• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 
28 #include <asm/debugfs.h>
29 #include <asm/page.h>
30 #include <asm/prom.h>
31 #include <asm/fadump.h>
32 #include <asm/fadump-internal.h>
33 #include <asm/setup.h>
34 
35 /*
36  * The CPU who acquired the lock to trigger the fadump crash should
37  * wait for other CPUs to enter.
38  *
39  * The timeout is in milliseconds.
40  */
41 #define CRASH_TIMEOUT		500
42 
43 static struct fw_dump fw_dump;
44 
45 static void __init fadump_reserve_crash_area(u64 base);
46 
47 struct kobject *fadump_kobj;
48 
49 #ifndef CONFIG_PRESERVE_FA_DUMP
50 
51 static atomic_t cpus_in_fadump;
52 static DEFINE_MUTEX(fadump_mutex);
53 
54 struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
55 
56 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
57 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
58 				 sizeof(struct fadump_memory_range))
59 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
60 struct fadump_mrange_info reserved_mrange_info = { "reserved", rngs,
61 						   RESERVED_RNGS_SZ, 0,
62 						   RESERVED_RNGS_CNT, true };
63 
64 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
65 
66 #ifdef CONFIG_CMA
67 static struct cma *fadump_cma;
68 
69 /*
70  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
71  *
72  * This function initializes CMA area from fadump reserved memory.
73  * The total size of fadump reserved memory covers for boot memory size
74  * + cpu data size + hpte size and metadata.
75  * Initialize only the area equivalent to boot memory size for CMA use.
76  * The reamining portion of fadump reserved memory will be not given
77  * to CMA and pages for thoes will stay reserved. boot memory size is
78  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
79  * But for some reason even if it fails we still have the memory reservation
80  * with us and we can still continue doing fadump.
81  */
fadump_cma_init(void)82 int __init fadump_cma_init(void)
83 {
84 	unsigned long long base, size;
85 	int rc;
86 
87 	if (!fw_dump.fadump_enabled)
88 		return 0;
89 
90 	/*
91 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
92 	 * Return 1 to continue with fadump old behaviour.
93 	 */
94 	if (fw_dump.nocma)
95 		return 1;
96 
97 	base = fw_dump.reserve_dump_area_start;
98 	size = fw_dump.boot_memory_size;
99 
100 	if (!size)
101 		return 0;
102 
103 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
104 	if (rc) {
105 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
106 		/*
107 		 * Though the CMA init has failed we still have memory
108 		 * reservation with us. The reserved memory will be
109 		 * blocked from production system usage.  Hence return 1,
110 		 * so that we can continue with fadump.
111 		 */
112 		return 1;
113 	}
114 
115 	/*
116 	 * So we now have successfully initialized cma area for fadump.
117 	 */
118 	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
119 		"bytes of memory reserved for firmware-assisted dump\n",
120 		cma_get_size(fadump_cma),
121 		(unsigned long)cma_get_base(fadump_cma) >> 20,
122 		fw_dump.reserve_dump_area_size);
123 	return 1;
124 }
125 #else
fadump_cma_init(void)126 static int __init fadump_cma_init(void) { return 1; }
127 #endif /* CONFIG_CMA */
128 
129 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)130 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
131 				      int depth, void *data)
132 {
133 	if (depth == 0) {
134 		early_init_dt_scan_reserved_ranges(node);
135 		return 0;
136 	}
137 
138 	if (depth != 1)
139 		return 0;
140 
141 	if (strcmp(uname, "rtas") == 0) {
142 		rtas_fadump_dt_scan(&fw_dump, node);
143 		return 1;
144 	}
145 
146 	if (strcmp(uname, "ibm,opal") == 0) {
147 		opal_fadump_dt_scan(&fw_dump, node);
148 		return 1;
149 	}
150 
151 	return 0;
152 }
153 
154 /*
155  * If fadump is registered, check if the memory provided
156  * falls within boot memory area and reserved memory area.
157  */
is_fadump_memory_area(u64 addr,unsigned long size)158 int is_fadump_memory_area(u64 addr, unsigned long size)
159 {
160 	u64 d_start, d_end;
161 
162 	if (!fw_dump.dump_registered)
163 		return 0;
164 
165 	if (!size)
166 		return 0;
167 
168 	d_start = fw_dump.reserve_dump_area_start;
169 	d_end = d_start + fw_dump.reserve_dump_area_size;
170 	if (((addr + size) > d_start) && (addr <= d_end))
171 		return 1;
172 
173 	return (addr <= fw_dump.boot_mem_top);
174 }
175 
should_fadump_crash(void)176 int should_fadump_crash(void)
177 {
178 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
179 		return 0;
180 	return 1;
181 }
182 
is_fadump_active(void)183 int is_fadump_active(void)
184 {
185 	return fw_dump.dump_active;
186 }
187 
188 /*
189  * Returns true, if there are no holes in memory area between d_start to d_end,
190  * false otherwise.
191  */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)192 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
193 {
194 	phys_addr_t reg_start, reg_end;
195 	bool ret = false;
196 	u64 i, start, end;
197 
198 	for_each_mem_range(i, &reg_start, &reg_end) {
199 		start = max_t(u64, d_start, reg_start);
200 		end = min_t(u64, d_end, reg_end);
201 		if (d_start < end) {
202 			/* Memory hole from d_start to start */
203 			if (start > d_start)
204 				break;
205 
206 			if (end == d_end) {
207 				ret = true;
208 				break;
209 			}
210 
211 			d_start = end + 1;
212 		}
213 	}
214 
215 	return ret;
216 }
217 
218 /*
219  * Returns true, if there are no holes in boot memory area,
220  * false otherwise.
221  */
is_fadump_boot_mem_contiguous(void)222 bool is_fadump_boot_mem_contiguous(void)
223 {
224 	unsigned long d_start, d_end;
225 	bool ret = false;
226 	int i;
227 
228 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
229 		d_start = fw_dump.boot_mem_addr[i];
230 		d_end   = d_start + fw_dump.boot_mem_sz[i];
231 
232 		ret = is_fadump_mem_area_contiguous(d_start, d_end);
233 		if (!ret)
234 			break;
235 	}
236 
237 	return ret;
238 }
239 
240 /*
241  * Returns true, if there are no holes in reserved memory area,
242  * false otherwise.
