• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30 
setup_forced_irqthreads(char * arg)31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 	force_irqthreads = true;
34 	return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38 
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 	bool inprogress;
43 
44 	do {
45 		unsigned long flags;
46 
47 		/*
48 		 * Wait until we're out of the critical section.  This might
49 		 * give the wrong answer due to the lack of memory barriers.
50 		 */
51 		while (irqd_irq_inprogress(&desc->irq_data))
52 			cpu_relax();
53 
54 		/* Ok, that indicated we're done: double-check carefully. */
55 		raw_spin_lock_irqsave(&desc->lock, flags);
56 		inprogress = irqd_irq_inprogress(&desc->irq_data);
57 
58 		/*
59 		 * If requested and supported, check at the chip whether it
60 		 * is in flight at the hardware level, i.e. already pending
61 		 * in a CPU and waiting for service and acknowledge.
62 		 */
63 		if (!inprogress && sync_chip) {
64 			/*
65 			 * Ignore the return code. inprogress is only updated
66 			 * when the chip supports it.
67 			 */
68 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 						&inprogress);
70 		}
71 		raw_spin_unlock_irqrestore(&desc->lock, flags);
72 
73 		/* Oops, that failed? */
74 	} while (inprogress);
75 }
76 
77 /**
78  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *	@irq: interrupt number to wait for
80  *
81  *	This function waits for any pending hard IRQ handlers for this
82  *	interrupt to complete before returning. If you use this
83  *	function while holding a resource the IRQ handler may need you
84  *	will deadlock. It does not take associated threaded handlers
85  *	into account.
86  *
87  *	Do not use this for shutdown scenarios where you must be sure
88  *	that all parts (hardirq and threaded handler) have completed.
89  *
90  *	Returns: false if a threaded handler is active.
91  *
92  *	This function may be called - with care - from IRQ context.
93  *
94  *	It does not check whether there is an interrupt in flight at the
95  *	hardware level, but not serviced yet, as this might deadlock when
96  *	called with interrupts disabled and the target CPU of the interrupt
97  *	is the current CPU.
98  */
synchronize_hardirq(unsigned int irq)99 bool synchronize_hardirq(unsigned int irq)
100 {
101 	struct irq_desc *desc = irq_to_desc(irq);
102 
103 	if (desc) {
104 		__synchronize_hardirq(desc, false);
105 		return !atomic_read(&desc->threads_active);
106 	}
107 
108 	return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111 
112 /**
113  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *	@irq: interrupt number to wait for
115  *
116  *	This function waits for any pending IRQ handlers for this interrupt
117  *	to complete before returning. If you use this function while
118  *	holding a resource the IRQ handler may need you will deadlock.
119  *
120  *	Can only be called from preemptible code as it might sleep when
121  *	an interrupt thread is associated to @irq.
122  *
123  *	It optionally makes sure (when the irq chip supports that method)
124  *	that the interrupt is not pending in any CPU and waiting for
125  *	service.
126  */
synchronize_irq(unsigned int irq)127 void synchronize_irq(unsigned int irq)
128 {
129 	struct irq_desc *desc = irq_to_desc(irq);
130 
131 	if (desc) {
132 		__synchronize_hardirq(desc, true);
133 		/*
134 		 * We made sure that no hardirq handler is
135 		 * running. Now verify that no threaded handlers are
136 		 * active.
137 		 */
138 		wait_event(desc->wait_for_threads,
139 			   !atomic_read(&desc->threads_active));
140 	}
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143 
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146 
__irq_can_set_affinity(struct irq_desc * desc)147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 		return false;
152 	return true;
153 }
154 
155 /**
156  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *	@irq:		Interrupt to check
158  *
159  */
irq_can_set_affinity(unsigned int irq)160 int irq_can_set_affinity(unsigned int irq)
161 {
162 	return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164 
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:	Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
irq_can_set_affinity_usr(unsigned int irq)172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 	struct irq_desc *desc = irq_to_desc(irq);
175 
176 	return __irq_can_set_affinity(desc) &&
177 		!irqd_affinity_is_managed(&desc->irq_data);
178 }
179 
180 /**
181  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *	@desc:		irq descriptor which has affitnity changed
183  *
184  *	We just set IRQTF_AFFINITY and delegate the affinity setting
185  *	to the interrupt thread itself. We can not call
186  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *	code can be called from hard interrupt context.
188  */
irq_set_thread_affinity(struct irq_desc * desc)189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 	struct irqaction *action;
192 
193 	for_each_action_of_desc(desc, action)
194 		if (action->thread)
195 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197 
198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)199 static void irq_validate_effective_affinity(struct irq_data *data)
200 {
201 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 	struct irq_chip *chip = irq_data_get_irq_chip(data);
203 
204 	if (!cpumask_empty(m))
205 		return;
206 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 		     chip->name, data->irq);
208 }
209 
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)210 static inline void irq_init_effective_affinity(struct irq_data *data,
211 					       const struct cpumask *mask)
212 {
213 	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214 }
215 #else
irq_validate_effective_affinity(struct irq_data * data)216 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)217 static inline void irq_init_effective_affinity(struct irq_data *data,
218 					       const struct cpumask *mask) { }
219 #endif
220 
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 			bool force)
223 {
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	const struct cpumask  *prog_mask;
227 	int ret;
228 
229 	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
230 	static struct cpumask tmp_mask;
231 
232 	if (!chip || !chip->irq_set_affinity)
233 		return -EINVAL;
234 
235 	raw_spin_lock(&tmp_mask_lock);
236 	/*
237 	 * If this is a managed interrupt and housekeeping is enabled on
238 	 * it check whether the requested affinity mask intersects with
239 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
240 	 * the mask and just keep the housekeeping CPU(s). This prevents
241 	 * the affinity setter from routing the interrupt to an isolated
242 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
243 	 * interrupts on an isolated one.
244 	 *
245 	 * If the masks do not intersect or include online CPU(s) then
246 	 * keep the requested mask. The isolated target CPUs are only
247 	 * receiving interrupts when the I/O operation was submitted
248 	 * directly from them.
249 	 *
250 	 * If all housekeeping CPUs in the affinity mask are offline, the
251 	 * interrupt will be migrated by the CPU hotplug code once a
252 	 * housekeeping CPU which belongs to the affinity mask comes
253 	 * online.
254 	 */
255 	if (irqd_affinity_is_managed(data) &&
256 	    housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
257 		const struct cpumask *hk_mask;
258 
259 		hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
260 
261 		cpumask_and(&tmp_mask, mask, hk_mask);
262 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
263 			prog_mask = mask;
264 		else
265 			prog_mask = &tmp_mask;
266 	} else {
267 		prog_mask = mask;
268 	}
269 
270 	/*
271 	 * Make sure we only provide online CPUs to the irqchip,
272 	 * unless we are being asked to force the affinity (in which
273 	 * case we do as we are told).
274 	 */
275 	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
276 	if (!force && !cpumask_empty(&tmp_mask))
277 		ret = chip->irq_set_affinity(data, &tmp_mask, force);
278 	else if (force)
279 		ret = chip->irq_set_affinity(data, mask, force);
280 	else
281 		ret = -EINVAL;
282 
283 	raw_spin_unlock(&tmp_mask_lock);
284 
285 	switch (ret) {
286 	case IRQ_SET_MASK_OK:
287 	case IRQ_SET_MASK_OK_DONE:
288 		cpumask_copy(desc->irq_common_data.affinity, mask);
289 		fallthrough;
290 	case IRQ_SET_MASK_OK_NOCOPY:
291 		irq_validate_effective_affinity(data);
292 		irq_set_thread_affinity(desc);
293 		ret = 0;
294 	}
295 
296 	return ret;
297 }
298 EXPORT_SYMBOL_GPL(irq_do_set_affinity);
299 
300 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)301 static inline int irq_set_affinity_pending(struct irq_data *data,
302 					   const struct cpumask *dest)
303 {
304 	struct irq_desc *desc = irq_data_to_desc(data);
305 
306 	irqd_set_move_pending(data);
307 	irq_copy_pending(desc, dest);
308 	return 0;
309 }
310 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)311 static inline int irq_set_affinity_pending(struct irq_data *data,
312 					   const struct cpumask *dest)
313 {
314 	return -EBUSY;
315 }
316 #endif
317 
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)318 static int irq_try_set_affinity(struct irq_data *data,
319 				const struct cpumask *dest, bool force)
320 {
321 	int ret = irq_do_set_affinity(data, dest, force);
322 
323 	/*
324 	 * In case that the underlying vector management is busy and the
325 	 * architecture supports the generic pending mechanism then utilize
326 	 * this to avoid returning an error to user space.
327 	 */
328 	if (ret == -EBUSY && !force)
329 		ret = irq_set_affinity_pending(data, dest);
330 	return ret;
331 }
332 
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)333 static bool irq_set_affinity_deactivated(struct irq_data *data,
334 					 const struct cpumask *mask, bool force)
335 {
336 	struct irq_desc *desc = irq_data_to_desc(data);
337 
338 	/*
339 	 * Handle irq chips which can handle affinity only in activated
340 	 * state correctly
341 	 *
342 	 * If the interrupt is not yet activated, just store the affinity
343 	 * mask and do not call the chip driver at all. On activation the
344 	 * driver has to make sure anyway that the interrupt is in a
345 	 * usable state so startup works.
346 	 */
347 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
348 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
349 		return false;
350 
351 	cpumask_copy(desc->irq_common_data.affinity, mask);
352 	irq_init_effective_affinity(data, mask);
353 	irqd_set(data, IRQD_AFFINITY_SET);
354 	return true;
355 }
356 
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)357 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
358 			    bool force)
359 {
360 	struct irq_chip *chip = irq_data_get_irq_chip(data);
361 	struct irq_desc *desc = irq_data_to_desc(data);
362 	int ret = 0;
363 
364 	if (!chip || !chip->irq_set_affinity)
365 		return -EINVAL;
366 
367 	if (irq_set_affinity_deactivated(data, mask, force))
368 		return 0;
369 
370 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
371 		ret = irq_try_set_affinity(data, mask, force);
372 	} else {
373 		irqd_set_move_pending(data);
374 		irq_copy_pending(desc, mask);
375 	}
376 
377 	if (desc->affinity_notify) {
378 		kref_get(&desc->affinity_notify->kref);
379 		if (!schedule_work(&desc->affinity_notify->work)) {
380 			/* Work was already scheduled, drop our extra ref */
381 			kref_put(&desc->affinity_notify->kref,
382 				 desc->affinity_notify->release);
383 		}
384 	}
385 	irqd_set(data, IRQD_AFFINITY_SET);
386 
387 	return ret;
388 }
389 
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)390 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
391 {
392 	struct irq_desc *desc = irq_to_desc(irq);
393 	unsigned long flags;
394 	int ret;
395 
396 	if (!desc)
397 		return -EINVAL;
398 
399 	raw_spin_lock_irqsave(&desc->lock, flags);
400 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
401 	raw_spin_unlock_irqrestore(&desc->lock, flags);
402 	return ret;
403 }
404 
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)405 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
406 {
407 	unsigned long flags;
408 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
409 
410 	if (!desc)
411 		return -EINVAL;
412 	desc->affinity_hint = m;
413 	irq_put_desc_unlock(desc, flags);
414 	/* set the initial affinity to prevent every interrupt being on CPU0 */
415 	if (m)
416 		__irq_set_affinity(irq, m, false);
417 	return 0;
418 }
419 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
420 
irq_affinity_notify(struct work_struct * work)421 static void irq_affinity_notify(struct work_struct *work)
422 {
423 	struct irq_affinity_notify *notify =
424 		container_of(work, struct irq_affinity_notify, work);
425 	struct irq_desc *desc = irq_to_desc(notify->irq);
426 	cpumask_var_t cpumask;
427 	unsigned long flags;
428 
429 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
430 		goto out;
431 
432 	raw_spin_lock_irqsave(&desc->lock, flags);
433 	if (irq_move_pending(&desc->irq_data))
434 		irq_get_pending(cpumask, desc);
435 	else
436 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
437 	raw_spin_unlock_irqrestore(&desc->lock, flags);
438 
439 	notify->notify(notify, cpumask);
440 
441 	free_cpumask_var(cpumask);
442 out:
443 	kref_put(&notify->kref, notify->release);
444 }
445 
446 /**
447  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
448  *	@irq:		Interrupt for which to enable/disable notification
449  *	@notify:	Context for notification, or %NULL to disable
450  *			notification.  Function pointers must be initialised;
451  *			the other fields will be initialised by this function.
