1 /*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44
45 #include "c_can.h"
46
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN 11
49 #define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR BIT(8)
53
54 /* control register */
55 #define CONTROL_SWR BIT(15)
56 #define CONTROL_TEST BIT(7)
57 #define CONTROL_CCE BIT(6)
58 #define CONTROL_DISABLE_AR BIT(5)
59 #define CONTROL_ENABLE_AR (0 << 5)
60 #define CONTROL_EIE BIT(3)
61 #define CONTROL_SIE BIT(2)
62 #define CONTROL_IE BIT(1)
63 #define CONTROL_INIT BIT(0)
64
65 #define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
66
67 /* test register */
68 #define TEST_RX BIT(7)
69 #define TEST_TX1 BIT(6)
70 #define TEST_TX2 BIT(5)
71 #define TEST_LBACK BIT(4)
72 #define TEST_SILENT BIT(3)
73 #define TEST_BASIC BIT(2)
74
75 /* status register */
76 #define STATUS_PDA BIT(10)
77 #define STATUS_BOFF BIT(7)
78 #define STATUS_EWARN BIT(6)
79 #define STATUS_EPASS BIT(5)
80 #define STATUS_RXOK BIT(4)
81 #define STATUS_TXOK BIT(3)
82
83 /* error counter register */
84 #define ERR_CNT_TEC_MASK 0xff
85 #define ERR_CNT_TEC_SHIFT 0
86 #define ERR_CNT_REC_SHIFT 8
87 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
88 #define ERR_CNT_RP_SHIFT 15
89 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
90
91 /* bit-timing register */
92 #define BTR_BRP_MASK 0x3f
93 #define BTR_BRP_SHIFT 0
94 #define BTR_SJW_SHIFT 6
95 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
96 #define BTR_TSEG1_SHIFT 8
97 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
98 #define BTR_TSEG2_SHIFT 12
99 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
100
101 /* interrupt register */
102 #define INT_STS_PENDING 0x8000
103
104 /* brp extension register */
105 #define BRP_EXT_BRPE_MASK 0x0f
106 #define BRP_EXT_BRPE_SHIFT 0
107
108 /* IFx command request */
109 #define IF_COMR_BUSY BIT(15)
110
111 /* IFx command mask */
112 #define IF_COMM_WR BIT(7)
113 #define IF_COMM_MASK BIT(6)
114 #define IF_COMM_ARB BIT(5)
115 #define IF_COMM_CONTROL BIT(4)
116 #define IF_COMM_CLR_INT_PND BIT(3)
117 #define IF_COMM_TXRQST BIT(2)
118 #define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
119 #define IF_COMM_DATAA BIT(1)
120 #define IF_COMM_DATAB BIT(0)
121
122 /* TX buffer setup */
123 #define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
124 IF_COMM_TXRQST | \
125 IF_COMM_DATAA | IF_COMM_DATAB)
126
127 /* For the low buffers we clear the interrupt bit, but keep newdat */
128 #define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
129 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
130 IF_COMM_DATAA | IF_COMM_DATAB)
131
132 /* For the high buffers we clear the interrupt bit and newdat */
133 #define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
134
135
136 /* Receive setup of message objects */
137 #define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
138
139 /* Invalidation of message objects */
140 #define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
141
142 /* IFx arbitration */
143 #define IF_ARB_MSGVAL BIT(31)
144 #define IF_ARB_MSGXTD BIT(30)
145 #define IF_ARB_TRANSMIT BIT(29)
146
147 /* IFx message control */
148 #define IF_MCONT_NEWDAT BIT(15)
149 #define IF_MCONT_MSGLST BIT(14)
150 #define IF_MCONT_INTPND BIT(13)
151 #define IF_MCONT_UMASK BIT(12)
152 #define IF_MCONT_TXIE BIT(11)
153 #define IF_MCONT_RXIE BIT(10)
154 #define IF_MCONT_RMTEN BIT(9)
155 #define IF_MCONT_TXRQST BIT(8)
156 #define IF_MCONT_EOB BIT(7)
157 #define IF_MCONT_DLC_MASK 0xf
158
159 #define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
160 #define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
161
162 #define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
163
164 /*
165 * Use IF1 for RX and IF2 for TX
166 */
167 #define IF_RX 0
168 #define IF_TX 1
169
170 /* minimum timeout for checking BUSY status */
171 #define MIN_TIMEOUT_VALUE 6
172
173 /* Wait for ~1 sec for INIT bit */
174 #define INIT_WAIT_MS 1000
175
176 /* napi related */
177 #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
178
179 /* c_can lec values */
180 enum c_can_lec_type {
181 LEC_NO_ERROR = 0,
