• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/types.h>
20 #include <linux/net.h>
21 #include <linux/route.h>
22 #include <linux/netdevice.h>
23 #include <linux/in6.h>
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27 
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30 #include <net/ndisc.h>
31 #include <net/addrconf.h>
32 #include <net/lwtunnel.h>
33 #include <net/fib_notifier.h>
34 
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37 
38 static struct kmem_cache *fib6_node_kmem __read_mostly;
39 
40 struct fib6_cleaner {
41 	struct fib6_walker w;
42 	struct net *net;
43 	int (*func)(struct fib6_info *, void *arg);
44 	int sernum;
45 	void *arg;
46 	bool skip_notify;
47 };
48 
49 #ifdef CONFIG_IPV6_SUBTREES
50 #define FWS_INIT FWS_S
51 #else
52 #define FWS_INIT FWS_L
53 #endif
54 
55 static struct fib6_info *fib6_find_prefix(struct net *net,
56 					 struct fib6_table *table,
57 					 struct fib6_node *fn);
58 static struct fib6_node *fib6_repair_tree(struct net *net,
59 					  struct fib6_table *table,
60 					  struct fib6_node *fn);
61 static int fib6_walk(struct net *net, struct fib6_walker *w);
62 static int fib6_walk_continue(struct fib6_walker *w);
63 
64 /*
65  *	A routing update causes an increase of the serial number on the
66  *	affected subtree. This allows for cached routes to be asynchronously
67  *	tested when modifications are made to the destination cache as a
68  *	result of redirects, path MTU changes, etc.
69  */
70 
71 static void fib6_gc_timer_cb(struct timer_list *t);
72 
73 #define FOR_WALKERS(net, w) \
74 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
75 
fib6_walker_link(struct net * net,struct fib6_walker * w)76 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
77 {
78 	write_lock_bh(&net->ipv6.fib6_walker_lock);
79 	list_add(&w->lh, &net->ipv6.fib6_walkers);
80 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
81 }
82 
fib6_walker_unlink(struct net * net,struct fib6_walker * w)83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
84 {
85 	write_lock_bh(&net->ipv6.fib6_walker_lock);
86 	list_del(&w->lh);
87 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89 
fib6_new_sernum(struct net * net)90 static int fib6_new_sernum(struct net *net)
91 {
92 	int new, old;
93 
94 	do {
95 		old = atomic_read(&net->ipv6.fib6_sernum);
96 		new = old < INT_MAX ? old + 1 : 1;
97 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
98 				old, new) != old);
99 	return new;
100 }
101 
102 enum {
103 	FIB6_NO_SERNUM_CHANGE = 0,
104 };
105 
fib6_update_sernum(struct net * net,struct fib6_info * f6i)106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
107 {
108 	struct fib6_node *fn;
109 
110 	fn = rcu_dereference_protected(f6i->fib6_node,
111 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
112 	if (fn)
113 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
114 }
115 
116 /*
117  *	Auxiliary address test functions for the radix tree.
118  *
119  *	These assume a 32bit processor (although it will work on
120  *	64bit processors)
121  */
122 
123 /*
124  *	test bit
125  */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE	0
130 #endif
131 
addr_bit_set(const void * token,int fn_bit)132 static __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134 	const __be32 *addr = token;
135 	/*
136 	 * Here,
137 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138 	 * is optimized version of
139 	 *	htonl(1 << ((~fn_bit)&0x1F))
140 	 * See include/asm-generic/bitops/le.h.
141 	 */
142 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 	       addr[fn_bit >> 5];
144 }
145 
fib6_info_alloc(gfp_t gfp_flags,bool with_fib6_nh)146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
147 {
148 	struct fib6_info *f6i;
149 	size_t sz = sizeof(*f6i);
150 
151 	if (with_fib6_nh)
152 		sz += sizeof(struct fib6_nh);
153 
154 	f6i = kzalloc(sz, gfp_flags);
155 	if (!f6i)
156 		return NULL;
157 
158 	/* fib6_siblings is a union with nh_list, so this initializes both */
159 	INIT_LIST_HEAD(&f6i->fib6_siblings);
160 	refcount_set(&f6i->fib6_ref, 1);
161 
162 	return f6i;
163 }
164 
fib6_info_destroy_rcu(struct rcu_head * head)165 void fib6_info_destroy_rcu(struct rcu_head *head)
166 {
167 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
168 
169 	WARN_ON(f6i->fib6_node);
170 
171 	if (f6i->nh)
172 		nexthop_put(f6i->nh);
173 	else
174 		fib6_nh_release(f6i->fib6_nh);
175 
176 	ip_fib_metrics_put(f6i->fib6_metrics);
177 	kfree(f6i);
178 }
179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
180 
node_alloc(struct net * net)181 static struct fib6_node *node_alloc(struct net *net)
182 {
183 	struct fib6_node *fn;
184 
185 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
186 	if (fn)
187 		net->ipv6.rt6_stats->fib_nodes++;
188 
189 	return fn;
190 }
191 
node_free_immediate(struct net * net,struct fib6_node * fn)192 static void node_free_immediate(struct net *net, struct fib6_node *fn)
193 {
194 	kmem_cache_free(fib6_node_kmem, fn);
195 	net->ipv6.rt6_stats->fib_nodes--;
196 }
197 
node_free_rcu(struct rcu_head * head)198 static void node_free_rcu(struct rcu_head *head)
199 {
200 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
201 
202 	kmem_cache_free(fib6_node_kmem, fn);
203 }
204 
node_free(struct net * net,struct fib6_node * fn)205 static void node_free(struct net *net, struct fib6_node *fn)
206 {
207 	call_rcu(&fn->rcu, node_free_rcu);
208 	net->ipv6.rt6_stats->fib_nodes--;
209 }
210 
fib6_free_table(struct fib6_table * table)211 static void fib6_free_table(struct fib6_table *table)
212 {
213 	inetpeer_invalidate_tree(&table->tb6_peers);
214 	kfree(table);
215 }
216 
fib6_link_table(struct net * net,struct fib6_table * tb)217 static void fib6_link_table(struct net *net, struct fib6_table *tb)
218 {
219 	unsigned int h;
220 
221 	/*
222 	 * Initialize table lock at a single place to give lockdep a key,
223 	 * tables aren't visible prior to being linked to the list.
224 	 */
225 	spin_lock_init(&tb->tb6_lock);
226 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
227 
228 	/*
229 	 * No protection necessary, this is the only list mutatation
230 	 * operation, tables never disappear once they exist.
231 	 */
232 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
233 }
234 
235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
236 
fib6_alloc_table(struct net * net,u32 id)237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
238 {
239 	struct fib6_table *table;
240 
241 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
242 	if (table) {
243 		table->tb6_id = id;
244 		rcu_assign_pointer(table->tb6_root.leaf,
245 				   net->ipv6.fib6_null_entry);
246 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
247 		inet_peer_base_init(&table->tb6_peers);
248 	}
249 
250 	return table;
251 }
252 
fib6_new_table(struct net * net,u32 id)253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 	struct fib6_table *tb;
256 
257 	if (id == 0)
258 		id = RT6_TABLE_MAIN;
259 	tb = fib6_get_table(net, id);
260 	if (tb)
261 		return tb;
262 
263 	tb = fib6_alloc_table(net, id);
264 	if (tb)
265 		fib6_link_table(net, tb);
266 
267 	return tb;
268 }
269 EXPORT_SYMBOL_GPL(fib6_new_table);
270 
fib6_get_table(struct net * net,u32 id)271 struct fib6_table *fib6_get_table(struct net *net, u32 id)
272 {
273 	struct fib6_table *tb;
274 	struct hlist_head *head;
275 	unsigned int h;
276 
277 	if (id == 0)
278 		id = RT6_TABLE_MAIN;
279 	h = id & (FIB6_TABLE_HASHSZ - 1);
280 	rcu_read_lock();
281 	head = &net->ipv6.fib_table_hash[h];
282 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
283 		if (tb->tb6_id == id) {
284 			rcu_read_unlock();
285 			return tb;
286 		}
287 	}
288 	rcu_read_unlock();
289 
290 	return NULL;
291 }
292 EXPORT_SYMBOL_GPL(fib6_get_table);
293 
fib6_tables_init(struct net * net)294 static void __net_init fib6_tables_init(struct net *net)
295 {
296 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
297 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
298 }
299 #else
300 
fib6_new_table(struct net * net,u32 id)301 struct fib6_table *fib6_new_table(struct net *net, u32 id)
302 {
303 	return fib6_get_table(net, id);
304 }
305 
fib6_get_table(struct net * net,u32 id)306 struct fib6_table *fib6_get_table(struct net *net, u32 id)
307 {
308 	  return net->ipv6.fib6_main_tbl;
309 }
310 
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,const struct sk_buff * skb,int flags,pol_lookup_t lookup)311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
312 				   const struct sk_buff *skb,
313 				   int flags, pol_lookup_t lookup)
314 {
315 	struct rt6_info *rt;
316 
317 	rt = pol_lookup_func(lookup,
318 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
319 	if (rt->dst.error == -EAGAIN) {
320 		ip6_rt_put_flags(rt, flags);
321 		rt = net->ipv6.ip6_null_entry;
322 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
323 			dst_hold(&rt->dst);
324 	}
325 
326 	return &rt->dst;
327 }
328 
329 /* called with rcu lock held; no reference taken on fib6_info */
fib6_lookup(struct net * net,int oif,struct flowi6 * fl6,struct fib6_result * res,int flags)330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
331 		struct fib6_result *res, int flags)
332 {
333 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
334 				 res, flags);
335 }
336 
fib6_tables_init(struct net * net)337 static void __net_init fib6_tables_init(struct net *net)
338 {
339 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
340 }
341 
342 #endif
343 
fib6_tables_seq_read(struct net * net)344 unsigned int fib6_tables_seq_read(struct net *net)
345 {
346 	unsigned int h, fib_seq = 0;
347 
348 	rcu_read_lock();
349 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
350 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
351 		struct fib6_table *tb;
352 
353 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
354 			fib_seq += tb->fib_seq;
355 	}
356 	rcu_read_unlock();
357 
358 	return fib_seq;
359 }
360 
call_fib6_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)361 static int call_fib6_entry_notifier(struct notifier_block *nb,
