 if (atomic_written) {
3938 if (mode != MIGRATE_SYNC)
3939 return -EBUSY;
3940 if (!mutex_trylock(&fi->inmem_lock))
3941 return -EAGAIN;
3942 }
3943
3944 /* one extra reference was held for atomic_write page */
3945 extra_count = atomic_written ? 1 : 0;
3946 rc = migrate_page_move_mapping(mapping, newpage,
3947 page, extra_count);
3948 if (rc != MIGRATEPAGE_SUCCESS) {
3949 if (atomic_written)
3950 mutex_unlock(&fi->inmem_lock);
3951 return rc;
3952 }
3953
3954 if (atomic_written) {
3955 struct inmem_pages *cur;
3956
3957 list_for_each_entry(cur, &fi->inmem_pages, list)
3958 if (cur->page == page) {
3959 cur->page = newpage;
3960 break;
3961 }
3962 mutex_unlock(&fi->inmem_lock);
3963 put_page(page);
3964 get_page(newpage);
3965 }
3966
3967 /* guarantee to start from no stale private field */
3968 set_page_private(newpage, 0);
3969 if (PagePrivate(page)) {
3970 set_page_private(newpage, page_private(page));
3971 SetPagePrivate(newpage);
3972 get_page(newpage);
3973
3974 set_page_private(page, 0);
3975 ClearPagePrivate(page);
3976 put_page(page);
3977 }
3978
3979 if (mode != MIGRATE_SYNC_NO_COPY)
3980 migrate_page_copy(newpage, page);
3981 else
3982 migrate_page_states(newpage, page);
3983
3984 return MIGRATEPAGE_SUCCESS;
3985 }
3986 #endif
3987
3988 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3989 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3990 unsigned int blkcnt)
3991 {
3992 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3993 unsigned int blkofs;
3994 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3995 unsigned int secidx = start_blk / blk_per_sec;
3996 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3997 int ret = 0;
3998
3999 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4000 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
4001
4002 set_inode_flag(inode, FI_ALIGNED_WRITE);
4003 set_inode_flag(inode, FI_OPU_WRITE);
4004
4005 for (; secidx < end_sec; secidx++) {
4006 f2fs_down_write(&sbi->pin_sem);
4007
4008 f2fs_lock_op(sbi);
4009 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
4010 f2fs_unlock_op(sbi);
4011
4012 set_inode_flag(inode, FI_SKIP_WRITES);
4013
4014 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
4015 struct page *page;
4016 unsigned int blkidx = secidx * blk_per_sec + blkofs;
4017
4018 page = f2fs_get_lock_data_page(inode, blkidx, true);
4019 if (IS_ERR(page)) {
4020 f2fs_up_write(&sbi->pin_sem);
4021 ret = PTR_ERR(page);
4022 goto done;
4023 }
4024
4025 set_page_dirty(page);
4026 f2fs_put_page(page, 1);
4027 }
4028
4029 clear_inode_flag(inode, FI_SKIP_WRITES);
4030
4031 ret = filemap_fdatawrite(inode->i_mapping);
4032
4033 f2fs_up_write(&sbi->pin_sem);
4034
4035 if (ret)
4036 break;
4037 }
4038
4039 done:
4040 clear_inode_flag(inode, FI_SKIP_WRITES);
4041 clear_inode_flag(inode, FI_OPU_WRITE);
4042 clear_inode_flag(inode, FI_ALIGNED_WRITE);
4043
4044 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
4045 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4046
4047 return ret;
4048 }
4049
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)4050 static int check_swap_activate(struct swap_info_struct *sis,
4051 struct file *swap_file, sector_t *span)
4052 {
4053 struct address_space *mapping = swap_file->f_mapping;
4054 struct inode *inode = mapping->host;
4055 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4056 sector_t cur_lblock;
4057 sector_t last_lblock;
4058 sector_t pblock;
4059 sector_t lowest_pblock = -1;
4060 sector_t highest_pblock = 0;
4061 int nr_extents = 0;
4062 unsigned long nr_pblocks;
4063 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
4064 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
4065 unsigned int not_aligned = 0;
4066 int ret = 0;
4067
4068 /*
4069 * Map all the blocks into the extent list. This code doesn't try
4070 * to be very smart.