243  */
is_fadump_reserved_mem_contiguous(void)244 bool is_fadump_reserved_mem_contiguous(void)
245 {
246 	u64 d_start, d_end;
247 
248 	d_start	= fw_dump.reserve_dump_area_start;
249 	d_end	= d_start + fw_dump.reserve_dump_area_size;
250 	return is_fadump_mem_area_contiguous(d_start, d_end);
251 }
252 
253 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)254 static void fadump_show_config(void)
255 {
256 	int i;
257 
258 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
259 			(fw_dump.fadump_supported ? "present" : "no support"));
260 
261 	if (!fw_dump.fadump_supported)
262 		return;
263 
264 	pr_debug("Fadump enabled    : %s\n",
265 				(fw_dump.fadump_enabled ? "yes" : "no"));
266 	pr_debug("Dump Active       : %s\n",
267 				(fw_dump.dump_active ? "yes" : "no"));
268 	pr_debug("Dump section sizes:\n");
269 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
270 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
271 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
272 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
273 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
274 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
275 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
276 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
277 	}
278 }
279 
280 /**
281  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
282  *
283  * Function to find the largest memory size we need to reserve during early
284  * boot process. This will be the size of the memory that is required for a
285  * kernel to boot successfully.
286  *
287  * This function has been taken from phyp-assisted dump feature implementation.
288  *
289  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
290  *
291  * TODO: Come up with better approach to find out more accurate memory size
292  * that is required for a kernel to boot successfully.
293  *
294  */
fadump_calculate_reserve_size(void)295 static __init u64 fadump_calculate_reserve_size(void)
296 {
297 	u64 base, size, bootmem_min;
298 	int ret;
299 
300 	if (fw_dump.reserve_bootvar)
301 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
302 
303 	/*
304 	 * Check if the size is specified through crashkernel= cmdline
305 	 * option. If yes, then use that but ignore base as fadump reserves
306 	 * memory at a predefined offset.
307 	 */
308 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
309 				&size, &base);
310 	if (ret == 0 && size > 0) {
311 		unsigned long max_size;
312 
313 		if (fw_dump.reserve_bootvar)
314 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
315 
316 		fw_dump.reserve_bootvar = (unsigned long)size;
317 
318 		/*
319 		 * Adjust if the boot memory size specified is above
320 		 * the upper limit.
321 		 */
322 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
323 		if (fw_dump.reserve_bootvar > max_size) {
324 			fw_dump.reserve_bootvar = max_size;
325 			pr_info("Adjusted boot memory size to %luMB\n",
326 				(fw_dump.reserve_bootvar >> 20));
327 		}
328 
329 		return fw_dump.reserve_bootvar;
330 	} else if (fw_dump.reserve_bootvar) {
331 		/*
332 		 * 'fadump_reserve_mem=' is being used to reserve memory
333 		 * for firmware-assisted dump.
334 		 */
335 		return fw_dump.reserve_bootvar;
336 	}
337 
338 	/* divide by 20 to get 5% of value */
339 	size = memblock_phys_mem_size() / 20;
340 
341 	/* round it down in multiples of 256 */
342 	size = size & ~0x0FFFFFFFUL;
343 
344 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
345 	if (memory_limit && size > memory_limit)
346 		size = memory_limit;
347 
348 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
349 	return (size > bootmem_min ? size : bootmem_min);
350 }
351 
352 /*
353  * Calculate the total memory size required to be reserved for
354  * firmware-assisted dump registration.
355  */
get_fadump_area_size(void)356 static unsigned long get_fadump_area_size(void)
357 {
358 	unsigned long size = 0;
359 
360 	size += fw_dump.cpu_state_data_size;
361 	size += fw_dump.hpte_region_size;
362 	size += fw_dump.boot_memory_size;
363 	size += sizeof(struct fadump_crash_info_header);
364 	size += sizeof(struct elfhdr); /* ELF core header.*/
365 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
366 	/* Program headers for crash memory regions. */
367 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
368 
369 	size = PAGE_ALIGN(size);
370 
371 	/* This is to hold kernel metadata on platforms that support it */
372 	size += (fw_dump.ops->fadump_get_metadata_size ?
373 		 fw_dump.ops->fadump_get_metadata_size() : 0);
374 	return size;
375 }
376 
add_boot_mem_region(unsigned long rstart,unsigned long rsize)377 static int __init add_boot_mem_region(unsigned long rstart,
378 				      unsigned long rsize)
379 {
380 	int i = fw_dump.boot_mem_regs_cnt++;
381 
382 	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
383 		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
384 		return 0;
385 	}
386 
387 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
388 		 i, rstart, (rstart + rsize));
389 	fw_dump.boot_mem_addr[i] = rstart;
390 	fw_dump.boot_mem_sz[i] = rsize;
391 	return 1;
392 }
393 
394 /*
395  * Firmware usually has a hard limit on the data it can copy per region.
396  * Honour that by splitting a memory range into multiple regions.
397  */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)398 static int __init add_boot_mem_regions(unsigned long mstart,
399 				       unsigned long msize)
400 {
401 	unsigned long rstart, rsize, max_size;
402 	int ret = 1;
403 
404 	rstart = mstart;
405 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
406 	while (msize) {
407 		if (msize > max_size)
408 			rsize = max_size;
409 		else
410 			rsize = msize;
411 
412 		ret = add_boot_mem_region(rstart, rsize);
413 		if (!ret)
414 			break;
415 
416 		msize -= rsize;
417 		rstart += rsize;
418 	}
419 
420 	return ret;
421 }
422 
fadump_get_boot_mem_regions(void)423 static int __init fadump_get_boot_mem_regions(void)
424 {
425 	unsigned long size, cur_size, hole_size, last_end;
426 	unsigned long mem_size = fw_dump.boot_memory_size;
427 	phys_addr_t reg_start, reg_end;
428 	int ret = 1;
429 	u64 i;
430 
431 	fw_dump.boot_mem_regs_cnt = 0;
432 
433 	last_end = 0;
434 	hole_size = 0;
435 	cur_size = 0;
436 	for_each_mem_range(i, &reg_start, &reg_end) {
437 		size = reg_end - reg_start;
438 		hole_size += (reg_start - last_end);
439 
440 		if ((cur_size + size) >= mem_size) {
441 			size = (mem_size - cur_size);
442 			ret = add_boot_mem_regions(reg_start, size);
443 			break;
444 		}
445 
446 		mem_size -= size;
447 		cur_size += size;
448 		ret = add_boot_mem_regions(reg_start, size);
449 		if (!ret)
450 			break;
451 
452 		last_end = reg_end;
453 	}
454 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
455 
456 	return ret;
457 }
458 
459 /*
460  * Returns true, if the given range overlaps with reserved memory ranges
461  * starting at idx. Also, updates idx to index of overlapping memory range
462  * with the given memory range.
463  * False, otherwise.