182 LEC_STUFF_ERROR,
183 LEC_FORM_ERROR,
184 LEC_ACK_ERROR,
185 LEC_BIT1_ERROR,
186 LEC_BIT0_ERROR,
187 LEC_CRC_ERROR,
188 LEC_UNUSED,
189 LEC_MASK = LEC_UNUSED,
190 };
191
192 /*
193 * c_can error types:
194 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
195 */
196 enum c_can_bus_error_types {
197 C_CAN_NO_ERROR = 0,
198 C_CAN_BUS_OFF,
199 C_CAN_ERROR_WARNING,
200 C_CAN_ERROR_PASSIVE,
201 };
202
203 static const struct can_bittiming_const c_can_bittiming_const = {
204 .name = KBUILD_MODNAME,
205 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
206 .tseg1_max = 16,
207 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
208 .tseg2_max = 8,
209 .sjw_max = 4,
210 .brp_min = 1,
211 .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
212 .brp_inc = 1,
213 };
214
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)215 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
216 {
217 if (priv->device)
218 pm_runtime_get_sync(priv->device);
219 }
220
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)221 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
222 {
223 if (priv->device)
224 pm_runtime_put_sync(priv->device);
225 }
226
c_can_reset_ram(const struct c_can_priv * priv,bool enable)227 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
228 {
229 if (priv->raminit)
230 priv->raminit(priv, enable);
231 }
232
c_can_irq_control(struct c_can_priv * priv,bool enable)233 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
234 {
235 u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
236
237 if (enable)
238 ctrl |= CONTROL_IRQMSK;
239
240 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
241 }
242
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)243 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
244 {
245 struct c_can_priv *priv = netdev_priv(dev);
246 int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
247
248 priv->write_reg32(priv, reg, (cmd << 16) | obj);
249
250 for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
251 if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
252 return;
253 udelay(1);
254 }
255 netdev_err(dev, "Updating object timed out\n");
256
257 }
258
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)259 static inline void c_can_object_get(struct net_device *dev, int iface,
260 u32 obj, u32 cmd)
261 {
262 c_can_obj_update(dev, iface, cmd, obj);
263 }
264
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)265 static inline void c_can_object_put(struct net_device *dev, int iface,
266 u32 obj, u32 cmd)
267 {
268 c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
269 }
270
271 /*
272 * Note: According to documentation clearing TXIE while MSGVAL is set
273 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
274 * load significantly.
275 */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)276 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
277 {
278 struct c_can_priv *priv = netdev_priv(dev);
279
280 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
281 c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
282 }
283
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)284 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
285 {
286 struct c_can_priv *priv = netdev_priv(dev);
287
288 priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
289 priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
290 c_can_inval_tx_object(dev, iface, obj);
291 }
292
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)293 static void c_can_setup_tx_object(struct net_device *dev, int iface,
294 struct can_frame *frame, int idx)
295 {
296 struct c_can_priv *priv = netdev_priv(dev);
297 u16 ctrl = IF_MCONT_TX | frame->can_dlc;
298 bool rtr = frame->can_id & CAN_RTR_FLAG;
299 u32 arb = IF_ARB_MSGVAL;
300 int i;
301
302 if (frame->can_id & CAN_EFF_FLAG) {
303 arb |= frame->can_id & CAN_EFF_MASK;
304 arb |= IF_ARB_MSGXTD;
305 } else {
306 arb |= (frame->can_id & CAN_SFF_MASK) << 18;
307 }
308
309 if (!rtr)
310 arb |= IF_ARB_TRANSMIT;
311
312 /*
313 * If we change the DIR bit, we need to invalidate the buffer
314 * first, i.e. clear the MSGVAL flag in the arbiter.