362 				    enum fib_event_type event_type,
363 				    struct fib6_info *rt,
364 				    struct netlink_ext_ack *extack)
365 {
366 	struct fib6_entry_notifier_info info = {
367 		.info.extack = extack,
368 		.rt = rt,
369 	};
370 
371 	return call_fib6_notifier(nb, event_type, &info.info);
372 }
373 
call_fib6_multipath_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
375 					      enum fib_event_type event_type,
376 					      struct fib6_info *rt,
377 					      unsigned int nsiblings,
378 					      struct netlink_ext_ack *extack)
379 {
380 	struct fib6_entry_notifier_info info = {
381 		.info.extack = extack,
382 		.rt = rt,
383 		.nsiblings = nsiblings,
384 	};
385 
386 	return call_fib6_notifier(nb, event_type, &info.info);
387 }
388 
call_fib6_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)389 int call_fib6_entry_notifiers(struct net *net,
390 			      enum fib_event_type event_type,
391 			      struct fib6_info *rt,
392 			      struct netlink_ext_ack *extack)
393 {
394 	struct fib6_entry_notifier_info info = {
395 		.info.extack = extack,
396 		.rt = rt,
397 	};
398 
399 	rt->fib6_table->fib_seq++;
400 	return call_fib6_notifiers(net, event_type, &info.info);
401 }
402 
call_fib6_multipath_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)403 int call_fib6_multipath_entry_notifiers(struct net *net,
404 					enum fib_event_type event_type,
405 					struct fib6_info *rt,
406 					unsigned int nsiblings,
407 					struct netlink_ext_ack *extack)
408 {
409 	struct fib6_entry_notifier_info info = {
410 		.info.extack = extack,
411 		.rt = rt,
412 		.nsiblings = nsiblings,
413 	};
414 
415 	rt->fib6_table->fib_seq++;
416 	return call_fib6_notifiers(net, event_type, &info.info);
417 }
418 
call_fib6_entry_notifiers_replace(struct net * net,struct fib6_info * rt)419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
420 {
421 	struct fib6_entry_notifier_info info = {
422 		.rt = rt,
423 		.nsiblings = rt->fib6_nsiblings,
424 	};
425 
426 	rt->fib6_table->fib_seq++;
427 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
428 }
429 
430 struct fib6_dump_arg {
431 	struct net *net;
432 	struct notifier_block *nb;
433 	struct netlink_ext_ack *extack;
434 };
435 
fib6_rt_dump(struct fib6_info * rt,struct fib6_dump_arg * arg)436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
437 {
438 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
439 	int err;
440 
441 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
442 		return 0;
443 
444 	if (rt->fib6_nsiblings)
445 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
446 							 rt,
447 							 rt->fib6_nsiblings,
448 							 arg->extack);
449 	else
450 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
451 					       arg->extack);
452 
453 	return err;
454 }
455 
fib6_node_dump(struct fib6_walker * w)456 static int fib6_node_dump(struct fib6_walker *w)
457 {
458 	int err;
459 
460 	err = fib6_rt_dump(w->leaf, w->args);
461 	w->leaf = NULL;
462 	return err;
463 }
464 
fib6_table_dump(struct net * net,struct fib6_table * tb,struct fib6_walker * w)465 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
466 			   struct fib6_walker *w)
467 {
468 	int err;
469 
470 	w->root = &tb->tb6_root;
471 	spin_lock_bh(&tb->tb6_lock);
472 	err = fib6_walk(net, w);
473 	spin_unlock_bh(&tb->tb6_lock);
474 	return err;
475 }
476 
477 /* Called with rcu_read_lock() */
fib6_tables_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)478 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
479 		     struct netlink_ext_ack *extack)
480 {
481 	struct fib6_dump_arg arg;
482 	struct fib6_walker *w;
483 	unsigned int h;
484 	int err = 0;
485 
486 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
487 	if (!w)
488 		return -ENOMEM;
489 
490 	w->func = fib6_node_dump;
491 	arg.net = net;
492 	arg.nb = nb;
493 	arg.extack = extack;
494 	w->args = &arg;
495 
496 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
497 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
498 		struct fib6_table *tb;
499 
500 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
501 			err = fib6_table_dump(net, tb, w);
502 			if (err < 0)
503 				goto out;
504 		}
505 	}
506 
507 out:
508 	kfree(w);
509 
510 	return err;
511 }
512 
fib6_dump_node(struct fib6_walker * w)513 static int fib6_dump_node(struct fib6_walker *w)
514 {
515 	int res;
516 	struct fib6_info *rt;
517 
518 	for_each_fib6_walker_rt(w) {
519 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
520 		if (res >= 0) {
521 			/* Frame is full, suspend walking */
522 			w->leaf = rt;
523 
524 			/* We'll restart from this node, so if some routes were
525 			 * already dumped, skip them next time.
526 			 */
527 			w->skip_in_node += res;
528 
529 			return 1;
530 		}
531 		w->skip_in_node = 0;
532 
533 		/* Multipath routes are dumped in one route with the
534 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
535 		 * last sibling of this route (no need to dump the
536 		 * sibling routes again)
537 		 */
538 		if (rt->fib6_nsiblings)
539 			rt = list_last_entry(&rt->fib6_siblings,
540 					     struct fib6_info,
541 					     fib6_siblings);
542 	}
543 	w->leaf = NULL;
544 	return 0;
545 }
546 
fib6_dump_end(struct netlink_callback * cb)547 static void fib6_dump_end(struct netlink_callback *cb)
548 {
549 	struct net *net = sock_net(cb->skb->sk);
550 	struct fib6_walker *w = (void *)cb->args[2];
551 
552 	if (w) {
553 		if (cb->args[4]) {
554 			cb->args[4] = 0;
555 			fib6_walker_unlink(net, w);
556 		}
557 		cb->args[2] = 0;
558 		kfree(w);
559 	}
560 	cb->done = (void *)cb->args[3];
561 	cb->args[1] = 3;
562 }
563 
fib6_dump_done(struct netlink_callback * cb)564 static int fib6_dump_done(struct netlink_callback *cb)
565 {
566 	fib6_dump_end(cb);
567 	return cb->done ? cb->done(cb) : 0;
568 }
569 
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)570 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
571 			   struct netlink_callback *cb)
572 {
573 	struct net *net = sock_net(skb->sk);
574 	struct fib6_walker *w;
575 	int res;
576 
577 	w = (void *)cb->args[2];
578 	w->root = &table->tb6_root;
579 
580 	if (cb->args[4] == 0) {
581 		w->count = 0;
582 		w->skip = 0;
583 		w->skip_in_node = 0;
584 
585 		spin_lock_bh(&table->tb6_lock);
586 		res = fib6_walk(net, w);
587 		spin_unlock_bh(&table->tb6_lock);
588 		if (res > 0) {
589 			cb->args[4] = 1;
590 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
591 		}
592 	} else {
593 		int sernum = READ_ONCE(w->root->fn_sernum);
594 		if (cb->args[5] != sernum) {
595 			/* Begin at the root if the tree changed */
596 			cb->args[5] = sernum;
597 			w->state = FWS_INIT;
598 			w->node = w->root;
599 			w->skip = w->count;
600 			w->skip_in_node = 0;
601 		} else
602 			w->skip = 0;
603 
604 		spin_lock_bh(&table->tb6_lock);
605 		res = fib6_walk_continue(w);
606 		spin_unlock_bh(&table->tb6_lock);
607 		if (res <= 0) {
608 			fib6_walker_unlink(net, w);
609 			cb->args[4] = 0;
610 		}
611 	}
612 
613 	return res;
614 }
615 
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)616 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
617 {
618 	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
619 					 .filter.dump_routes = true };
620 	const struct nlmsghdr *nlh = cb->nlh;
621 	struct net *net = sock_net(skb->sk);
622 	unsigned int h, s_h;
623 	unsigned int e = 0, s_e;
624 	struct fib6_walker *w;
625 	struct fib6_table *tb;
626 	struct hlist_head *head;
627 	int res = 0;
628 
629 	if (cb->strict_check) {
630 		int err;
631 
632 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
633 		if (err < 0)
634 			return err;
635 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
636 		struct rtmsg *rtm = nlmsg_data(nlh);
637 
638 		if (rtm->rtm_flags & RTM_F_PREFIX)
639 			arg.filter.flags = RTM_F_PREFIX;
640 	}
641 
642 	w = (void *)cb->args[2];
643 	if (!w) {
644 		/* New dump:
645 		 *
646 		 * 1. hook callback destructor.
647 		 */
648 		cb->args[3] = (long)cb->done;
649 		cb->done = fib6_dump_done;
650 
651 		/*
652 		 * 2. allocate and initialize walker.
653 		 */
654 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
655 		if (!w)
656 			return -ENOMEM;
657 		w->func = fib6_dump_node;
658 		cb->args[2] = (long)w;
659 	}
660 
661 	arg.skb = skb;
662 	arg.cb = cb;
663 	arg.net = net;
664 	w->args = &arg;
665 
666 	if (arg.filter.table_id) {
667 		tb = fib6_get_table(net, arg.filter.table_id);
668 		if (!tb) {
669 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
670 				goto out;
671 
672 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
673 			return -ENOENT;
674 		}
675 
676 		if (!cb->args[0]) {
677 			res = fib6_dump_table(tb, skb, cb);
678 			if (!res)
679 				cb->args[0] = 1;
680 		}
681 		goto out;
682 	}
683 
684 	s_h = cb->args[0];
685 	s_e = cb->args[1];
686 
687 	rcu_read_lock();
688 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
689 		e = 0;
690 		head = &net->ipv6.fib_table_hash[h];
691 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
692 			if (e < s_e)
693 				goto next;
694 			res = fib6_dump_table(tb, skb, cb);
695 			if (res != 0)
696 				goto out_unlock;
697 next:
698 			e++;
699 		}
700 	}
701 out_unlock:
702 	rcu_read_unlock();
703 	cb->args[1] = e;
704 	cb->args[0] = h;
705 out:
706 	res = res < 0 ? res : skb->len;
707 	if (res <= 0)
708 		fib6_dump_end(cb);
709 	return res;
710 }
711 
fib6_metric_set(struct fib6_info * f6i,int metric,u32 val)712 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
713 {
714 	if (!f6i)
715 		return;
716 
717 	if (f6i->fib6_metrics == &dst_default_metrics) {
718 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
719 
720 		if (!p)
721 			return;
722 
723 		refcount_set(&p->refcnt, 1);
724 		f6i->fib6_metrics = p;
725 	}
726 
727 	f6i->fib6_metrics->metrics[metric - 1] = val;
728 }
729 
730 /*
731  *	Routing Table
732  *
733  *	return the appropriate node for a routing tree "add" operation
734  *	by either creating and inserting or by returning an existing
735  *	node.
