1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux INET6 implementation
4 * Forwarding Information Database
5 *
6 * Authors:
7 * Pedro Roque <roque@di.fc.ul.pt>
8 *
9 * Changes:
10 * Yuji SEKIYA @USAGI: Support default route on router node;
11 * remove ip6_null_entry from the top of
12 * routing table.
13 * Ville Nuorvala: Fixed routing subtrees.
14 */
15
16 #define pr_fmt(fmt) "IPv6: " fmt
17
18 #include <linux/errno.h>
19 #include <linux/types.h>
20 #include <linux/net.h>
21 #include <linux/route.h>
22 #include <linux/netdevice.h>
23 #include <linux/in6.h>
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30 #include <net/ndisc.h>
31 #include <net/addrconf.h>
32 #include <net/lwtunnel.h>
33 #include <net/fib_notifier.h>
34
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37
38 static struct kmem_cache *fib6_node_kmem __read_mostly;
39
40 struct fib6_cleaner {
41 struct fib6_walker w;
42 struct net *net;
43 int (*func)(struct fib6_info *, void *arg);
44 int sernum;
45 void *arg;
46 bool skip_notify;
47 };
48
49 #ifdef CONFIG_IPV6_SUBTREES
50 #define FWS_INIT FWS_S
51 #else
52 #define FWS_INIT FWS_L
53 #endif
54
55 static struct fib6_info *fib6_find_prefix(struct net *net,
56 struct fib6_table *table,
57 struct fib6_node *fn);
58 static struct fib6_node *fib6_repair_tree(struct net *net,
59 struct fib6_table *table,
60 struct fib6_node *fn);
61 static int fib6_walk(struct net *net, struct fib6_walker *w);
62 static int fib6_walk_continue(struct fib6_walker *w);
63
64 /*
65 * A routing update causes an increase of the serial number on the
66 * affected subtree. This allows for cached routes to be asynchronously
67 * tested when modifications are made to the destination cache as a
68 * result of redirects, path MTU changes, etc.
69 */
70
71 static void fib6_gc_timer_cb(struct timer_list *t);
72
73 #define FOR_WALKERS(net, w) \
74 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
75
fib6_walker_link(struct net * net,struct fib6_walker * w)76 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
77 {
78 write_lock_bh(&net->ipv6.fib6_walker_lock);
79 list_add(&w->lh, &net->ipv6.fib6_walkers);
80 write_unlock_bh(&net->ipv6.fib6_walker_lock);
81 }
82
fib6_walker_unlink(struct net * net,struct fib6_walker * w)83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
84 {
85 write_lock_bh(&net->ipv6.fib6_walker_lock);
86 list_del(&w->lh);
87 write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89
fib6_new_sernum(struct net * net)90 static int fib6_new_sernum(struct net *net)
91 {
92 int new, old;
93
94 do {
95 old = atomic_read(&net->ipv6.fib6_sernum);
96 new = old < INT_MAX ? old + 1 : 1;
97 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
98 old, new) != old);
99 return new;
100 }
101
102 enum {
103 FIB6_NO_SERNUM_CHANGE = 0,
104 };
105
fib6_update_sernum(struct net * net,struct fib6_info * f6i)106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
107 {
108 struct fib6_node *fn;
109
110 fn = rcu_dereference_protected(f6i->fib6_node,
111 lockdep_is_held(&f6i->fib6_table->tb6_lock));
112 if (fn)
113 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
114 }
115
116 /*
117 * Auxiliary address test functions for the radix tree.
118 *
119 * These assume a 32bit processor (although it will work on
120 * 64bit processors)
121 */
122
123 /*
124 * test bit
125 */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE 0
130 #endif
131
addr_bit_set(const void * token,int fn_bit)132 static __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134 const __be32 *addr = token;
135 /*
136 * Here,
137 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138 * is optimized version of
139 * htonl(1 << ((~fn_bit)&0x1F))
140 * See include/asm-generic/bitops/le.h.
141 */
142 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 addr[fn_bit >> 5];
144 }
145
fib6_info_alloc(gfp_t gfp_flags,bool with_fib6_nh)146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
147 {
148 struct fib6_info *f6i;
149 size_t sz = sizeof(*f6i);
150
151 if (with_fib6_nh)
152 sz += sizeof(struct fib6_nh);
153
154 f6i = kzalloc(sz, gfp_flags);
155 if (!f6i)
156 return NULL;
157
158 /* fib6_siblings is a union with nh_list, so this initializes both */
159 INIT_LIST_HEAD(&f6i->fib6_siblings);
160 refcount_set(&f6i->fib6_ref, 1);
161
162 return f6i;
163 }
164
fib6_info_destroy_rcu(struct rcu_head * head)165 void fib6_info_destroy_rcu(struct rcu_head *head)
166 {
167 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
168
169 WARN_ON(f6i->fib6_node);
170
171 if (f6i->nh)
172 nexthop_put(f6i->nh);
173 else
174 fib6_nh_release(f6i->fib6_nh);
175
176 ip_fib_metrics_put(f6i->fib6_metrics);
177 kfree(f6i);
178 }
179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
180
node_alloc(struct net * net)181 static struct fib6_node *node_alloc(struct net *net)
182 {
183 struct fib6_node *fn;
184
185 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
186 if (fn)
187 net->ipv6.rt6_stats->fib_nodes++;
188
189 return fn;
190 }
191
node_free_immediate(struct net * net,struct fib6_node * fn)192 static void node_free_immediate(struct net *net, struct fib6_node *fn)
193 {
194 kmem_cache_free(fib6_node_kmem, fn);
195 net->ipv6.rt6_stats->fib_nodes--;
196 }
197
node_free_rcu(struct rcu_head * head)198 static void node_free_rcu(struct rcu_head *head)
199 {
200 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
201
202 kmem_cache_free(fib6_node_kmem, fn);
203 }
204
node_free(struct net * net,struct fib6_node * fn)205 static void node_free(struct net *net, struct fib6_node *fn)
206 {
207 call_rcu(&fn->rcu, node_free_rcu);
208 net->ipv6.rt6_stats->fib_nodes--;
209 }
210
fib6_free_table(struct fib6_table * table)211 static void fib6_free_table(struct fib6_table *table)
212 {
213 inetpeer_invalidate_tree(&table->tb6_peers);
214 kfree(table);
215 }
216
fib6_link_table(struct net * net,struct fib6_table * tb)217 static void fib6_link_table(struct net *net, struct fib6_table *tb)
218 {
219 unsigned int h;
220
221 /*
222 * Initialize table lock at a single place to give lockdep a key,
223 * tables aren't visible prior to being linked to the list.
224 */
225 spin_lock_init(&tb->tb6_lock);
226 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
227
228 /*
229 * No protection necessary, this is the only list mutatation
230 * operation, tables never disappear once they exist.
231 */
232 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
233 }
234
235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
236
fib6_alloc_table(struct net * net,u32 id)237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
238 {
239 struct fib6_table *table;
240
241 table = kzalloc(sizeof(*table), GFP_ATOMIC);
242 if (table) {
243 table->tb6_id = id;
244 rcu_assign_pointer(table->tb6_root.leaf,
245 net->ipv6.fib6_null_entry);
246 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
247 inet_peer_base_init(&table->tb6_peers);
248 }
249
250 return table;
251 }
252
fib6_new_table(struct net * net,u32 id)253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 struct fib6_table *tb;
256
257 if (id == 0)
258 id = RT6_TABLE_MAIN;
259 tb = fib6_get_table(net, id);
260 if (tb)
261 return tb;
262
263 tb = fib6_alloc_table(net, id);
264 if (tb)
265 fib6_link_table(net, tb);
266
267 return tb;
268 }
269 EXPORT_SYMBOL_GPL(fib6_new_table);
270
fib6_get_table(struct net * net,u32 id)271 struct fib6_table *fib6_get_table(struct net *net, u32 id)
272 {
273 struct fib6_table *tb;
274 struct hlist_head *head;
275 unsigned int h;
276
277 if (id == 0)
278 id = RT6_TABLE_MAIN;
279 h = id & (FIB6_TABLE_HASHSZ - 1);
280 rcu_read_lock();
281 head = &net->ipv6.fib_table_hash[h];
282 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
283 if (tb->tb6_id == id) {
284 rcu_read_unlock();
285 return tb;
286 }
287 }
288 rcu_read_unlock();
289
290 return NULL;
291 }
292 EXPORT_SYMBOL_GPL(fib6_get_table);
293
fib6_tables_init(struct net * net)294 static void __net_init fib6_tables_init(struct net *net)
295 {
296 fib6_link_table(net, net->ipv6.fib6_main_tbl);
297 fib6_link_table(net, net->ipv6.fib6_local_tbl);
298 }
299 #else
300
fib6_new_table(struct net * net,u32 id)301 struct fib6_table *fib6_new_table(struct net *net, u32 id)
302 {
303 return fib6_get_table(net, id);
304 }
305
fib6_get_table(struct net * net,u32 id)306 struct fib6_table *fib6_get_table(struct net *net, u32 id)
307 {
308 return net->ipv6.fib6_main_tbl;
309 }
310
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,const struct sk_buff * skb,int flags,pol_lookup_t lookup)311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
312 const struct sk_buff *skb,
313 int flags, pol_lookup_t lookup)
314 {
315 struct rt6_info *rt;
316
317 rt = pol_lookup_func(lookup,
318 net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
319 if (rt->dst.error == -EAGAIN) {
320 ip6_rt_put_flags(rt, flags);
321 rt = net->ipv6.ip6_null_entry;
322 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
323 dst_hold(&rt->dst);
324 }
325
326 return &rt->dst;
327 }
328
329 /* called with rcu lock held; no reference taken on fib6_info */
fib6_lookup(struct net * net,int oif,struct flowi6 * fl6,struct fib6_result * res,int flags)330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
331 struct fib6_result *res, int flags)
332 {
333 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
334 res, flags);
335 }
336
fib6_tables_init(struct net * net)337 static void __net_init fib6_tables_init(struct net *net)
338 {
339 fib6_link_table(net, net->ipv6.fib6_main_tbl);
340 }
341
342 #endif
343
fib6_tables_seq_read(struct net * net)344 unsigned int fib6_tables_seq_read(struct net *net)
345 {
346 unsigned int h, fib_seq = 0;
347
348 rcu_read_lock();
349 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