315 */
316 if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
317 u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
318
319 c_can_inval_msg_object(dev, iface, obj);
320 change_bit(idx, &priv->tx_dir);
321 }
322
323 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
324
325 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
326
327 if (priv->type == BOSCH_D_CAN) {
328 u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
329
330 for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
331 data = (u32)frame->data[i];
332 data |= (u32)frame->data[i + 1] << 8;
333 data |= (u32)frame->data[i + 2] << 16;
334 data |= (u32)frame->data[i + 3] << 24;
335 priv->write_reg32(priv, dreg, data);
336 }
337 } else {
338 for (i = 0; i < frame->can_dlc; i += 2) {
339 priv->write_reg(priv,
340 C_CAN_IFACE(DATA1_REG, iface) + i / 2,
341 frame->data[i] |
342 (frame->data[i + 1] << 8));
343 }
344 }
345 }
346
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)347 static int c_can_handle_lost_msg_obj(struct net_device *dev,
348 int iface, int objno, u32 ctrl)
349 {
350 struct net_device_stats *stats = &dev->stats;
351 struct c_can_priv *priv = netdev_priv(dev);
352 struct can_frame *frame;
353 struct sk_buff *skb;
354
355 ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
356 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
357 c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
358
359 stats->rx_errors++;
360 stats->rx_over_errors++;
361
362 /* create an error msg */
363 skb = alloc_can_err_skb(dev, &frame);
364 if (unlikely(!skb))
365 return 0;
366
367 frame->can_id |= CAN_ERR_CRTL;
368 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
369
370 netif_receive_skb(skb);
371 return 1;
372 }
373
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)374 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
375 {
376 struct net_device_stats *stats = &dev->stats;
377 struct c_can_priv *priv = netdev_priv(dev);
378 struct can_frame *frame;
379 struct sk_buff *skb;
380 u32 arb, data;
381
382 skb = alloc_can_skb(dev, &frame);
383 if (!skb) {
384 stats->rx_dropped++;
385 return -ENOMEM;
386 }
387
388 frame->can_dlc = get_can_dlc(ctrl & 0x0F);
389
390 arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
391
392 if (arb & IF_ARB_MSGXTD)
393 frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
394 else
395 frame->can_id = (arb >> 18) & CAN_SFF_MASK;
396
397 if (arb & IF_ARB_TRANSMIT) {
398 frame->can_id |= CAN_RTR_FLAG;
399 } else {
400 int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
401
402 if (priv->type == BOSCH_D_CAN) {
403 for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
404 data = priv->read_reg32(priv, dreg);
405 frame->data[i] = data;
406 frame->data[i + 1] = data >> 8;
407 frame->data[i + 2] = data >> 16;
408 frame->data[i + 3] = data >> 24;
409 }
410 } else {
411 for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
412 data = priv->read_reg(priv, dreg);
413 frame->data[i] = data;
414 frame->data[i + 1] = data >> 8;
415 }
416 }
417 }
418
419 stats->rx_packets++;
420 stats->rx_bytes += frame->can_dlc;
421
422 netif_receive_skb(skb);
423 return 0;
424 }
425
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)426 static void c_can_setup_receive_object(struct net_device *dev, int iface,
427 u32 obj, u32 mask, u32 id, u32 mcont)
428 {
429 struct c_can_priv *priv = netdev_priv(dev);
430
431 mask |= BIT(29);
432 priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
433
434 id |= IF_ARB_MSGVAL;
435 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
436
437 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
438 c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
439 }
440
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)441 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
442 struct net_device *dev)
443 {
444 struct can_frame *frame = (struct can_frame *)skb->data;
445 struct c_can_priv *priv = netdev_priv(dev);
446 u32 idx, obj;
447
448 if (can_dropped_invalid_skb(dev, skb))
449 return NETDEV_TX_OK;
450 /*
451 * This is not a FIFO. C/D_CAN sends out the buffers
452 * prioritized. The lowest buffer number wins.