4071 */
4072 cur_lblock = 0;
4073 last_lblock = bytes_to_blks(inode, i_size_read(inode));
4074
4075 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4076 struct f2fs_map_blocks map;
4077 retry:
4078 cond_resched();
4079
4080 memset(&map, 0, sizeof(map));
4081 map.m_lblk = cur_lblock;
4082 map.m_len = last_lblock - cur_lblock;
4083 map.m_next_pgofs = NULL;
4084 map.m_next_extent = NULL;
4085 map.m_seg_type = NO_CHECK_TYPE;
4086 map.m_may_create = false;
4087
4088 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
4089 if (ret)
4090 goto out;
4091
4092 /* hole */
4093 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4094 f2fs_err(sbi, "Swapfile has holes");
4095 ret = -EINVAL;
4096 goto out;
4097 }
4098
4099 pblock = map.m_pblk;
4100 nr_pblocks = map.m_len;
4101
4102 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4103 nr_pblocks & sec_blks_mask) {
4104 not_aligned++;
4105
4106 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4107 if (cur_lblock + nr_pblocks > sis->max)
4108 nr_pblocks -= blks_per_sec;
4109
4110 if (!nr_pblocks) {
4111 /* this extent is last one */
4112 nr_pblocks = map.m_len;
4113 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4114 goto next;
4115 }
4116
4117 ret = f2fs_migrate_blocks(inode, cur_lblock,
4118 nr_pblocks);
4119 if (ret)
4120 goto out;
4121 goto retry;
4122 }
4123 next:
4124 if (cur_lblock + nr_pblocks >= sis->max)
4125 nr_pblocks = sis->max - cur_lblock;
4126
4127 if (cur_lblock) { /* exclude the header page */
4128 if (pblock < lowest_pblock)
4129 lowest_pblock = pblock;
4130 if (pblock + nr_pblocks - 1 > highest_pblock)
4131 highest_pblock = pblock + nr_pblocks - 1;
4132 }
4133
4134 /*
4135 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4136 */
4137 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4138 if (ret < 0)
4139 goto out;
4140 nr_extents += ret;
4141 cur_lblock += nr_pblocks;
4142 }
4143 ret = nr_extents;
4144 *span = 1 + highest_pblock - lowest_pblock;
4145 if (cur_lblock == 0)
4146 cur_lblock = 1; /* force Empty message */
4147 sis->max = cur_lblock;
4148 sis->pages = cur_lblock - 1;
4149 sis->highest_bit = cur_lblock - 1;
4150 out:
4151 if (not_aligned)
4152 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4153 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4154 return ret;
4155 }
4156
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4157 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4158 sector_t *span)
4159 {
4160 struct inode *inode = file_inode(file);
4161 int ret;
4162
4163 if (!S_ISREG(inode->i_mode))
4164 return -EINVAL;
4165
4166 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4167 return -EROFS;
4168
4169 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4170 f2fs_err(F2FS_I_SB(inode),
4171 "Swapfile not supported in LFS mode");
4172 return -EINVAL;
4173 }
4174
4175 ret = f2fs_convert_inline_inode(inode);
4176 if (ret)
4177 return ret;
4178
4179 if (!f2fs_disable_compressed_file(inode))
4180 return -EINVAL;
4181
4182 f2fs_precache_extents(inode);
4183
4184 ret = check_swap_activate(sis, file, span);
4185 if (ret < 0)
4186 return ret;
4187
4188 set_inode_flag(inode, FI_PIN_FILE);
4189 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4190 return ret;
4191 }
4192
f2fs_swap_deactivate(struct file * file)4193 static void f2fs_swap_deactivate(struct file *file)