736  */
737 
fib6_add_1(struct net * net,struct fib6_table * table,struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,struct netlink_ext_ack * extack)738 static struct fib6_node *fib6_add_1(struct net *net,
739 				    struct fib6_table *table,
740 				    struct fib6_node *root,
741 				    struct in6_addr *addr, int plen,
742 				    int offset, int allow_create,
743 				    int replace_required,
744 				    struct netlink_ext_ack *extack)
745 {
746 	struct fib6_node *fn, *in, *ln;
747 	struct fib6_node *pn = NULL;
748 	struct rt6key *key;
749 	int	bit;
750 	__be32	dir = 0;
751 
752 	RT6_TRACE("fib6_add_1\n");
753 
754 	/* insert node in tree */
755 
756 	fn = root;
757 
758 	do {
759 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
760 					    lockdep_is_held(&table->tb6_lock));
761 		key = (struct rt6key *)((u8 *)leaf + offset);
762 
763 		/*
764 		 *	Prefix match
765 		 */
766 		if (plen < fn->fn_bit ||
767 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
768 			if (!allow_create) {
769 				if (replace_required) {
770 					NL_SET_ERR_MSG(extack,
771 						       "Can not replace route - no match found");
772 					pr_warn("Can't replace route, no match found\n");
773 					return ERR_PTR(-ENOENT);
774 				}
775 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
776 			}
777 			goto insert_above;
778 		}
779 
780 		/*
781 		 *	Exact match ?
782 		 */
783 
784 		if (plen == fn->fn_bit) {
785 			/* clean up an intermediate node */
786 			if (!(fn->fn_flags & RTN_RTINFO)) {
787 				RCU_INIT_POINTER(fn->leaf, NULL);
788 				fib6_info_release(leaf);
789 			/* remove null_entry in the root node */
790 			} else if (fn->fn_flags & RTN_TL_ROOT &&
791 				   rcu_access_pointer(fn->leaf) ==
792 				   net->ipv6.fib6_null_entry) {
793 				RCU_INIT_POINTER(fn->leaf, NULL);
794 			}
795 
796 			return fn;
797 		}
798 
799 		/*
800 		 *	We have more bits to go
801 		 */
802 
803 		/* Try to walk down on tree. */
804 		dir = addr_bit_set(addr, fn->fn_bit);
805 		pn = fn;
806 		fn = dir ?
807 		     rcu_dereference_protected(fn->right,
808 					lockdep_is_held(&table->tb6_lock)) :
809 		     rcu_dereference_protected(fn->left,
810 					lockdep_is_held(&table->tb6_lock));
811 	} while (fn);
812 
813 	if (!allow_create) {
814 		/* We should not create new node because
815 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
816 		 * I assume it is safe to require NLM_F_CREATE when
817 		 * REPLACE flag is used! Later we may want to remove the
818 		 * check for replace_required, because according
819 		 * to netlink specification, NLM_F_CREATE
820 		 * MUST be specified if new route is created.
821 		 * That would keep IPv6 consistent with IPv4
822 		 */
823 		if (replace_required) {
824 			NL_SET_ERR_MSG(extack,
825 				       "Can not replace route - no match found");
826 			pr_warn("Can't replace route, no match found\n");
827 			return ERR_PTR(-ENOENT);
828 		}
829 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
830 	}
831 	/*
832 	 *	We walked to the bottom of tree.
833 	 *	Create new leaf node without children.
834 	 */
835 
836 	ln = node_alloc(net);
837 
838 	if (!ln)
839 		return ERR_PTR(-ENOMEM);
840 	ln->fn_bit = plen;
841 	RCU_INIT_POINTER(ln->parent, pn);
842 
843 	if (dir)
844 		rcu_assign_pointer(pn->right, ln);
845 	else
846 		rcu_assign_pointer(pn->left, ln);
847 
848 	return ln;
849 
850 
851 insert_above:
852 	/*
853 	 * split since we don't have a common prefix anymore or
854 	 * we have a less significant route.
855 	 * we've to insert an intermediate node on the list
856 	 * this new node will point to the one we need to create
857 	 * and the current
858 	 */
859 
860 	pn = rcu_dereference_protected(fn->parent,
861 				       lockdep_is_held(&table->tb6_lock));
862 
863 	/* find 1st bit in difference between the 2 addrs.
864 
865 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
866 	   but if it is >= plen, the value is ignored in any case.
867 	 */
868 
869 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
870 
871 	/*
872 	 *		(intermediate)[in]
873 	 *	          /	   \
874 	 *	(new leaf node)[ln] (old node)[fn]
875 	 */
876 	if (plen > bit) {
877 		in = node_alloc(net);
878 		ln = node_alloc(net);
879 
880 		if (!in || !ln) {
881 			if (in)
882 				node_free_immediate(net, in);
883 			if (ln)
884 				node_free_immediate(net, ln);
885 			return ERR_PTR(-ENOMEM);
886 		}
887 
888 		/*
889 		 * new intermediate node.
890 		 * RTN_RTINFO will
891 		 * be off since that an address that chooses one of
892 		 * the branches would not match less specific routes
893 		 * in the other branch
894 		 */
895 
896 		in->fn_bit = bit;
897 
898 		RCU_INIT_POINTER(in->parent, pn);
899 		in->leaf = fn->leaf;
900 		fib6_info_hold(rcu_dereference_protected(in->leaf,
901 				lockdep_is_held(&table->tb6_lock)));
902 
903 		/* update parent pointer */
904 		if (dir)
905 			rcu_assign_pointer(pn->right, in);
906 		else
907 			rcu_assign_pointer(pn->left, in);
908 
909 		ln->fn_bit = plen;
910 
911 		RCU_INIT_POINTER(ln->parent, in);
912 		rcu_assign_pointer(fn->parent, in);
913 
914 		if (addr_bit_set(addr, bit)) {
915 			rcu_assign_pointer(in->right, ln);
916 			rcu_assign_pointer(in->left, fn);
917 		} else {
918 			rcu_assign_pointer(in->left, ln);
919 			rcu_assign_pointer(in->right, fn);
920 		}
921 	} else { /* plen <= bit */
922 
923 		/*
924 		 *		(new leaf node)[ln]
925 		 *	          /	   \
926 		 *	     (old node)[fn] NULL
927 		 */
928 
929 		ln = node_alloc(net);
930 
931 		if (!ln)
932 			return ERR_PTR(-ENOMEM);
933 
934 		ln->fn_bit = plen;
935 
936 		RCU_INIT_POINTER(ln->parent, pn);
937 
938 		if (addr_bit_set(&key->addr, plen))
939 			RCU_INIT_POINTER(ln->right, fn);
940 		else
941 			RCU_INIT_POINTER(ln->left, fn);
942 
943 		rcu_assign_pointer(fn->parent, ln);
944 
945 		if (dir)
946 			rcu_assign_pointer(pn->right, ln);
947 		else
948 			rcu_assign_pointer(pn->left, ln);
949 	}
950 	return ln;
951 }
952 
__fib6_drop_pcpu_from(struct fib6_nh * fib6_nh,const struct fib6_info * match,const struct fib6_table * table)953 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
954 				  const struct fib6_info *match,
955 				  const struct fib6_table *table)
956 {
957 	int cpu;
958 
959 	if (!fib6_nh->rt6i_pcpu)
960 		return;
961 
962 	/* release the reference to this fib entry from
963 	 * all of its cached pcpu routes
964 	 */
965 	for_each_possible_cpu(cpu) {
966 		struct rt6_info **ppcpu_rt;
967 		struct rt6_info *pcpu_rt;
968 
969 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
970 		pcpu_rt = *ppcpu_rt;
971 
972 		/* only dropping the 'from' reference if the cached route
973 		 * is using 'match'. The cached pcpu_rt->from only changes
974 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
975 		 * change from one fib6_info reference to another
976 		 */
977 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
978 			struct fib6_info *from;
979 
980 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
981 			fib6_info_release(from);
982 		}
983 	}
984 }
985 
986 struct fib6_nh_pcpu_arg {
987 	struct fib6_info	*from;
988 	const struct fib6_table *table;
989 };
990 
fib6_nh_drop_pcpu_from(struct fib6_nh * nh,void * _arg)991 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
992 {
993 	struct fib6_nh_pcpu_arg *arg = _arg;
994 
995 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
996 	return 0;
997 }
998 
fib6_drop_pcpu_from(struct fib6_info * f6i,const struct fib6_table * table)999 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1000 				const struct fib6_table *table)
1001 {
1002 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1003 	 * while we are cleaning them here.
1004 	 */
1005 	f6i->fib6_destroying = 1;
1006 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1007 
1008 	if (f6i->nh) {
1009 		struct fib6_nh_pcpu_arg arg = {
1010 			.from = f6i,
1011 			.table = table
1012 		};
1013 
1014 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1015 					 &arg);
1016 	} else {
1017 		struct fib6_nh *fib6_nh;
1018 
1019 		fib6_nh = f6i->fib6_nh;
1020 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1021 	}
1022 }
1023 
fib6_purge_rt(struct fib6_info * rt,struct fib6_node * fn,struct net * net)1024 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1025 			  struct net *net)
1026 {
1027 	struct fib6_table *table = rt->fib6_table;
1028 
1029 	/* Flush all cached dst in exception table */
1030 	rt6_flush_exceptions(rt);
1031 	fib6_drop_pcpu_from(rt, table);
1032 
1033 	if (rt->nh && !list_empty(&rt->nh_list))
1034 		list_del_init(&rt->nh_list);
1035 
1036 	if (refcount_read(&rt->fib6_ref) != 1) {
1037 		/* This route is used as dummy address holder in some split
1038 		 * nodes. It is not leaked, but it still holds other resources,
1039 		 * which must be released in time. So, scan ascendant nodes
1040 		 * and replace dummy references to this route with references
1041 		 * to still alive ones.
1042 		 */
1043 		while (fn) {
1044 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1045 					    lockdep_is_held(&table->tb6_lock));
1046 			struct fib6_info *new_leaf;
1047 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1048 				new_leaf = fib6_find_prefix(net, table, fn);
1049 				fib6_info_hold(new_leaf);
1050 
1051 				rcu_assign_pointer(fn->leaf, new_leaf);
1052 				fib6_info_release(rt);
1053 			}
1054 			fn = rcu_dereference_protected(fn->parent,
1055 				    lockdep_is_held(&table->tb6_lock));
1056 		}
1057 	}
1058 }
1059 
1060 /*
1061  *	Insert routing information in a node.