452  *
453  *	Must be called in process context.  Notification may only be enabled
454  *	after the IRQ is allocated and must be disabled before the IRQ is
455  *	freed using free_irq().
456  */
457 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)458 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
459 {
460 	struct irq_desc *desc = irq_to_desc(irq);
461 	struct irq_affinity_notify *old_notify;
462 	unsigned long flags;
463 
464 	/* The release function is promised process context */
465 	might_sleep();
466 
467 	if (!desc || desc->istate & IRQS_NMI)
468 		return -EINVAL;
469 
470 	/* Complete initialisation of *notify */
471 	if (notify) {
472 		notify->irq = irq;
473 		kref_init(&notify->kref);
474 		INIT_WORK(&notify->work, irq_affinity_notify);
475 	}
476 
477 	raw_spin_lock_irqsave(&desc->lock, flags);
478 	old_notify = desc->affinity_notify;
479 	desc->affinity_notify = notify;
480 	raw_spin_unlock_irqrestore(&desc->lock, flags);
481 
482 	if (old_notify) {
483 		if (cancel_work_sync(&old_notify->work)) {
484 			/* Pending work had a ref, put that one too */
485 			kref_put(&old_notify->kref, old_notify->release);
486 		}
487 		kref_put(&old_notify->kref, old_notify->release);
488 	}
489 
490 	return 0;
491 }
492 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
493 
494 #ifndef CONFIG_AUTO_IRQ_AFFINITY
495 /*
496  * Generic version of the affinity autoselector.
497  */
irq_setup_affinity(struct irq_desc * desc)498 int irq_setup_affinity(struct irq_desc *desc)
499 {
500 	struct cpumask *set = irq_default_affinity;
501 	int ret, node = irq_desc_get_node(desc);
502 	static DEFINE_RAW_SPINLOCK(mask_lock);
503 	static struct cpumask mask;
504 
505 	/* Excludes PER_CPU and NO_BALANCE interrupts */
506 	if (!__irq_can_set_affinity(desc))
507 		return 0;
508 
509 	raw_spin_lock(&mask_lock);
510 	/*
511 	 * Preserve the managed affinity setting and a userspace affinity
512 	 * setup, but make sure that one of the targets is online.
513 	 */
514 	if (irqd_affinity_is_managed(&desc->irq_data) ||
515 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
516 		if (cpumask_intersects(desc->irq_common_data.affinity,
517 				       cpu_online_mask))
518 			set = desc->irq_common_data.affinity;
519 		else
520 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
521 	}
522 
523 	cpumask_and(&mask, cpu_online_mask, set);
524 	if (cpumask_empty(&mask))
525 		cpumask_copy(&mask, cpu_online_mask);
526 
527 	if (node != NUMA_NO_NODE) {
528 		const struct cpumask *nodemask = cpumask_of_node(node);
529 
530 		/* make sure at least one of the cpus in nodemask is online */
531 		if (cpumask_intersects(&mask, nodemask))
532 			cpumask_and(&mask, &mask, nodemask);
533 	}
534 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
535 	raw_spin_unlock(&mask_lock);
536 	return ret;
537 }
538 #else
539 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)540 int irq_setup_affinity(struct irq_desc *desc)
541 {
542 	return irq_select_affinity(irq_desc_get_irq(desc));
543 }
544 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
545 #endif /* CONFIG_SMP */
546 
547 
548 /**
549  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
550  *	@irq: interrupt number to set affinity
551  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
552  *	            specific data for percpu_devid interrupts
553  *
554  *	This function uses the vCPU specific data to set the vCPU
555  *	affinity for an irq. The vCPU specific data is passed from
556  *	outside, such as KVM. One example code path is as below:
557  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
558  */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)559 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
560 {
561 	unsigned long flags;
562 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
563 	struct irq_data *data;
564 	struct irq_chip *chip;
565 	int ret = -ENOSYS;
566 
567 	if (!desc)
568 		return -EINVAL;
569 
570 	data = irq_desc_get_irq_data(desc);
571 	do {
572 		chip = irq_data_get_irq_chip(data);
573 		if (chip && chip->irq_set_vcpu_affinity)
574 			break;
575 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
576 		data = data->parent_data;
577 #else
578 		data = NULL;
579 #endif
580 	} while (data);
581 
582 	if (data)
583 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
584 	irq_put_desc_unlock(desc, flags);
585 
586 	return ret;
587 }
588 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
589 
__disable_irq(struct irq_desc * desc)590 void __disable_irq(struct irq_desc *desc)
591 {
592 	if (!desc->depth++)
593 		irq_disable(desc);
594 }
595 
__disable_irq_nosync(unsigned int irq)596 static int __disable_irq_nosync(unsigned int irq)
597 {
598 	unsigned long flags;
599 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
600 
601 	if (!desc)
602 		return -EINVAL;
603 	__disable_irq(desc);
604 	irq_put_desc_busunlock(desc, flags);
605 	return 0;
606 }
607 
608 /**
609  *	disable_irq_nosync - disable an irq without waiting
610  *	@irq: Interrupt to disable
611  *
612  *	Disable the selected interrupt line.  Disables and Enables are
613  *	nested.
614  *	Unlike disable_irq(), this function does not ensure existing
615  *	instances of the IRQ handler have completed before returning.
616  *
617  *	This function may be called from IRQ context.
618  */
disable_irq_nosync(unsigned int irq)619 void disable_irq_nosync(unsigned int irq)
620 {
621 	__disable_irq_nosync(irq);
622 }
623 EXPORT_SYMBOL(disable_irq_nosync);
624 
625 /**
626  *	disable_irq - disable an irq and wait for completion
627  *	@irq: Interrupt to disable
628  *
629  *	Disable the selected interrupt line.  Enables and Disables are
630  *	nested.
631  *	This function waits for any pending IRQ handlers for this interrupt
632  *	to complete before returning. If you use this function while
633  *	holding a resource the IRQ handler may need you will deadlock.
634  *
635  *	This function may be called - with care - from IRQ context.
636  */
disable_irq(unsigned int irq)637 void disable_irq(unsigned int irq)
638 {
639 	if (!__disable_irq_nosync(irq))
640 		synchronize_irq(irq);
641 }
642 EXPORT_SYMBOL(disable_irq);
643 
644 /**
645  *	disable_hardirq - disables an irq and waits for hardirq completion
646  *	@irq: Interrupt to disable
647  *
648  *	Disable the selected interrupt line.  Enables and Disables are
649  *	nested.
650  *	This function waits for any pending hard IRQ handlers for this
651  *	interrupt to complete before returning. If you use this function while
652  *	holding a resource the hard IRQ handler may need you will deadlock.
653  *
654  *	When used to optimistically disable an interrupt from atomic context
655  *	the return value must be checked.
656  *
657  *	Returns: false if a threaded handler is active.
658  *
659  *	This function may be called - with care - from IRQ context.
660  */
disable_hardirq(unsigned int irq)661 bool disable_hardirq(unsigned int irq)
662 {
663 	if (!__disable_irq_nosync(irq))
664 		return synchronize_hardirq(irq);
665 
666 	return false;
667 }
668 EXPORT_SYMBOL_GPL(disable_hardirq);
669 
670 /**
671  *	disable_nmi_nosync - disable an nmi without waiting
672  *	@irq: Interrupt to disable
673  *
674  *	Disable the selected interrupt line. Disables and enables are
675  *	nested.
676  *	The interrupt to disable must have been requested through request_nmi.
677  *	Unlike disable_nmi(), this function does not ensure existing
678  *	instances of the IRQ handler have completed before returning.
679  */
disable_nmi_nosync(unsigned int irq)680 void disable_nmi_nosync(unsigned int irq)
681 {
682 	disable_irq_nosync(irq);
683 }
684 
__enable_irq(struct irq_desc * desc)685 void __enable_irq(struct irq_desc *desc)
686 {
687 	switch (desc->depth) {
688 	case 0:
689  err_out:
690 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
691 		     irq_desc_get_irq(desc));
692 		break;
693 	case 1: {
694 		if (desc->istate & IRQS_SUSPENDED)
695 			goto err_out;
696 		/* Prevent probing on this irq: */
697 		irq_settings_set_noprobe(desc);
698 		/*
699 		 * Call irq_startup() not irq_enable() here because the
700 		 * interrupt might be marked NOAUTOEN. So irq_startup()
701 		 * needs to be invoked when it gets enabled the first
702 		 * time. If it was already started up, then irq_startup()
703 		 * will invoke irq_enable() under the hood.
704 		 */
705 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
706 		break;
707 	}
708 	default:
709 		desc->depth--;
710 	}
711 }
712 
713 /**
714  *	enable_irq - enable handling of an irq
715  *	@irq: Interrupt to enable
716  *
717  *	Undoes the effect of one call to disable_irq().  If this
718  *	matches the last disable, processing of interrupts on this
719  *	IRQ line is re-enabled.
720  *
721  *	This function may be called from IRQ context only when
722  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
723  */
enable_irq(unsigned int irq)724 void enable_irq(unsigned int irq)
725 {
726 	unsigned long flags;
727 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
728 
729 	if (!desc)
730 		return;
731 	if (WARN(!desc->irq_data.chip,
732 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
733 		goto out;
734 
735 	__enable_irq(desc);
736 out:
737 	irq_put_desc_busunlock(desc, flags);
738 }
739 EXPORT_SYMBOL(enable_irq);
740 
741 /**
742  *	enable_nmi - enable handling of an nmi
743  *	@irq: Interrupt to enable
744  *
745  *	The interrupt to enable must have been requested through request_nmi.