464  */
overlaps_reserved_ranges(u64 base,u64 end,int * idx)465 static bool overlaps_reserved_ranges(u64 base, u64 end, int *idx)
466 {
467 	bool ret = false;
468 	int i;
469 
470 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
471 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
472 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
473 
474 		if (end <= rbase)
475 			break;
476 
477 		if ((end > rbase) &&  (base < rend)) {
478 			*idx = i;
479 			ret = true;
480 			break;
481 		}
482 	}
483 
484 	return ret;
485 }
486 
487 /*
488  * Locate a suitable memory area to reserve memory for FADump. While at it,
489  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
490  */
fadump_locate_reserve_mem(u64 base,u64 size)491 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
492 {
493 	struct fadump_memory_range *mrngs;
494 	phys_addr_t mstart, mend;
495 	int idx = 0;
496 	u64 i, ret = 0;
497 
498 	mrngs = reserved_mrange_info.mem_ranges;
499 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
500 				&mstart, &mend, NULL) {
501 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
502 			 i, mstart, mend, base);
503 
504 		if (mstart > base)
505 			base = PAGE_ALIGN(mstart);
506 
507 		while ((mend > base) && ((mend - base) >= size)) {
508 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
509 				ret = base;
510 				goto out;
511 			}
512 
513 			base = mrngs[idx].base + mrngs[idx].size;
514 			base = PAGE_ALIGN(base);
515 		}
516 	}
517 
518 out:
519 	return ret;
520 }
521 
fadump_reserve_mem(void)522 int __init fadump_reserve_mem(void)
523 {
524 	u64 base, size, mem_boundary, bootmem_min;
525 	int ret = 1;
526 
527 	if (!fw_dump.fadump_enabled)
528 		return 0;
529 
530 	if (!fw_dump.fadump_supported) {
531 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
532 		goto error_out;
533 	}
534 
535 	/*
536 	 * Initialize boot memory size
537 	 * If dump is active then we have already calculated the size during
538 	 * first kernel.
539 	 */
540 	if (!fw_dump.dump_active) {
541 		fw_dump.boot_memory_size =
542 			PAGE_ALIGN(fadump_calculate_reserve_size());
543 #ifdef CONFIG_CMA
544 		if (!fw_dump.nocma) {
545 			fw_dump.boot_memory_size =
546 				ALIGN(fw_dump.boot_memory_size,
547 				      FADUMP_CMA_ALIGNMENT);
548 		}
549 #endif
550 
551 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
552 		if (fw_dump.boot_memory_size < bootmem_min) {
553 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
554 			       fw_dump.boot_memory_size, bootmem_min);
555 			goto error_out;
556 		}
557 
558 		if (!fadump_get_boot_mem_regions()) {
559 			pr_err("Too many holes in boot memory area to enable fadump\n");
560 			goto error_out;
561 		}
562 	}
563 
564 	/*
565 	 * Calculate the memory boundary.
566 	 * If memory_limit is less than actual memory boundary then reserve
567 	 * the memory for fadump beyond the memory_limit and adjust the
568 	 * memory_limit accordingly, so that the running kernel can run with
569 	 * specified memory_limit.
570 	 */
571 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
572 		size = get_fadump_area_size();
573 		if ((memory_limit + size) < memblock_end_of_DRAM())
574 			memory_limit += size;
575 		else
576 			memory_limit = memblock_end_of_DRAM();
577 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
578 				" dump, now %#016llx\n", memory_limit);
579 	}
580 	if (memory_limit)
581 		mem_boundary = memory_limit;
582 	else
583 		mem_boundary = memblock_end_of_DRAM();
584 
585 	base = fw_dump.boot_mem_top;
586 	size = get_fadump_area_size();
587 	fw_dump.reserve_dump_area_size = size;
588 	if (fw_dump.dump_active) {
589 		pr_info("Firmware-assisted dump is active.\n");
590 
591 #ifdef CONFIG_HUGETLB_PAGE
592 		/*
593 		 * FADump capture kernel doesn't care much about hugepages.
594 		 * In fact, handling hugepages in capture kernel is asking for
595 		 * trouble. So, disable HugeTLB support when fadump is active.
596 		 */
597 		hugetlb_disabled = true;
598 #endif
599 		/*
600 		 * If last boot has crashed then reserve all the memory
601 		 * above boot memory size so that we don't touch it until
602 		 * dump is written to disk by userspace tool. This memory
603 		 * can be released for general use by invalidating fadump.
604 		 */
605 		fadump_reserve_crash_area(base);
606 
607 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
608 		pr_debug("Reserve dump area start address: 0x%lx\n",
609 			 fw_dump.reserve_dump_area_start);
610 	} else {
611 		/*
612 		 * Reserve memory at an offset closer to bottom of the RAM to
613 		 * minimize the impact of memory hot-remove operation.
614 		 */
615 		base = fadump_locate_reserve_mem(base, size);
616 
617 		if (!base || (base + size > mem_boundary)) {
618 			pr_err("Failed to find memory chunk for reservation!\n");
619 			goto error_out;
620 		}
621 		fw_dump.reserve_dump_area_start = base;
622 
623 		/*
624 		 * Calculate the kernel metadata address and register it with
625 		 * f/w if the platform supports.
626 		 */
627 		if (fw_dump.ops->fadump_setup_metadata &&
628 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
629 			goto error_out;
630 
631 		if (memblock_reserve(base, size)) {
632 			pr_err("Failed to reserve memory!\n");
633 			goto error_out;
634 		}
635 
636 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
637 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
638 
639 		ret = fadump_cma_init();
640 	}
641 
642 	return ret;
643 error_out:
644 	fw_dump.fadump_enabled = 0;
645 	fw_dump.reserve_dump_area_size = 0;
646 	return 0;
647 }
648 
649 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)650 static int __init early_fadump_param(char *p)
651 {
652 	if (!p)
653 		return 1;
654 
655 	if (strncmp(p, "on", 2) == 0)
656 		fw_dump.fadump_enabled = 1;
657 	else if (strncmp(p, "off", 3) == 0)
658 		fw_dump.fadump_enabled = 0;
659 	else if (strncmp(p, "nocma", 5) == 0) {
660 		fw_dump.fadump_enabled = 1;
661 		fw_dump.nocma = 1;
662 	}
663 
664 	return 0;
665 }
666 early_param("fadump", early_fadump_param);
667 
668 /*
669  * Look for fadump_reserve_mem= cmdline option
670  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
671  *       the sooner 'crashkernel=' parameter is accustomed to.