1062  */
1063 
fib6_add_rt2node(struct fib6_node * fn,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1064 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1065 			    struct nl_info *info,
1066 			    struct netlink_ext_ack *extack)
1067 {
1068 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1069 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1070 	struct fib6_info *iter = NULL;
1071 	struct fib6_info __rcu **ins;
1072 	struct fib6_info __rcu **fallback_ins = NULL;
1073 	int replace = (info->nlh &&
1074 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1075 	int add = (!info->nlh ||
1076 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1077 	int found = 0;
1078 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1079 	bool notify_sibling_rt = false;
1080 	u16 nlflags = NLM_F_EXCL;
1081 	int err;
1082 
1083 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1084 		nlflags |= NLM_F_APPEND;
1085 
1086 	ins = &fn->leaf;
1087 
1088 	for (iter = leaf; iter;
1089 	     iter = rcu_dereference_protected(iter->fib6_next,
1090 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1091 		/*
1092 		 *	Search for duplicates
1093 		 */
1094 
1095 		if (iter->fib6_metric == rt->fib6_metric) {
1096 			/*
1097 			 *	Same priority level
1098 			 */
1099 			if (info->nlh &&
1100 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1101 				return -EEXIST;
1102 
1103 			nlflags &= ~NLM_F_EXCL;
1104 			if (replace) {
1105 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1106 					found++;
1107 					break;
1108 				}
1109 				fallback_ins = fallback_ins ?: ins;
1110 				goto next_iter;
1111 			}
1112 
1113 			if (rt6_duplicate_nexthop(iter, rt)) {
1114 				if (rt->fib6_nsiblings)
1115 					rt->fib6_nsiblings = 0;
1116 				if (!(iter->fib6_flags & RTF_EXPIRES))
1117 					return -EEXIST;
1118 				if (!(rt->fib6_flags & RTF_EXPIRES))
1119 					fib6_clean_expires(iter);
1120 				else
1121 					fib6_set_expires(iter, rt->expires);
1122 
1123 				if (rt->fib6_pmtu)
1124 					fib6_metric_set(iter, RTAX_MTU,
1125 							rt->fib6_pmtu);
1126 				return -EEXIST;
1127 			}
1128 			/* If we have the same destination and the same metric,
1129 			 * but not the same gateway, then the route we try to
1130 			 * add is sibling to this route, increment our counter
1131 			 * of siblings, and later we will add our route to the
1132 			 * list.
1133 			 * Only static routes (which don't have flag
1134 			 * RTF_EXPIRES) are used for ECMPv6.
1135 			 *
1136 			 * To avoid long list, we only had siblings if the
1137 			 * route have a gateway.
1138 			 */
1139 			if (rt_can_ecmp &&
1140 			    rt6_qualify_for_ecmp(iter))
1141 				rt->fib6_nsiblings++;
1142 		}
1143 
1144 		if (iter->fib6_metric > rt->fib6_metric)
1145 			break;
1146 
1147 next_iter:
1148 		ins = &iter->fib6_next;
1149 	}
1150 
1151 	if (fallback_ins && !found) {
1152 		/* No matching route with same ecmp-able-ness found, replace
1153 		 * first matching route
1154 		 */
1155 		ins = fallback_ins;
1156 		iter = rcu_dereference_protected(*ins,
1157 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1158 		found++;
1159 	}
1160 
1161 	/* Reset round-robin state, if necessary */
1162 	if (ins == &fn->leaf)
1163 		fn->rr_ptr = NULL;
1164 
1165 	/* Link this route to others same route. */
1166 	if (rt->fib6_nsiblings) {
1167 		unsigned int fib6_nsiblings;
1168 		struct fib6_info *sibling, *temp_sibling;
1169 
1170 		/* Find the first route that have the same metric */
1171 		sibling = leaf;
1172 		notify_sibling_rt = true;
1173 		while (sibling) {
1174 			if (sibling->fib6_metric == rt->fib6_metric &&
1175 			    rt6_qualify_for_ecmp(sibling)) {
1176 				list_add_tail(&rt->fib6_siblings,
1177 					      &sibling->fib6_siblings);
1178 				break;
1179 			}
1180 			sibling = rcu_dereference_protected(sibling->fib6_next,
1181 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1182 			notify_sibling_rt = false;
1183 		}
1184 		/* For each sibling in the list, increment the counter of
1185 		 * siblings. BUG() if counters does not match, list of siblings
1186 		 * is broken!
1187 		 */
1188 		fib6_nsiblings = 0;
1189 		list_for_each_entry_safe(sibling, temp_sibling,
1190 					 &rt->fib6_siblings, fib6_siblings) {
1191 			sibling->fib6_nsiblings++;
1192 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1193 			fib6_nsiblings++;
1194 		}
1195 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1196 		rt6_multipath_rebalance(temp_sibling);
1197 	}
1198 
1199 	/*
1200 	 *	insert node
1201 	 */
1202 	if (!replace) {
1203 		if (!add)
1204 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1205 
1206 add:
1207 		nlflags |= NLM_F_CREATE;
1208 
1209 		/* The route should only be notified if it is the first
1210 		 * route in the node or if it is added as a sibling
1211 		 * route to the first route in the node.
1212 		 */
1213 		if (!info->skip_notify_kernel &&
1214 		    (notify_sibling_rt || ins == &fn->leaf)) {
1215 			enum fib_event_type fib_event;
1216 
1217 			if (notify_sibling_rt)
1218 				fib_event = FIB_EVENT_ENTRY_APPEND;
1219 			else
1220 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1221 			err = call_fib6_entry_notifiers(info->nl_net,
1222 							fib_event, rt,
1223 							extack);
1224 			if (err) {
1225 				struct fib6_info *sibling, *next_sibling;
1226 
1227 				/* If the route has siblings, then it first
1228 				 * needs to be unlinked from them.
1229 				 */
1230 				if (!rt->fib6_nsiblings)
1231 					return err;
1232 
1233 				list_for_each_entry_safe(sibling, next_sibling,
1234 							 &rt->fib6_siblings,
1235 							 fib6_siblings)
1236 					sibling->fib6_nsiblings--;
1237 				rt->fib6_nsiblings = 0;
1238 				list_del_init(&rt->fib6_siblings);
1239 				rt6_multipath_rebalance(next_sibling);
1240 				return err;
1241 			}
1242 		}
1243 
1244 		rcu_assign_pointer(rt->fib6_next, iter);
1245 		fib6_info_hold(rt);
1246 		rcu_assign_pointer(rt->fib6_node, fn);
1247 		rcu_assign_pointer(*ins, rt);
1248 		if (!info->skip_notify)
1249 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1250 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1251 
1252 		if (!(fn->fn_flags & RTN_RTINFO)) {
1253 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1254 			fn->fn_flags |= RTN_RTINFO;
1255 		}
1256 
1257 	} else {
1258 		int nsiblings;
1259 
1260 		if (!found) {
1261 			if (add)
1262 				goto add;
1263 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1264 			return -ENOENT;
1265 		}
1266 
1267 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1268 			err = call_fib6_entry_notifiers(info->nl_net,
1269 							FIB_EVENT_ENTRY_REPLACE,
1270 							rt, extack);
1271 			if (err)
1272 				return err;
1273 		}
1274 
1275 		fib6_info_hold(rt);
1276 		rcu_assign_pointer(rt->fib6_node, fn);
1277 		rt->fib6_next = iter->fib6_next;
1278 		rcu_assign_pointer(*ins, rt);
1279 		if (!info->skip_notify)
1280 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1281 		if (!(fn->fn_flags & RTN_RTINFO)) {
1282 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1283 			fn->fn_flags |= RTN_RTINFO;
1284 		}
1285 		nsiblings = iter->fib6_nsiblings;
1286 		iter->fib6_node = NULL;
1287 		fib6_purge_rt(iter, fn, info->nl_net);
1288 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1289 			fn->rr_ptr = NULL;
1290 		fib6_info_release(iter);
1291 
1292 		if (nsiblings) {
1293 			/* Replacing an ECMP route, remove all siblings */
1294 			ins = &rt->fib6_next;
1295 			iter = rcu_dereference_protected(*ins,
1296 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1297 			while (iter) {
1298 				if (iter->fib6_metric > rt->fib6_metric)
1299 					break;
1300 				if (rt6_qualify_for_ecmp(iter)) {
1301 					*ins = iter->fib6_next;
1302 					iter->fib6_node = NULL;
1303 					fib6_purge_rt(iter, fn, info->nl_net);
1304 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1305 						fn->rr_ptr = NULL;
1306 					fib6_info_release(iter);
1307 					nsiblings--;
1308 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1309 				} else {
1310 					ins = &iter->fib6_next;
1311 				}
1312 				iter = rcu_dereference_protected(*ins,
1313 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1314 			}
1315 			WARN_ON(nsiblings != 0);
1316 		}
1317 	}
1318 
1319 	return 0;
1320 }
1321 
fib6_start_gc(struct net * net,struct fib6_info * rt)1322 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1323 {
1324 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1325 	    (rt->fib6_flags & RTF_EXPIRES))
1326 		mod_timer(&net->ipv6.ip6_fib_timer,
1327 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1328 }
1329 
fib6_force_start_gc(struct net * net)1330 void fib6_force_start_gc(struct net *net)
1331 {
1332 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1333 		mod_timer(&net->ipv6.ip6_fib_timer,
1334 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1335 }
1336 
__fib6_update_sernum_upto_root(struct fib6_info * rt,int sernum)1337 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1338 					   int sernum)
1339 {
1340 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1341 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1342 
1343 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1344 	smp_wmb();
1345 	while (fn) {
1346 		WRITE_ONCE(fn->fn_sernum, sernum);
1347 		fn = rcu_dereference_protected(fn->parent,
1348 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1349 	}
1350 }
1351 
fib6_update_sernum_upto_root(struct net * net,struct fib6_info * rt)1352 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1353 {
1354 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1355 }
1356 
1357 /* allow ipv4 to update sernum via ipv6_stub */
fib6_update_sernum_stub(struct net * net,struct fib6_info * f6i)1358 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1359 {
1360 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1361 	fib6_update_sernum_upto_root(net, f6i);
1362 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1363 }
1364 
1365 /*
1366  *	Add routing information to the routing tree.