746  *	Undoes the effect of one call to disable_nmi(). If this
747  *	matches the last disable, processing of interrupts on this
748  *	IRQ line is re-enabled.
749  */
enable_nmi(unsigned int irq)750 void enable_nmi(unsigned int irq)
751 {
752 	enable_irq(irq);
753 }
754 
set_irq_wake_real(unsigned int irq,unsigned int on)755 static int set_irq_wake_real(unsigned int irq, unsigned int on)
756 {
757 	struct irq_desc *desc = irq_to_desc(irq);
758 	int ret = -ENXIO;
759 
760 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
761 		return 0;
762 
763 	if (desc->irq_data.chip->irq_set_wake)
764 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
765 
766 	return ret;
767 }
768 
769 /**
770  *	irq_set_irq_wake - control irq power management wakeup
771  *	@irq:	interrupt to control
772  *	@on:	enable/disable power management wakeup
773  *
774  *	Enable/disable power management wakeup mode, which is
775  *	disabled by default.  Enables and disables must match,
776  *	just as they match for non-wakeup mode support.
777  *
778  *	Wakeup mode lets this IRQ wake the system from sleep
779  *	states like "suspend to RAM".
780  *
781  *	Note: irq enable/disable state is completely orthogonal
782  *	to the enable/disable state of irq wake. An irq can be
783  *	disabled with disable_irq() and still wake the system as
784  *	long as the irq has wake enabled. If this does not hold,
785  *	then the underlying irq chip and the related driver need
786  *	to be investigated.
787  */
irq_set_irq_wake(unsigned int irq,unsigned int on)788 int irq_set_irq_wake(unsigned int irq, unsigned int on)
789 {
790 	unsigned long flags;
791 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
792 	int ret = 0;
793 
794 	if (!desc)
795 		return -EINVAL;
796 
797 	/* Don't use NMIs as wake up interrupts please */
798 	if (desc->istate & IRQS_NMI) {
799 		ret = -EINVAL;
800 		goto out_unlock;
801 	}
802 
803 	/* wakeup-capable irqs can be shared between drivers that
804 	 * don't need to have the same sleep mode behaviors.
805 	 */
806 	if (on) {
807 		if (desc->wake_depth++ == 0) {
808 			ret = set_irq_wake_real(irq, on);
809 			if (ret)
810 				desc->wake_depth = 0;
811 			else
812 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
813 		}
814 	} else {
815 		if (desc->wake_depth == 0) {
816 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
817 		} else if (--desc->wake_depth == 0) {
818 			ret = set_irq_wake_real(irq, on);
819 			if (ret)
820 				desc->wake_depth = 1;
821 			else
822 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
823 		}
824 	}
825 
826 out_unlock:
827 	irq_put_desc_busunlock(desc, flags);
828 	return ret;
829 }
830 EXPORT_SYMBOL(irq_set_irq_wake);
831 
832 /*
833  * Internal function that tells the architecture code whether a
834  * particular irq has been exclusively allocated or is available
835  * for driver use.
836  */
can_request_irq(unsigned int irq,unsigned long irqflags)837 int can_request_irq(unsigned int irq, unsigned long irqflags)
838 {
839 	unsigned long flags;
840 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
841 	int canrequest = 0;
842 
843 	if (!desc)
844 		return 0;
845 
846 	if (irq_settings_can_request(desc)) {
847 		if (!desc->action ||
848 		    irqflags & desc->action->flags & IRQF_SHARED)
849 			canrequest = 1;
850 	}
851 	irq_put_desc_unlock(desc, flags);
852 	return canrequest;
853 }
854 
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)855 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
856 {
857 	struct irq_chip *chip = desc->irq_data.chip;
858 	int ret, unmask = 0;
859 
860 	if (!chip || !chip->irq_set_type) {
861 		/*
862 		 * IRQF_TRIGGER_* but the PIC does not support multiple
863 		 * flow-types?
864 		 */
865 		pr_debug("No set_type function for IRQ %d (%s)\n",
866 			 irq_desc_get_irq(desc),
867 			 chip ? (chip->name ? : "unknown") : "unknown");
868 		return 0;
869 	}
870 
871 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
872 		if (!irqd_irq_masked(&desc->irq_data))
873 			mask_irq(desc);
874 		if (!irqd_irq_disabled(&desc->irq_data))
875 			unmask = 1;
876 	}
877 
878 	/* Mask all flags except trigger mode */
879 	flags &= IRQ_TYPE_SENSE_MASK;
880 	ret = chip->irq_set_type(&desc->irq_data, flags);
881 
882 	switch (ret) {
883 	case IRQ_SET_MASK_OK:
884 	case IRQ_SET_MASK_OK_DONE:
885 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
886 		irqd_set(&desc->irq_data, flags);
887 		fallthrough;
888 
889 	case IRQ_SET_MASK_OK_NOCOPY:
890 		flags = irqd_get_trigger_type(&desc->irq_data);
891 		irq_settings_set_trigger_mask(desc, flags);
892 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
893 		irq_settings_clr_level(desc);
894 		if (flags & IRQ_TYPE_LEVEL_MASK) {
895 			irq_settings_set_level(desc);
896 			irqd_set(&desc->irq_data, IRQD_LEVEL);
897 		}
898 
899 		ret = 0;
900 		break;
901 	default:
902 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
903 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
904 	}
905 	if (unmask)
906 		unmask_irq(desc);
907 	return ret;
908 }
909 
910 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)911 int irq_set_parent(int irq, int parent_irq)
912 {
913 	unsigned long flags;
914 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
915 
916 	if (!desc)
917 		return -EINVAL;
918 
919 	desc->parent_irq = parent_irq;
920 
921 	irq_put_desc_unlock(desc, flags);
922 	return 0;
923 }
924 EXPORT_SYMBOL_GPL(irq_set_parent);
925 #endif
926 
927 /*
928  * Default primary interrupt handler for threaded interrupts. Is
929  * assigned as primary handler when request_threaded_irq is called
930  * with handler == NULL. Useful for oneshot interrupts.
931  */
irq_default_primary_handler(int irq,void * dev_id)932 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
933 {
934 	return IRQ_WAKE_THREAD;
935 }
936 
937 /*
938  * Primary handler for nested threaded interrupts. Should never be
939  * called.
940  */
irq_nested_primary_handler(int irq,void * dev_id)941 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
942 {
943 	WARN(1, "Primary handler called for nested irq %d\n", irq);
944 	return IRQ_NONE;
945 }
946 
irq_forced_secondary_handler(int irq,void * dev_id)947 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
948 {
949 	WARN(1, "Secondary action handler called for irq %d\n", irq);
950 	return IRQ_NONE;
951 }
952 
irq_wait_for_interrupt(struct irqaction * action)953 static int irq_wait_for_interrupt(struct irqaction *action)
954 {
955 	for (;;) {
956 		set_current_state(TASK_INTERRUPTIBLE);
957 
958 		if (kthread_should_stop()) {
959 			/* may need to run one last time */
960 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
961 					       &action->thread_flags)) {
962 				__set_current_state(TASK_RUNNING);
963 				return 0;
964 			}
965 			__set_current_state(TASK_RUNNING);
966 			return -1;
967 		}
968 
969 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
970 				       &action->thread_flags)) {
971 			__set_current_state(TASK_RUNNING);
972 			return 0;
973 		}
974 		schedule();
975 	}
976 }
977 
978 /*
979  * Oneshot interrupts keep the irq line masked until the threaded
980  * handler finished. unmask if the interrupt has not been disabled and
981  * is marked MASKED.
982  */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)983 static void irq_finalize_oneshot(struct irq_desc *desc,
984 				 struct irqaction *action)
985 {
986 	if (!(desc->istate & IRQS_ONESHOT) ||
987 	    action->handler == irq_forced_secondary_handler)
988 		return;
989 again:
990 	chip_bus_lock(desc);
991 	raw_spin_lock_irq(&desc->lock);
992 
993 	/*
994 	 * Implausible though it may be we need to protect us against
995 	 * the following scenario:
996 	 *
997 	 * The thread is faster done than the hard interrupt handler
998 	 * on the other CPU. If we unmask the irq line then the
999 	 * interrupt can come in again and masks the line, leaves due
1000 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1001 	 *
1002 	 * This also serializes the state of shared oneshot handlers
1003 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1004 	 * irq_wake_thread(). See the comment there which explains the
1005 	 * serialization.
1006 	 */
1007 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1008 		raw_spin_unlock_irq(&desc->lock);
1009 		chip_bus_sync_unlock(desc);
1010 		cpu_relax();
1011 		goto again;
1012 	}
1013 
1014 	/*
1015 	 * Now check again, whether the thread should run. Otherwise
1016 	 * we would clear the threads_oneshot bit of this thread which
1017 	 * was just set.
1018 	 */
1019 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1020 		goto out_unlock;
1021 
1022 	desc->threads_oneshot &= ~action->thread_mask;
1023 
1024 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1025 	    irqd_irq_masked(&desc->irq_data))
1026 		unmask_threaded_irq(desc);
1027 
1028 out_unlock:
1029 	raw_spin_unlock_irq(&desc->lock);
1030 	chip_bus_sync_unlock(desc);
1031 }
1032 
1033 #ifdef CONFIG_SMP
1034 /*
1035  * Check whether we need to change the affinity of the interrupt thread.
1036  */
1037 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1038 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1039 {
1040 	cpumask_var_t mask;
1041 	bool valid = true;
1042 
1043 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1044 		return;
1045 
1046 	/*
1047 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1048 	 * try again next time
1049 	 */
1050 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1051 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1052 		return;
1053 	}
1054 
1055 	raw_spin_lock_irq(&desc->lock);
1056 	/*
1057 	 * This code is triggered unconditionally. Check the affinity
1058 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1059 	 */
1060 	if (cpumask_available(desc->irq_common_data.affinity)) {
1061 		const struct cpumask *m;
1062 
1063 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1064 		cpumask_copy(mask, m);
1065 	} else {
1066 		valid = false;
1067 	}
1068 	raw_spin_unlock_irq(&desc->lock);
1069 
1070 	if (valid)
1071 		set_cpus_allowed_ptr(current, mask);
1072 	free_cpumask_var(mask);
1073 }
1074 #else
1075 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1076 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1077 #endif
1078 
1079 /*
1080  * Interrupts which are not explicitly requested as threaded
1081  * interrupts rely on the implicit bh/preempt disable of the hard irq
1082  * context. So we need to disable bh here to avoid deadlocks and other
1083  * side effects.
1084  */
1085 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1086 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1087 {
1088 	irqreturn_t ret;
1089 
1090 	local_bh_disable();
1091 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1092 		local_irq_disable();
1093 	ret = action->thread_fn(action->irq, action->dev_id);
1094 	if (ret == IRQ_HANDLED)
1095 		atomic_inc(&desc->threads_handled);
1096 
1097 	irq_finalize_oneshot(desc, action);
1098 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1099 		local_irq_enable();
1100 	local_bh_enable();
1101 	return ret;
1102 }
1103 
1104 /*
1105  * Interrupts explicitly requested as threaded interrupts want to be
1106  * preemtible - many of them need to sleep and wait for slow busses to
1107  * complete.