4194 {
4195 struct inode *inode = file_inode(file);
4196
4197 clear_inode_flag(inode, FI_PIN_FILE);
4198 }
4199 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4200 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4201 sector_t *span)
4202 {
4203 return -EOPNOTSUPP;
4204 }
4205
f2fs_swap_deactivate(struct file * file)4206 static void f2fs_swap_deactivate(struct file *file)
4207 {
4208 }
4209 #endif
4210
4211 const struct address_space_operations f2fs_dblock_aops = {
4212 .readpage = f2fs_read_data_page,
4213 .readahead = f2fs_readahead,
4214 .writepage = f2fs_write_data_page,
4215 .writepages = f2fs_write_data_pages,
4216 .write_begin = f2fs_write_begin,
4217 .write_end = f2fs_write_end,
4218 .set_page_dirty = f2fs_set_data_page_dirty,
4219 .invalidatepage = f2fs_invalidate_page,
4220 .releasepage = f2fs_release_page,
4221 .direct_IO = f2fs_direct_IO,
4222 .bmap = f2fs_bmap,
4223 .swap_activate = f2fs_swap_activate,
4224 .swap_deactivate = f2fs_swap_deactivate,
4225 #ifdef CONFIG_MIGRATION
4226 .migratepage = f2fs_migrate_page,
4227 #endif
4228 };
4229
f2fs_clear_page_cache_dirty_tag(struct page * page)4230 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4231 {
4232 struct address_space *mapping = page_mapping(page);
4233 unsigned long flags;
4234
4235 xa_lock_irqsave(&mapping->i_pages, flags);
4236 __xa_clear_mark(&mapping->i_pages, page_index(page),
4237 PAGECACHE_TAG_DIRTY);
4238 xa_unlock_irqrestore(&mapping->i_pages, flags);
4239 }
4240
f2fs_init_post_read_processing(void)4241 int __init f2fs_init_post_read_processing(void)
4242 {
4243 bio_post_read_ctx_cache =
4244 kmem_cache_create("f2fs_bio_post_read_ctx",
4245 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4246 if (!bio_post_read_ctx_cache)
4247 goto fail;
4248 bio_post_read_ctx_pool =
4249 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4250 bio_post_read_ctx_cache);
4251 if (!bio_post_read_ctx_pool)
4252 goto fail_free_cache;
4253 return 0;
4254
4255 fail_free_cache:
4256 kmem_cache_destroy(bio_post_read_ctx_cache);
4257 fail:
4258 return -ENOMEM;
4259 }
4260
f2fs_destroy_post_read_processing(void)4261 void f2fs_destroy_post_read_processing(void)
4262 {
4263 mempool_destroy(bio_post_read_ctx_pool);
4264 kmem_cache_destroy(bio_post_read_ctx_cache);
4265 }
4266
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4267 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4268 {
4269 if (!f2fs_sb_has_encrypt(sbi) &&
4270 !f2fs_sb_has_verity(sbi) &&
4271 !f2fs_sb_has_compression(sbi))
4272 return 0;
4273
4274 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4275 WQ_UNBOUND | WQ_HIGHPRI,
4276 num_online_cpus());
4277 if (!sbi->post_read_wq)
4278 return -ENOMEM;
4279 return 0;
4280 }
4281
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4282 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4283 {
4284 if (sbi->post_read_wq)
4285 destroy_workqueue(sbi->post_read_wq);
4286 }
4287
f2fs_init_bio_entry_cache(void)4288 int __init f2fs_init_bio_entry_cache(void)
4289 {
4290 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4291 sizeof(struct bio_entry));
4292 if (!bio_entry_slab)
4293 return -ENOMEM;
4294 return 0;
4295 }
4296
f2fs_destroy_bio_entry_cache(void)4297 void f2fs_destroy_bio_entry_cache(void)
4298 {
4299 kmem_cache_destroy(bio_entry_slab);
4300 }
4301