453 */
454 idx = fls(atomic_read(&priv->tx_active));
455 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
456
457 /* If this is the last buffer, stop the xmit queue */
458 if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
459 netif_stop_queue(dev);
460 /*
461 * Store the message in the interface so we can call
462 * can_put_echo_skb(). We must do this before we enable
463 * transmit as we might race against do_tx().
464 */
465 c_can_setup_tx_object(dev, IF_TX, frame, idx);
466 priv->dlc[idx] = frame->can_dlc;
467 can_put_echo_skb(skb, dev, idx);
468
469 /* Update the active bits */
470 atomic_add((1 << idx), &priv->tx_active);
471 /* Start transmission */
472 c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
473
474 return NETDEV_TX_OK;
475 }
476
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)477 static int c_can_wait_for_ctrl_init(struct net_device *dev,
478 struct c_can_priv *priv, u32 init)
479 {
480 int retry = 0;
481
482 while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
483 udelay(10);
484 if (retry++ > 1000) {
485 netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
486 return -EIO;
487 }
488 }
489 return 0;
490 }
491
c_can_set_bittiming(struct net_device * dev)492 static int c_can_set_bittiming(struct net_device *dev)
493 {
494 unsigned int reg_btr, reg_brpe, ctrl_save;
495 u8 brp, brpe, sjw, tseg1, tseg2;
496 u32 ten_bit_brp;
497 struct c_can_priv *priv = netdev_priv(dev);
498 const struct can_bittiming *bt = &priv->can.bittiming;
499 int res;
500
501 /* c_can provides a 6-bit brp and 4-bit brpe fields */
502 ten_bit_brp = bt->brp - 1;
503 brp = ten_bit_brp & BTR_BRP_MASK;
504 brpe = ten_bit_brp >> 6;
505
506 sjw = bt->sjw - 1;
507 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
508 tseg2 = bt->phase_seg2 - 1;
509 reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
510 (tseg2 << BTR_TSEG2_SHIFT);
511 reg_brpe = brpe & BRP_EXT_BRPE_MASK;
512
513 netdev_info(dev,
514 "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
515
516 ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
517 ctrl_save &= ~CONTROL_INIT;
518 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
519 res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
520 if (res)
521 return res;
522
523 priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
524 priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
525 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
526
527 return c_can_wait_for_ctrl_init(dev, priv, 0);
528 }
529
530 /*
531 * Configure C_CAN message objects for Tx and Rx purposes:
532 * C_CAN provides a total of 32 message objects that can be configured
533 * either for Tx or Rx purposes. Here the first 16 message objects are used as
534 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
535 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
536 * See user guide document for further details on configuring message
537 * objects.