1108  */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1109 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1110 		struct irqaction *action)
1111 {
1112 	irqreturn_t ret;
1113 
1114 	ret = action->thread_fn(action->irq, action->dev_id);
1115 	if (ret == IRQ_HANDLED)
1116 		atomic_inc(&desc->threads_handled);
1117 
1118 	irq_finalize_oneshot(desc, action);
1119 	return ret;
1120 }
1121 
wake_threads_waitq(struct irq_desc * desc)1122 static void wake_threads_waitq(struct irq_desc *desc)
1123 {
1124 	if (atomic_dec_and_test(&desc->threads_active))
1125 		wake_up(&desc->wait_for_threads);
1126 }
1127 
irq_thread_dtor(struct callback_head * unused)1128 static void irq_thread_dtor(struct callback_head *unused)
1129 {
1130 	struct task_struct *tsk = current;
1131 	struct irq_desc *desc;
1132 	struct irqaction *action;
1133 
1134 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1135 		return;
1136 
1137 	action = kthread_data(tsk);
1138 
1139 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1140 	       tsk->comm, tsk->pid, action->irq);
1141 
1142 
1143 	desc = irq_to_desc(action->irq);
1144 	/*
1145 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1146 	 * desc->threads_active and wake possible waiters.
1147 	 */
1148 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1149 		wake_threads_waitq(desc);
1150 
1151 	/* Prevent a stale desc->threads_oneshot */
1152 	irq_finalize_oneshot(desc, action);
1153 }
1154 
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1155 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1156 {
1157 	struct irqaction *secondary = action->secondary;
1158 
1159 	if (WARN_ON_ONCE(!secondary))
1160 		return;
1161 
1162 	raw_spin_lock_irq(&desc->lock);
1163 	__irq_wake_thread(desc, secondary);
1164 	raw_spin_unlock_irq(&desc->lock);
1165 }
1166 
1167 /*
1168  * Internal function to notify that a interrupt thread is ready.
1169  */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1170 static void irq_thread_set_ready(struct irq_desc *desc,
1171 				 struct irqaction *action)
1172 {
1173 	set_bit(IRQTF_READY, &action->thread_flags);
1174 	wake_up(&desc->wait_for_threads);
1175 }
1176 
1177 /*
1178  * Internal function to wake up a interrupt thread and wait until it is
1179  * ready.
1180  */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1181 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1182 						  struct irqaction *action)
1183 {
1184 	if (!action || !action->thread)
1185 		return;
1186 
1187 	wake_up_process(action->thread);
1188 	wait_event(desc->wait_for_threads,
1189 		   test_bit(IRQTF_READY, &action->thread_flags));
1190 }
1191 
1192 /*
1193  * Interrupt handler thread
1194  */
irq_thread(void * data)1195 static int irq_thread(void *data)
1196 {
1197 	struct callback_head on_exit_work;
1198 	struct irqaction *action = data;
1199 	struct irq_desc *desc = irq_to_desc(action->irq);
1200 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1201 			struct irqaction *action);
1202 
1203 	irq_thread_set_ready(desc, action);
1204 
1205 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1206 					&action->thread_flags))
1207 		handler_fn = irq_forced_thread_fn;
1208 	else
1209 		handler_fn = irq_thread_fn;
1210 
1211 	init_task_work(&on_exit_work, irq_thread_dtor);
1212 	task_work_add(current, &on_exit_work, TWA_NONE);
1213 
1214 	irq_thread_check_affinity(desc, action);
1215 
1216 	while (!irq_wait_for_interrupt(action)) {
1217 		irqreturn_t action_ret;
1218 
1219 		irq_thread_check_affinity(desc, action);
1220 
1221 		action_ret = handler_fn(desc, action);
1222 		if (action_ret == IRQ_WAKE_THREAD)
1223 			irq_wake_secondary(desc, action);
1224 
1225 		wake_threads_waitq(desc);
1226 	}
1227 
1228 	/*
1229 	 * This is the regular exit path. __free_irq() is stopping the
1230 	 * thread via kthread_stop() after calling
1231 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1232 	 * oneshot mask bit can be set.
1233 	 */
1234 	task_work_cancel(current, irq_thread_dtor);
1235 	return 0;
1236 }
1237 
1238 /**
1239  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1240  *	@irq:		Interrupt line
1241  *	@dev_id:	Device identity for which the thread should be woken
1242  *
1243  */
irq_wake_thread(unsigned int irq,void * dev_id)1244 void irq_wake_thread(unsigned int irq, void *dev_id)
1245 {
1246 	struct irq_desc *desc = irq_to_desc(irq);
1247 	struct irqaction *action;
1248 	unsigned long flags;
1249 
1250 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1251 		return;
1252 
1253 	raw_spin_lock_irqsave(&desc->lock, flags);
1254 	for_each_action_of_desc(desc, action) {
1255 		if (action->dev_id == dev_id) {
1256 			if (action->thread)
1257 				__irq_wake_thread(desc, action);
1258 			break;
1259 		}
1260 	}
1261 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1262 }
1263 EXPORT_SYMBOL_GPL(irq_wake_thread);
1264 
irq_setup_forced_threading(struct irqaction * new)1265 static int irq_setup_forced_threading(struct irqaction *new)
1266 {
1267 	if (!force_irqthreads)
1268 		return 0;
1269 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1270 		return 0;
1271 
1272 	/*
1273 	 * No further action required for interrupts which are requested as
1274 	 * threaded interrupts already
1275 	 */
1276 	if (new->handler == irq_default_primary_handler)
1277 		return 0;
1278 
1279 	new->flags |= IRQF_ONESHOT;
1280 
1281 	/*
1282 	 * Handle the case where we have a real primary handler and a
1283 	 * thread handler. We force thread them as well by creating a
1284 	 * secondary action.
1285 	 */
1286 	if (new->handler && new->thread_fn) {
1287 		/* Allocate the secondary action */
1288 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1289 		if (!new->secondary)
1290 			return -ENOMEM;
1291 		new->secondary->handler = irq_forced_secondary_handler;
1292 		new->secondary->thread_fn = new->thread_fn;
1293 		new->secondary->dev_id = new->dev_id;
1294 		new->secondary->irq = new->irq;
1295 		new->secondary->name = new->name;
1296 	}
1297 	/* Deal with the primary handler */
1298 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1299 	new->thread_fn = new->handler;
1300 	new->handler = irq_default_primary_handler;
1301 	return 0;
1302 }
1303 
irq_request_resources(struct irq_desc * desc)1304 static int irq_request_resources(struct irq_desc *desc)
1305 {
1306 	struct irq_data *d = &desc->irq_data;
1307 	struct irq_chip *c = d->chip;
1308 
1309 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1310 }
1311 
irq_release_resources(struct irq_desc * desc)1312 static void irq_release_resources(struct irq_desc *desc)
1313 {
1314 	struct irq_data *d = &desc->irq_data;
1315 	struct irq_chip *c = d->chip;
1316 
1317 	if (c->irq_release_resources)
1318 		c->irq_release_resources(d);
1319 }
1320 
irq_supports_nmi(struct irq_desc * desc)1321 static bool irq_supports_nmi(struct irq_desc *desc)
1322 {
1323 	struct irq_data *d = irq_desc_get_irq_data(desc);
1324 
1325 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1326 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1327 	if (d->parent_data)
1328 		return false;
1329 #endif
1330 	/* Don't support NMIs for chips behind a slow bus */
1331 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1332 		return false;
1333 
1334 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1335 }
1336 
irq_nmi_setup(struct irq_desc * desc)1337 static int irq_nmi_setup(struct irq_desc *desc)
1338 {
1339 	struct irq_data *d = irq_desc_get_irq_data(desc);
1340 	struct irq_chip *c = d->chip;
1341 
1342 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1343 }
1344 
irq_nmi_teardown(struct irq_desc * desc)1345 static void irq_nmi_teardown(struct irq_desc *desc)
1346 {
1347 	struct irq_data *d = irq_desc_get_irq_data(desc);
1348 	struct irq_chip *c = d->chip;
1349 
1350 	if (c->irq_nmi_teardown)
1351 		c->irq_nmi_teardown(d);
1352 }
1353 
1354 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1355 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1356 {
1357 	struct task_struct *t;
1358 
1359 	if (!secondary) {
1360 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1361 				   new->name);
1362 	} else {
1363 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1364 				   new->name);
1365 	}
1366 
1367 	if (IS_ERR(t))
1368 		return PTR_ERR(t);
1369 
1370 	sched_set_fifo(t);
1371 
1372 	/*
1373 	 * We keep the reference to the task struct even if
1374 	 * the thread dies to avoid that the interrupt code
1375 	 * references an already freed task_struct.
1376 	 */
1377 	new->thread = get_task_struct(t);
1378 	/*
1379 	 * Tell the thread to set its affinity. This is
1380 	 * important for shared interrupt handlers as we do
1381 	 * not invoke setup_affinity() for the secondary
1382 	 * handlers as everything is already set up. Even for
1383 	 * interrupts marked with IRQF_NO_BALANCE this is
1384 	 * correct as we want the thread to move to the cpu(s)
1385 	 * on which the requesting code placed the interrupt.
1386 	 */
1387 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1388 	return 0;
1389 }
1390 
1391 /*
1392  * Internal function to register an irqaction - typically used to
1393  * allocate special interrupts that are part of the architecture.
1394  *
1395  * Locking rules:
1396  *
1397  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1398  *   chip_bus_lock	Provides serialization for slow bus operations
1399  *     desc->lock	Provides serialization against hard interrupts
1400  *
1401  * chip_bus_lock and desc->lock are sufficient for all other management and
1402  * interrupt related functions. desc->request_mutex solely serializes
1403  * request/free_irq().
1404  */
1405 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1406 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1407 {
1408 	struct irqaction *old, **old_ptr;
1409 	unsigned long flags, thread_mask = 0;
1410 	int ret, nested, shared = 0;
1411 
1412 	if (!desc)
1413 		return -EINVAL;
1414 
1415 	if (desc->irq_data.chip == &no_irq_chip)
1416 		return -ENOSYS;
1417 	if (!try_module_get(desc->owner))
1418 		return -ENODEV;
1419 
1420 	new->irq = irq;
1421 
1422 	/*
1423 	 * If the trigger type is not specified by the caller,
1424 	 * then use the default for this interrupt.
1425 	 */
1426 	if (!(new->flags & IRQF_TRIGGER_MASK))
1427 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1428 
1429 	/*
1430 	 * Check whether the interrupt nests into another interrupt
1431 	 * thread.
1432 	 */
1433 	nested = irq_settings_is_nested_thread(desc);
1434 	if (nested) {
1435 		if (!new->thread_fn) {
1436 			ret = -EINVAL;
1437 			goto out_mput;
1438 		}
1439 		/*
1440 		 * Replace the primary handler which was provided from
1441 		 * the driver for non nested interrupt handling by the
1442 		 * dummy function which warns when called.