350 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
351 struct fib6_table *tb;
352
353 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
354 fib_seq += tb->fib_seq;
355 }
356 rcu_read_unlock();
357
358 return fib_seq;
359 }
360
call_fib6_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)361 static int call_fib6_entry_notifier(struct notifier_block *nb,
362 enum fib_event_type event_type,
363 struct fib6_info *rt,
364 struct netlink_ext_ack *extack)
365 {
366 struct fib6_entry_notifier_info info = {
367 .info.extack = extack,
368 .rt = rt,
369 };
370
371 return call_fib6_notifier(nb, event_type, &info.info);
372 }
373
call_fib6_multipath_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
375 enum fib_event_type event_type,
376 struct fib6_info *rt,
377 unsigned int nsiblings,
378 struct netlink_ext_ack *extack)
379 {
380 struct fib6_entry_notifier_info info = {
381 .info.extack = extack,
382 .rt = rt,
383 .nsiblings = nsiblings,
384 };
385
386 return call_fib6_notifier(nb, event_type, &info.info);
387 }
388
call_fib6_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)389 int call_fib6_entry_notifiers(struct net *net,
390 enum fib_event_type event_type,
391 struct fib6_info *rt,
392 struct netlink_ext_ack *extack)
393 {
394 struct fib6_entry_notifier_info info = {
395 .info.extack = extack,
396 .rt = rt,
397 };
398
399 rt->fib6_table->fib_seq++;
400 return call_fib6_notifiers(net, event_type, &info.info);
401 }
402
call_fib6_multipath_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)403 int call_fib6_multipath_entry_notifiers(struct net *net,
404 enum fib_event_type event_type,
405 struct fib6_info *rt,
406 unsigned int nsiblings,
407 struct netlink_ext_ack *extack)
408 {
409 struct fib6_entry_notifier_info info = {
410 .info.extack = extack,
411 .rt = rt,
412 .nsiblings = nsiblings,
413 };
414
415 rt->fib6_table->fib_seq++;
416 return call_fib6_notifiers(net, event_type, &info.info);
417 }
418
call_fib6_entry_notifiers_replace(struct net * net,struct fib6_info * rt)419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
420 {
421 struct fib6_entry_notifier_info info = {
422 .rt = rt,
423 .nsiblings = rt->fib6_nsiblings,
424 };
425
426 rt->fib6_table->fib_seq++;
427 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
428 }
429
430 struct fib6_dump_arg {
431 struct net *net;
432 struct notifier_block *nb;
433 struct netlink_ext_ack *extack;
434 };
435
fib6_rt_dump(struct fib6_info * rt,struct fib6_dump_arg * arg)436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
437 {
438 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
439 int err;
440
441 if (!rt || rt == arg->net->ipv6.fib6_null_entry)
442 return 0;
443
444 if (rt->fib6_nsiblings)
445 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
446 rt,
447 rt->fib6_nsiblings,
448 arg->extack);
449 else
450 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
451 arg->extack);
452
453 return err;
454 }
455
fib6_node_dump(struct fib6_walker * w)456 static int fib6_node_dump(struct fib6_walker *w)
457 {
458 int err;
459
460 err = fib6_rt_dump(w->leaf, w->args);
461 w->leaf = NULL;
462 return err;
463 }
464
fib6_table_dump(struct net * net,struct fib6_table * tb,struct fib6_walker * w)465 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
466 struct fib6_walker *w)
467 {
468 int err;
469
470 w->root = &tb->tb6_root;
471 spin_lock_bh(&tb->tb6_lock);
472 err = fib6_walk(net, w);
473 spin_unlock_bh(&tb->tb6_lock);
474 return err;
475 }
476
477 /* Called with rcu_read_lock() */
fib6_tables_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)478 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
479 struct netlink_ext_ack *extack)
480 {
481 struct fib6_dump_arg arg;
482 struct fib6_walker *w;
483 unsigned int h;
484 int err = 0;
485
486 w = kzalloc(sizeof(*w), GFP_ATOMIC);
487 if (!w)
488 return -ENOMEM;
489
490 w->func = fib6_node_dump;
491 arg.net = net;
492 arg.nb = nb;
493 arg.extack = extack;
494 w->args = &arg;
495
496 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
497 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
498 struct fib6_table *tb;
499
500 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
501 err = fib6_table_dump(net, tb, w);
502 if (err < 0)
503 goto out;
504 }
505 }
506
507 out:
508 kfree(w);
509
510 return err;
511 }
512
fib6_dump_node(struct fib6_walker * w)513 static int fib6_dump_node(struct fib6_walker *w)
514 {
515 int res;
516 struct fib6_info *rt;
517
518 for_each_fib6_walker_rt(w) {
519 res = rt6_dump_route(rt, w->args, w->skip_in_node);
520 if (res >= 0) {
521 /* Frame is full, suspend walking */
522 w->leaf = rt;
523
524 /* We'll restart from this node, so if some routes were
525 * already dumped, skip them next time.
526 */
527 w->skip_in_node += res;
528
529 return 1;
530 }
531 w->skip_in_node = 0;
532
533 /* Multipath routes are dumped in one route with the
534 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
535 * last sibling of this route (no need to dump the
536 * sibling routes again)
537 */
538 if (rt->fib6_nsiblings)
539 rt = list_last_entry(&rt->fib6_siblings,
540 struct fib6_info,
541 fib6_siblings);
542 }
543 w->leaf = NULL;
544 return 0;
545 }
546
fib6_dump_end(struct netlink_callback * cb)547 static void fib6_dump_end(struct netlink_callback *cb)
548 {
549 struct net *net = sock_net(cb->skb->sk);
550 struct fib6_walker *w = (void *)cb->args[2];
551
552 if (w) {
553 if (cb->args[4]) {
554 cb->args[4] = 0;
555 fib6_walker_unlink(net, w);
556 }
557 cb->args[2] = 0;
558 kfree(w);
559 }
560 cb->done = (void *)cb->args[3];
561 cb->args[1] = 3;
562 }
563
fib6_dump_done(struct netlink_callback * cb)564 static int fib6_dump_done(struct netlink_callback *cb)
565 {
566 fib6_dump_end(cb);
567 return cb->done ? cb->done(cb) : 0;
568 }
569
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)570 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
571 struct netlink_callback *cb)
572 {
573 struct net *net = sock_net(skb->sk);
574 struct fib6_walker *w;
575 int res;
576
577 w = (void *)cb->args[2];
578 w->root = &table->tb6_root;
579
580 if (cb->args[4] == 0) {
581 w->count = 0;
582 w->skip = 0;
583 w->skip_in_node = 0;
584
585 spin_lock_bh(&table->tb6_lock);
586 res = fib6_walk(net, w);
587 spin_unlock_bh(&table->tb6_lock);
588 if (res > 0) {
589 cb->args[4] = 1;
590 cb->args[5] = READ_ONCE(w->root->fn_sernum);
591 }
592 } else {
593 int sernum = READ_ONCE(w->root->fn_sernum);
594 if (cb->args[5] != sernum) {
595 /* Begin at the root if the tree changed */
596 cb->args[5] = sernum;
597 w->state = FWS_INIT;
598 w->node = w->root;
599 w->skip = w->count;
600 w->skip_in_node = 0;
601 } else
602 w->skip = 0;
603
604 spin_lock_bh(&table->tb6_lock);
605 res = fib6_walk_continue(w);
606 spin_unlock_bh(&table->tb6_lock);
607 if (res <= 0) {
608 fib6_walker_unlink(net, w);
609 cb->args[4] = 0;
610 }
611 }
612
613 return res;
614 }
615
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)616 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
617 {
618 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
619 .filter.dump_routes = true };
620 const struct nlmsghdr *nlh = cb->nlh;
621 struct net *net = sock_net(skb->sk);
622 unsigned int h, s_h;
623 unsigned int e = 0, s_e;
624 struct fib6_walker *w;
625 struct fib6_table *tb;
626 struct hlist_head *head;
627 int res = 0;
628
629 if (cb->strict_check) {
630 int err;
631
632 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
633 if (err < 0)
634 return err;
635 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
636 struct rtmsg *rtm = nlmsg_data(nlh);
637
638 if (rtm->rtm_flags & RTM_F_PREFIX)
639 arg.filter.flags = RTM_F_PREFIX;
640 }
641
642 w = (void *)cb->args[2];
643 if (!w) {
644 /* New dump:
645 *
646 * 1. hook callback destructor.
647 */
648 cb->args[3] = (long)cb->done;
649 cb->done = fib6_dump_done;
650
651 /*
652 * 2. allocate and initialize walker.
653 */
654 w = kzalloc(sizeof(*w), GFP_ATOMIC);
655 if (!w)
656 return -ENOMEM;
657 w->func = fib6_dump_node;
658 cb->args[2] = (long)w;
659 }
660
661 arg.skb = skb;
662 arg.cb = cb;
663 arg.net = net;
664 w->args = &arg;
665
666 if (arg.filter.table_id) {
667 tb = fib6_get_table(net, arg.filter.table_id);
668 if (!tb) {
669 if (rtnl_msg_family(cb->nlh) != PF_INET6)
670 goto out;
671
672 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
673 return -ENOENT;
674 }
675
676 if (!cb->args[0]) {
677 res = fib6_dump_table(tb, skb, cb);
678 if (!res)
679 cb->args[0] = 1;
680 }
681 goto out;
682 }
683
684 s_h = cb->args[0];
685 s_e = cb->args[1];
686
687 rcu_read_lock();
688 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
689 e = 0;
690 head = &net->ipv6.fib_table_hash[h];
691 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
692 if (e < s_e)
693 goto next;
694 res = fib6_dump_table(tb, skb, cb);
695 if (res != 0)
696 goto out_unlock;
697 next:
698 e++;
699 }
700 }
701 out_unlock:
702 rcu_read_unlock();
703 cb->args[1] = e;
704 cb->args[0] = h;
705 out:
706 res = res < 0 ? res : skb->len;
707 if (res <= 0)
708 fib6_dump_end(cb);
709 return res;
710 }
711
fib6_metric_set(struct fib6_info * f6i,int metric,u32 val)712 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
713 {
714 if (!f6i)
715 return;
716
717 if (f6i->fib6_metrics == &dst_default_metrics) {
718 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
719
720 if (!p)
721 return;
722
723 refcount_set(&p->refcnt, 1);
724 f6i->fib6_metrics = p;
725 }
726
727 f6i->fib6_metrics->metrics[metric - 1] = val;
728 }
729
730 /*
731 * Routing Table
732 *
733 * return the appropriate node for a routing tree "add" operation
734 * by either creating and inserting or by returning an existing
735 * node.