538 */
c_can_configure_msg_objects(struct net_device * dev)539 static void c_can_configure_msg_objects(struct net_device *dev)
540 {
541 int i;
542
543 /* first invalidate all message objects */
544 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
545 c_can_inval_msg_object(dev, IF_RX, i);
546
547 /* setup receive message objects */
548 for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
549 c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
550
551 c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
552 IF_MCONT_RCV_EOB);
553 }
554
c_can_software_reset(struct net_device * dev)555 static int c_can_software_reset(struct net_device *dev)
556 {
557 struct c_can_priv *priv = netdev_priv(dev);
558 int retry = 0;
559
560 if (priv->type != BOSCH_D_CAN)
561 return 0;
562
563 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
564 while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
565 msleep(20);
566 if (retry++ > 100) {
567 netdev_err(dev, "CCTRL: software reset failed\n");
568 return -EIO;
569 }
570 }
571
572 return 0;
573 }
574
575 /*
576 * Configure C_CAN chip:
577 * - enable/disable auto-retransmission
578 * - set operating mode
579 * - configure message objects
580 */
c_can_chip_config(struct net_device * dev)581 static int c_can_chip_config(struct net_device *dev)
582 {
583 struct c_can_priv *priv = netdev_priv(dev);
584 int err;
585
586 err = c_can_software_reset(dev);
587 if (err)
588 return err;
589
590 /* enable automatic retransmission */
591 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
592
593 if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
594 (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
595 /* loopback + silent mode : useful for hot self-test */
596 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
597 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
598 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
599 /* loopback mode : useful for self-test function */
600 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
601 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
602 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
603 /* silent mode : bus-monitoring mode */
604 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
605 priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
606 }
607
608 /* configure message objects */
609 c_can_configure_msg_objects(dev);
610
611 /* set a `lec` value so that we can check for updates later */
612 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
613
614 /* Clear all internal status */
615 atomic_set(&priv->tx_active, 0);
616 priv->rxmasked = 0;
617 priv->tx_dir = 0;
618
619 /* set bittiming params */
620 return c_can_set_bittiming(dev);
621 }
622
c_can_start(struct net_device * dev)623 static int c_can_start(struct net_device *dev)
624 {
625 struct c_can_priv *priv = netdev_priv(dev);
626 int err;
627 struct pinctrl *p;
628
629 /* basic c_can configuration */
630 err = c_can_chip_config(dev);
631 if (err)
632 return err;
633
634 /* Setup the command for new messages */
635 priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
636 IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
637
638 priv->can.state = CAN_STATE_ERROR_ACTIVE;
639
640 /* Attempt to use "active" if available else use "default" */
641 p = pinctrl_get_select(priv->device, "active");
642 if (!IS_ERR(p))
643 pinctrl_put(p);
644 else
645 pinctrl_pm_select_default_state(priv->device);
646
647 return 0;
648 }
649
c_can_stop(struct net_device * dev)650 static void c_can_stop(struct net_device *dev)
651 {
652 struct c_can_priv *priv = netdev_priv(dev);
653
654 c_can_irq_control(priv, false);
655
656 /* put ctrl to init on stop to end ongoing transmission */
657 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
658
659 /* deactivate pins */
660 pinctrl_pm_select_sleep_state(dev->dev.parent);
661 priv->can.state = CAN_STATE_STOPPED;
662 }
663
c_can_set_mode(struct net_device * dev,enum can_mode mode)664 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
665 {
666 struct c_can_priv *priv = netdev_priv(dev);
667 int err;
668
669 switch (mode) {
670 case CAN_MODE_START:
671 err = c_can_start(dev);
672 if (err)
673 return err;
674 netif_wake_queue(dev);
675 c_can_irq_control(priv, true);
676 break;
677 default:
678 return -EOPNOTSUPP;
679 }
680
681 return 0;
682 }
683
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)684 static int __c_can_get_berr_counter(const struct net_device *dev,
685 struct can_berr_counter *bec)
686 {
687 unsigned int reg_err_counter;
688 struct c_can_priv *priv = netdev_priv(dev);
689
690 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
691 bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
692 ERR_CNT_REC_SHIFT;
693 bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
694
695 return 0;
696 }
697
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)698 static int c_can_get_berr_counter(const struct net_device *dev,
699 struct can_berr_counter *bec)
700 {
701 struct c_can_priv *priv = netdev_priv(dev);
702 int err;
703
704 c_can_pm_runtime_get_sync(priv);
705 err = __c_can_get_berr_counter(dev, bec);
706 c_can_pm_runtime_put_sync(priv);
707
708 return err;
709 }
710
c_can_do_tx(struct net_device * dev)711 static void c_can_do_tx(struct net_device *dev)
712 {
713 struct c_can_priv *priv = netdev_priv(dev);
714 struct net_device_stats *stats = &dev->stats;
715 u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
716
717 clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
718
719 while ((idx = ffs(pend))) {
720 idx--;
721 pend &= ~(1 << idx);
722 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
723 c_can_inval_tx_object(dev, IF_RX, obj);
724 can_get_echo_skb(dev, idx);
725 bytes += priv->dlc[idx];
726 pkts++;
727 }
728
729 /* Clear the bits in the tx_active mask */
730 atomic_sub(clr, &priv->tx_active);
731
732 if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
733 netif_wake_queue(dev);
734
735 if (pkts) {
736 stats->tx_bytes += bytes;
737 stats->tx_packets += pkts;
738 can_led_event(dev, CAN_LED_EVENT_TX);
739 }
740 }
741
742 /*
743 * If we have a gap in the pending bits, that means we either
744 * raced with the hardware or failed to readout all upper
745 * objects in the last run due to quota limit.