672  */
early_fadump_reserve_mem(char * p)673 static int __init early_fadump_reserve_mem(char *p)
674 {
675 	if (p)
676 		fw_dump.reserve_bootvar = memparse(p, &p);
677 	return 0;
678 }
679 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
680 
crash_fadump(struct pt_regs * regs,const char * str)681 void crash_fadump(struct pt_regs *regs, const char *str)
682 {
683 	unsigned int msecs;
684 	struct fadump_crash_info_header *fdh = NULL;
685 	int old_cpu, this_cpu;
686 	/* Do not include first CPU */
687 	unsigned int ncpus = num_online_cpus() - 1;
688 
689 	if (!should_fadump_crash())
690 		return;
691 
692 	/*
693 	 * old_cpu == -1 means this is the first CPU which has come here,
694 	 * go ahead and trigger fadump.
695 	 *
696 	 * old_cpu != -1 means some other CPU has already on it's way
697 	 * to trigger fadump, just keep looping here.
698 	 */
699 	this_cpu = smp_processor_id();
700 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
701 
702 	if (old_cpu != -1) {
703 		atomic_inc(&cpus_in_fadump);
704 
705 		/*
706 		 * We can't loop here indefinitely. Wait as long as fadump
707 		 * is in force. If we race with fadump un-registration this
708 		 * loop will break and then we go down to normal panic path
709 		 * and reboot. If fadump is in force the first crashing
710 		 * cpu will definitely trigger fadump.
711 		 */
712 		while (fw_dump.dump_registered)
713 			cpu_relax();
714 		return;
715 	}
716 
717 	fdh = __va(fw_dump.fadumphdr_addr);
718 	fdh->crashing_cpu = crashing_cpu;
719 	crash_save_vmcoreinfo();
720 
721 	if (regs)
722 		fdh->regs = *regs;
723 	else
724 		ppc_save_regs(&fdh->regs);
725 
726 	fdh->online_mask = *cpu_online_mask;
727 
728 	/*
729 	 * If we came in via system reset, wait a while for the secondary
730 	 * CPUs to enter.
731 	 */
732 	if (TRAP(&(fdh->regs)) == 0x100) {
733 		msecs = CRASH_TIMEOUT;
734 		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
735 			mdelay(1);
736 	}
737 
738 	fw_dump.ops->fadump_trigger(fdh, str);
739 }
740 
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)741 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
742 {
743 	struct elf_prstatus prstatus;
744 
745 	memset(&prstatus, 0, sizeof(prstatus));
746 	/*
747 	 * FIXME: How do i get PID? Do I really need it?
748 	 * prstatus.pr_pid = ????
749 	 */
750 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
751 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
752 			      &prstatus, sizeof(prstatus));
753 	return buf;
754 }
755 
fadump_update_elfcore_header(char * bufp)756 void fadump_update_elfcore_header(char *bufp)
757 {
758 	struct elf_phdr *phdr;
759 
760 	bufp += sizeof(struct elfhdr);
761 
762 	/* First note is a place holder for cpu notes info. */
763 	phdr = (struct elf_phdr *)bufp;
764 
765 	if (phdr->p_type == PT_NOTE) {
766 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
767 		phdr->p_offset	= phdr->p_paddr;
768 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
769 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
770 	}
771 	return;
772 }
773 
fadump_alloc_buffer(unsigned long size)774 static void *fadump_alloc_buffer(unsigned long size)
775 {
776 	unsigned long count, i;
777 	struct page *page;
778 	void *vaddr;
779 
780 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
781 	if (!vaddr)
782 		return NULL;
783 
784 	count = PAGE_ALIGN(size) / PAGE_SIZE;
785 	page = virt_to_page(vaddr);
786 	for (i = 0; i < count; i++)
787 		mark_page_reserved(page + i);
788 	return vaddr;
789 }
790 
fadump_free_buffer(unsigned long vaddr,unsigned long size)791 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
792 {
793 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
794 }
795 
fadump_setup_cpu_notes_buf(u32 num_cpus)796 s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
797 {
798 	/* Allocate buffer to hold cpu crash notes. */
799 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
800 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
801 	fw_dump.cpu_notes_buf_vaddr =
802 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
803 	if (!fw_dump.cpu_notes_buf_vaddr) {
804 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
805 		       fw_dump.cpu_notes_buf_size);
806 		return -ENOMEM;
807 	}
808 
809 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
810 		 fw_dump.cpu_notes_buf_size,
811 		 fw_dump.cpu_notes_buf_vaddr);
812 	return 0;
813 }
814 
fadump_free_cpu_notes_buf(void)815 void fadump_free_cpu_notes_buf(void)
816 {
817 	if (!fw_dump.cpu_notes_buf_vaddr)
818 		return;
819 
820 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
821 			   fw_dump.cpu_notes_buf_size);
822 	fw_dump.cpu_notes_buf_vaddr = 0;
823 	fw_dump.cpu_notes_buf_size = 0;
824 }
825 
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)826 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
827 {
828 	if (mrange_info->is_static) {
829 		mrange_info->mem_range_cnt = 0;
830 		return;
831 	}
832 
833 	kfree(mrange_info->mem_ranges);
834 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
835 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
836 }
837 
838 /*
839  * Allocate or reallocate mem_ranges array in incremental units
840  * of PAGE_SIZE.
841  */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)842 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
843 {
844 	struct fadump_memory_range *new_array;
845 	u64 new_size;
846 
847 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
848 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
849 		 new_size, mrange_info->name);
850 
851 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
852 	if (new_array == NULL) {
853 		pr_err("Insufficient memory for setting up %s memory ranges\n",
854 		       mrange_info->name);
855 		fadump_free_mem_ranges(mrange_info);
856 		return -ENOMEM;
857 	}
858 
859 	mrange_info->mem_ranges = new_array;
860 	mrange_info->mem_ranges_sz = new_size;
861 	mrange_info->max_mem_ranges = (new_size /
862 				       sizeof(struct fadump_memory_range));
863 	return 0;
864 }
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)865 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
866 				       u64 base, u64 end)
867 {
868 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
869 	bool is_adjacent = false;
870 	u64 start, size;
871 
872 	if (base == end)
873 		return 0;
874 
875 	/*
876 	 * Fold adjacent memory ranges to bring down the memory ranges/
877 	 * PT_LOAD segments count.
878 	 */
879 	if (mrange_info->mem_range_cnt) {
880 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
881 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
882 
883 		/*
884 		 * Boot memory area needs separate PT_LOAD segment(s) as it
885 		 * is moved to a different location at the time of crash.
886 		 * So, fold only if the region is not boot memory area.