736 */
737
fib6_add_1(struct net * net,struct fib6_table * table,struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,struct netlink_ext_ack * extack)738 static struct fib6_node *fib6_add_1(struct net *net,
739 struct fib6_table *table,
740 struct fib6_node *root,
741 struct in6_addr *addr, int plen,
742 int offset, int allow_create,
743 int replace_required,
744 struct netlink_ext_ack *extack)
745 {
746 struct fib6_node *fn, *in, *ln;
747 struct fib6_node *pn = NULL;
748 struct rt6key *key;
749 int bit;
750 __be32 dir = 0;
751
752 RT6_TRACE("fib6_add_1\n");
753
754 /* insert node in tree */
755
756 fn = root;
757
758 do {
759 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
760 lockdep_is_held(&table->tb6_lock));
761 key = (struct rt6key *)((u8 *)leaf + offset);
762
763 /*
764 * Prefix match
765 */
766 if (plen < fn->fn_bit ||
767 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
768 if (!allow_create) {
769 if (replace_required) {
770 NL_SET_ERR_MSG(extack,
771 "Can not replace route - no match found");
772 pr_warn("Can't replace route, no match found\n");
773 return ERR_PTR(-ENOENT);
774 }
775 pr_warn("NLM_F_CREATE should be set when creating new route\n");
776 }
777 goto insert_above;
778 }
779
780 /*
781 * Exact match ?
782 */
783
784 if (plen == fn->fn_bit) {
785 /* clean up an intermediate node */
786 if (!(fn->fn_flags & RTN_RTINFO)) {
787 RCU_INIT_POINTER(fn->leaf, NULL);
788 fib6_info_release(leaf);
789 /* remove null_entry in the root node */
790 } else if (fn->fn_flags & RTN_TL_ROOT &&
791 rcu_access_pointer(fn->leaf) ==
792 net->ipv6.fib6_null_entry) {
793 RCU_INIT_POINTER(fn->leaf, NULL);
794 }
795
796 return fn;
797 }
798
799 /*
800 * We have more bits to go
801 */
802
803 /* Try to walk down on tree. */
804 dir = addr_bit_set(addr, fn->fn_bit);
805 pn = fn;
806 fn = dir ?
807 rcu_dereference_protected(fn->right,
808 lockdep_is_held(&table->tb6_lock)) :
809 rcu_dereference_protected(fn->left,
810 lockdep_is_held(&table->tb6_lock));
811 } while (fn);
812
813 if (!allow_create) {
814 /* We should not create new node because
815 * NLM_F_REPLACE was specified without NLM_F_CREATE
816 * I assume it is safe to require NLM_F_CREATE when
817 * REPLACE flag is used! Later we may want to remove the
818 * check for replace_required, because according
819 * to netlink specification, NLM_F_CREATE
820 * MUST be specified if new route is created.
821 * That would keep IPv6 consistent with IPv4
822 */
823 if (replace_required) {
824 NL_SET_ERR_MSG(extack,
825 "Can not replace route - no match found");
826 pr_warn("Can't replace route, no match found\n");
827 return ERR_PTR(-ENOENT);
828 }
829 pr_warn("NLM_F_CREATE should be set when creating new route\n");
830 }
831 /*
832 * We walked to the bottom of tree.
833 * Create new leaf node without children.
834 */
835
836 ln = node_alloc(net);
837
838 if (!ln)
839 return ERR_PTR(-ENOMEM);
840 ln->fn_bit = plen;
841 RCU_INIT_POINTER(ln->parent, pn);
842
843 if (dir)
844 rcu_assign_pointer(pn->right, ln);
845 else
846 rcu_assign_pointer(pn->left, ln);
847
848 return ln;
849
850
851 insert_above:
852 /*
853 * split since we don't have a common prefix anymore or
854 * we have a less significant route.
855 * we've to insert an intermediate node on the list
856 * this new node will point to the one we need to create
857 * and the current
858 */
859
860 pn = rcu_dereference_protected(fn->parent,
861 lockdep_is_held(&table->tb6_lock));
862
863 /* find 1st bit in difference between the 2 addrs.
864
865 See comment in __ipv6_addr_diff: bit may be an invalid value,
866 but if it is >= plen, the value is ignored in any case.
867 */
868
869 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
870
871 /*
872 * (intermediate)[in]
873 * / \
874 * (new leaf node)[ln] (old node)[fn]
875 */
876 if (plen > bit) {
877 in = node_alloc(net);
878 ln = node_alloc(net);
879
880 if (!in || !ln) {
881 if (in)
882 node_free_immediate(net, in);
883 if (ln)
884 node_free_immediate(net, ln);
885 return ERR_PTR(-ENOMEM);
886 }
887
888 /*
889 * new intermediate node.
890 * RTN_RTINFO will
891 * be off since that an address that chooses one of
892 * the branches would not match less specific routes
893 * in the other branch
894 */
895
896 in->fn_bit = bit;
897
898 RCU_INIT_POINTER(in->parent, pn);
899 in->leaf = fn->leaf;
900 fib6_info_hold(rcu_dereference_protected(in->leaf,
901 lockdep_is_held(&table->tb6_lock)));
902
903 /* update parent pointer */
904 if (dir)
905 rcu_assign_pointer(pn->right, in);
906 else
907 rcu_assign_pointer(pn->left, in);
908
909 ln->fn_bit = plen;
910
911 RCU_INIT_POINTER(ln->parent, in);
912 rcu_assign_pointer(fn->parent, in);
913
914 if (addr_bit_set(addr, bit)) {
915 rcu_assign_pointer(in->right, ln);
916 rcu_assign_pointer(in->left, fn);
917 } else {
918 rcu_assign_pointer(in->left, ln);
919 rcu_assign_pointer(in->right, fn);
920 }
921 } else { /* plen <= bit */
922
923 /*
924 * (new leaf node)[ln]
925 * / \
926 * (old node)[fn] NULL
927 */
928
929 ln = node_alloc(net);
930
931 if (!ln)
932 return ERR_PTR(-ENOMEM);
933
934 ln->fn_bit = plen;
935
936 RCU_INIT_POINTER(ln->parent, pn);
937
938 if (addr_bit_set(&key->addr, plen))
939 RCU_INIT_POINTER(ln->right, fn);
940 else
941 RCU_INIT_POINTER(ln->left, fn);
942
943 rcu_assign_pointer(fn->parent, ln);
944
945 if (dir)
946 rcu_assign_pointer(pn->right, ln);
947 else
948 rcu_assign_pointer(pn->left, ln);
949 }
950 return ln;
951 }
952
__fib6_drop_pcpu_from(struct fib6_nh * fib6_nh,const struct fib6_info * match,const struct fib6_table * table)953 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
954 const struct fib6_info *match,
955 const struct fib6_table *table)
956 {
957 int cpu;
958
959 if (!fib6_nh->rt6i_pcpu)
960 return;
961
962 /* release the reference to this fib entry from
963 * all of its cached pcpu routes
964 */
965 for_each_possible_cpu(cpu) {
966 struct rt6_info **ppcpu_rt;
967 struct rt6_info *pcpu_rt;
968
969 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
970 pcpu_rt = *ppcpu_rt;
971
972 /* only dropping the 'from' reference if the cached route
973 * is using 'match'. The cached pcpu_rt->from only changes
974 * from a fib6_info to NULL (ip6_dst_destroy); it can never
975 * change from one fib6_info reference to another
976 */
977 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
978 struct fib6_info *from;
979
980 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
981 fib6_info_release(from);
982 }
983 }
984 }
985
986 struct fib6_nh_pcpu_arg {
987 struct fib6_info *from;
988 const struct fib6_table *table;
989 };
990
fib6_nh_drop_pcpu_from(struct fib6_nh * nh,void * _arg)991 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
992 {
993 struct fib6_nh_pcpu_arg *arg = _arg;
994
995 __fib6_drop_pcpu_from(nh, arg->from, arg->table);
996 return 0;
997 }
998
fib6_drop_pcpu_from(struct fib6_info * f6i,const struct fib6_table * table)999 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1000 const struct fib6_table *table)
1001 {
1002 /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1003 * while we are cleaning them here.
1004 */
1005 f6i->fib6_destroying = 1;
1006 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1007
1008 if (f6i->nh) {
1009 struct fib6_nh_pcpu_arg arg = {
1010 .from = f6i,
1011 .table = table
1012 };
1013
1014 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1015 &arg);
1016 } else {
1017 struct fib6_nh *fib6_nh;
1018
1019 fib6_nh = f6i->fib6_nh;
1020 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1021 }
1022 }
1023
fib6_purge_rt(struct fib6_info * rt,struct fib6_node * fn,struct net * net)1024 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1025 struct net *net)
1026 {
1027 struct fib6_table *table = rt->fib6_table;
1028
1029 /* Flush all cached dst in exception table */
1030 rt6_flush_exceptions(rt);
1031 fib6_drop_pcpu_from(rt, table);
1032
1033 if (rt->nh && !list_empty(&rt->nh_list))
1034 list_del_init(&rt->nh_list);
1035
1036 if (refcount_read(&rt->fib6_ref) != 1) {
1037 /* This route is used as dummy address holder in some split
1038 * nodes. It is not leaked, but it still holds other resources,
1039 * which must be released in time. So, scan ascendant nodes
1040 * and replace dummy references to this route with references
1041 * to still alive ones.
1042 */
1043 while (fn) {
1044 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1045 lockdep_is_held(&table->tb6_lock));
1046 struct fib6_info *new_leaf;
1047 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1048 new_leaf = fib6_find_prefix(net, table, fn);
1049 fib6_info_hold(new_leaf);
1050
1051 rcu_assign_pointer(fn->leaf, new_leaf);
1052 fib6_info_release(rt);
1053 }
1054 fn = rcu_dereference_protected(fn->parent,
1055 lockdep_is_held(&table->tb6_lock));
1056 }
1057 }
1058 }
1059
1060 /*
1061 * Insert routing information in a node.