746 */
c_can_adjust_pending(u32 pend)747 static u32 c_can_adjust_pending(u32 pend)
748 {
749 u32 weight, lasts;
750
751 if (pend == RECEIVE_OBJECT_BITS)
752 return pend;
753
754 /*
755 * If the last set bit is larger than the number of pending
756 * bits we have a gap.
757 */
758 weight = hweight32(pend);
759 lasts = fls(pend);
760
761 /* If the bits are linear, nothing to do */
762 if (lasts == weight)
763 return pend;
764
765 /*
766 * Find the first set bit after the gap. We walk backwards
767 * from the last set bit.
768 */
769 for (lasts--; pend & (1 << (lasts - 1)); lasts--);
770
771 return pend & ~((1 << lasts) - 1);
772 }
773
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)774 static inline void c_can_rx_object_get(struct net_device *dev,
775 struct c_can_priv *priv, u32 obj)
776 {
777 c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
778 }
779
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)780 static inline void c_can_rx_finalize(struct net_device *dev,
781 struct c_can_priv *priv, u32 obj)
782 {
783 if (priv->type != BOSCH_D_CAN)
784 c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
785 }
786
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)787 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
788 u32 pend, int quota)
789 {
790 u32 pkts = 0, ctrl, obj;
791
792 while ((obj = ffs(pend)) && quota > 0) {
793 pend &= ~BIT(obj - 1);
794
795 c_can_rx_object_get(dev, priv, obj);
796 ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
797
798 if (ctrl & IF_MCONT_MSGLST) {
799 int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
800
801 pkts += n;
802 quota -= n;
803 continue;
804 }
805
806 /*
807 * This really should not happen, but this covers some
808 * odd HW behaviour. Do not remove that unless you
809 * want to brick your machine.
810 */
811 if (!(ctrl & IF_MCONT_NEWDAT))
812 continue;
813
814 /* read the data from the message object */
815 c_can_read_msg_object(dev, IF_RX, ctrl);
816
817 c_can_rx_finalize(dev, priv, obj);
818
819 pkts++;
820 quota--;
821 }
822
823 return pkts;
824 }
825
c_can_get_pending(struct c_can_priv * priv)826 static inline u32 c_can_get_pending(struct c_can_priv *priv)
827 {
828 u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
829
830 return pend;
831 }
832
833 /*
834 * theory of operation:
835 *
836 * c_can core saves a received CAN message into the first free message
837 * object it finds free (starting with the lowest). Bits NEWDAT and
838 * INTPND are set for this message object indicating that a new message
839 * has arrived. To work-around this issue, we keep two groups of message
840 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
841 *
842 * We clear the newdat bit right away.
843 *
844 * This can result in packet reordering when the readout is slow.