887 		 */
888 		if ((start + size) == base && start >= fw_dump.boot_mem_top)
889 			is_adjacent = true;
890 	}
891 	if (!is_adjacent) {
892 		/* resize the array on reaching the limit */
893 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
894 			int ret;
895 
896 			if (mrange_info->is_static) {
897 				pr_err("Reached array size limit for %s memory ranges\n",
898 				       mrange_info->name);
899 				return -ENOSPC;
900 			}
901 
902 			ret = fadump_alloc_mem_ranges(mrange_info);
903 			if (ret)
904 				return ret;
905 
906 			/* Update to the new resized array */
907 			mem_ranges = mrange_info->mem_ranges;
908 		}
909 
910 		start = base;
911 		mem_ranges[mrange_info->mem_range_cnt].base = start;
912 		mrange_info->mem_range_cnt++;
913 	}
914 
915 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
916 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
917 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
918 		 start, end - 1, (end - start));
919 	return 0;
920 }
921 
fadump_exclude_reserved_area(u64 start,u64 end)922 static int fadump_exclude_reserved_area(u64 start, u64 end)
923 {
924 	u64 ra_start, ra_end;
925 	int ret = 0;
926 
927 	ra_start = fw_dump.reserve_dump_area_start;
928 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
929 
930 	if ((ra_start < end) && (ra_end > start)) {
931 		if ((start < ra_start) && (end > ra_end)) {
932 			ret = fadump_add_mem_range(&crash_mrange_info,
933 						   start, ra_start);
934 			if (ret)
935 				return ret;
936 
937 			ret = fadump_add_mem_range(&crash_mrange_info,
938 						   ra_end, end);
939 		} else if (start < ra_start) {
940 			ret = fadump_add_mem_range(&crash_mrange_info,
941 						   start, ra_start);
942 		} else if (ra_end < end) {
943 			ret = fadump_add_mem_range(&crash_mrange_info,
944 						   ra_end, end);
945 		}
946 	} else
947 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
948 
949 	return ret;
950 }
951 
fadump_init_elfcore_header(char * bufp)952 static int fadump_init_elfcore_header(char *bufp)
953 {
954 	struct elfhdr *elf;
955 
956 	elf = (struct elfhdr *) bufp;
957 	bufp += sizeof(struct elfhdr);
958 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
959 	elf->e_ident[EI_CLASS] = ELF_CLASS;
960 	elf->e_ident[EI_DATA] = ELF_DATA;
961 	elf->e_ident[EI_VERSION] = EV_CURRENT;
962 	elf->e_ident[EI_OSABI] = ELF_OSABI;
963 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
964 	elf->e_type = ET_CORE;
965 	elf->e_machine = ELF_ARCH;
966 	elf->e_version = EV_CURRENT;
967 	elf->e_entry = 0;
968 	elf->e_phoff = sizeof(struct elfhdr);
969 	elf->e_shoff = 0;
970 #if defined(_CALL_ELF)
971 	elf->e_flags = _CALL_ELF;
972 #else
973 	elf->e_flags = 0;
974 #endif
975 	elf->e_ehsize = sizeof(struct elfhdr);
976 	elf->e_phentsize = sizeof(struct elf_phdr);
977 	elf->e_phnum = 0;
978 	elf->e_shentsize = 0;
979 	elf->e_shnum = 0;
980 	elf->e_shstrndx = 0;
981 
982 	return 0;
983 }
984 
985 /*
986  * Traverse through memblock structure and setup crash memory ranges. These
987  * ranges will be used create PT_LOAD program headers in elfcore header.
988  */
fadump_setup_crash_memory_ranges(void)989 static int fadump_setup_crash_memory_ranges(void)
990 {
991 	u64 i, start, end;
992 	int ret;
993 
994 	pr_debug("Setup crash memory ranges.\n");
995 	crash_mrange_info.mem_range_cnt = 0;
996 
997 	/*
998 	 * Boot memory region(s) registered with firmware are moved to
999 	 * different location at the time of crash. Create separate program
1000 	 * header(s) for this memory chunk(s) with the correct offset.
1001 	 */
1002 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1003 		start = fw_dump.boot_mem_addr[i];
1004 		end = start + fw_dump.boot_mem_sz[i];
1005 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1006 		if (ret)
1007 			return ret;
1008 	}
1009 
1010 	for_each_mem_range(i, &start, &end) {
1011 		/*
1012 		 * skip the memory chunk that is already added
1013 		 * (0 through boot_memory_top).
1014 		 */
1015 		if (start < fw_dump.boot_mem_top) {
1016 			if (end > fw_dump.boot_mem_top)
1017 				start = fw_dump.boot_mem_top;
1018 			else
1019 				continue;
1020 		}
1021 
1022 		/* add this range excluding the reserved dump area. */
1023 		ret = fadump_exclude_reserved_area(start, end);
1024 		if (ret)
1025 			return ret;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 /*
1032  * If the given physical address falls within the boot memory region then
1033  * return the relocated address that points to the dump region reserved
1034  * for saving initial boot memory contents.
1035  */
fadump_relocate(unsigned long paddr)1036 static inline unsigned long fadump_relocate(unsigned long paddr)
1037 {
1038 	unsigned long raddr, rstart, rend, rlast, hole_size;
1039 	int i;
1040 
1041 	hole_size = 0;
1042 	rlast = 0;
1043 	raddr = paddr;
1044 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1045 		rstart = fw_dump.boot_mem_addr[i];
1046 		rend = rstart + fw_dump.boot_mem_sz[i];
1047 		hole_size += (rstart - rlast);
1048 
1049 		if (paddr >= rstart && paddr < rend) {
1050 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1051 			break;
1052 		}
1053 
1054 		rlast = rend;
1055 	}
1056 
1057 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1058 	return raddr;
1059 }
1060 
fadump_create_elfcore_headers(char * bufp)1061 static int fadump_create_elfcore_headers(char *bufp)
1062 {
1063 	unsigned long long raddr, offset;
1064 	struct elf_phdr *phdr;
1065 	struct elfhdr *elf;
1066 	int i, j;
1067 
1068 	fadump_init_elfcore_header(bufp);
1069 	elf = (struct elfhdr *)bufp;
1070 	bufp += sizeof(struct elfhdr);
1071 
1072 	/*
1073 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1074 	 * will be populated during second kernel boot after crash. Hence
1075 	 * this PT_NOTE will always be the first elf note.
1076 	 *
1077 	 * NOTE: Any new ELF note addition should be placed after this note.