1062 */
1063
fib6_add_rt2node(struct fib6_node * fn,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1064 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1065 struct nl_info *info,
1066 struct netlink_ext_ack *extack)
1067 {
1068 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1069 lockdep_is_held(&rt->fib6_table->tb6_lock));
1070 struct fib6_info *iter = NULL;
1071 struct fib6_info __rcu **ins;
1072 struct fib6_info __rcu **fallback_ins = NULL;
1073 int replace = (info->nlh &&
1074 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1075 int add = (!info->nlh ||
1076 (info->nlh->nlmsg_flags & NLM_F_CREATE));
1077 int found = 0;
1078 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1079 bool notify_sibling_rt = false;
1080 u16 nlflags = NLM_F_EXCL;
1081 int err;
1082
1083 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1084 nlflags |= NLM_F_APPEND;
1085
1086 ins = &fn->leaf;
1087
1088 for (iter = leaf; iter;
1089 iter = rcu_dereference_protected(iter->fib6_next,
1090 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1091 /*
1092 * Search for duplicates
1093 */
1094
1095 if (iter->fib6_metric == rt->fib6_metric) {
1096 /*
1097 * Same priority level
1098 */
1099 if (info->nlh &&
1100 (info->nlh->nlmsg_flags & NLM_F_EXCL))
1101 return -EEXIST;
1102
1103 nlflags &= ~NLM_F_EXCL;
1104 if (replace) {
1105 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1106 found++;
1107 break;
1108 }
1109 fallback_ins = fallback_ins ?: ins;
1110 goto next_iter;
1111 }
1112
1113 if (rt6_duplicate_nexthop(iter, rt)) {
1114 if (rt->fib6_nsiblings)
1115 rt->fib6_nsiblings = 0;
1116 if (!(iter->fib6_flags & RTF_EXPIRES))
1117 return -EEXIST;
1118 if (!(rt->fib6_flags & RTF_EXPIRES))
1119 fib6_clean_expires(iter);
1120 else
1121 fib6_set_expires(iter, rt->expires);
1122
1123 if (rt->fib6_pmtu)
1124 fib6_metric_set(iter, RTAX_MTU,
1125 rt->fib6_pmtu);
1126 return -EEXIST;
1127 }
1128 /* If we have the same destination and the same metric,
1129 * but not the same gateway, then the route we try to
1130 * add is sibling to this route, increment our counter
1131 * of siblings, and later we will add our route to the
1132 * list.
1133 * Only static routes (which don't have flag
1134 * RTF_EXPIRES) are used for ECMPv6.
1135 *
1136 * To avoid long list, we only had siblings if the
1137 * route have a gateway.
1138 */
1139 if (rt_can_ecmp &&
1140 rt6_qualify_for_ecmp(iter))
1141 rt->fib6_nsiblings++;
1142 }
1143
1144 if (iter->fib6_metric > rt->fib6_metric)
1145 break;
1146
1147 next_iter:
1148 ins = &iter->fib6_next;
1149 }
1150
1151 if (fallback_ins && !found) {
1152 /* No matching route with same ecmp-able-ness found, replace
1153 * first matching route
1154 */
1155 ins = fallback_ins;
1156 iter = rcu_dereference_protected(*ins,
1157 lockdep_is_held(&rt->fib6_table->tb6_lock));
1158 found++;
1159 }
1160
1161 /* Reset round-robin state, if necessary */
1162 if (ins == &fn->leaf)
1163 fn->rr_ptr = NULL;
1164
1165 /* Link this route to others same route. */
1166 if (rt->fib6_nsiblings) {
1167 unsigned int fib6_nsiblings;
1168 struct fib6_info *sibling, *temp_sibling;
1169
1170 /* Find the first route that have the same metric */
1171 sibling = leaf;
1172 notify_sibling_rt = true;
1173 while (sibling) {
1174 if (sibling->fib6_metric == rt->fib6_metric &&
1175 rt6_qualify_for_ecmp(sibling)) {
1176 list_add_tail(&rt->fib6_siblings,
1177 &sibling->fib6_siblings);
1178 break;
1179 }
1180 sibling = rcu_dereference_protected(sibling->fib6_next,
1181 lockdep_is_held(&rt->fib6_table->tb6_lock));
1182 notify_sibling_rt = false;
1183 }
1184 /* For each sibling in the list, increment the counter of
1185 * siblings. BUG() if counters does not match, list of siblings
1186 * is broken!
1187 */
1188 fib6_nsiblings = 0;
1189 list_for_each_entry_safe(sibling, temp_sibling,
1190 &rt->fib6_siblings, fib6_siblings) {
1191 sibling->fib6_nsiblings++;
1192 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1193 fib6_nsiblings++;
1194 }
1195 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1196 rt6_multipath_rebalance(temp_sibling);
1197 }
1198
1199 /*
1200 * insert node
1201 */
1202 if (!replace) {
1203 if (!add)
1204 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1205
1206 add:
1207 nlflags |= NLM_F_CREATE;
1208
1209 /* The route should only be notified if it is the first
1210 * route in the node or if it is added as a sibling
1211 * route to the first route in the node.
1212 */
1213 if (!info->skip_notify_kernel &&
1214 (notify_sibling_rt || ins == &fn->leaf)) {
1215 enum fib_event_type fib_event;
1216
1217 if (notify_sibling_rt)
1218 fib_event = FIB_EVENT_ENTRY_APPEND;
1219 else
1220 fib_event = FIB_EVENT_ENTRY_REPLACE;
1221 err = call_fib6_entry_notifiers(info->nl_net,
1222 fib_event, rt,
1223 extack);
1224 if (err) {
1225 struct fib6_info *sibling, *next_sibling;
1226
1227 /* If the route has siblings, then it first
1228 * needs to be unlinked from them.
1229 */
1230 if (!rt->fib6_nsiblings)
1231 return err;
1232
1233 list_for_each_entry_safe(sibling, next_sibling,
1234 &rt->fib6_siblings,
1235 fib6_siblings)
1236 sibling->fib6_nsiblings--;
1237 rt->fib6_nsiblings = 0;
1238 list_del_init(&rt->fib6_siblings);
1239 rt6_multipath_rebalance(next_sibling);
1240 return err;
1241 }
1242 }
1243
1244 rcu_assign_pointer(rt->fib6_next, iter);
1245 fib6_info_hold(rt);
1246 rcu_assign_pointer(rt->fib6_node, fn);
1247 rcu_assign_pointer(*ins, rt);
1248 if (!info->skip_notify)
1249 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1250 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1251
1252 if (!(fn->fn_flags & RTN_RTINFO)) {
1253 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1254 fn->fn_flags |= RTN_RTINFO;
1255 }
1256
1257 } else {
1258 int nsiblings;
1259
1260 if (!found) {
1261 if (add)
1262 goto add;
1263 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1264 return -ENOENT;
1265 }
1266
1267 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1268 err = call_fib6_entry_notifiers(info->nl_net,
1269 FIB_EVENT_ENTRY_REPLACE,
1270 rt, extack);
1271 if (err)
1272 return err;
1273 }
1274
1275 fib6_info_hold(rt);
1276 rcu_assign_pointer(rt->fib6_node, fn);
1277 rt->fib6_next = iter->fib6_next;
1278 rcu_assign_pointer(*ins, rt);
1279 if (!info->skip_notify)
1280 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1281 if (!(fn->fn_flags & RTN_RTINFO)) {
1282 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1283 fn->fn_flags |= RTN_RTINFO;
1284 }
1285 nsiblings = iter->fib6_nsiblings;
1286 iter->fib6_node = NULL;
1287 fib6_purge_rt(iter, fn, info->nl_net);
1288 if (rcu_access_pointer(fn->rr_ptr) == iter)
1289 fn->rr_ptr = NULL;
1290 fib6_info_release(iter);
1291
1292 if (nsiblings) {
1293 /* Replacing an ECMP route, remove all siblings */
1294 ins = &rt->fib6_next;
1295 iter = rcu_dereference_protected(*ins,
1296 lockdep_is_held(&rt->fib6_table->tb6_lock));
1297 while (iter) {
1298 if (iter->fib6_metric > rt->fib6_metric)
1299 break;
1300 if (rt6_qualify_for_ecmp(iter)) {
1301 *ins = iter->fib6_next;
1302 iter->fib6_node = NULL;
1303 fib6_purge_rt(iter, fn, info->nl_net);
1304 if (rcu_access_pointer(fn->rr_ptr) == iter)
1305 fn->rr_ptr = NULL;
1306 fib6_info_release(iter);
1307 nsiblings--;
1308 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1309 } else {
1310 ins = &iter->fib6_next;
1311 }
1312 iter = rcu_dereference_protected(*ins,
1313 lockdep_is_held(&rt->fib6_table->tb6_lock));
1314 }
1315 WARN_ON(nsiblings != 0);
1316 }
1317 }
1318
1319 return 0;
1320 }
1321
fib6_start_gc(struct net * net,struct fib6_info * rt)1322 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1323 {
1324 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1325 (rt->fib6_flags & RTF_EXPIRES))
1326 mod_timer(&net->ipv6.ip6_fib_timer,
1327 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1328 }
1329
fib6_force_start_gc(struct net * net)1330 void fib6_force_start_gc(struct net *net)
1331 {
1332 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1333 mod_timer(&net->ipv6.ip6_fib_timer,
1334 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1335 }
1336
__fib6_update_sernum_upto_root(struct fib6_info * rt,int sernum)1337 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1338 int sernum)
1339 {
1340 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1341 lockdep_is_held(&rt->fib6_table->tb6_lock));
1342
1343 /* paired with smp_rmb() in rt6_get_cookie_safe() */
1344 smp_wmb();
1345 while (fn) {
1346 WRITE_ONCE(fn->fn_sernum, sernum);
1347 fn = rcu_dereference_protected(fn->parent,
1348 lockdep_is_held(&rt->fib6_table->tb6_lock));
1349 }
1350 }
1351
fib6_update_sernum_upto_root(struct net * net,struct fib6_info * rt)1352 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1353 {
1354 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1355 }
1356
1357 /* allow ipv4 to update sernum via ipv6_stub */
fib6_update_sernum_stub(struct net * net,struct fib6_info * f6i)1358 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1359 {
1360 spin_lock_bh(&f6i->fib6_table->tb6_lock);
1361 fib6_update_sernum_upto_root(net, f6i);
1362 spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1363 }
1364
1365 /*
1366 * Add routing information to the routing tree.