845 */
c_can_do_rx_poll(struct net_device * dev,int quota)846 static int c_can_do_rx_poll(struct net_device *dev, int quota)
847 {
848 struct c_can_priv *priv = netdev_priv(dev);
849 u32 pkts = 0, pend = 0, toread, n;
850
851 /*
852 * It is faster to read only one 16bit register. This is only possible
853 * for a maximum number of 16 objects.
854 */
855 BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
856 "Implementation does not support more message objects than 16");
857
858 while (quota > 0) {
859 if (!pend) {
860 pend = c_can_get_pending(priv);
861 if (!pend)
862 break;
863 /*
864 * If the pending field has a gap, handle the
865 * bits above the gap first.
866 */
867 toread = c_can_adjust_pending(pend);
868 } else {
869 toread = pend;
870 }
871 /* Remove the bits from pend */
872 pend &= ~toread;
873 /* Read the objects */
874 n = c_can_read_objects(dev, priv, toread, quota);
875 pkts += n;
876 quota -= n;
877 }
878
879 if (pkts)
880 can_led_event(dev, CAN_LED_EVENT_RX);
881
882 return pkts;
883 }
884
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)885 static int c_can_handle_state_change(struct net_device *dev,
886 enum c_can_bus_error_types error_type)
887 {
888 unsigned int reg_err_counter;
889 unsigned int rx_err_passive;
890 struct c_can_priv *priv = netdev_priv(dev);
891 struct net_device_stats *stats = &dev->stats;
892 struct can_frame *cf;
893 struct sk_buff *skb;
894 struct can_berr_counter bec;
895
896 switch (error_type) {
897 case C_CAN_NO_ERROR:
898 priv->can.state = CAN_STATE_ERROR_ACTIVE;
899 break;
900 case C_CAN_ERROR_WARNING:
901 /* error warning state */
902 priv->can.can_stats.error_warning++;
903 priv->can.state = CAN_STATE_ERROR_WARNING;
904 break;
905 case C_CAN_ERROR_PASSIVE:
906 /* error passive state */
907 priv->can.can_stats.error_passive++;
908 priv->can.state = CAN_STATE_ERROR_PASSIVE;
909 break;
910 case C_CAN_BUS_OFF:
911 /* bus-off state */
912 priv->can.state = CAN_STATE_BUS_OFF;
913 priv->can.can_stats.bus_off++;
914 break;
915 default:
916 break;
917 }
918
919 /* propagate the error condition to the CAN stack */
920 skb = alloc_can_err_skb(dev, &cf);
921 if (unlikely(!skb))
922 return 0;
923
924 __c_can_get_berr_counter(dev, &bec);
925 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
926 rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
927 ERR_CNT_RP_SHIFT;
928
929 switch (error_type) {
930 case C_CAN_NO_ERROR:
931 /* error warning state */
932 cf->can_id |= CAN_ERR_CRTL;
933 cf->data[1] = CAN_ERR_CRTL_ACTIVE;
934 cf->data[6] = bec.txerr;
935 cf->data[7] = bec.rxerr;
936 break;
937 case C_CAN_ERROR_WARNING:
938 /* error warning state */
939 cf->can_id |= CAN_ERR_CRTL;
940 cf->data[1] = (bec.txerr > bec.rxerr) ?
941 CAN_ERR_CRTL_TX_WARNING :
942 CAN_ERR_CRTL_RX_WARNING;
943 cf->data[6] = bec.txerr;
944 cf->data[7] = bec.rxerr;
945
946 break;
947 case C_CAN_ERROR_PASSIVE:
948 /* error passive state */
949 cf->can_id |= CAN_ERR_CRTL;
950 if (rx_err_passive)
951 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
952 if (bec.txerr > 127)
953 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
954
955 cf->data[6] = bec.txerr;
956 cf->data[7] = bec.rxerr;
957 break;
958 case C_CAN_BUS_OFF:
959 /* bus-off state */
960 cf->can_id |= CAN_ERR_BUSOFF;
961 can_bus_off(dev);
962 break;
963 default:
964 break;
965 }
966
967 stats->rx_packets++;
968 stats->rx_bytes += cf->can_dlc;
969 netif_receive_skb(skb);
970
971 return 1;
972 }
973
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)974 static int c_can_handle_bus_err(struct net_device *dev,
975 enum c_can_lec_type lec_type)
976 {
977 struct c_can_priv *priv = netdev_priv(dev);
978 struct net_device_stats *stats = &dev->stats;
979 struct can_frame *cf;
980 struct sk_buff *skb;
981
982 /*
983 * early exit if no lec update or no error.