1078 	 */
1079 	phdr = (struct elf_phdr *)bufp;
1080 	bufp += sizeof(struct elf_phdr);
1081 	phdr->p_type = PT_NOTE;
1082 	phdr->p_flags = 0;
1083 	phdr->p_vaddr = 0;
1084 	phdr->p_align = 0;
1085 
1086 	phdr->p_offset = 0;
1087 	phdr->p_paddr = 0;
1088 	phdr->p_filesz = 0;
1089 	phdr->p_memsz = 0;
1090 
1091 	(elf->e_phnum)++;
1092 
1093 	/* setup ELF PT_NOTE for vmcoreinfo */
1094 	phdr = (struct elf_phdr *)bufp;
1095 	bufp += sizeof(struct elf_phdr);
1096 	phdr->p_type	= PT_NOTE;
1097 	phdr->p_flags	= 0;
1098 	phdr->p_vaddr	= 0;
1099 	phdr->p_align	= 0;
1100 
1101 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1102 	phdr->p_offset	= phdr->p_paddr;
1103 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1104 
1105 	/* Increment number of program headers. */
1106 	(elf->e_phnum)++;
1107 
1108 	/* setup PT_LOAD sections. */
1109 	j = 0;
1110 	offset = 0;
1111 	raddr = fw_dump.boot_mem_addr[0];
1112 	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1113 		u64 mbase, msize;
1114 
1115 		mbase = crash_mrange_info.mem_ranges[i].base;
1116 		msize = crash_mrange_info.mem_ranges[i].size;
1117 		if (!msize)
1118 			continue;
1119 
1120 		phdr = (struct elf_phdr *)bufp;
1121 		bufp += sizeof(struct elf_phdr);
1122 		phdr->p_type	= PT_LOAD;
1123 		phdr->p_flags	= PF_R|PF_W|PF_X;
1124 		phdr->p_offset	= mbase;
1125 
1126 		if (mbase == raddr) {
1127 			/*
1128 			 * The entire real memory region will be moved by
1129 			 * firmware to the specified destination_address.
1130 			 * Hence set the correct offset.
1131 			 */
1132 			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1133 			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1134 				offset += fw_dump.boot_mem_sz[j];
1135 				raddr = fw_dump.boot_mem_addr[++j];
1136 			}
1137 		}
1138 
1139 		phdr->p_paddr = mbase;
1140 		phdr->p_vaddr = (unsigned long)__va(mbase);
1141 		phdr->p_filesz = msize;
1142 		phdr->p_memsz = msize;
1143 		phdr->p_align = 0;
1144 
1145 		/* Increment number of program headers. */
1146 		(elf->e_phnum)++;
1147 	}
1148 	return 0;
1149 }
1150 
init_fadump_header(unsigned long addr)1151 static unsigned long init_fadump_header(unsigned long addr)
1152 {
1153 	struct fadump_crash_info_header *fdh;
1154 
1155 	if (!addr)
1156 		return 0;
1157 
1158 	fdh = __va(addr);
1159 	addr += sizeof(struct fadump_crash_info_header);
1160 
1161 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1162 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1163 	fdh->elfcorehdr_addr = addr;
1164 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1165 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1166 
1167 	return addr;
1168 }
1169 
register_fadump(void)1170 static int register_fadump(void)
1171 {
1172 	unsigned long addr;
1173 	void *vaddr;
1174 	int ret;
1175 
1176 	/*
1177 	 * If no memory is reserved then we can not register for firmware-
1178 	 * assisted dump.
1179 	 */
1180 	if (!fw_dump.reserve_dump_area_size)
1181 		return -ENODEV;
1182 
1183 	ret = fadump_setup_crash_memory_ranges();
1184 	if (ret)
1185 		return ret;
1186 
1187 	addr = fw_dump.fadumphdr_addr;
1188 
1189 	/* Initialize fadump crash info header. */
1190 	addr = init_fadump_header(addr);
1191 	vaddr = __va(addr);
1192 
1193 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1194 	fadump_create_elfcore_headers(vaddr);
1195 
1196 	/* register the future kernel dump with firmware. */
1197 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1198 	return fw_dump.ops->fadump_register(&fw_dump);
1199 }
1200 
fadump_cleanup(void)1201 void fadump_cleanup(void)
1202 {
1203 	if (!fw_dump.fadump_supported)
1204 		return;
1205 
1206 	/* Invalidate the registration only if dump is active. */
1207 	if (fw_dump.dump_active) {
1208 		pr_debug("Invalidating firmware-assisted dump registration\n");
1209 		fw_dump.ops->fadump_invalidate(&fw_dump);
1210 	} else if (fw_dump.dump_registered) {
1211 		/* Un-register Firmware-assisted dump if it was registered. */
1212 		fw_dump.ops->fadump_unregister(&fw_dump);
1213 		fadump_free_mem_ranges(&crash_mrange_info);
1214 	}
1215 
1216 	if (fw_dump.ops->fadump_cleanup)
1217 		fw_dump.ops->fadump_cleanup(&fw_dump);
1218 }
1219 
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1220 static void fadump_free_reserved_memory(unsigned long start_pfn,
1221 					unsigned long end_pfn)
1222 {
1223 	unsigned long pfn;
1224 	unsigned long time_limit = jiffies + HZ;
1225 
1226 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1227 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1228 
1229 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1230 		free_reserved_page(pfn_to_page(pfn));
1231 
1232 		if (time_after(jiffies, time_limit)) {
1233 			cond_resched();
1234 			time_limit = jiffies + HZ;
1235 		}
1236 	}
1237 }
1238 
1239 /*
1240  * Skip memory holes and free memory that was actually reserved.
1241  */
fadump_release_reserved_area(u64 start,u64 end)1242 static void fadump_release_reserved_area(u64 start, u64 end)
1243 {
1244 	unsigned long reg_spfn, reg_epfn;
1245 	u64 tstart, tend, spfn, epfn;
1246 	int i;
1247 
1248 	spfn = PHYS_PFN(start);
1249 	epfn = PHYS_PFN(end);
1250 
1251 	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1252 		tstart = max_t(u64, spfn, reg_spfn);
1253 		tend   = min_t(u64, epfn, reg_epfn);
1254 
1255 		if (tstart < tend) {
1256 			fadump_free_reserved_memory(tstart, tend);
1257 
1258 			if (tend == epfn)
1259 				break;
1260 
1261 			spfn = tend;
1262 		}
1263 	}
1264 }
1265 
1266 /*
1267  * Sort the mem ranges in-place and merge adjacent ranges
1268  * to minimize the memory ranges count.