1367  *	<destination addr>/<source addr>
1368  *	with source addr info in sub-trees
1369  *	Need to own table->tb6_lock
1370  */
1371 
fib6_add(struct fib6_node * root,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1372 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1373 	     struct nl_info *info, struct netlink_ext_ack *extack)
1374 {
1375 	struct fib6_table *table = rt->fib6_table;
1376 	struct fib6_node *fn, *pn = NULL;
1377 	int err = -ENOMEM;
1378 	int allow_create = 1;
1379 	int replace_required = 0;
1380 
1381 	if (info->nlh) {
1382 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1383 			allow_create = 0;
1384 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1385 			replace_required = 1;
1386 	}
1387 	if (!allow_create && !replace_required)
1388 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1389 
1390 	fn = fib6_add_1(info->nl_net, table, root,
1391 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1392 			offsetof(struct fib6_info, fib6_dst), allow_create,
1393 			replace_required, extack);
1394 	if (IS_ERR(fn)) {
1395 		err = PTR_ERR(fn);
1396 		fn = NULL;
1397 		goto out;
1398 	}
1399 
1400 	pn = fn;
1401 
1402 #ifdef CONFIG_IPV6_SUBTREES
1403 	if (rt->fib6_src.plen) {
1404 		struct fib6_node *sn;
1405 
1406 		if (!rcu_access_pointer(fn->subtree)) {
1407 			struct fib6_node *sfn;
1408 
1409 			/*
1410 			 * Create subtree.
1411 			 *
1412 			 *		fn[main tree]
1413 			 *		|
1414 			 *		sfn[subtree root]
1415 			 *		   \
1416 			 *		    sn[new leaf node]
1417 			 */
1418 
1419 			/* Create subtree root node */
1420 			sfn = node_alloc(info->nl_net);
1421 			if (!sfn)
1422 				goto failure;
1423 
1424 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1425 			rcu_assign_pointer(sfn->leaf,
1426 					   info->nl_net->ipv6.fib6_null_entry);
1427 			sfn->fn_flags = RTN_ROOT;
1428 
1429 			/* Now add the first leaf node to new subtree */
1430 
1431 			sn = fib6_add_1(info->nl_net, table, sfn,
1432 					&rt->fib6_src.addr, rt->fib6_src.plen,
1433 					offsetof(struct fib6_info, fib6_src),
1434 					allow_create, replace_required, extack);
1435 
1436 			if (IS_ERR(sn)) {
1437 				/* If it is failed, discard just allocated
1438 				   root, and then (in failure) stale node
1439 				   in main tree.
1440 				 */
1441 				node_free_immediate(info->nl_net, sfn);
1442 				err = PTR_ERR(sn);
1443 				goto failure;
1444 			}
1445 
1446 			/* Now link new subtree to main tree */
1447 			rcu_assign_pointer(sfn->parent, fn);
1448 			rcu_assign_pointer(fn->subtree, sfn);
1449 		} else {
1450 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1451 					&rt->fib6_src.addr, rt->fib6_src.plen,
1452 					offsetof(struct fib6_info, fib6_src),
1453 					allow_create, replace_required, extack);
1454 
1455 			if (IS_ERR(sn)) {
1456 				err = PTR_ERR(sn);
1457 				goto failure;
1458 			}
1459 		}
1460 
1461 		if (!rcu_access_pointer(fn->leaf)) {
1462 			if (fn->fn_flags & RTN_TL_ROOT) {
1463 				/* put back null_entry for root node */
1464 				rcu_assign_pointer(fn->leaf,
1465 					    info->nl_net->ipv6.fib6_null_entry);
1466 			} else {
1467 				fib6_info_hold(rt);
1468 				rcu_assign_pointer(fn->leaf, rt);
1469 			}
1470 		}
1471 		fn = sn;
1472 	}
1473 #endif
1474 
1475 	err = fib6_add_rt2node(fn, rt, info, extack);
1476 	if (!err) {
1477 		if (rt->nh)
1478 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1479 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1480 		fib6_start_gc(info->nl_net, rt);
1481 	}
1482 
1483 out:
1484 	if (err) {
1485 #ifdef CONFIG_IPV6_SUBTREES
1486 		/*
1487 		 * If fib6_add_1 has cleared the old leaf pointer in the
1488 		 * super-tree leaf node we have to find a new one for it.
1489 		 */
1490 		if (pn != fn) {
1491 			struct fib6_info *pn_leaf =
1492 				rcu_dereference_protected(pn->leaf,
1493 				    lockdep_is_held(&table->tb6_lock));
1494 			if (pn_leaf == rt) {
1495 				pn_leaf = NULL;
1496 				RCU_INIT_POINTER(pn->leaf, NULL);
1497 				fib6_info_release(rt);
1498 			}
1499 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1500 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1501 							   pn);
1502 				if (!pn_leaf)
1503 					pn_leaf =
1504 					    info->nl_net->ipv6.fib6_null_entry;
1505 				fib6_info_hold(pn_leaf);
1506 				rcu_assign_pointer(pn->leaf, pn_leaf);
1507 			}
1508 		}
1509 #endif
1510 		goto failure;
1511 	} else if (fib6_requires_src(rt)) {
1512 		fib6_routes_require_src_inc(info->nl_net);
1513 	}
1514 	return err;
1515 
1516 failure:
1517 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1518 	 * 1. fn is an intermediate node and we failed to add the new
1519 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1520 	 * failure case.
1521 	 * 2. fn is the root node in the table and we fail to add the first
1522 	 * default route to it.
1523 	 */
1524 	if (fn &&
1525 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1526 	     (fn->fn_flags & RTN_TL_ROOT &&
1527 	      !rcu_access_pointer(fn->leaf))))
1528 		fib6_repair_tree(info->nl_net, table, fn);
1529 	return err;
1530 }
1531 
1532 /*
1533  *	Routing tree lookup
1534  *
1535  */
1536 
1537 struct lookup_args {
1538 	int			offset;		/* key offset on fib6_info */
1539 	const struct in6_addr	*addr;		/* search key			*/
1540 };
1541 
fib6_node_lookup_1(struct fib6_node * root,struct lookup_args * args)1542 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1543 					    struct lookup_args *args)
1544 {
1545 	struct fib6_node *fn;
1546 	__be32 dir;
1547 
1548 	if (unlikely(args->offset == 0))
1549 		return NULL;
1550 
1551 	/*
1552 	 *	Descend on a tree
1553 	 */
1554 
1555 	fn = root;
1556 
1557 	for (;;) {
1558 		struct fib6_node *next;
1559 
1560 		dir = addr_bit_set(args->addr, fn->fn_bit);
1561 
1562 		next = dir ? rcu_dereference(fn->right) :
1563 			     rcu_dereference(fn->left);
1564 
1565 		if (next) {
1566 			fn = next;
1567 			continue;
1568 		}
1569 		break;
1570 	}
1571 
1572 	while (fn) {
1573 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1574 
1575 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1576 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1577 			struct rt6key *key;
1578 
1579 			if (!leaf)
1580 				goto backtrack;
1581 
1582 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1583 
1584 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1585 #ifdef CONFIG_IPV6_SUBTREES
1586 				if (subtree) {
1587 					struct fib6_node *sfn;
1588 					sfn = fib6_node_lookup_1(subtree,
1589 								 args + 1);
1590 					if (!sfn)
1591 						goto backtrack;
1592 					fn = sfn;
1593 				}
1594 #endif
1595 				if (fn->fn_flags & RTN_RTINFO)
1596 					return fn;
1597 			}
1598 		}
1599 backtrack:
1600 		if (fn->fn_flags & RTN_ROOT)
1601 			break;
1602 
1603 		fn = rcu_dereference(fn->parent);
1604 	}
1605 
1606 	return NULL;
1607 }
1608 
1609 /* called with rcu_read_lock() held
1610  */
fib6_node_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1611 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1612 				   const struct in6_addr *daddr,
1613 				   const struct in6_addr *saddr)
1614 {
1615 	struct fib6_node *fn;
1616 	struct lookup_args args[] = {
1617 		{
1618 			.offset = offsetof(struct fib6_info, fib6_dst),
1619 			.addr = daddr,
1620 		},
1621 #ifdef CONFIG_IPV6_SUBTREES
1622 		{
1623 			.offset = offsetof(struct fib6_info, fib6_src),
1624 			.addr = saddr,
1625 		},
1626 #endif
1627 		{
1628 			.offset = 0,	/* sentinel */
1629 		}
1630 	};
1631 
1632 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1633 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1634 		fn = root;
1635 
1636 	return fn;
1637 }
1638 
1639 /*
1640  *	Get node with specified destination prefix (and source prefix,
1641  *	if subtrees are used)
1642  *	exact_match == true means we try to find fn with exact match of
1643  *	the passed in prefix addr
1644  *	exact_match == false means we try to find fn with longest prefix
1645  *	match of the passed in prefix addr. This is useful for finding fn
1646  *	for cached route as it will be stored in the exception table under
1647  *	the node with longest prefix length.
1648  */
1649 
1650 
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset,bool exact_match)1651 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1652 				       const struct in6_addr *addr,
1653 				       int plen, int offset,
1654 				       bool exact_match)
1655 {
1656 	struct fib6_node *fn, *prev = NULL;
1657 
1658 	for (fn = root; fn ; ) {
1659 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1660 		struct rt6key *key;
1661 
1662 		/* This node is being deleted */
1663 		if (!leaf) {
1664 			if (plen <= fn->fn_bit)
1665 				goto out;
1666 			else
1667 				goto next;
1668 		}
1669 
1670 		key = (struct rt6key *)((u8 *)leaf + offset);
1671 
1672 		/*
1673 		 *	Prefix match
1674 		 */
1675 		if (plen < fn->fn_bit ||
1676 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1677 			goto out;
1678 
1679 		if (plen == fn->fn_bit)
1680 			return fn;
1681 
1682 		if (fn->fn_flags & RTN_RTINFO)
1683 			prev = fn;
1684 
1685 next:
1686 		/*
1687 		 *	We have more bits to go
1688 		 */
1689 		if (addr_bit_set(addr, fn->fn_bit))
1690 			fn = rcu_dereference(fn->right);
1691 		else
1692 			fn = rcu_dereference(fn->left);
1693 	}
1694 out:
1695 	if (exact_match)
1696 		return NULL;
1697 	else
1698 		return prev;
1699 }
1700 
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len,bool exact_match)1701 struct fib6_node *fib6_locate(struct fib6_node *root,
1702 			      const struct in6_addr *daddr, int dst_len,
1703 			      const struct in6_addr *saddr, int src_len,
1704 			      bool exact_match)
1705 {
1706 	struct fib6_node *fn;
1707 
1708 	fn = fib6_locate_1(root, daddr, dst_len,
1709 			   offsetof(struct fib6_info, fib6_dst),
1710 			   exact_match);
1711 
1712 #ifdef CONFIG_IPV6_SUBTREES
1713 	if (src_len) {
1714 		WARN_ON(saddr == NULL);
1715 		if (fn) {
1716 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1717 
1718 			if (subtree) {
1719 				fn = fib6_locate_1(subtree, saddr, src_len,
1720 					   offsetof(struct fib6_info, fib6_src),
1721 					   exact_match);
1722 			}
1723 		}
1724 	}
1725 #endif
1726 
1727 	if (fn && fn->fn_flags & RTN_RTINFO)
1728 		return fn;
1729 
1730 	return NULL;
1731 }
1732 
1733 
1734 /*
1735  *	Deletion
1736  *
1737  */
1738 
fib6_find_prefix(struct net * net,struct fib6_table * table,struct fib6_node * fn)1739 static struct fib6_info *fib6_find_prefix(struct net *net,
1740 					 struct fib6_table *table,
1741 					 struct fib6_node *fn)
1742 {
1743 	struct fib6_node *child_left, *child_right;
1744 
1745 	if (fn->fn_flags & RTN_ROOT)
1746 		return net->ipv6.fib6_null_entry;
1747 
1748 	while (fn) {
1749 		child_left = rcu_dereference_protected(fn->left,
1750 				    lockdep_is_held(&table->tb6_lock));
1751 		child_right = rcu_dereference_protected(fn->right,
1752 				    lockdep_is_held(&table->tb6_lock));
1753 		if (child_left)
1754 			return rcu_dereference_protected(child_left->leaf,
1755 					lockdep_is_held(&table->tb6_lock));
1756 		if (child_right)
1757 			return rcu_dereference_protected(child_right->leaf,
1758 					lockdep_is_held(&table->tb6_lock));
1759 
1760 		fn = FIB6_SUBTREE(fn);
1761 	}
1762 	return NULL;
1763 }
1764 
1765 /*
1766  *	Called to trim the tree of intermediate nodes when possible. "fn"
1767  *	is the node we want to try and remove.