1367 * <destination addr>/<source addr>
1368 * with source addr info in sub-trees
1369 * Need to own table->tb6_lock
1370 */
1371
fib6_add(struct fib6_node * root,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1372 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1373 struct nl_info *info, struct netlink_ext_ack *extack)
1374 {
1375 struct fib6_table *table = rt->fib6_table;
1376 struct fib6_node *fn, *pn = NULL;
1377 int err = -ENOMEM;
1378 int allow_create = 1;
1379 int replace_required = 0;
1380
1381 if (info->nlh) {
1382 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1383 allow_create = 0;
1384 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1385 replace_required = 1;
1386 }
1387 if (!allow_create && !replace_required)
1388 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1389
1390 fn = fib6_add_1(info->nl_net, table, root,
1391 &rt->fib6_dst.addr, rt->fib6_dst.plen,
1392 offsetof(struct fib6_info, fib6_dst), allow_create,
1393 replace_required, extack);
1394 if (IS_ERR(fn)) {
1395 err = PTR_ERR(fn);
1396 fn = NULL;
1397 goto out;
1398 }
1399
1400 pn = fn;
1401
1402 #ifdef CONFIG_IPV6_SUBTREES
1403 if (rt->fib6_src.plen) {
1404 struct fib6_node *sn;
1405
1406 if (!rcu_access_pointer(fn->subtree)) {
1407 struct fib6_node *sfn;
1408
1409 /*
1410 * Create subtree.
1411 *
1412 * fn[main tree]
1413 * |
1414 * sfn[subtree root]
1415 * \
1416 * sn[new leaf node]
1417 */
1418
1419 /* Create subtree root node */
1420 sfn = node_alloc(info->nl_net);
1421 if (!sfn)
1422 goto failure;
1423
1424 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1425 rcu_assign_pointer(sfn->leaf,
1426 info->nl_net->ipv6.fib6_null_entry);
1427 sfn->fn_flags = RTN_ROOT;
1428
1429 /* Now add the first leaf node to new subtree */
1430
1431 sn = fib6_add_1(info->nl_net, table, sfn,
1432 &rt->fib6_src.addr, rt->fib6_src.plen,
1433 offsetof(struct fib6_info, fib6_src),
1434 allow_create, replace_required, extack);
1435
1436 if (IS_ERR(sn)) {
1437 /* If it is failed, discard just allocated
1438 root, and then (in failure) stale node
1439 in main tree.
1440 */
1441 node_free_immediate(info->nl_net, sfn);
1442 err = PTR_ERR(sn);
1443 goto failure;
1444 }
1445
1446 /* Now link new subtree to main tree */
1447 rcu_assign_pointer(sfn->parent, fn);
1448 rcu_assign_pointer(fn->subtree, sfn);
1449 } else {
1450 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1451 &rt->fib6_src.addr, rt->fib6_src.plen,
1452 offsetof(struct fib6_info, fib6_src),
1453 allow_create, replace_required, extack);
1454
1455 if (IS_ERR(sn)) {
1456 err = PTR_ERR(sn);
1457 goto failure;
1458 }
1459 }
1460
1461 if (!rcu_access_pointer(fn->leaf)) {
1462 if (fn->fn_flags & RTN_TL_ROOT) {
1463 /* put back null_entry for root node */
1464 rcu_assign_pointer(fn->leaf,
1465 info->nl_net->ipv6.fib6_null_entry);
1466 } else {
1467 fib6_info_hold(rt);
1468 rcu_assign_pointer(fn->leaf, rt);
1469 }
1470 }
1471 fn = sn;
1472 }
1473 #endif
1474
1475 err = fib6_add_rt2node(fn, rt, info, extack);
1476 if (!err) {
1477 if (rt->nh)
1478 list_add(&rt->nh_list, &rt->nh->f6i_list);
1479 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1480 fib6_start_gc(info->nl_net, rt);
1481 }
1482
1483 out:
1484 if (err) {
1485 #ifdef CONFIG_IPV6_SUBTREES
1486 /*
1487 * If fib6_add_1 has cleared the old leaf pointer in the
1488 * super-tree leaf node we have to find a new one for it.
1489 */
1490 if (pn != fn) {
1491 struct fib6_info *pn_leaf =
1492 rcu_dereference_protected(pn->leaf,
1493 lockdep_is_held(&table->tb6_lock));
1494 if (pn_leaf == rt) {
1495 pn_leaf = NULL;
1496 RCU_INIT_POINTER(pn->leaf, NULL);
1497 fib6_info_release(rt);
1498 }
1499 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1500 pn_leaf = fib6_find_prefix(info->nl_net, table,
1501 pn);
1502 if (!pn_leaf)
1503 pn_leaf =
1504 info->nl_net->ipv6.fib6_null_entry;
1505 fib6_info_hold(pn_leaf);
1506 rcu_assign_pointer(pn->leaf, pn_leaf);
1507 }
1508 }
1509 #endif
1510 goto failure;
1511 } else if (fib6_requires_src(rt)) {
1512 fib6_routes_require_src_inc(info->nl_net);
1513 }
1514 return err;
1515
1516 failure:
1517 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1518 * 1. fn is an intermediate node and we failed to add the new
1519 * route to it in both subtree creation failure and fib6_add_rt2node()
1520 * failure case.
1521 * 2. fn is the root node in the table and we fail to add the first
1522 * default route to it.
1523 */
1524 if (fn &&
1525 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1526 (fn->fn_flags & RTN_TL_ROOT &&
1527 !rcu_access_pointer(fn->leaf))))
1528 fib6_repair_tree(info->nl_net, table, fn);
1529 return err;
1530 }
1531
1532 /*
1533 * Routing tree lookup
1534 *
1535 */
1536
1537 struct lookup_args {
1538 int offset; /* key offset on fib6_info */
1539 const struct in6_addr *addr; /* search key */
1540 };
1541
fib6_node_lookup_1(struct fib6_node * root,struct lookup_args * args)1542 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1543 struct lookup_args *args)
1544 {
1545 struct fib6_node *fn;
1546 __be32 dir;
1547
1548 if (unlikely(args->offset == 0))
1549 return NULL;
1550
1551 /*
1552 * Descend on a tree
1553 */
1554
1555 fn = root;
1556
1557 for (;;) {
1558 struct fib6_node *next;
1559
1560 dir = addr_bit_set(args->addr, fn->fn_bit);
1561
1562 next = dir ? rcu_dereference(fn->right) :
1563 rcu_dereference(fn->left);
1564
1565 if (next) {
1566 fn = next;
1567 continue;
1568 }
1569 break;
1570 }
1571
1572 while (fn) {
1573 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1574
1575 if (subtree || fn->fn_flags & RTN_RTINFO) {
1576 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1577 struct rt6key *key;
1578
1579 if (!leaf)
1580 goto backtrack;
1581
1582 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1583
1584 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1585 #ifdef CONFIG_IPV6_SUBTREES
1586 if (subtree) {
1587 struct fib6_node *sfn;
1588 sfn = fib6_node_lookup_1(subtree,
1589 args + 1);
1590 if (!sfn)
1591 goto backtrack;
1592 fn = sfn;
1593 }
1594 #endif
1595 if (fn->fn_flags & RTN_RTINFO)
1596 return fn;
1597 }
1598 }
1599 backtrack:
1600 if (fn->fn_flags & RTN_ROOT)
1601 break;
1602
1603 fn = rcu_dereference(fn->parent);
1604 }
1605
1606 return NULL;
1607 }
1608
1609 /* called with rcu_read_lock() held
1610 */
fib6_node_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1611 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1612 const struct in6_addr *daddr,
1613 const struct in6_addr *saddr)
1614 {
1615 struct fib6_node *fn;
1616 struct lookup_args args[] = {
1617 {
1618 .offset = offsetof(struct fib6_info, fib6_dst),
1619 .addr = daddr,
1620 },
1621 #ifdef CONFIG_IPV6_SUBTREES
1622 {
1623 .offset = offsetof(struct fib6_info, fib6_src),
1624 .addr = saddr,
1625 },
1626 #endif
1627 {
1628 .offset = 0, /* sentinel */
1629 }
1630 };
1631
1632 fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1633 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1634 fn = root;
1635
1636 return fn;
1637 }
1638
1639 /*
1640 * Get node with specified destination prefix (and source prefix,
1641 * if subtrees are used)
1642 * exact_match == true means we try to find fn with exact match of
1643 * the passed in prefix addr
1644 * exact_match == false means we try to find fn with longest prefix
1645 * match of the passed in prefix addr. This is useful for finding fn
1646 * for cached route as it will be stored in the exception table under
1647 * the node with longest prefix length.
1648 */
1649
1650
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset,bool exact_match)1651 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1652 const struct in6_addr *addr,
1653 int plen, int offset,
1654 bool exact_match)
1655 {
1656 struct fib6_node *fn, *prev = NULL;
1657
1658 for (fn = root; fn ; ) {
1659 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1660 struct rt6key *key;
1661
1662 /* This node is being deleted */
1663 if (!leaf) {
1664 if (plen <= fn->fn_bit)
1665 goto out;
1666 else
1667 goto next;
1668 }
1669
1670 key = (struct rt6key *)((u8 *)leaf + offset);
1671
1672 /*
1673 * Prefix match
1674 */
1675 if (plen < fn->fn_bit ||
1676 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1677 goto out;
1678
1679 if (plen == fn->fn_bit)
1680 return fn;
1681
1682 if (fn->fn_flags & RTN_RTINFO)
1683 prev = fn;
1684
1685 next:
1686 /*
1687 * We have more bits to go
1688 */
1689 if (addr_bit_set(addr, fn->fn_bit))
1690 fn = rcu_dereference(fn->right);
1691 else
1692 fn = rcu_dereference(fn->left);
1693 }
1694 out:
1695 if (exact_match)
1696 return NULL;
1697 else
1698 return prev;
1699 }
1700
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len,bool exact_match)1701 struct fib6_node *fib6_locate(struct fib6_node *root,
1702 const struct in6_addr *daddr, int dst_len,
1703 const struct in6_addr *saddr, int src_len,
1704 bool exact_match)
1705 {
1706 struct fib6_node *fn;
1707
1708 fn = fib6_locate_1(root, daddr, dst_len,
1709 offsetof(struct fib6_info, fib6_dst),
1710 exact_match);
1711
1712 #ifdef CONFIG_IPV6_SUBTREES
1713 if (src_len) {
1714 WARN_ON(saddr == NULL);
1715 if (fn) {
1716 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1717
1718 if (subtree) {
1719 fn = fib6_locate_1(subtree, saddr, src_len,
1720 offsetof(struct fib6_info, fib6_src),
1721 exact_match);
1722 }
1723 }
1724 }
1725 #endif
1726
1727 if (fn && fn->fn_flags & RTN_RTINFO)
1728 return fn;
1729
1730 return NULL;
1731 }
1732
1733
1734 /*
1735 * Deletion
1736 *
1737 */
1738
fib6_find_prefix(struct net * net,struct fib6_table * table,struct fib6_node * fn)1739 static struct fib6_info *fib6_find_prefix(struct net *net,
1740 struct fib6_table *table,
1741 struct fib6_node *fn)
1742 {
1743 struct fib6_node *child_left, *child_right;
1744
1745 if (fn->fn_flags & RTN_ROOT)
1746 return net->ipv6.fib6_null_entry;
1747
1748 while (fn) {
1749 child_left = rcu_dereference_protected(fn->left,
1750 lockdep_is_held(&table->tb6_lock));
1751 child_right = rcu_dereference_protected(fn->right,
1752 lockdep_is_held(&table->tb6_lock));
1753 if (child_left)
1754 return rcu_dereference_protected(child_left->leaf,
1755 lockdep_is_held(&table->tb6_lock));
1756 if (child_right)
1757 return rcu_dereference_protected(child_right->leaf,
1758 lockdep_is_held(&table->tb6_lock));
1759
1760 fn = FIB6_SUBTREE(fn);
1761 }
1762 return NULL;
1763 }
1764
1765 /*
1766 * Called to trim the tree of intermediate nodes when possible. "fn"
1767 * is the node we want to try and remove.