1443 		 */
1444 		new->handler = irq_nested_primary_handler;
1445 	} else {
1446 		if (irq_settings_can_thread(desc)) {
1447 			ret = irq_setup_forced_threading(new);
1448 			if (ret)
1449 				goto out_mput;
1450 		}
1451 	}
1452 
1453 	/*
1454 	 * Create a handler thread when a thread function is supplied
1455 	 * and the interrupt does not nest into another interrupt
1456 	 * thread.
1457 	 */
1458 	if (new->thread_fn && !nested) {
1459 		ret = setup_irq_thread(new, irq, false);
1460 		if (ret)
1461 			goto out_mput;
1462 		if (new->secondary) {
1463 			ret = setup_irq_thread(new->secondary, irq, true);
1464 			if (ret)
1465 				goto out_thread;
1466 		}
1467 	}
1468 
1469 	/*
1470 	 * Drivers are often written to work w/o knowledge about the
1471 	 * underlying irq chip implementation, so a request for a
1472 	 * threaded irq without a primary hard irq context handler
1473 	 * requires the ONESHOT flag to be set. Some irq chips like
1474 	 * MSI based interrupts are per se one shot safe. Check the
1475 	 * chip flags, so we can avoid the unmask dance at the end of
1476 	 * the threaded handler for those.
1477 	 */
1478 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1479 		new->flags &= ~IRQF_ONESHOT;
1480 
1481 	/*
1482 	 * Protects against a concurrent __free_irq() call which might wait
1483 	 * for synchronize_hardirq() to complete without holding the optional
1484 	 * chip bus lock and desc->lock. Also protects against handing out
1485 	 * a recycled oneshot thread_mask bit while it's still in use by
1486 	 * its previous owner.
1487 	 */
1488 	mutex_lock(&desc->request_mutex);
1489 
1490 	/*
1491 	 * Acquire bus lock as the irq_request_resources() callback below
1492 	 * might rely on the serialization or the magic power management
1493 	 * functions which are abusing the irq_bus_lock() callback,
1494 	 */
1495 	chip_bus_lock(desc);
1496 
1497 	/* First installed action requests resources. */
1498 	if (!desc->action) {
1499 		ret = irq_request_resources(desc);
1500 		if (ret) {
1501 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1502 			       new->name, irq, desc->irq_data.chip->name);
1503 			goto out_bus_unlock;
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * The following block of code has to be executed atomically
1509 	 * protected against a concurrent interrupt and any of the other
1510 	 * management calls which are not serialized via
1511 	 * desc->request_mutex or the optional bus lock.
1512 	 */
1513 	raw_spin_lock_irqsave(&desc->lock, flags);
1514 	old_ptr = &desc->action;
1515 	old = *old_ptr;
1516 	if (old) {
1517 		/*
1518 		 * Can't share interrupts unless both agree to and are
1519 		 * the same type (level, edge, polarity). So both flag
1520 		 * fields must have IRQF_SHARED set and the bits which
1521 		 * set the trigger type must match. Also all must
1522 		 * agree on ONESHOT.
1523 		 * Interrupt lines used for NMIs cannot be shared.
1524 		 */
1525 		unsigned int oldtype;
1526 
1527 		if (desc->istate & IRQS_NMI) {
1528 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1529 				new->name, irq, desc->irq_data.chip->name);
1530 			ret = -EINVAL;
1531 			goto out_unlock;
1532 		}
1533 
1534 		/*
1535 		 * If nobody did set the configuration before, inherit
1536 		 * the one provided by the requester.
1537 		 */
1538 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1539 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1540 		} else {
1541 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1542 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1543 		}
1544 
1545 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1546 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1547 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1548 			goto mismatch;
1549 
1550 		/* All handlers must agree on per-cpuness */
1551 		if ((old->flags & IRQF_PERCPU) !=
1552 		    (new->flags & IRQF_PERCPU))
1553 			goto mismatch;
1554 
1555 		/* add new interrupt at end of irq queue */
1556 		do {
1557 			/*
1558 			 * Or all existing action->thread_mask bits,
1559 			 * so we can find the next zero bit for this
1560 			 * new action.
1561 			 */
1562 			thread_mask |= old->thread_mask;
1563 			old_ptr = &old->next;
1564 			old = *old_ptr;
1565 		} while (old);
1566 		shared = 1;
1567 	}
1568 
1569 	/*
1570 	 * Setup the thread mask for this irqaction for ONESHOT. For
1571 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1572 	 * conditional in irq_wake_thread().
1573 	 */
1574 	if (new->flags & IRQF_ONESHOT) {
1575 		/*
1576 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1577 		 * but who knows.
1578 		 */
1579 		if (thread_mask == ~0UL) {
1580 			ret = -EBUSY;
1581 			goto out_unlock;
1582 		}
1583 		/*
1584 		 * The thread_mask for the action is or'ed to
1585 		 * desc->thread_active to indicate that the
1586 		 * IRQF_ONESHOT thread handler has been woken, but not
1587 		 * yet finished. The bit is cleared when a thread
1588 		 * completes. When all threads of a shared interrupt
1589 		 * line have completed desc->threads_active becomes
1590 		 * zero and the interrupt line is unmasked. See
1591 		 * handle.c:irq_wake_thread() for further information.
1592 		 *
1593 		 * If no thread is woken by primary (hard irq context)
1594 		 * interrupt handlers, then desc->threads_active is
1595 		 * also checked for zero to unmask the irq line in the
1596 		 * affected hard irq flow handlers
1597 		 * (handle_[fasteoi|level]_irq).
1598 		 *
1599 		 * The new action gets the first zero bit of
1600 		 * thread_mask assigned. See the loop above which or's
1601 		 * all existing action->thread_mask bits.
1602 		 */
1603 		new->thread_mask = 1UL << ffz(thread_mask);
1604 
1605 	} else if (new->handler == irq_default_primary_handler &&
1606 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1607 		/*
1608 		 * The interrupt was requested with handler = NULL, so
1609 		 * we use the default primary handler for it. But it
1610 		 * does not have the oneshot flag set. In combination
1611 		 * with level interrupts this is deadly, because the
1612 		 * default primary handler just wakes the thread, then
1613 		 * the irq lines is reenabled, but the device still
1614 		 * has the level irq asserted. Rinse and repeat....
1615 		 *
1616 		 * While this works for edge type interrupts, we play
1617 		 * it safe and reject unconditionally because we can't
1618 		 * say for sure which type this interrupt really
1619 		 * has. The type flags are unreliable as the
1620 		 * underlying chip implementation can override them.
1621 		 */
1622 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1623 		       new->name, irq);
1624 		ret = -EINVAL;
1625 		goto out_unlock;
1626 	}
1627 
1628 	if (!shared) {
1629 		/* Setup the type (level, edge polarity) if configured: */
1630 		if (new->flags & IRQF_TRIGGER_MASK) {
1631 			ret = __irq_set_trigger(desc,
1632 						new->flags & IRQF_TRIGGER_MASK);
1633 
1634 			if (ret)
1635 				goto out_unlock;
1636 		}
1637 
1638 		/*
1639 		 * Activate the interrupt. That activation must happen
1640 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1641 		 * and the callers are supposed to handle
1642 		 * that. enable_irq() of an interrupt requested with
1643 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1644 		 * keeps it in shutdown mode, it merily associates
1645 		 * resources if necessary and if that's not possible it
1646 		 * fails. Interrupts which are in managed shutdown mode
1647 		 * will simply ignore that activation request.
1648 		 */
1649 		ret = irq_activate(desc);
1650 		if (ret)
1651 			goto out_unlock;
1652 
1653 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1654 				  IRQS_ONESHOT | IRQS_WAITING);
1655 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1656 
1657 		if (new->flags & IRQF_PERCPU) {
1658 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1659 			irq_settings_set_per_cpu(desc);
1660 		}
1661 
1662 		if (new->flags & IRQF_ONESHOT)
1663 			desc->istate |= IRQS_ONESHOT;
1664 
1665 		/* Exclude IRQ from balancing if requested */
1666 		if (new->flags & IRQF_NOBALANCING) {
1667 			irq_settings_set_no_balancing(desc);
1668 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1669 		}
1670 
1671 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1672 		    irq_settings_can_autoenable(desc)) {
1673 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1674 		} else {
1675 			/*
1676 			 * Shared interrupts do not go well with disabling
1677 			 * auto enable. The sharing interrupt might request
1678 			 * it while it's still disabled and then wait for
1679 			 * interrupts forever.
1680 			 */
1681 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1682 			/* Undo nested disables: */
1683 			desc->depth = 1;
1684 		}
1685 
1686 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1687 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1688 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1689 
1690 		if (nmsk != omsk)
1691 			/* hope the handler works with current  trigger mode */
1692 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1693 				irq, omsk, nmsk);
1694 	}
1695 
1696 	*old_ptr = new;
1697 
1698 	irq_pm_install_action(desc, new);
1699 
1700 	/* Reset broken irq detection when installing new handler */
1701 	desc->irq_count = 0;
1702 	desc->irqs_unhandled = 0;
1703 
1704 	/*
1705 	 * Check whether we disabled the irq via the spurious handler
1706 	 * before. Reenable it and give it another chance.
1707 	 */
1708 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1709 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1710 		__enable_irq(desc);
1711 	}
1712 
1713 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1714 	chip_bus_sync_unlock(desc);
1715 	mutex_unlock(&desc->request_mutex);
1716 
1717 	irq_setup_timings(desc, new);
1718 
1719 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1720 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1721 
1722 	register_irq_proc(irq, desc);
1723 	new->dir = NULL;
1724 	register_handler_proc(irq, new);
1725 	return 0;
1726 
1727 mismatch:
1728 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1729 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1730 		       irq, new->flags, new->name, old->flags, old->name);
1731 #ifdef CONFIG_DEBUG_SHIRQ
1732 		dump_stack();
1733 #endif
1734 	}
1735 	ret = -EBUSY;
1736 
1737 out_unlock:
1738 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1739 
1740 	if (!desc->action)
1741 		irq_release_resources(desc);
1742 out_bus_unlock:
1743 	chip_bus_sync_unlock(desc);
1744 	mutex_unlock(&desc->request_mutex);
1745 
1746 out_thread:
1747 	if (new->thread) {
1748 		struct task_struct *t = new->thread;
1749 
1750 		new->thread = NULL;
1751 		kthread_stop(t);
1752 		put_task_struct(t);
1753 	}
1754 	if (new->secondary && new->secondary->thread) {
1755 		struct task_struct *t = new->secondary->thread;
1756 
1757 		new->secondary->thread = NULL;
1758 		kthread_stop(t);
1759 		put_task_struct(t);
1760 	}
1761 out_mput:
1762 	module_put(desc->owner);
1763 	return ret;
1764 }
1765 
1766 /*
1767  * Internal function to unregister an irqaction - used to free
1768  * regular and special interrupts that are part of the architecture.