1768  *	Need to own table->tb6_lock
1769  */
1770 
fib6_repair_tree(struct net * net,struct fib6_table * table,struct fib6_node * fn)1771 static struct fib6_node *fib6_repair_tree(struct net *net,
1772 					  struct fib6_table *table,
1773 					  struct fib6_node *fn)
1774 {
1775 	int children;
1776 	int nstate;
1777 	struct fib6_node *child;
1778 	struct fib6_walker *w;
1779 	int iter = 0;
1780 
1781 	/* Set fn->leaf to null_entry for root node. */
1782 	if (fn->fn_flags & RTN_TL_ROOT) {
1783 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1784 		return fn;
1785 	}
1786 
1787 	for (;;) {
1788 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1789 					    lockdep_is_held(&table->tb6_lock));
1790 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1791 					    lockdep_is_held(&table->tb6_lock));
1792 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1793 					    lockdep_is_held(&table->tb6_lock));
1794 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1795 					    lockdep_is_held(&table->tb6_lock));
1796 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1797 					    lockdep_is_held(&table->tb6_lock));
1798 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1799 					    lockdep_is_held(&table->tb6_lock));
1800 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1801 					    lockdep_is_held(&table->tb6_lock));
1802 		struct fib6_info *new_fn_leaf;
1803 
1804 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1805 		iter++;
1806 
1807 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1808 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1809 		WARN_ON(fn_leaf);
1810 
1811 		children = 0;
1812 		child = NULL;
1813 		if (fn_r) {
1814 			child = fn_r;
1815 			children |= 1;
1816 		}
1817 		if (fn_l) {
1818 			child = fn_l;
1819 			children |= 2;
1820 		}
1821 
1822 		if (children == 3 || FIB6_SUBTREE(fn)
1823 #ifdef CONFIG_IPV6_SUBTREES
1824 		    /* Subtree root (i.e. fn) may have one child */
1825 		    || (children && fn->fn_flags & RTN_ROOT)
1826 #endif
1827 		    ) {
1828 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1829 #if RT6_DEBUG >= 2
1830 			if (!new_fn_leaf) {
1831 				WARN_ON(!new_fn_leaf);
1832 				new_fn_leaf = net->ipv6.fib6_null_entry;
1833 			}
1834 #endif
1835 			fib6_info_hold(new_fn_leaf);
1836 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1837 			return pn;
1838 		}
1839 
1840 #ifdef CONFIG_IPV6_SUBTREES
1841 		if (FIB6_SUBTREE(pn) == fn) {
1842 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1843 			RCU_INIT_POINTER(pn->subtree, NULL);
1844 			nstate = FWS_L;
1845 		} else {
1846 			WARN_ON(fn->fn_flags & RTN_ROOT);
1847 #endif
1848 			if (pn_r == fn)
1849 				rcu_assign_pointer(pn->right, child);
1850 			else if (pn_l == fn)
1851 				rcu_assign_pointer(pn->left, child);
1852 #if RT6_DEBUG >= 2
1853 			else
1854 				WARN_ON(1);
1855 #endif
1856 			if (child)
1857 				rcu_assign_pointer(child->parent, pn);
1858 			nstate = FWS_R;
1859 #ifdef CONFIG_IPV6_SUBTREES
1860 		}
1861 #endif
1862 
1863 		read_lock(&net->ipv6.fib6_walker_lock);
1864 		FOR_WALKERS(net, w) {
1865 			if (!child) {
1866 				if (w->node == fn) {
1867 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1868 					w->node = pn;
1869 					w->state = nstate;
1870 				}
1871 			} else {
1872 				if (w->node == fn) {
1873 					w->node = child;
1874 					if (children&2) {
1875 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1876 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1877 					} else {
1878 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1879 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1880 					}
1881 				}
1882 			}
1883 		}
1884 		read_unlock(&net->ipv6.fib6_walker_lock);
1885 
1886 		node_free(net, fn);
1887 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1888 			return pn;
1889 
1890 		RCU_INIT_POINTER(pn->leaf, NULL);
1891 		fib6_info_release(pn_leaf);
1892 		fn = pn;
1893 	}
1894 }
1895 
fib6_del_route(struct fib6_table * table,struct fib6_node * fn,struct fib6_info __rcu ** rtp,struct nl_info * info)1896 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1897 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1898 {
1899 	struct fib6_info *leaf, *replace_rt = NULL;
1900 	struct fib6_walker *w;
1901 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1902 				    lockdep_is_held(&table->tb6_lock));
1903 	struct net *net = info->nl_net;
1904 	bool notify_del = false;
1905 
1906 	RT6_TRACE("fib6_del_route\n");
1907 
1908 	/* If the deleted route is the first in the node and it is not part of
1909 	 * a multipath route, then we need to replace it with the next route
1910 	 * in the node, if exists.
1911 	 */
1912 	leaf = rcu_dereference_protected(fn->leaf,
1913 					 lockdep_is_held(&table->tb6_lock));
1914 	if (leaf == rt && !rt->fib6_nsiblings) {
1915 		if (rcu_access_pointer(rt->fib6_next))
1916 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1917 					    lockdep_is_held(&table->tb6_lock));
1918 		else
1919 			notify_del = true;
1920 	}
1921 
1922 	/* Unlink it */
1923 	*rtp = rt->fib6_next;
1924 	rt->fib6_node = NULL;
1925 	net->ipv6.rt6_stats->fib_rt_entries--;
1926 	net->ipv6.rt6_stats->fib_discarded_routes++;
1927 
1928 	/* Reset round-robin state, if necessary */
1929 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1930 		fn->rr_ptr = NULL;
1931 
1932 	/* Remove this entry from other siblings */
1933 	if (rt->fib6_nsiblings) {
1934 		struct fib6_info *sibling, *next_sibling;
1935 
1936 		/* The route is deleted from a multipath route. If this
1937 		 * multipath route is the first route in the node, then we need
1938 		 * to emit a delete notification. Otherwise, we need to skip
1939 		 * the notification.
1940 		 */
1941 		if (rt->fib6_metric == leaf->fib6_metric &&
1942 		    rt6_qualify_for_ecmp(leaf))
1943 			notify_del = true;
1944 		list_for_each_entry_safe(sibling, next_sibling,
1945 					 &rt->fib6_siblings, fib6_siblings)
1946 			sibling->fib6_nsiblings--;
1947 		rt->fib6_nsiblings = 0;
1948 		list_del_init(&rt->fib6_siblings);
1949 		rt6_multipath_rebalance(next_sibling);
1950 	}
1951 
1952 	/* Adjust walkers */
1953 	read_lock(&net->ipv6.fib6_walker_lock);
1954 	FOR_WALKERS(net, w) {
1955 		if (w->state == FWS_C && w->leaf == rt) {
1956 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1957 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1958 					    lockdep_is_held(&table->tb6_lock));
1959 			if (!w->leaf)
1960 				w->state = FWS_U;
1961 		}
1962 	}
1963 	read_unlock(&net->ipv6.fib6_walker_lock);
1964 
1965 	/* If it was last route, call fib6_repair_tree() to:
1966 	 * 1. For root node, put back null_entry as how the table was created.
1967 	 * 2. For other nodes, expunge its radix tree node.
1968 	 */
1969 	if (!rcu_access_pointer(fn->leaf)) {
1970 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1971 			fn->fn_flags &= ~RTN_RTINFO;
1972 			net->ipv6.rt6_stats->fib_route_nodes--;
1973 		}
1974 		fn = fib6_repair_tree(net, table, fn);
1975 	}
1976 
1977 	fib6_purge_rt(rt, fn, net);
1978 
1979 	if (!info->skip_notify_kernel) {
1980 		if (notify_del)
1981 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1982 						  rt, NULL);
1983 		else if (replace_rt)
1984 			call_fib6_entry_notifiers_replace(net, replace_rt);
1985 	}
1986 	if (!info->skip_notify)
1987 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1988 
1989 	fib6_info_release(rt);
1990 }
1991 
1992 /* Need to own table->tb6_lock */
fib6_del(struct fib6_info * rt,struct nl_info * info)1993 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1994 {
1995 	struct net *net = info->nl_net;
1996 	struct fib6_info __rcu **rtp;
1997 	struct fib6_info __rcu **rtp_next;
1998 	struct fib6_table *table;
1999 	struct fib6_node *fn;
2000 
2001 	if (rt == net->ipv6.fib6_null_entry)
2002 		return -ENOENT;
2003 
2004 	table = rt->fib6_table;
2005 	fn = rcu_dereference_protected(rt->fib6_node,
2006 				       lockdep_is_held(&table->tb6_lock));
2007 	if (!fn)
2008 		return -ENOENT;
2009 
2010 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2011 
2012 	/*
2013 	 *	Walk the leaf entries looking for ourself
2014 	 */
2015 
2016 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2017 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2018 					lockdep_is_held(&table->tb6_lock));
2019 		if (rt == cur) {
2020 			if (fib6_requires_src(cur))
2021 				fib6_routes_require_src_dec(info->nl_net);
2022 			fib6_del_route(table, fn, rtp, info);
2023 			return 0;
2024 		}
2025 		rtp_next = &cur->fib6_next;
2026 	}
2027 	return -ENOENT;
2028 }
2029 
2030 /*
2031  *	Tree traversal function.