1768 * Need to own table->tb6_lock
1769 */
1770
fib6_repair_tree(struct net * net,struct fib6_table * table,struct fib6_node * fn)1771 static struct fib6_node *fib6_repair_tree(struct net *net,
1772 struct fib6_table *table,
1773 struct fib6_node *fn)
1774 {
1775 int children;
1776 int nstate;
1777 struct fib6_node *child;
1778 struct fib6_walker *w;
1779 int iter = 0;
1780
1781 /* Set fn->leaf to null_entry for root node. */
1782 if (fn->fn_flags & RTN_TL_ROOT) {
1783 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1784 return fn;
1785 }
1786
1787 for (;;) {
1788 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1789 lockdep_is_held(&table->tb6_lock));
1790 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1791 lockdep_is_held(&table->tb6_lock));
1792 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1793 lockdep_is_held(&table->tb6_lock));
1794 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1795 lockdep_is_held(&table->tb6_lock));
1796 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1797 lockdep_is_held(&table->tb6_lock));
1798 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1799 lockdep_is_held(&table->tb6_lock));
1800 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1801 lockdep_is_held(&table->tb6_lock));
1802 struct fib6_info *new_fn_leaf;
1803
1804 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1805 iter++;
1806
1807 WARN_ON(fn->fn_flags & RTN_RTINFO);
1808 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1809 WARN_ON(fn_leaf);
1810
1811 children = 0;
1812 child = NULL;
1813 if (fn_r) {
1814 child = fn_r;
1815 children |= 1;
1816 }
1817 if (fn_l) {
1818 child = fn_l;
1819 children |= 2;
1820 }
1821
1822 if (children == 3 || FIB6_SUBTREE(fn)
1823 #ifdef CONFIG_IPV6_SUBTREES
1824 /* Subtree root (i.e. fn) may have one child */
1825 || (children && fn->fn_flags & RTN_ROOT)
1826 #endif
1827 ) {
1828 new_fn_leaf = fib6_find_prefix(net, table, fn);
1829 #if RT6_DEBUG >= 2
1830 if (!new_fn_leaf) {
1831 WARN_ON(!new_fn_leaf);
1832 new_fn_leaf = net->ipv6.fib6_null_entry;
1833 }
1834 #endif
1835 fib6_info_hold(new_fn_leaf);
1836 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1837 return pn;
1838 }
1839
1840 #ifdef CONFIG_IPV6_SUBTREES
1841 if (FIB6_SUBTREE(pn) == fn) {
1842 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1843 RCU_INIT_POINTER(pn->subtree, NULL);
1844 nstate = FWS_L;
1845 } else {
1846 WARN_ON(fn->fn_flags & RTN_ROOT);
1847 #endif
1848 if (pn_r == fn)
1849 rcu_assign_pointer(pn->right, child);
1850 else if (pn_l == fn)
1851 rcu_assign_pointer(pn->left, child);
1852 #if RT6_DEBUG >= 2
1853 else
1854 WARN_ON(1);
1855 #endif
1856 if (child)
1857 rcu_assign_pointer(child->parent, pn);
1858 nstate = FWS_R;
1859 #ifdef CONFIG_IPV6_SUBTREES
1860 }
1861 #endif
1862
1863 read_lock(&net->ipv6.fib6_walker_lock);
1864 FOR_WALKERS(net, w) {
1865 if (!child) {
1866 if (w->node == fn) {
1867 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1868 w->node = pn;
1869 w->state = nstate;
1870 }
1871 } else {
1872 if (w->node == fn) {
1873 w->node = child;
1874 if (children&2) {
1875 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1876 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1877 } else {
1878 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1879 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1880 }
1881 }
1882 }
1883 }
1884 read_unlock(&net->ipv6.fib6_walker_lock);
1885
1886 node_free(net, fn);
1887 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1888 return pn;
1889
1890 RCU_INIT_POINTER(pn->leaf, NULL);
1891 fib6_info_release(pn_leaf);
1892 fn = pn;
1893 }
1894 }
1895
fib6_del_route(struct fib6_table * table,struct fib6_node * fn,struct fib6_info __rcu ** rtp,struct nl_info * info)1896 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1897 struct fib6_info __rcu **rtp, struct nl_info *info)
1898 {
1899 struct fib6_info *leaf, *replace_rt = NULL;
1900 struct fib6_walker *w;
1901 struct fib6_info *rt = rcu_dereference_protected(*rtp,
1902 lockdep_is_held(&table->tb6_lock));
1903 struct net *net = info->nl_net;
1904 bool notify_del = false;
1905
1906 RT6_TRACE("fib6_del_route\n");
1907
1908 /* If the deleted route is the first in the node and it is not part of
1909 * a multipath route, then we need to replace it with the next route
1910 * in the node, if exists.
1911 */
1912 leaf = rcu_dereference_protected(fn->leaf,
1913 lockdep_is_held(&table->tb6_lock));
1914 if (leaf == rt && !rt->fib6_nsiblings) {
1915 if (rcu_access_pointer(rt->fib6_next))
1916 replace_rt = rcu_dereference_protected(rt->fib6_next,
1917 lockdep_is_held(&table->tb6_lock));
1918 else
1919 notify_del = true;
1920 }
1921
1922 /* Unlink it */
1923 *rtp = rt->fib6_next;
1924 rt->fib6_node = NULL;
1925 net->ipv6.rt6_stats->fib_rt_entries--;
1926 net->ipv6.rt6_stats->fib_discarded_routes++;
1927
1928 /* Reset round-robin state, if necessary */
1929 if (rcu_access_pointer(fn->rr_ptr) == rt)
1930 fn->rr_ptr = NULL;
1931
1932 /* Remove this entry from other siblings */
1933 if (rt->fib6_nsiblings) {
1934 struct fib6_info *sibling, *next_sibling;
1935
1936 /* The route is deleted from a multipath route. If this
1937 * multipath route is the first route in the node, then we need
1938 * to emit a delete notification. Otherwise, we need to skip
1939 * the notification.
1940 */
1941 if (rt->fib6_metric == leaf->fib6_metric &&
1942 rt6_qualify_for_ecmp(leaf))
1943 notify_del = true;
1944 list_for_each_entry_safe(sibling, next_sibling,
1945 &rt->fib6_siblings, fib6_siblings)
1946 sibling->fib6_nsiblings--;
1947 rt->fib6_nsiblings = 0;
1948 list_del_init(&rt->fib6_siblings);
1949 rt6_multipath_rebalance(next_sibling);
1950 }
1951
1952 /* Adjust walkers */
1953 read_lock(&net->ipv6.fib6_walker_lock);
1954 FOR_WALKERS(net, w) {
1955 if (w->state == FWS_C && w->leaf == rt) {
1956 RT6_TRACE("walker %p adjusted by delroute\n", w);
1957 w->leaf = rcu_dereference_protected(rt->fib6_next,
1958 lockdep_is_held(&table->tb6_lock));
1959 if (!w->leaf)
1960 w->state = FWS_U;
1961 }
1962 }
1963 read_unlock(&net->ipv6.fib6_walker_lock);
1964
1965 /* If it was last route, call fib6_repair_tree() to:
1966 * 1. For root node, put back null_entry as how the table was created.
1967 * 2. For other nodes, expunge its radix tree node.
1968 */
1969 if (!rcu_access_pointer(fn->leaf)) {
1970 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1971 fn->fn_flags &= ~RTN_RTINFO;
1972 net->ipv6.rt6_stats->fib_route_nodes--;
1973 }
1974 fn = fib6_repair_tree(net, table, fn);
1975 }
1976
1977 fib6_purge_rt(rt, fn, net);
1978
1979 if (!info->skip_notify_kernel) {
1980 if (notify_del)
1981 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1982 rt, NULL);
1983 else if (replace_rt)
1984 call_fib6_entry_notifiers_replace(net, replace_rt);
1985 }
1986 if (!info->skip_notify)
1987 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1988
1989 fib6_info_release(rt);
1990 }
1991
1992 /* Need to own table->tb6_lock */
fib6_del(struct fib6_info * rt,struct nl_info * info)1993 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1994 {
1995 struct net *net = info->nl_net;
1996 struct fib6_info __rcu **rtp;
1997 struct fib6_info __rcu **rtp_next;
1998 struct fib6_table *table;
1999 struct fib6_node *fn;
2000
2001 if (rt == net->ipv6.fib6_null_entry)
2002 return -ENOENT;
2003
2004 table = rt->fib6_table;
2005 fn = rcu_dereference_protected(rt->fib6_node,
2006 lockdep_is_held(&table->tb6_lock));
2007 if (!fn)
2008 return -ENOENT;
2009
2010 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2011
2012 /*
2013 * Walk the leaf entries looking for ourself
2014 */
2015
2016 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2017 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2018 lockdep_is_held(&table->tb6_lock));
2019 if (rt == cur) {
2020 if (fib6_requires_src(cur))
2021 fib6_routes_require_src_dec(info->nl_net);
2022 fib6_del_route(table, fn, rtp, info);
2023 return 0;
2024 }
2025 rtp_next = &cur->fib6_next;
2026 }
2027 return -ENOENT;
2028 }
2029
2030 /*
2031 * Tree traversal function.