1769  */
__free_irq(struct irq_desc * desc,void * dev_id)1770 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1771 {
1772 	unsigned irq = desc->irq_data.irq;
1773 	struct irqaction *action, **action_ptr;
1774 	unsigned long flags;
1775 
1776 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1777 
1778 	mutex_lock(&desc->request_mutex);
1779 	chip_bus_lock(desc);
1780 	raw_spin_lock_irqsave(&desc->lock, flags);
1781 
1782 	/*
1783 	 * There can be multiple actions per IRQ descriptor, find the right
1784 	 * one based on the dev_id:
1785 	 */
1786 	action_ptr = &desc->action;
1787 	for (;;) {
1788 		action = *action_ptr;
1789 
1790 		if (!action) {
1791 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1792 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1793 			chip_bus_sync_unlock(desc);
1794 			mutex_unlock(&desc->request_mutex);
1795 			return NULL;
1796 		}
1797 
1798 		if (action->dev_id == dev_id)
1799 			break;
1800 		action_ptr = &action->next;
1801 	}
1802 
1803 	/* Found it - now remove it from the list of entries: */
1804 	*action_ptr = action->next;
1805 
1806 	irq_pm_remove_action(desc, action);
1807 
1808 	/* If this was the last handler, shut down the IRQ line: */
1809 	if (!desc->action) {
1810 		irq_settings_clr_disable_unlazy(desc);
1811 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1812 		irq_shutdown(desc);
1813 	}
1814 
1815 #ifdef CONFIG_SMP
1816 	/* make sure affinity_hint is cleaned up */
1817 	if (WARN_ON_ONCE(desc->affinity_hint))
1818 		desc->affinity_hint = NULL;
1819 #endif
1820 
1821 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1822 	/*
1823 	 * Drop bus_lock here so the changes which were done in the chip
1824 	 * callbacks above are synced out to the irq chips which hang
1825 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1826 	 *
1827 	 * Aside of that the bus_lock can also be taken from the threaded
1828 	 * handler in irq_finalize_oneshot() which results in a deadlock
1829 	 * because kthread_stop() would wait forever for the thread to
1830 	 * complete, which is blocked on the bus lock.
1831 	 *
1832 	 * The still held desc->request_mutex() protects against a
1833 	 * concurrent request_irq() of this irq so the release of resources
1834 	 * and timing data is properly serialized.
1835 	 */
1836 	chip_bus_sync_unlock(desc);
1837 
1838 	unregister_handler_proc(irq, action);
1839 
1840 	/*
1841 	 * Make sure it's not being used on another CPU and if the chip
1842 	 * supports it also make sure that there is no (not yet serviced)
1843 	 * interrupt in flight at the hardware level.
1844 	 */
1845 	__synchronize_hardirq(desc, true);
1846 
1847 #ifdef CONFIG_DEBUG_SHIRQ
1848 	/*
1849 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1850 	 * event to happen even now it's being freed, so let's make sure that
1851 	 * is so by doing an extra call to the handler ....
1852 	 *
1853 	 * ( We do this after actually deregistering it, to make sure that a
1854 	 *   'real' IRQ doesn't run in parallel with our fake. )
1855 	 */
1856 	if (action->flags & IRQF_SHARED) {
1857 		local_irq_save(flags);
1858 		action->handler(irq, dev_id);
1859 		local_irq_restore(flags);
1860 	}
1861 #endif
1862 
1863 	/*
1864 	 * The action has already been removed above, but the thread writes
1865 	 * its oneshot mask bit when it completes. Though request_mutex is
1866 	 * held across this which prevents __setup_irq() from handing out
1867 	 * the same bit to a newly requested action.
1868 	 */
1869 	if (action->thread) {
1870 		kthread_stop(action->thread);
1871 		put_task_struct(action->thread);
1872 		if (action->secondary && action->secondary->thread) {
1873 			kthread_stop(action->secondary->thread);
1874 			put_task_struct(action->secondary->thread);
1875 		}
1876 	}
1877 
1878 	/* Last action releases resources */
1879 	if (!desc->action) {
1880 		/*
1881 		 * Reacquire bus lock as irq_release_resources() might
1882 		 * require it to deallocate resources over the slow bus.
1883 		 */
1884 		chip_bus_lock(desc);
1885 		/*
1886 		 * There is no interrupt on the fly anymore. Deactivate it
1887 		 * completely.
1888 		 */
1889 		raw_spin_lock_irqsave(&desc->lock, flags);
1890 		irq_domain_deactivate_irq(&desc->irq_data);
1891 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1892 
1893 		irq_release_resources(desc);
1894 		chip_bus_sync_unlock(desc);
1895 		irq_remove_timings(desc);
1896 	}
1897 
1898 	mutex_unlock(&desc->request_mutex);
1899 
1900 	irq_chip_pm_put(&desc->irq_data);
1901 	module_put(desc->owner);
1902 	kfree(action->secondary);
1903 	return action;
1904 }
1905 
1906 /**
1907  *	free_irq - free an interrupt allocated with request_irq
1908  *	@irq: Interrupt line to free
1909  *	@dev_id: Device identity to free
1910  *
1911  *	Remove an interrupt handler. The handler is removed and if the
1912  *	interrupt line is no longer in use by any driver it is disabled.
1913  *	On a shared IRQ the caller must ensure the interrupt is disabled
1914  *	on the card it drives before calling this function. The function
1915  *	does not return until any executing interrupts for this IRQ
1916  *	have completed.
1917  *
1918  *	This function must not be called from interrupt context.
1919  *
1920  *	Returns the devname argument passed to request_irq.
1921  */
free_irq(unsigned int irq,void * dev_id)1922 const void *free_irq(unsigned int irq, void *dev_id)
1923 {
1924 	struct irq_desc *desc = irq_to_desc(irq);
1925 	struct irqaction *action;
1926 	const char *devname;
1927 
1928 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1929 		return NULL;
1930 
1931 #ifdef CONFIG_SMP
1932 	if (WARN_ON(desc->affinity_notify))
1933 		desc->affinity_notify = NULL;
1934 #endif
1935 
1936 	action = __free_irq(desc, dev_id);
1937 
1938 	if (!action)
1939 		return NULL;
1940 
1941 	devname = action->name;
1942 	kfree(action);
1943 	return devname;
1944 }
1945 EXPORT_SYMBOL(free_irq);
1946 
1947 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1948 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1949 {
1950 	const char *devname = NULL;
1951 
1952 	desc->istate &= ~IRQS_NMI;
1953 
1954 	if (!WARN_ON(desc->action == NULL)) {
1955 		irq_pm_remove_action(desc, desc->action);
1956 		devname = desc->action->name;
1957 		unregister_handler_proc(irq, desc->action);
1958 
1959 		kfree(desc->action);
1960 		desc->action = NULL;
1961 	}
1962 
1963 	irq_settings_clr_disable_unlazy(desc);
1964 	irq_shutdown_and_deactivate(desc);
1965 
1966 	irq_release_resources(desc);
1967 
1968 	irq_chip_pm_put(&desc->irq_data);
1969 	module_put(desc->owner);
1970 
1971 	return devname;
1972 }
1973 
free_nmi(unsigned int irq,void * dev_id)1974 const void *free_nmi(unsigned int irq, void *dev_id)
1975 {
1976 	struct irq_desc *desc = irq_to_desc(irq);
1977 	unsigned long flags;
1978 	const void *devname;
1979 
1980 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1981 		return NULL;
1982 
1983 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1984 		return NULL;
1985 
1986 	/* NMI still enabled */
1987 	if (WARN_ON(desc->depth == 0))
1988 		disable_nmi_nosync(irq);
1989 
1990 	raw_spin_lock_irqsave(&desc->lock, flags);
1991 
1992 	irq_nmi_teardown(desc);
1993 	devname = __cleanup_nmi(irq, desc);
1994 
1995 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1996 
1997 	return devname;
1998 }
1999 
2000 /**
2001  *	request_threaded_irq - allocate an interrupt line
2002  *	@irq: Interrupt line to allocate
2003  *	@handler: Function to be called when the IRQ occurs.
2004  *		  Primary handler for threaded interrupts
2005  *		  If NULL and thread_fn != NULL the default
2006  *		  primary handler is installed
2007  *	@thread_fn: Function called from the irq handler thread
2008  *		    If NULL, no irq thread is created
2009  *	@irqflags: Interrupt type flags
2010  *	@devname: An ascii name for the claiming device
2011  *	@dev_id: A cookie passed back to the handler function
2012  *
2013  *	This call allocates interrupt resources and enables the
2014  *	interrupt line and IRQ handling. From the point this
2015  *	call is made your handler function may be invoked. Since
2016  *	your handler function must clear any interrupt the board
2017  *	raises, you must take care both to initialise your hardware
2018  *	and to set up the interrupt handler in the right order.
2019  *
2020  *	If you want to set up a threaded irq handler for your device
2021  *	then you need to supply @handler and @thread_fn. @handler is
2022  *	still called in hard interrupt context and has to check
2023  *	whether the interrupt originates from the device. If yes it
2024  *	needs to disable the interrupt on the device and return
2025  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2026  *	@thread_fn. This split handler design is necessary to support
2027  *	shared interrupts.
2028  *
2029  *	Dev_id must be globally unique. Normally the address of the
2030  *	device data structure is used as the cookie. Since the handler
2031  *	receives this value it makes sense to use it.
2032  *
2033  *	If your interrupt is shared you must pass a non NULL dev_id
2034  *	as this is required when freeing the interrupt.
2035  *
2036  *	Flags:
2037  *
2038  *	IRQF_SHARED		Interrupt is shared
2039  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2040  *
2041  */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2042 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2043 			 irq_handler_t thread_fn, unsigned long irqflags,
2044 			 const char *devname, void *dev_id)
2045 {
2046 	struct irqaction *action;
2047 	struct irq_desc *desc;
2048 	int retval;
2049 
2050 	if (irq == IRQ_NOTCONNECTED)
2051 		return -ENOTCONN;
2052 
2053 	/*
2054 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2055 	 * otherwise we'll have trouble later trying to figure out
2056 	 * which interrupt is which (messes up the interrupt freeing
2057 	 * logic etc).
2058 	 *
2059 	 * Also shared interrupts do not go well with disabling auto enable.
2060 	 * The sharing interrupt might request it while it's still disabled
2061 	 * and then wait for interrupts forever.
2062 	 *
2063 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2064 	 * it cannot be set along with IRQF_NO_SUSPEND.
2065 	 */
2066 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2067 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2068 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2069 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2070 		return -EINVAL;
2071 
2072 	desc = irq_to_desc(irq);
2073 	if (!desc)
2074 		return -EINVAL;
2075 
2076 	if (!irq_settings_can_request(desc) ||
2077 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2078 		return -EINVAL;
2079 
2080 	if (!handler) {
2081 		if (!thread_fn)
2082 			return -EINVAL;
2083 		handler = irq_default_primary_handler;
2084 	}
2085 
2086 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2087 	if (!action)
2088 		return -ENOMEM;
2089 
2090 	action->handler = handler;
2091 	action->thread_fn = thread_fn;
2092 	action->flags = irqflags;
2093 	action->name = devname;
2094 	action->dev_id = dev_id;
2095 
2096 	retval = irq_chip_pm_get(&desc->irq_data);
2097 	if (retval < 0) {
2098 		kfree(action);
2099 		return retval;
2100 	}
2101 
2102 	retval = __setup_irq(irq, desc, action);
2103 
2104 	if (retval) {
2105 		irq_chip_pm_put(&desc->irq_data);
2106 		kfree(action->secondary);
2107 		kfree(action);
2108 	}
2109 
2110 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2111 	if (!retval && (irqflags & IRQF_SHARED)) {
2112 		/*
2113 		 * It's a shared IRQ -- the driver ought to be prepared for it
2114 		 * to happen immediately, so let's make sure....