2032  *
2033  *	Certainly, it is not interrupt safe.
2034  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2035  *	It means, that we can modify tree during walking
2036  *	and use this function for garbage collection, clone pruning,
2037  *	cleaning tree when a device goes down etc. etc.
2038  *
2039  *	It guarantees that every node will be traversed,
2040  *	and that it will be traversed only once.
2041  *
2042  *	Callback function w->func may return:
2043  *	0 -> continue walking.
2044  *	positive value -> walking is suspended (used by tree dumps,
2045  *	and probably by gc, if it will be split to several slices)
2046  *	negative value -> terminate walking.
2047  *
2048  *	The function itself returns:
2049  *	0   -> walk is complete.
2050  *	>0  -> walk is incomplete (i.e. suspended)
2051  *	<0  -> walk is terminated by an error.
2052  *
2053  *	This function is called with tb6_lock held.
2054  */
2055 
fib6_walk_continue(struct fib6_walker * w)2056 static int fib6_walk_continue(struct fib6_walker *w)
2057 {
2058 	struct fib6_node *fn, *pn, *left, *right;
2059 
2060 	/* w->root should always be table->tb6_root */
2061 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2062 
2063 	for (;;) {
2064 		fn = w->node;
2065 		if (!fn)
2066 			return 0;
2067 
2068 		switch (w->state) {
2069 #ifdef CONFIG_IPV6_SUBTREES
2070 		case FWS_S:
2071 			if (FIB6_SUBTREE(fn)) {
2072 				w->node = FIB6_SUBTREE(fn);
2073 				continue;
2074 			}
2075 			w->state = FWS_L;
2076 			fallthrough;
2077 #endif
2078 		case FWS_L:
2079 			left = rcu_dereference_protected(fn->left, 1);
2080 			if (left) {
2081 				w->node = left;
2082 				w->state = FWS_INIT;
2083 				continue;
2084 			}
2085 			w->state = FWS_R;
2086 			fallthrough;
2087 		case FWS_R:
2088 			right = rcu_dereference_protected(fn->right, 1);
2089 			if (right) {
2090 				w->node = right;
2091 				w->state = FWS_INIT;
2092 				continue;
2093 			}
2094 			w->state = FWS_C;
2095 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2096 			fallthrough;
2097 		case FWS_C:
2098 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2099 				int err;
2100 
2101 				if (w->skip) {
2102 					w->skip--;
2103 					goto skip;
2104 				}
2105 
2106 				err = w->func(w);
2107 				if (err)
2108 					return err;
2109 
2110 				w->count++;
2111 				continue;
2112 			}
2113 skip:
2114 			w->state = FWS_U;
2115 			fallthrough;
2116 		case FWS_U:
2117 			if (fn == w->root)
2118 				return 0;
2119 			pn = rcu_dereference_protected(fn->parent, 1);
2120 			left = rcu_dereference_protected(pn->left, 1);
2121 			right = rcu_dereference_protected(pn->right, 1);
2122 			w->node = pn;
2123 #ifdef CONFIG_IPV6_SUBTREES
2124 			if (FIB6_SUBTREE(pn) == fn) {
2125 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2126 				w->state = FWS_L;
2127 				continue;
2128 			}
2129 #endif
2130 			if (left == fn) {
2131 				w->state = FWS_R;
2132 				continue;
2133 			}
2134 			if (right == fn) {
2135 				w->state = FWS_C;
2136 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2137 				continue;
2138 			}
2139 #if RT6_DEBUG >= 2
2140 			WARN_ON(1);
2141 #endif
2142 		}
2143 	}
2144 }
2145 
fib6_walk(struct net * net,struct fib6_walker * w)2146 static int fib6_walk(struct net *net, struct fib6_walker *w)
2147 {
2148 	int res;
2149 
2150 	w->state = FWS_INIT;
2151 	w->node = w->root;
2152 
2153 	fib6_walker_link(net, w);
2154 	res = fib6_walk_continue(w);
2155 	if (res <= 0)
2156 		fib6_walker_unlink(net, w);
2157 	return res;
2158 }
2159 
fib6_clean_node(struct fib6_walker * w)2160 static int fib6_clean_node(struct fib6_walker *w)
2161 {
2162 	int res;
2163 	struct fib6_info *rt;
2164 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2165 	struct nl_info info = {
2166 		.nl_net = c->net,
2167 		.skip_notify = c->skip_notify,
2168 	};
2169 
2170 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2171 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2172 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2173 
2174 	if (!c->func) {
2175 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2176 		w->leaf = NULL;
2177 		return 0;
2178 	}
2179 
2180 	for_each_fib6_walker_rt(w) {
2181 		res = c->func(rt, c->arg);
2182 		if (res == -1) {
2183 			w->leaf = rt;
2184 			res = fib6_del(rt, &info);
2185 			if (res) {
2186 #if RT6_DEBUG >= 2
2187 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2188 					 __func__, rt,
2189 					 rcu_access_pointer(rt->fib6_node),
2190 					 res);
2191 #endif
2192 				continue;
2193 			}
2194 			return 0;
2195 		} else if (res == -2) {
2196 			if (WARN_ON(!rt->fib6_nsiblings))
2197 				continue;
2198 			rt = list_last_entry(&rt->fib6_siblings,
2199 					     struct fib6_info, fib6_siblings);
2200 			continue;
2201 		}
2202 		WARN_ON(res != 0);
2203 	}
2204 	w->leaf = rt;
2205 	return 0;
2206 }
2207 
2208 /*
2209  *	Convenient frontend to tree walker.
2210  *
2211  *	func is called on each route.
2212  *		It may return -2 -> skip multipath route.
2213  *			      -1 -> delete this route.
2214  *		              0  -> continue walking
2215  */
2216 
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct fib6_info *,void * arg),int sernum,void * arg,bool skip_notify)2217 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2218 			    int (*func)(struct fib6_info *, void *arg),
2219 			    int sernum, void *arg, bool skip_notify)
2220 {
2221 	struct fib6_cleaner c;
2222 
2223 	c.w.root = root;
2224 	c.w.func = fib6_clean_node;
2225 	c.w.count = 0;
2226 	c.w.skip = 0;
2227 	c.w.skip_in_node = 0;
2228 	c.func = func;
2229 	c.sernum = sernum;
2230 	c.arg = arg;
2231 	c.net = net;
2232 	c.skip_notify = skip_notify;
2233 
2234 	fib6_walk(net, &c.w);
2235 }
2236 
__fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),int sernum,void * arg,bool skip_notify)2237 static void __fib6_clean_all(struct net *net,
2238 			     int (*func)(struct fib6_info *, void *),
2239 			     int sernum, void *arg, bool skip_notify)
2240 {
2241 	struct fib6_table *table;
2242 	struct hlist_head *head;
2243 	unsigned int h;
2244 
2245 	rcu_read_lock();
2246 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2247 		head = &net->ipv6.fib_table_hash[h];
2248 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2249 			spin_lock_bh(&table->tb6_lock);
2250 			fib6_clean_tree(net, &table->tb6_root,
2251 					func, sernum, arg, skip_notify);
2252 			spin_unlock_bh(&table->tb6_lock);
2253 		}
2254 	}
2255 	rcu_read_unlock();
2256 }
2257 
fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2258 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2259 		    void *arg)
2260 {
2261 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2262 }
2263 
fib6_clean_all_skip_notify(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2264 void fib6_clean_all_skip_notify(struct net *net,
2265 				int (*func)(struct fib6_info *, void *),
2266 				void *arg)
2267 {
2268 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2269 }
2270 
fib6_flush_trees(struct net * net)2271 static void fib6_flush_trees(struct net *net)
2272 {
2273 	int new_sernum = fib6_new_sernum(net);
2274 
2275 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2276 }
2277 
2278 /*
2279  *	Garbage collection
2280  */
2281 
fib6_age(struct fib6_info * rt,void * arg)2282 static int fib6_age(struct fib6_info *rt, void *arg)
2283 {
2284 	struct fib6_gc_args *gc_args = arg;
2285 	unsigned long now = jiffies;
2286 
2287 	/*
2288 	 *	check addrconf expiration here.
2289 	 *	Routes are expired even if they are in use.
2290 	 */
2291 
2292 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2293 		if (time_after(now, rt->expires)) {
2294 			RT6_TRACE("expiring %p\n", rt);
2295 			return -1;
2296 		}
2297 		gc_args->more++;
2298 	}
2299 
2300 	/*	Also age clones in the exception table.
2301 	 *	Note, that clones are aged out
2302 	 *	only if they are not in use now.