2032 *
2033 * Certainly, it is not interrupt safe.
2034 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2035 * It means, that we can modify tree during walking
2036 * and use this function for garbage collection, clone pruning,
2037 * cleaning tree when a device goes down etc. etc.
2038 *
2039 * It guarantees that every node will be traversed,
2040 * and that it will be traversed only once.
2041 *
2042 * Callback function w->func may return:
2043 * 0 -> continue walking.
2044 * positive value -> walking is suspended (used by tree dumps,
2045 * and probably by gc, if it will be split to several slices)
2046 * negative value -> terminate walking.
2047 *
2048 * The function itself returns:
2049 * 0 -> walk is complete.
2050 * >0 -> walk is incomplete (i.e. suspended)
2051 * <0 -> walk is terminated by an error.
2052 *
2053 * This function is called with tb6_lock held.
2054 */
2055
fib6_walk_continue(struct fib6_walker * w)2056 static int fib6_walk_continue(struct fib6_walker *w)
2057 {
2058 struct fib6_node *fn, *pn, *left, *right;
2059
2060 /* w->root should always be table->tb6_root */
2061 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2062
2063 for (;;) {
2064 fn = w->node;
2065 if (!fn)
2066 return 0;
2067
2068 switch (w->state) {
2069 #ifdef CONFIG_IPV6_SUBTREES
2070 case FWS_S:
2071 if (FIB6_SUBTREE(fn)) {
2072 w->node = FIB6_SUBTREE(fn);
2073 continue;
2074 }
2075 w->state = FWS_L;
2076 fallthrough;
2077 #endif
2078 case FWS_L:
2079 left = rcu_dereference_protected(fn->left, 1);
2080 if (left) {
2081 w->node = left;
2082 w->state = FWS_INIT;
2083 continue;
2084 }
2085 w->state = FWS_R;
2086 fallthrough;
2087 case FWS_R:
2088 right = rcu_dereference_protected(fn->right, 1);
2089 if (right) {
2090 w->node = right;
2091 w->state = FWS_INIT;
2092 continue;
2093 }
2094 w->state = FWS_C;
2095 w->leaf = rcu_dereference_protected(fn->leaf, 1);
2096 fallthrough;
2097 case FWS_C:
2098 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2099 int err;
2100
2101 if (w->skip) {
2102 w->skip--;
2103 goto skip;
2104 }
2105
2106 err = w->func(w);
2107 if (err)
2108 return err;
2109
2110 w->count++;
2111 continue;
2112 }
2113 skip:
2114 w->state = FWS_U;
2115 fallthrough;
2116 case FWS_U:
2117 if (fn == w->root)
2118 return 0;
2119 pn = rcu_dereference_protected(fn->parent, 1);
2120 left = rcu_dereference_protected(pn->left, 1);
2121 right = rcu_dereference_protected(pn->right, 1);
2122 w->node = pn;
2123 #ifdef CONFIG_IPV6_SUBTREES
2124 if (FIB6_SUBTREE(pn) == fn) {
2125 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2126 w->state = FWS_L;
2127 continue;
2128 }
2129 #endif
2130 if (left == fn) {
2131 w->state = FWS_R;
2132 continue;
2133 }
2134 if (right == fn) {
2135 w->state = FWS_C;
2136 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2137 continue;
2138 }
2139 #if RT6_DEBUG >= 2
2140 WARN_ON(1);
2141 #endif
2142 }
2143 }
2144 }
2145
fib6_walk(struct net * net,struct fib6_walker * w)2146 static int fib6_walk(struct net *net, struct fib6_walker *w)
2147 {
2148 int res;
2149
2150 w->state = FWS_INIT;
2151 w->node = w->root;
2152
2153 fib6_walker_link(net, w);
2154 res = fib6_walk_continue(w);
2155 if (res <= 0)
2156 fib6_walker_unlink(net, w);
2157 return res;
2158 }
2159
fib6_clean_node(struct fib6_walker * w)2160 static int fib6_clean_node(struct fib6_walker *w)
2161 {
2162 int res;
2163 struct fib6_info *rt;
2164 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2165 struct nl_info info = {
2166 .nl_net = c->net,
2167 .skip_notify = c->skip_notify,
2168 };
2169
2170 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2171 READ_ONCE(w->node->fn_sernum) != c->sernum)
2172 WRITE_ONCE(w->node->fn_sernum, c->sernum);
2173
2174 if (!c->func) {
2175 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2176 w->leaf = NULL;
2177 return 0;
2178 }
2179
2180 for_each_fib6_walker_rt(w) {
2181 res = c->func(rt, c->arg);
2182 if (res == -1) {
2183 w->leaf = rt;
2184 res = fib6_del(rt, &info);
2185 if (res) {
2186 #if RT6_DEBUG >= 2
2187 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2188 __func__, rt,
2189 rcu_access_pointer(rt->fib6_node),
2190 res);
2191 #endif
2192 continue;
2193 }
2194 return 0;
2195 } else if (res == -2) {
2196 if (WARN_ON(!rt->fib6_nsiblings))
2197 continue;
2198 rt = list_last_entry(&rt->fib6_siblings,
2199 struct fib6_info, fib6_siblings);
2200 continue;
2201 }
2202 WARN_ON(res != 0);
2203 }
2204 w->leaf = rt;
2205 return 0;
2206 }
2207
2208 /*
2209 * Convenient frontend to tree walker.
2210 *
2211 * func is called on each route.
2212 * It may return -2 -> skip multipath route.
2213 * -1 -> delete this route.
2214 * 0 -> continue walking
2215 */
2216
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct fib6_info *,void * arg),int sernum,void * arg,bool skip_notify)2217 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2218 int (*func)(struct fib6_info *, void *arg),
2219 int sernum, void *arg, bool skip_notify)
2220 {
2221 struct fib6_cleaner c;
2222
2223 c.w.root = root;
2224 c.w.func = fib6_clean_node;
2225 c.w.count = 0;
2226 c.w.skip = 0;
2227 c.w.skip_in_node = 0;
2228 c.func = func;
2229 c.sernum = sernum;
2230 c.arg = arg;
2231 c.net = net;
2232 c.skip_notify = skip_notify;
2233
2234 fib6_walk(net, &c.w);
2235 }
2236
__fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),int sernum,void * arg,bool skip_notify)2237 static void __fib6_clean_all(struct net *net,
2238 int (*func)(struct fib6_info *, void *),
2239 int sernum, void *arg, bool skip_notify)
2240 {
2241 struct fib6_table *table;
2242 struct hlist_head *head;
2243 unsigned int h;
2244
2245 rcu_read_lock();
2246 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2247 head = &net->ipv6.fib_table_hash[h];
2248 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2249 spin_lock_bh(&table->tb6_lock);
2250 fib6_clean_tree(net, &table->tb6_root,
2251 func, sernum, arg, skip_notify);
2252 spin_unlock_bh(&table->tb6_lock);
2253 }
2254 }
2255 rcu_read_unlock();
2256 }
2257
fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2258 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2259 void *arg)
2260 {
2261 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2262 }
2263
fib6_clean_all_skip_notify(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2264 void fib6_clean_all_skip_notify(struct net *net,
2265 int (*func)(struct fib6_info *, void *),
2266 void *arg)
2267 {
2268 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2269 }
2270
fib6_flush_trees(struct net * net)2271 static void fib6_flush_trees(struct net *net)
2272 {
2273 int new_sernum = fib6_new_sernum(net);
2274
2275 __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2276 }
2277
2278 /*
2279 * Garbage collection
2280 */
2281
fib6_age(struct fib6_info * rt,void * arg)2282 static int fib6_age(struct fib6_info *rt, void *arg)
2283 {
2284 struct fib6_gc_args *gc_args = arg;
2285 unsigned long now = jiffies;
2286
2287 /*
2288 * check addrconf expiration here.
2289 * Routes are expired even if they are in use.
2290 */
2291
2292 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2293 if (time_after(now, rt->expires)) {
2294 RT6_TRACE("expiring %p\n", rt);
2295 return -1;
2296 }
2297 gc_args->more++;
2298 }
2299
2300 /* Also age clones in the exception table.
2301 * Note, that clones are aged out
2302 * only if they are not in use now.