1269  */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1270 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1271 {
1272 	struct fadump_memory_range *mem_ranges;
1273 	struct fadump_memory_range tmp_range;
1274 	u64 base, size;
1275 	int i, j, idx;
1276 
1277 	if (!reserved_mrange_info.mem_range_cnt)
1278 		return;
1279 
1280 	/* Sort the memory ranges */
1281 	mem_ranges = mrange_info->mem_ranges;
1282 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1283 		idx = i;
1284 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1285 			if (mem_ranges[idx].base > mem_ranges[j].base)
1286 				idx = j;
1287 		}
1288 		if (idx != i) {
1289 			tmp_range = mem_ranges[idx];
1290 			mem_ranges[idx] = mem_ranges[i];
1291 			mem_ranges[i] = tmp_range;
1292 		}
1293 	}
1294 
1295 	/* Merge adjacent reserved ranges */
1296 	idx = 0;
1297 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1298 		base = mem_ranges[i-1].base;
1299 		size = mem_ranges[i-1].size;
1300 		if (mem_ranges[i].base == (base + size))
1301 			mem_ranges[idx].size += mem_ranges[i].size;
1302 		else {
1303 			idx++;
1304 			if (i == idx)
1305 				continue;
1306 
1307 			mem_ranges[idx] = mem_ranges[i];
1308 		}
1309 	}
1310 	mrange_info->mem_range_cnt = idx + 1;
1311 }
1312 
1313 /*
1314  * Scan reserved-ranges to consider them while reserving/releasing
1315  * memory for FADump.
1316  */
early_init_dt_scan_reserved_ranges(unsigned long node)1317 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1318 {
1319 	const __be32 *prop;
1320 	int len, ret = -1;
1321 	unsigned long i;
1322 
1323 	/* reserved-ranges already scanned */
1324 	if (reserved_mrange_info.mem_range_cnt != 0)
1325 		return;
1326 
1327 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1328 	if (!prop)
1329 		return;
1330 
1331 	/*
1332 	 * Each reserved range is an (address,size) pair, 2 cells each,
1333 	 * totalling 4 cells per range.
1334 	 */
1335 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1336 		u64 base, size;
1337 
1338 		base = of_read_number(prop + (i * 4) + 0, 2);
1339 		size = of_read_number(prop + (i * 4) + 2, 2);
1340 
1341 		if (size) {
1342 			ret = fadump_add_mem_range(&reserved_mrange_info,
1343 						   base, base + size);
1344 			if (ret < 0) {
1345 				pr_warn("some reserved ranges are ignored!\n");
1346 				break;
1347 			}
1348 		}
1349 	}
1350 
1351 	/* Compact reserved ranges */
1352 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1353 }
1354 
1355 /*
1356  * Release the memory that was reserved during early boot to preserve the
1357  * crash'ed kernel's memory contents except reserved dump area (permanent
1358  * reservation) and reserved ranges used by F/W. The released memory will
1359  * be available for general use.
1360  */
fadump_release_memory(u64 begin,u64 end)1361 static void fadump_release_memory(u64 begin, u64 end)
1362 {
1363 	u64 ra_start, ra_end, tstart;
1364 	int i, ret;
1365 
1366 	ra_start = fw_dump.reserve_dump_area_start;
1367 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1368 
1369 	/*
1370 	 * If reserved ranges array limit is hit, overwrite the last reserved
1371 	 * memory range with reserved dump area to ensure it is excluded from
1372 	 * the memory being released (reused for next FADump registration).
1373 	 */
1374 	if (reserved_mrange_info.mem_range_cnt ==
1375 	    reserved_mrange_info.max_mem_ranges)
1376 		reserved_mrange_info.mem_range_cnt--;
1377 
1378 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1379 	if (ret != 0)
1380 		return;
1381 
1382 	/* Get the reserved ranges list in order first. */
1383 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1384 
1385 	/* Exclude reserved ranges and release remaining memory */
1386 	tstart = begin;
1387 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1388 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1389 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1390 
1391 		if (tstart >= ra_end)
1392 			continue;
1393 
1394 		if (tstart < ra_start)
1395 			fadump_release_reserved_area(tstart, ra_start);
1396 		tstart = ra_end;
1397 	}
1398 
1399 	if (tstart < end)
1400 		fadump_release_reserved_area(tstart, end);
1401 }
1402 
fadump_invalidate_release_mem(void)1403 static void fadump_invalidate_release_mem(void)
1404 {
1405 	mutex_lock(&fadump_mutex);
1406 	if (!fw_dump.dump_active) {
1407 		mutex_unlock(&fadump_mutex);
1408 		return;
1409 	}
1410 
1411 	fadump_cleanup();
1412 	mutex_unlock(&fadump_mutex);
1413 
1414 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1415 	fadump_free_cpu_notes_buf();
1416 
1417 	/*
1418 	 * Setup kernel metadata and initialize the kernel dump
1419 	 * memory structure for FADump re-registration.
1420 	 */
1421 	if (fw_dump.ops->fadump_setup_metadata &&
1422 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1423 		pr_warn("Failed to setup kernel metadata!\n");
1424 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1425 }
1426 
release_mem_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1427 static ssize_t release_mem_store(struct kobject *kobj,
1428 				 struct kobj_attribute *attr,
1429 				 const char *buf, size_t count)
1430 {
1431 	int input = -1;
1432 
1433 	if (!fw_dump.dump_active)
1434 		return -EPERM;
1435 
1436 	if (kstrtoint(buf, 0, &input))
1437 		return -EINVAL;
1438 
1439 	if (input == 1) {
1440 		/*
1441 		 * Take away the '/proc/vmcore'. We are releasing the dump
1442 		 * memory, hence it will not be valid anymore.