2303 	 */
2304 	rt6_age_exceptions(rt, gc_args, now);
2305 
2306 	return 0;
2307 }
2308 
fib6_run_gc(unsigned long expires,struct net * net,bool force)2309 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2310 {
2311 	struct fib6_gc_args gc_args;
2312 	unsigned long now;
2313 
2314 	if (force) {
2315 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2316 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2317 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2318 		return;
2319 	}
2320 	gc_args.timeout = expires ? (int)expires :
2321 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2322 	gc_args.more = 0;
2323 
2324 	fib6_clean_all(net, fib6_age, &gc_args);
2325 	now = jiffies;
2326 	net->ipv6.ip6_rt_last_gc = now;
2327 
2328 	if (gc_args.more)
2329 		mod_timer(&net->ipv6.ip6_fib_timer,
2330 			  round_jiffies(now
2331 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2332 	else
2333 		del_timer(&net->ipv6.ip6_fib_timer);
2334 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2335 }
2336 
fib6_gc_timer_cb(struct timer_list * t)2337 static void fib6_gc_timer_cb(struct timer_list *t)
2338 {
2339 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2340 
2341 	fib6_run_gc(0, arg, true);
2342 }
2343 
fib6_net_init(struct net * net)2344 static int __net_init fib6_net_init(struct net *net)
2345 {
2346 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2347 	int err;
2348 
2349 	err = fib6_notifier_init(net);
2350 	if (err)
2351 		return err;
2352 
2353 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2354 	rwlock_init(&net->ipv6.fib6_walker_lock);
2355 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2356 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2357 
2358 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2359 	if (!net->ipv6.rt6_stats)
2360 		goto out_timer;
2361 
2362 	/* Avoid false sharing : Use at least a full cache line */
2363 	size = max_t(size_t, size, L1_CACHE_BYTES);
2364 
2365 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2366 	if (!net->ipv6.fib_table_hash)
2367 		goto out_rt6_stats;
2368 
2369 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2370 					  GFP_KERNEL);
2371 	if (!net->ipv6.fib6_main_tbl)
2372 		goto out_fib_table_hash;
2373 
2374 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2375 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2376 			   net->ipv6.fib6_null_entry);
2377 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2378 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2379 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2380 
2381 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2382 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2383 					   GFP_KERNEL);
2384 	if (!net->ipv6.fib6_local_tbl)
2385 		goto out_fib6_main_tbl;
2386 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2387 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2388 			   net->ipv6.fib6_null_entry);
2389 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2390 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2391 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2392 #endif
2393 	fib6_tables_init(net);
2394 
2395 	return 0;
2396 
2397 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2398 out_fib6_main_tbl:
2399 	kfree(net->ipv6.fib6_main_tbl);
2400 #endif
2401 out_fib_table_hash:
2402 	kfree(net->ipv6.fib_table_hash);
2403 out_rt6_stats:
2404 	kfree(net->ipv6.rt6_stats);
2405 out_timer:
2406 	fib6_notifier_exit(net);
2407 	return -ENOMEM;
2408 }
2409 
fib6_net_exit(struct net * net)2410 static void fib6_net_exit(struct net *net)
2411 {
2412 	unsigned int i;
2413 
2414 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2415 
2416 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2417 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2418 		struct hlist_node *tmp;
2419 		struct fib6_table *tb;
2420 
2421 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2422 			hlist_del(&tb->tb6_hlist);
2423 			fib6_free_table(tb);
2424 		}
2425 	}
2426 
2427 	kfree(net->ipv6.fib_table_hash);
2428 	kfree(net->ipv6.rt6_stats);
2429 	fib6_notifier_exit(net);
2430 }
2431 
2432 static struct pernet_operations fib6_net_ops = {
2433 	.init = fib6_net_init,
2434 	.exit = fib6_net_exit,
2435 };
2436 
fib6_init(void)2437 int __init fib6_init(void)
2438 {
2439 	int ret = -ENOMEM;
2440 
2441 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2442 					   sizeof(struct fib6_node),
2443 					   0, SLAB_HWCACHE_ALIGN,
2444 					   NULL);
2445 	if (!fib6_node_kmem)
2446 		goto out;
2447 
2448 	ret = register_pernet_subsys(&fib6_net_ops);
2449 	if (ret)
2450 		goto out_kmem_cache_create;
2451 
2452 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2453 				   inet6_dump_fib, 0);
2454 	if (ret)
2455 		goto out_unregister_subsys;
2456 
2457 	__fib6_flush_trees = fib6_flush_trees;
2458 out:
2459 	return ret;
2460 
2461 out_unregister_subsys:
2462 	unregister_pernet_subsys(&fib6_net_ops);
2463 out_kmem_cache_create:
2464 	kmem_cache_destroy(fib6_node_kmem);
2465 	goto out;
2466 }
2467 
fib6_gc_cleanup(void)2468 void fib6_gc_cleanup(void)
2469 {
2470 	unregister_pernet_subsys(&fib6_net_ops);
2471 	kmem_cache_destroy(fib6_node_kmem);
2472 }
2473 
2474 #ifdef CONFIG_PROC_FS
ipv6_route_native_seq_show(struct seq_file * seq,void * v)2475 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2476 {
2477 	struct fib6_info *rt = v;
2478 	struct ipv6_route_iter *iter = seq->private;
2479 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2480 	unsigned int flags = rt->fib6_flags;
2481 	const struct net_device *dev;
2482 
2483 	if (rt->nh)
2484 		fib6_nh = nexthop_fib6_nh_bh(rt->nh);
2485 
2486 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2487 
2488 #ifdef CONFIG_IPV6_SUBTREES
2489 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2490 #else
2491 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2492 #endif
2493 	if (fib6_nh->fib_nh_gw_family) {
2494 		flags |= RTF_GATEWAY;
2495 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2496 	} else {
2497 		seq_puts(seq, "00000000000000000000000000000000");
2498 	}
2499 
2500 	dev = fib6_nh->fib_nh_dev;
2501 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2502 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2503 		   flags, dev ? dev->name : "");
2504 	iter->w.leaf = NULL;
2505 	return 0;
2506 }
2507 
ipv6_route_yield(struct fib6_walker * w)2508 static int ipv6_route_yield(struct fib6_walker *w)
2509 {
2510 	struct ipv6_route_iter *iter = w->args;
2511 
2512 	if (!iter->skip)
2513 		return 1;
2514 
2515 	do {
2516 		iter->w.leaf = rcu_dereference_protected(
2517 				iter->w.leaf->fib6_next,
2518 				lockdep_is_held(&iter->tbl->tb6_lock));
2519 		iter->skip--;
2520 		if (!iter->skip && iter->w.leaf)
2521 			return 1;
2522 	} while (iter->w.leaf);
2523 
2524 	return 0;
2525 }
2526 
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2527 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2528 				      struct net *net)
2529 {
2530 	memset(&iter->w, 0, sizeof(iter->w));
2531 	iter->w.func = ipv6_route_yield;
2532 	iter->w.root = &iter->tbl->tb6_root;
2533 	iter->w.state = FWS_INIT;
2534 	iter->w.node = iter->w.root;
2535 	iter->w.args = iter;
2536 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2537 	INIT_LIST_HEAD(&iter->w.lh);
2538 	fib6_walker_link(net, &iter->w);
2539 }
2540 
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2541 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2542 						    struct net *net)
2543 {
2544 	unsigned int h;
2545 	struct hlist_node *node;
2546 
2547 	if (tbl) {
2548 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2549 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2550 	} else {
2551 		h = 0;
2552 		node = NULL;
2553 	}
2554 
2555 	while (!node && h < FIB6_TABLE_HASHSZ) {
2556 		node = rcu_dereference_bh(
2557 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2558 	}
2559 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2560 }
2561 
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2562 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2563 {
2564 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2565 
2566 	if (iter->sernum != sernum) {
2567 		iter->sernum = sernum;
2568 		iter->w.state = FWS_INIT;
2569 		iter->w.node = iter->w.root;
2570 		WARN_ON(iter->w.skip);
2571 		iter->w.skip = iter->w.count;
2572 	}
2573 }
2574 
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2575 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2576 {
2577 	int r;
2578 	struct fib6_info *n;
2579 	struct net *net = seq_file_net(seq);
2580 	struct ipv6_route_iter *iter = seq->private;
2581 
2582 	++(*pos);
2583 	if (!v)
2584 		goto iter_table;
2585 
2586 	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2587 	if (n)
2588 		return n;
2589 
2590 iter_table:
2591 	ipv6_route_check_sernum(iter);
2592 	spin_lock_bh(&iter->tbl->tb6_lock);
2593 	r = fib6_walk_continue(&iter->w);
2594 	spin_unlock_bh(&iter->tbl->tb6_lock);
2595 	if (r > 0) {
2596 		return iter->w.leaf;
2597 	} else if (r < 0) {
2598 		fib6_walker_unlink(net, &iter->w);
2599 		return NULL;
2600 	}
2601 	fib6_walker_unlink(net, &iter->w);
2602 
2603 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2604 	if (!iter->tbl)
2605 		return NULL;
2606 
2607 	ipv6_route_seq_setup_walk(iter, net);
2608 	goto iter_table;
2609 }
2610 
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2611 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2612 	__acquires(RCU_BH)
2613 {
2614 	struct net *net = seq_file_net(seq);
2615 	struct ipv6_route_iter *iter = seq->private;
2616 
2617 	rcu_read_lock_bh();
2618 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2619 	iter->skip = *pos;
2620 
2621 	if (iter->tbl) {
2622 		loff_t p = 0;
2623 
2624 		ipv6_route_seq_setup_walk(iter, net);
2625 		return ipv6_route_seq_next(seq, NULL, &p);
2626 	} else {
2627 		return NULL;
2628 	}
2629 }
2630 
ipv6_route_iter_active(struct ipv6_route_iter * iter)2631 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2632 {
2633 	struct fib6_walker *w = &iter->w;
2634 	return w->node && !(w->state == FWS_U && w->node == w->root);
2635 }
2636 
ipv6_route_native_seq_stop(struct seq_file * seq,void * v)2637 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2638 	__releases(RCU_BH)
2639 {
2640 	struct net *net = seq_file_net(seq);
2641 	struct ipv6_route_iter *iter = seq->private;
2642 
2643 	if (ipv6_route_iter_active(iter))
2644 		fib6_walker_unlink(net, &iter->w);
2645 
2646 	rcu_read_unlock_bh();
2647 }
2648 
2649 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
ipv6_route_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,void * v)2650 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2651 				    struct bpf_iter_meta *meta,
2652 				    void *v)
2653 {
2654 	struct bpf_iter__ipv6_route ctx;
2655 
2656 	ctx.meta = meta;
2657 	ctx.rt = v;
2658 	return bpf_iter_run_prog(prog, &ctx);
2659 }
2660 
ipv6_route_seq_show(struct seq_file * seq,void * v)2661 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2662 {
2663 	struct ipv6_route_iter *iter = seq->private;
2664 	struct bpf_iter_meta meta;
2665 	struct bpf_prog *prog;
2666 	int ret;
2667 
2668 	meta.seq = seq;
2669 	prog = bpf_iter_get_info(&meta, false);
2670 	if (!prog)
2671 		return ipv6_route_native_seq_show(seq, v);
2672 
2673 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2674 	iter->w.leaf = NULL;
2675 
2676 	return ret;
2677 }
2678 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2679 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2680 {
2681 	struct bpf_iter_meta meta;
2682 	struct bpf_prog *prog;
2683 
2684 	if (!v) {
2685 		meta.seq = seq;
2686 		prog = bpf_iter_get_info(&meta, true);
2687 		if (prog)
2688 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2689 	}
2690 
2691 	ipv6_route_native_seq_stop(seq, v);
2692 }
2693 #else
ipv6_route_seq_show(struct seq_file * seq,void * v)2694 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2695 {
2696 	return ipv6_route_native_seq_show(seq, v);
2697 }
2698 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2699 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2700 {
2701 	ipv6_route_native_seq_stop(seq, v);
2702 }
2703 #endif
2704 
2705 const struct seq_operations ipv6_route_seq_ops = {
2706 	.start	= ipv6_route_seq_start,
2707 	.next	= ipv6_route_seq_next,
2708 	.stop	= ipv6_route_seq_stop,
2709 	.show	= ipv6_route_seq_show
2710 };
2711 #endif /* CONFIG_PROC_FS */
2712