2303 */
2304 rt6_age_exceptions(rt, gc_args, now);
2305
2306 return 0;
2307 }
2308
fib6_run_gc(unsigned long expires,struct net * net,bool force)2309 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2310 {
2311 struct fib6_gc_args gc_args;
2312 unsigned long now;
2313
2314 if (force) {
2315 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2316 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2317 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2318 return;
2319 }
2320 gc_args.timeout = expires ? (int)expires :
2321 net->ipv6.sysctl.ip6_rt_gc_interval;
2322 gc_args.more = 0;
2323
2324 fib6_clean_all(net, fib6_age, &gc_args);
2325 now = jiffies;
2326 net->ipv6.ip6_rt_last_gc = now;
2327
2328 if (gc_args.more)
2329 mod_timer(&net->ipv6.ip6_fib_timer,
2330 round_jiffies(now
2331 + net->ipv6.sysctl.ip6_rt_gc_interval));
2332 else
2333 del_timer(&net->ipv6.ip6_fib_timer);
2334 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2335 }
2336
fib6_gc_timer_cb(struct timer_list * t)2337 static void fib6_gc_timer_cb(struct timer_list *t)
2338 {
2339 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2340
2341 fib6_run_gc(0, arg, true);
2342 }
2343
fib6_net_init(struct net * net)2344 static int __net_init fib6_net_init(struct net *net)
2345 {
2346 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2347 int err;
2348
2349 err = fib6_notifier_init(net);
2350 if (err)
2351 return err;
2352
2353 spin_lock_init(&net->ipv6.fib6_gc_lock);
2354 rwlock_init(&net->ipv6.fib6_walker_lock);
2355 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2356 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2357
2358 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2359 if (!net->ipv6.rt6_stats)
2360 goto out_timer;
2361
2362 /* Avoid false sharing : Use at least a full cache line */
2363 size = max_t(size_t, size, L1_CACHE_BYTES);
2364
2365 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2366 if (!net->ipv6.fib_table_hash)
2367 goto out_rt6_stats;
2368
2369 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2370 GFP_KERNEL);
2371 if (!net->ipv6.fib6_main_tbl)
2372 goto out_fib_table_hash;
2373
2374 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2375 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2376 net->ipv6.fib6_null_entry);
2377 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2378 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2379 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2380
2381 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2382 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2383 GFP_KERNEL);
2384 if (!net->ipv6.fib6_local_tbl)
2385 goto out_fib6_main_tbl;
2386 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2387 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2388 net->ipv6.fib6_null_entry);
2389 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2390 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2391 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2392 #endif
2393 fib6_tables_init(net);
2394
2395 return 0;
2396
2397 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2398 out_fib6_main_tbl:
2399 kfree(net->ipv6.fib6_main_tbl);
2400 #endif
2401 out_fib_table_hash:
2402 kfree(net->ipv6.fib_table_hash);
2403 out_rt6_stats:
2404 kfree(net->ipv6.rt6_stats);
2405 out_timer:
2406 fib6_notifier_exit(net);
2407 return -ENOMEM;
2408 }
2409
fib6_net_exit(struct net * net)2410 static void fib6_net_exit(struct net *net)
2411 {
2412 unsigned int i;
2413
2414 del_timer_sync(&net->ipv6.ip6_fib_timer);
2415
2416 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2417 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2418 struct hlist_node *tmp;
2419 struct fib6_table *tb;
2420
2421 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2422 hlist_del(&tb->tb6_hlist);
2423 fib6_free_table(tb);
2424 }
2425 }
2426
2427 kfree(net->ipv6.fib_table_hash);
2428 kfree(net->ipv6.rt6_stats);
2429 fib6_notifier_exit(net);
2430 }
2431
2432 static struct pernet_operations fib6_net_ops = {
2433 .init = fib6_net_init,
2434 .exit = fib6_net_exit,
2435 };
2436
fib6_init(void)2437 int __init fib6_init(void)
2438 {
2439 int ret = -ENOMEM;
2440
2441 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2442 sizeof(struct fib6_node),
2443 0, SLAB_HWCACHE_ALIGN,
2444 NULL);
2445 if (!fib6_node_kmem)
2446 goto out;
2447
2448 ret = register_pernet_subsys(&fib6_net_ops);
2449 if (ret)
2450 goto out_kmem_cache_create;
2451
2452 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2453 inet6_dump_fib, 0);
2454 if (ret)
2455 goto out_unregister_subsys;
2456
2457 __fib6_flush_trees = fib6_flush_trees;
2458 out:
2459 return ret;
2460
2461 out_unregister_subsys:
2462 unregister_pernet_subsys(&fib6_net_ops);
2463 out_kmem_cache_create:
2464 kmem_cache_destroy(fib6_node_kmem);
2465 goto out;
2466 }
2467
fib6_gc_cleanup(void)2468 void fib6_gc_cleanup(void)
2469 {
2470 unregister_pernet_subsys(&fib6_net_ops);
2471 kmem_cache_destroy(fib6_node_kmem);
2472 }
2473
2474 #ifdef CONFIG_PROC_FS
ipv6_route_native_seq_show(struct seq_file * seq,void * v)2475 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2476 {
2477 struct fib6_info *rt = v;
2478 struct ipv6_route_iter *iter = seq->private;
2479 struct fib6_nh *fib6_nh = rt->fib6_nh;
2480 unsigned int flags = rt->fib6_flags;
2481 const struct net_device *dev;
2482
2483 if (rt->nh)
2484 fib6_nh = nexthop_fib6_nh_bh(rt->nh);
2485
2486 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2487
2488 #ifdef CONFIG_IPV6_SUBTREES
2489 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2490 #else
2491 seq_puts(seq, "00000000000000000000000000000000 00 ");
2492 #endif
2493 if (fib6_nh->fib_nh_gw_family) {
2494 flags |= RTF_GATEWAY;
2495 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2496 } else {
2497 seq_puts(seq, "00000000000000000000000000000000");
2498 }
2499
2500 dev = fib6_nh->fib_nh_dev;
2501 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2502 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2503 flags, dev ? dev->name : "");
2504 iter->w.leaf = NULL;
2505 return 0;
2506 }
2507
ipv6_route_yield(struct fib6_walker * w)2508 static int ipv6_route_yield(struct fib6_walker *w)
2509 {
2510 struct ipv6_route_iter *iter = w->args;
2511
2512 if (!iter->skip)
2513 return 1;
2514
2515 do {
2516 iter->w.leaf = rcu_dereference_protected(
2517 iter->w.leaf->fib6_next,
2518 lockdep_is_held(&iter->tbl->tb6_lock));
2519 iter->skip--;
2520 if (!iter->skip && iter->w.leaf)
2521 return 1;
2522 } while (iter->w.leaf);
2523
2524 return 0;
2525 }
2526
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2527 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2528 struct net *net)
2529 {
2530 memset(&iter->w, 0, sizeof(iter->w));
2531 iter->w.func = ipv6_route_yield;
2532 iter->w.root = &iter->tbl->tb6_root;
2533 iter->w.state = FWS_INIT;
2534 iter->w.node = iter->w.root;
2535 iter->w.args = iter;
2536 iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2537 INIT_LIST_HEAD(&iter->w.lh);
2538 fib6_walker_link(net, &iter->w);
2539 }
2540
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2541 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2542 struct net *net)
2543 {
2544 unsigned int h;
2545 struct hlist_node *node;
2546
2547 if (tbl) {
2548 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2549 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2550 } else {
2551 h = 0;
2552 node = NULL;
2553 }
2554
2555 while (!node && h < FIB6_TABLE_HASHSZ) {
2556 node = rcu_dereference_bh(
2557 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2558 }
2559 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2560 }
2561
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2562 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2563 {
2564 int sernum = READ_ONCE(iter->w.root->fn_sernum);
2565
2566 if (iter->sernum != sernum) {
2567 iter->sernum = sernum;
2568 iter->w.state = FWS_INIT;
2569 iter->w.node = iter->w.root;
2570 WARN_ON(iter->w.skip);
2571 iter->w.skip = iter->w.count;
2572 }
2573 }
2574
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2575 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2576 {
2577 int r;
2578 struct fib6_info *n;
2579 struct net *net = seq_file_net(seq);
2580 struct ipv6_route_iter *iter = seq->private;
2581
2582 ++(*pos);
2583 if (!v)
2584 goto iter_table;
2585
2586 n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2587 if (n)
2588 return n;
2589
2590 iter_table:
2591 ipv6_route_check_sernum(iter);
2592 spin_lock_bh(&iter->tbl->tb6_lock);
2593 r = fib6_walk_continue(&iter->w);
2594 spin_unlock_bh(&iter->tbl->tb6_lock);
2595 if (r > 0) {
2596 return iter->w.leaf;
2597 } else if (r < 0) {
2598 fib6_walker_unlink(net, &iter->w);
2599 return NULL;
2600 }
2601 fib6_walker_unlink(net, &iter->w);
2602
2603 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2604 if (!iter->tbl)
2605 return NULL;
2606
2607 ipv6_route_seq_setup_walk(iter, net);
2608 goto iter_table;
2609 }
2610
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2611 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2612 __acquires(RCU_BH)
2613 {
2614 struct net *net = seq_file_net(seq);
2615 struct ipv6_route_iter *iter = seq->private;
2616
2617 rcu_read_lock_bh();
2618 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2619 iter->skip = *pos;
2620
2621 if (iter->tbl) {
2622 loff_t p = 0;
2623
2624 ipv6_route_seq_setup_walk(iter, net);
2625 return ipv6_route_seq_next(seq, NULL, &p);
2626 } else {
2627 return NULL;
2628 }
2629 }
2630
ipv6_route_iter_active(struct ipv6_route_iter * iter)2631 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2632 {
2633 struct fib6_walker *w = &iter->w;
2634 return w->node && !(w->state == FWS_U && w->node == w->root);
2635 }
2636
ipv6_route_native_seq_stop(struct seq_file * seq,void * v)2637 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2638 __releases(RCU_BH)
2639 {
2640 struct net *net = seq_file_net(seq);
2641 struct ipv6_route_iter *iter = seq->private;
2642
2643 if (ipv6_route_iter_active(iter))
2644 fib6_walker_unlink(net, &iter->w);
2645
2646 rcu_read_unlock_bh();
2647 }
2648
2649 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
ipv6_route_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,void * v)2650 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2651 struct bpf_iter_meta *meta,
2652 void *v)
2653 {
2654 struct bpf_iter__ipv6_route ctx;
2655
2656 ctx.meta = meta;
2657 ctx.rt = v;
2658 return bpf_iter_run_prog(prog, &ctx);
2659 }
2660
ipv6_route_seq_show(struct seq_file * seq,void * v)2661 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2662 {
2663 struct ipv6_route_iter *iter = seq->private;
2664 struct bpf_iter_meta meta;
2665 struct bpf_prog *prog;
2666 int ret;
2667
2668 meta.seq = seq;
2669 prog = bpf_iter_get_info(&meta, false);
2670 if (!prog)
2671 return ipv6_route_native_seq_show(seq, v);
2672
2673 ret = ipv6_route_prog_seq_show(prog, &meta, v);
2674 iter->w.leaf = NULL;
2675
2676 return ret;
2677 }
2678
ipv6_route_seq_stop(struct seq_file * seq,void * v)2679 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2680 {
2681 struct bpf_iter_meta meta;
2682 struct bpf_prog *prog;
2683
2684 if (!v) {
2685 meta.seq = seq;
2686 prog = bpf_iter_get_info(&meta, true);
2687 if (prog)
2688 (void)ipv6_route_prog_seq_show(prog, &meta, v);
2689 }
2690
2691 ipv6_route_native_seq_stop(seq, v);
2692 }
2693 #else
ipv6_route_seq_show(struct seq_file * seq,void * v)2694 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2695 {
2696 return ipv6_route_native_seq_show(seq, v);
2697 }
2698
ipv6_route_seq_stop(struct seq_file * seq,void * v)2699 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2700 {
2701 ipv6_route_native_seq_stop(seq, v);
2702 }
2703 #endif
2704
2705 const struct seq_operations ipv6_route_seq_ops = {
2706 .start = ipv6_route_seq_start,
2707 .next = ipv6_route_seq_next,
2708 .stop = ipv6_route_seq_stop,
2709 .show = ipv6_route_seq_show
2710 };
2711 #endif /* CONFIG_PROC_FS */
2712