2115 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2116 		 * run in parallel with our fake.
2117 		 */
2118 		unsigned long flags;
2119 
2120 		disable_irq(irq);
2121 		local_irq_save(flags);
2122 
2123 		handler(irq, dev_id);
2124 
2125 		local_irq_restore(flags);
2126 		enable_irq(irq);
2127 	}
2128 #endif
2129 	return retval;
2130 }
2131 EXPORT_SYMBOL(request_threaded_irq);
2132 
2133 /**
2134  *	request_any_context_irq - allocate an interrupt line
2135  *	@irq: Interrupt line to allocate
2136  *	@handler: Function to be called when the IRQ occurs.
2137  *		  Threaded handler for threaded interrupts.
2138  *	@flags: Interrupt type flags
2139  *	@name: An ascii name for the claiming device
2140  *	@dev_id: A cookie passed back to the handler function
2141  *
2142  *	This call allocates interrupt resources and enables the
2143  *	interrupt line and IRQ handling. It selects either a
2144  *	hardirq or threaded handling method depending on the
2145  *	context.
2146  *
2147  *	On failure, it returns a negative value. On success,
2148  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2149  */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2150 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2151 			    unsigned long flags, const char *name, void *dev_id)
2152 {
2153 	struct irq_desc *desc;
2154 	int ret;
2155 
2156 	if (irq == IRQ_NOTCONNECTED)
2157 		return -ENOTCONN;
2158 
2159 	desc = irq_to_desc(irq);
2160 	if (!desc)
2161 		return -EINVAL;
2162 
2163 	if (irq_settings_is_nested_thread(desc)) {
2164 		ret = request_threaded_irq(irq, NULL, handler,
2165 					   flags, name, dev_id);
2166 		return !ret ? IRQC_IS_NESTED : ret;
2167 	}
2168 
2169 	ret = request_irq(irq, handler, flags, name, dev_id);
2170 	return !ret ? IRQC_IS_HARDIRQ : ret;
2171 }
2172 EXPORT_SYMBOL_GPL(request_any_context_irq);
2173 
2174 /**
2175  *	request_nmi - allocate an interrupt line for NMI delivery
2176  *	@irq: Interrupt line to allocate
2177  *	@handler: Function to be called when the IRQ occurs.
2178  *		  Threaded handler for threaded interrupts.
2179  *	@irqflags: Interrupt type flags
2180  *	@name: An ascii name for the claiming device
2181  *	@dev_id: A cookie passed back to the handler function
2182  *
2183  *	This call allocates interrupt resources and enables the
2184  *	interrupt line and IRQ handling. It sets up the IRQ line
2185  *	to be handled as an NMI.
2186  *
2187  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2188  *	cannot be threaded.
2189  *
2190  *	Interrupt lines requested for NMI delivering must produce per cpu
2191  *	interrupts and have auto enabling setting disabled.
2192  *
2193  *	Dev_id must be globally unique. Normally the address of the
2194  *	device data structure is used as the cookie. Since the handler
2195  *	receives this value it makes sense to use it.
2196  *
2197  *	If the interrupt line cannot be used to deliver NMIs, function
2198  *	will fail and return a negative value.
2199  */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2200 int request_nmi(unsigned int irq, irq_handler_t handler,
2201 		unsigned long irqflags, const char *name, void *dev_id)
2202 {
2203 	struct irqaction *action;
2204 	struct irq_desc *desc;
2205 	unsigned long flags;
2206 	int retval;
2207 
2208 	if (irq == IRQ_NOTCONNECTED)
2209 		return -ENOTCONN;
2210 
2211 	/* NMI cannot be shared, used for Polling */
2212 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2213 		return -EINVAL;
2214 
2215 	if (!(irqflags & IRQF_PERCPU))
2216 		return -EINVAL;
2217 
2218 	if (!handler)
2219 		return -EINVAL;
2220 
2221 	desc = irq_to_desc(irq);
2222 
2223 	if (!desc || (irq_settings_can_autoenable(desc) &&
2224 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2225 	    !irq_settings_can_request(desc) ||
2226 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2227 	    !irq_supports_nmi(desc))
2228 		return -EINVAL;
2229 
2230 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2231 	if (!action)
2232 		return -ENOMEM;
2233 
2234 	action->handler = handler;
2235 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2236 	action->name = name;
2237 	action->dev_id = dev_id;
2238 
2239 	retval = irq_chip_pm_get(&desc->irq_data);
2240 	if (retval < 0)
2241 		goto err_out;
2242 
2243 	retval = __setup_irq(irq, desc, action);
2244 	if (retval)
2245 		goto err_irq_setup;
2246 
2247 	raw_spin_lock_irqsave(&desc->lock, flags);
2248 
2249 	/* Setup NMI state */
2250 	desc->istate |= IRQS_NMI;
2251 	retval = irq_nmi_setup(desc);
2252 	if (retval) {
2253 		__cleanup_nmi(irq, desc);
2254 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2255 		return -EINVAL;
2256 	}
2257 
2258 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2259 
2260 	return 0;
2261 
2262 err_irq_setup:
2263 	irq_chip_pm_put(&desc->irq_data);
2264 err_out:
2265 	kfree(action);
2266 
2267 	return retval;
2268 }
2269 
enable_percpu_irq(unsigned int irq,unsigned int type)2270 void enable_percpu_irq(unsigned int irq, unsigned int type)
2271 {
2272 	unsigned int cpu = smp_processor_id();
2273 	unsigned long flags;
2274 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2275 
2276 	if (!desc)
2277 		return;
2278 
2279 	/*
2280 	 * If the trigger type is not specified by the caller, then
2281 	 * use the default for this interrupt.
2282 	 */
2283 	type &= IRQ_TYPE_SENSE_MASK;
2284 	if (type == IRQ_TYPE_NONE)
2285 		type = irqd_get_trigger_type(&desc->irq_data);
2286 
2287 	if (type != IRQ_TYPE_NONE) {
2288 		int ret;
2289 
2290 		ret = __irq_set_trigger(desc, type);
2291 
2292 		if (ret) {
2293 			WARN(1, "failed to set type for IRQ%d\n", irq);
2294 			goto out;
2295 		}
2296 	}
2297 
2298 	irq_percpu_enable(desc, cpu);
2299 out:
2300 	irq_put_desc_unlock(desc, flags);
2301 }
2302 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2303 
enable_percpu_nmi(unsigned int irq,unsigned int type)2304 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2305 {
2306 	enable_percpu_irq(irq, type);
2307 }
2308 
2309 /**
2310  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2311  * @irq:	Linux irq number to check for
2312  *
2313  * Must be called from a non migratable context. Returns the enable
2314  * state of a per cpu interrupt on the current cpu.
2315  */
irq_percpu_is_enabled(unsigned int irq)2316 bool irq_percpu_is_enabled(unsigned int irq)
2317 {
2318 	unsigned int cpu = smp_processor_id();
2319 	struct irq_desc *desc;
2320 	unsigned long flags;
2321 	bool is_enabled;
2322 
2323 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2324 	if (!desc)
2325 		return false;
2326 
2327 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2328 	irq_put_desc_unlock(desc, flags);
2329 
2330 	return is_enabled;
2331 }
2332 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2333 
disable_percpu_irq(unsigned int irq)2334 void disable_percpu_irq(unsigned int irq)
2335 {
2336 	unsigned int cpu = smp_processor_id();
2337 	unsigned long flags;
2338 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2339 
2340 	if (!desc)
2341 		return;
2342 
2343 	irq_percpu_disable(desc, cpu);
2344 	irq_put_desc_unlock(desc, flags);
2345 }
2346 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2347 
disable_percpu_nmi(unsigned int irq)2348 void disable_percpu_nmi(unsigned int irq)
2349 {
2350 	disable_percpu_irq(irq);
2351 }
2352 
2353 /*
2354  * Internal function to unregister a percpu irqaction.
2355  */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2356 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2357 {
2358 	struct irq_desc *desc = irq_to_desc(irq);
2359 	struct irqaction *action;
2360 	unsigned long flags;
2361 
2362 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2363 
2364 	if (!desc)
2365 		return NULL;
2366 
2367 	raw_spin_lock_irqsave(&desc->lock, flags);
2368 
2369 	action = desc->action;
2370 	if (!action || action->percpu_dev_id != dev_id) {
2371 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2372 		goto bad;
2373 	}
2374 
2375 	if (!cpumask_empty(desc->percpu_enabled)) {
2376 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2377 		     irq, cpumask_first(desc->percpu_enabled));
2378 		goto bad;
2379 	}
2380 
2381 	/* Found it - now remove it from the list of entries: */
2382 	desc->action = NULL;
2383 
2384 	desc->istate &= ~IRQS_NMI;
2385 
2386 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2387 
2388 	unregister_handler_proc(irq, action);
2389 
2390 	irq_chip_pm_put(&desc->irq_data);
2391 	module_put(desc->owner);
2392 	return action;
2393 
2394 bad:
2395 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2396 	return NULL;
2397 }
2398 
2399 /**
2400  *	remove_percpu_irq - free a per-cpu interrupt
2401  *	@irq: Interrupt line to free
2402  *	@act: irqaction for the interrupt
2403  *
2404  * Used to remove interrupts statically setup by the early boot process.
2405  */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2406 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2407 {
2408 	struct irq_desc *desc = irq_to_desc(irq);
2409 
2410 	if (desc && irq_settings_is_per_cpu_devid(desc))
2411 	    __free_percpu_irq(irq, act->percpu_dev_id);
2412 }
2413 
2414 /**
2415  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2416  *	@irq: Interrupt line to free
2417  *	@dev_id: Device identity to free
2418  *
2419  *	Remove a percpu interrupt handler. The handler is removed, but
2420  *	the interrupt line is not disabled. This must be done on each
2421  *	CPU before calling this function. The function does not return
2422  *	until any executing interrupts for this IRQ have completed.
2423  *
2424  *	This function must not be called from interrupt context.