1443 		 */
1444 #ifdef CONFIG_PROC_VMCORE
1445 		vmcore_cleanup();
1446 #endif
1447 		fadump_invalidate_release_mem();
1448 
1449 	} else
1450 		return -EINVAL;
1451 	return count;
1452 }
1453 
1454 /* Release the reserved memory and disable the FADump */
unregister_fadump(void)1455 static void unregister_fadump(void)
1456 {
1457 	fadump_cleanup();
1458 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1459 			      fw_dump.reserve_dump_area_size);
1460 	fw_dump.fadump_enabled = 0;
1461 	kobject_put(fadump_kobj);
1462 }
1463 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1464 static ssize_t enabled_show(struct kobject *kobj,
1465 			    struct kobj_attribute *attr,
1466 			    char *buf)
1467 {
1468 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1469 }
1470 
mem_reserved_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1471 static ssize_t mem_reserved_show(struct kobject *kobj,
1472 				 struct kobj_attribute *attr,
1473 				 char *buf)
1474 {
1475 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1476 }
1477 
registered_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1478 static ssize_t registered_show(struct kobject *kobj,
1479 			       struct kobj_attribute *attr,
1480 			       char *buf)
1481 {
1482 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1483 }
1484 
registered_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1485 static ssize_t registered_store(struct kobject *kobj,
1486 				struct kobj_attribute *attr,
1487 				const char *buf, size_t count)
1488 {
1489 	int ret = 0;
1490 	int input = -1;
1491 
1492 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1493 		return -EPERM;
1494 
1495 	if (kstrtoint(buf, 0, &input))
1496 		return -EINVAL;
1497 
1498 	mutex_lock(&fadump_mutex);
1499 
1500 	switch (input) {
1501 	case 0:
1502 		if (fw_dump.dump_registered == 0) {
1503 			goto unlock_out;
1504 		}
1505 
1506 		/* Un-register Firmware-assisted dump */
1507 		pr_debug("Un-register firmware-assisted dump\n");
1508 		fw_dump.ops->fadump_unregister(&fw_dump);
1509 		break;
1510 	case 1:
1511 		if (fw_dump.dump_registered == 1) {
1512 			/* Un-register Firmware-assisted dump */
1513 			fw_dump.ops->fadump_unregister(&fw_dump);
1514 		}
1515 		/* Register Firmware-assisted dump */
1516 		ret = register_fadump();
1517 		break;
1518 	default:
1519 		ret = -EINVAL;
1520 		break;
1521 	}
1522 
1523 unlock_out:
1524 	mutex_unlock(&fadump_mutex);
1525 	return ret < 0 ? ret : count;
1526 }
1527 
fadump_region_show(struct seq_file * m,void * private)1528 static int fadump_region_show(struct seq_file *m, void *private)
1529 {
1530 	if (!fw_dump.fadump_enabled)
1531 		return 0;
1532 
1533 	mutex_lock(&fadump_mutex);
1534 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1535 	mutex_unlock(&fadump_mutex);
1536 	return 0;
1537 }
1538 
1539 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1540 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1541 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1542 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1543 
1544 static struct attribute *fadump_attrs[] = {
1545 	&enable_attr.attr,
1546 	&register_attr.attr,
1547 	&mem_reserved_attr.attr,
1548 	NULL,
1549 };
1550 
1551 ATTRIBUTE_GROUPS(fadump);
1552 
1553 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1554 
fadump_init_files(void)1555 static void fadump_init_files(void)
1556 {
1557 	int rc = 0;
1558 
1559 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1560 	if (!fadump_kobj) {
1561 		pr_err("failed to create fadump kobject\n");
1562 		return;
1563 	}
1564 
1565 	debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL,
1566 			    &fadump_region_fops);
1567 
1568 	if (fw_dump.dump_active) {
1569 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1570 		if (rc)
1571 			pr_err("unable to create release_mem sysfs file (%d)\n",
1572 			       rc);
1573 	}
1574 
1575 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1576 	if (rc) {
1577 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1578 		       rc);
1579 		unregister_fadump();
1580 		return;
1581 	}
1582 
1583 	/*
1584 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1585 	 * create symlink at old location to maintain backward compatibility.
1586 	 *
1587 	 *      - fadump_enabled -> fadump/enabled
1588 	 *      - fadump_registered -> fadump/registered
1589 	 *      - fadump_release_mem -> fadump/release_mem
1590 	 */
1591 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1592 						  "enabled", "fadump_enabled");
1593 	if (rc) {
1594 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1595 		return;
1596 	}
1597 
1598 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1599 						  "registered",
1600 						  "fadump_registered");
1601 	if (rc) {
1602 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1603 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1604 		return;
1605 	}
1606 
1607 	if (fw_dump.dump_active) {
1608 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1609 							  fadump_kobj,
1610 							  "release_mem",
1611 							  "fadump_release_mem");
1612 		if (rc)
1613 			pr_err("unable to create fadump_release_mem symlink (%d)",
1614 			       rc);
1615 	}
1616 	return;
1617 }
1618 
1619 /*
1620  * Prepare for firmware-assisted dump.
1621  */
setup_fadump(void)1622 int __init setup_fadump(void)
1623 {
1624 	if (!fw_dump.fadump_supported)
1625 		return 0;
1626 
1627 	fadump_init_files();
1628 	fadump_show_config();
1629 
1630 	if (!fw_dump.fadump_enabled)
1631 		return 1;
1632 
1633 	/*
1634 	 * If dump data is available then see if it is valid and prepare for
1635 	 * saving it to the disk.
1636 	 */
1637 	if (fw_dump.dump_active) {
1638 		/*
1639 		 * if dump process fails then invalidate the registration
1640 		 * and release memory before proceeding for re-registration.
1641 		 */
1642 		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1643 			fadump_invalidate_release_mem();
1644 	}
1645 	/* Initialize the kernel dump memory structure for FAD registration. */
1646 	else if (fw_dump.reserve_dump_area_size)
1647 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1648 
1649 	/*
1650 	 * In case of panic, fadump is triggered via ppc_panic_event()
1651 	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1652 	 * lets panic() function take crash friendly path before panic
1653 	 * notifiers are invoked.
1654 	 */
1655 	crash_kexec_post_notifiers = true;
1656 
1657 	return 1;
1658 }
1659 subsys_initcall(setup_fadump);
1660 #else /* !CONFIG_PRESERVE_FA_DUMP */
1661 
1662 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1663 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1664 				      int depth, void *data)
1665 {
1666 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1667 		return 0;
1668 
1669 	opal_fadump_dt_scan(&fw_dump, node);
1670 	return 1;
1671 }
1672 
1673 /*
1674  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1675  * preserve crash data. The subsequent memory preserving kernel boot
1676  * is likely to process this crash data.
1677  */
fadump_reserve_mem(void)1678 int __init fadump_reserve_mem(void)
1679 {
1680 	if (fw_dump.dump_active) {
1681 		/*
1682 		 * If last boot has crashed then reserve all the memory
1683 		 * above boot memory to preserve crash data.
1684 		 */
1685 		pr_info("Preserving crash data for processing in next boot.\n");
1686 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1687 	} else
1688 		pr_debug("FADump-aware kernel..\n");
1689 
1690 	return 1;
1691 }
1692 #endif /* CONFIG_PRESERVE_FA_DUMP */
1693 
1694 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1695 static void __init fadump_reserve_crash_area(u64 base)
1696 {
1697 	u64 i, mstart, mend, msize;
1698 
1699 	for_each_mem_range(i, &mstart, &mend) {
1700 		msize  = mend - mstart;
1701 
1702 		if ((mstart + msize) < base)
1703 			continue;
1704 
1705 		if (mstart < base) {
1706 			msize -= (base - mstart);
1707 			mstart = base;
1708 		}
1709 
1710 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1711 			(msize >> 20), mstart);
1712 		memblock_reserve(mstart, msize);
1713 	}
1714 }
1715 
arch_reserved_kernel_pages(void)1716 unsigned long __init arch_reserved_kernel_pages(void)
1717 {
1718 	return memblock_reserved_size() / PAGE_SIZE;
1719 }
1720