2425  */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2426 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2427 {
2428 	struct irq_desc *desc = irq_to_desc(irq);
2429 
2430 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2431 		return;
2432 
2433 	chip_bus_lock(desc);
2434 	kfree(__free_percpu_irq(irq, dev_id));
2435 	chip_bus_sync_unlock(desc);
2436 }
2437 EXPORT_SYMBOL_GPL(free_percpu_irq);
2438 
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2439 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2440 {
2441 	struct irq_desc *desc = irq_to_desc(irq);
2442 
2443 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2444 		return;
2445 
2446 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2447 		return;
2448 
2449 	kfree(__free_percpu_irq(irq, dev_id));
2450 }
2451 
2452 /**
2453  *	setup_percpu_irq - setup a per-cpu interrupt
2454  *	@irq: Interrupt line to setup
2455  *	@act: irqaction for the interrupt
2456  *
2457  * Used to statically setup per-cpu interrupts in the early boot process.
2458  */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2459 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2460 {
2461 	struct irq_desc *desc = irq_to_desc(irq);
2462 	int retval;
2463 
2464 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2465 		return -EINVAL;
2466 
2467 	retval = irq_chip_pm_get(&desc->irq_data);
2468 	if (retval < 0)
2469 		return retval;
2470 
2471 	retval = __setup_irq(irq, desc, act);
2472 
2473 	if (retval)
2474 		irq_chip_pm_put(&desc->irq_data);
2475 
2476 	return retval;
2477 }
2478 
2479 /**
2480  *	__request_percpu_irq - allocate a percpu interrupt line
2481  *	@irq: Interrupt line to allocate
2482  *	@handler: Function to be called when the IRQ occurs.
2483  *	@flags: Interrupt type flags (IRQF_TIMER only)
2484  *	@devname: An ascii name for the claiming device
2485  *	@dev_id: A percpu cookie passed back to the handler function
2486  *
2487  *	This call allocates interrupt resources and enables the
2488  *	interrupt on the local CPU. If the interrupt is supposed to be
2489  *	enabled on other CPUs, it has to be done on each CPU using
2490  *	enable_percpu_irq().
2491  *
2492  *	Dev_id must be globally unique. It is a per-cpu variable, and
2493  *	the handler gets called with the interrupted CPU's instance of
2494  *	that variable.
2495  */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2496 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2497 			 unsigned long flags, const char *devname,
2498 			 void __percpu *dev_id)
2499 {
2500 	struct irqaction *action;
2501 	struct irq_desc *desc;
2502 	int retval;
2503 
2504 	if (!dev_id)
2505 		return -EINVAL;
2506 
2507 	desc = irq_to_desc(irq);
2508 	if (!desc || !irq_settings_can_request(desc) ||
2509 	    !irq_settings_is_per_cpu_devid(desc))
2510 		return -EINVAL;
2511 
2512 	if (flags && flags != IRQF_TIMER)
2513 		return -EINVAL;
2514 
2515 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2516 	if (!action)
2517 		return -ENOMEM;
2518 
2519 	action->handler = handler;
2520 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2521 	action->name = devname;
2522 	action->percpu_dev_id = dev_id;
2523 
2524 	retval = irq_chip_pm_get(&desc->irq_data);
2525 	if (retval < 0) {
2526 		kfree(action);
2527 		return retval;
2528 	}
2529 
2530 	retval = __setup_irq(irq, desc, action);
2531 
2532 	if (retval) {
2533 		irq_chip_pm_put(&desc->irq_data);
2534 		kfree(action);
2535 	}
2536 
2537 	return retval;
2538 }
2539 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2540 
2541 /**
2542  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2543  *	@irq: Interrupt line to allocate
2544  *	@handler: Function to be called when the IRQ occurs.
2545  *	@name: An ascii name for the claiming device
2546  *	@dev_id: A percpu cookie passed back to the handler function
2547  *
2548  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2549  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2550  *	being enabled on the same CPU by using enable_percpu_nmi().
2551  *
2552  *	Dev_id must be globally unique. It is a per-cpu variable, and
2553  *	the handler gets called with the interrupted CPU's instance of
2554  *	that variable.
2555  *
2556  *	Interrupt lines requested for NMI delivering should have auto enabling
2557  *	setting disabled.
2558  *
2559  *	If the interrupt line cannot be used to deliver NMIs, function
2560  *	will fail returning a negative value.
2561  */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2562 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2563 		       const char *name, void __percpu *dev_id)
2564 {
2565 	struct irqaction *action;
2566 	struct irq_desc *desc;
2567 	unsigned long flags;
2568 	int retval;
2569 
2570 	if (!handler)
2571 		return -EINVAL;
2572 
2573 	desc = irq_to_desc(irq);
2574 
2575 	if (!desc || !irq_settings_can_request(desc) ||
2576 	    !irq_settings_is_per_cpu_devid(desc) ||
2577 	    irq_settings_can_autoenable(desc) ||
2578 	    !irq_supports_nmi(desc))
2579 		return -EINVAL;
2580 
2581 	/* The line cannot already be NMI */
2582 	if (desc->istate & IRQS_NMI)
2583 		return -EINVAL;
2584 
2585 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2586 	if (!action)
2587 		return -ENOMEM;
2588 
2589 	action->handler = handler;
2590 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2591 		| IRQF_NOBALANCING;
2592 	action->name = name;
2593 	action->percpu_dev_id = dev_id;
2594 
2595 	retval = irq_chip_pm_get(&desc->irq_data);
2596 	if (retval < 0)
2597 		goto err_out;
2598 
2599 	retval = __setup_irq(irq, desc, action);
2600 	if (retval)
2601 		goto err_irq_setup;
2602 
2603 	raw_spin_lock_irqsave(&desc->lock, flags);
2604 	desc->istate |= IRQS_NMI;
2605 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2606 
2607 	return 0;
2608 
2609 err_irq_setup:
2610 	irq_chip_pm_put(&desc->irq_data);
2611 err_out:
2612 	kfree(action);
2613 
2614 	return retval;
2615 }
2616 
2617 /**
2618  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2619  *	@irq: Interrupt line to prepare for NMI delivery
2620  *
2621  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2622  *	before that interrupt line gets enabled with enable_percpu_nmi().
2623  *
2624  *	As a CPU local operation, this should be called from non-preemptible
2625  *	context.
2626  *
2627  *	If the interrupt line cannot be used to deliver NMIs, function
2628  *	will fail returning a negative value.
2629  */
prepare_percpu_nmi(unsigned int irq)2630 int prepare_percpu_nmi(unsigned int irq)
2631 {
2632 	unsigned long flags;
2633 	struct irq_desc *desc;
2634 	int ret = 0;
2635 
2636 	WARN_ON(preemptible());
2637 
2638 	desc = irq_get_desc_lock(irq, &flags,
2639 				 IRQ_GET_DESC_CHECK_PERCPU);
2640 	if (!desc)
2641 		return -EINVAL;
2642 
2643 	if (WARN(!(desc->istate & IRQS_NMI),
2644 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2645 		 irq)) {
2646 		ret = -EINVAL;
2647 		goto out;
2648 	}
2649 
2650 	ret = irq_nmi_setup(desc);
2651 	if (ret) {
2652 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2653 		goto out;
2654 	}
2655 
2656 out:
2657 	irq_put_desc_unlock(desc, flags);
2658 	return ret;
2659 }
2660 
2661 /**
2662  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2663  *	@irq: Interrupt line from which CPU local NMI configuration should be
2664  *	      removed
2665  *
2666  *	This call undoes the setup done by prepare_percpu_nmi().
2667  *
2668  *	IRQ line should not be enabled for the current CPU.
2669  *
2670  *	As a CPU local operation, this should be called from non-preemptible
2671  *	context.
2672  */
teardown_percpu_nmi(unsigned int irq)2673 void teardown_percpu_nmi(unsigned int irq)
2674 {
2675 	unsigned long flags;
2676 	struct irq_desc *desc;
2677 
2678 	WARN_ON(preemptible());
2679 
2680 	desc = irq_get_desc_lock(irq, &flags,
2681 				 IRQ_GET_DESC_CHECK_PERCPU);
2682 	if (!desc)
2683 		return;
2684 
2685 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2686 		goto out;
2687 
2688 	irq_nmi_teardown(desc);
2689 out:
2690 	irq_put_desc_unlock(desc, flags);
2691 }
2692 
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2693 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2694 			    bool *state)
2695 {
2696 	struct irq_chip *chip;
2697 	int err = -EINVAL;
2698 
2699 	do {
2700 		chip = irq_data_get_irq_chip(data);
2701 		if (WARN_ON_ONCE(!chip))
2702 			return -ENODEV;
2703 		if (chip->irq_get_irqchip_state)
2704 			break;
2705 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2706 		data = data->parent_data;
2707 #else
2708 		data = NULL;
2709 #endif
2710 	} while (data);
2711 
2712 	if (data)
2713 		err = chip->irq_get_irqchip_state(data, which, state);
2714 	return err;
2715 }
2716 
2717 /**
2718  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2719  *	@irq: Interrupt line that is forwarded to a VM
2720  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2721  *	@state: a pointer to a boolean where the state is to be storeed
2722  *
2723  *	This call snapshots the internal irqchip state of an
2724  *	interrupt, returning into @state the bit corresponding to
2725  *	stage @which
2726  *
2727  *	This function should be called with preemption disabled if the
2728  *	interrupt controller has per-cpu registers.
2729  */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2730 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2731 			  bool *state)
2732 {
2733 	struct irq_desc *desc;
2734 	struct irq_data *data;
2735 	unsigned long flags;
2736 	int err = -EINVAL;
2737 
2738 	desc = irq_get_desc_buslock(irq, &flags, 0);
2739 	if (!desc)
2740 		return err;
2741 
2742 	data = irq_desc_get_irq_data(desc);
2743 
2744 	err = __irq_get_irqchip_state(data, which, state);
2745 
2746 	irq_put_desc_busunlock(desc, flags);
2747 	return err;
2748 }
2749 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2750 
2751 /**
2752  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2753  *	@irq: Interrupt line that is forwarded to a VM
2754  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2755  *	@val: Value corresponding to @which
2756  *
2757  *	This call sets the internal irqchip state of an interrupt,
2758  *	depending on the value of @which.
2759  *
2760  *	This function should be called with preemption disabled if the
2761  *	interrupt controller has per-cpu registers.
2762  */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2763 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2764 			  bool val)
2765 {
2766 	struct irq_desc *desc;
2767 	struct irq_data *data;
2768 	struct irq_chip *chip;
2769 	unsigned long flags;
2770 	int err = -EINVAL;
2771 
2772 	desc = irq_get_desc_buslock(irq, &flags, 0);
2773 	if (!desc)
2774 		return err;
2775 
2776 	data = irq_desc_get_irq_data(desc);
2777 
2778 	do {
2779 		chip = irq_data_get_irq_chip(data);
2780 		if (WARN_ON_ONCE(!chip)) {
2781 			err = -ENODEV;
2782 			goto out_unlock;
2783 		}
2784 		if (chip->irq_set_irqchip_state)
2785 			break;
2786 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2787 		data = data->parent_data;
2788 #else
2789 		data = NULL;
2790 #endif
2791 	} while (data);
2792 
2793 	if (data)
2794 		err = chip->irq_set_irqchip_state(data, which, val);
2795 
2796 out_unlock:
2797 	irq_put_desc_busunlock(desc, flags);
2798 	return err;
2799 }
2800 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2801