984 * no lec update means that no CAN bus event has been detected
985 * since CPU wrote 0x7 value to status reg.
986 */
987 if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
988 return 0;
989
990 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
991 return 0;
992
993 /* common for all type of bus errors */
994 priv->can.can_stats.bus_error++;
995 stats->rx_errors++;
996
997 /* propagate the error condition to the CAN stack */
998 skb = alloc_can_err_skb(dev, &cf);
999 if (unlikely(!skb))
1000 return 0;
1001
1002 /*
1003 * check for 'last error code' which tells us the
1004 * type of the last error to occur on the CAN bus
1005 */
1006 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1007
1008 switch (lec_type) {
1009 case LEC_STUFF_ERROR:
1010 netdev_dbg(dev, "stuff error\n");
1011 cf->data[2] |= CAN_ERR_PROT_STUFF;
1012 break;
1013 case LEC_FORM_ERROR:
1014 netdev_dbg(dev, "form error\n");
1015 cf->data[2] |= CAN_ERR_PROT_FORM;
1016 break;
1017 case LEC_ACK_ERROR:
1018 netdev_dbg(dev, "ack error\n");
1019 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1020 break;
1021 case LEC_BIT1_ERROR:
1022 netdev_dbg(dev, "bit1 error\n");
1023 cf->data[2] |= CAN_ERR_PROT_BIT1;
1024 break;
1025 case LEC_BIT0_ERROR:
1026 netdev_dbg(dev, "bit0 error\n");
1027 cf->data[2] |= CAN_ERR_PROT_BIT0;
1028 break;
1029 case LEC_CRC_ERROR:
1030 netdev_dbg(dev, "CRC error\n");
1031 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1032 break;
1033 default:
1034 break;
1035 }
1036
1037 stats->rx_packets++;
1038 stats->rx_bytes += cf->can_dlc;
1039 netif_receive_skb(skb);
1040 return 1;
1041 }
1042
c_can_poll(struct napi_struct * napi,int quota)1043 static int c_can_poll(struct napi_struct *napi, int quota)
1044 {
1045 struct net_device *dev = napi->dev;
1046 struct c_can_priv *priv = netdev_priv(dev);
1047 u16 curr, last = priv->last_status;
1048 int work_done = 0;
1049
1050 /* Only read the status register if a status interrupt was pending */
1051 if (atomic_xchg(&priv->sie_pending, 0)) {
1052 priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1053 /* Ack status on C_CAN. D_CAN is self clearing */
1054 if (priv->type != BOSCH_D_CAN)
1055 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1056 } else {
1057 /* no change detected ... */
1058 curr = last;
1059 }
1060
1061 /* handle state changes */
1062 if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1063 netdev_dbg(dev, "entered error warning state\n");
1064 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1065 }
1066
1067 if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1068 netdev_dbg(dev, "entered error passive state\n");
1069 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1070 }
1071
1072 if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1073 netdev_dbg(dev, "entered bus off state\n");
1074 work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1075 goto end;
1076 }
1077
1078 /* handle bus recovery events */
1079 if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1080 netdev_dbg(dev, "left bus off state\n");
1081 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1082 }
1083
1084 if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1085 netdev_dbg(dev, "left error passive state\n");
1086 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1087 }
1088
1089 if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1090 netdev_dbg(dev, "left error warning state\n");
1091 work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1092 }
1093
1094 /* handle lec errors on the bus */
1095 work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1096
1097 /* Handle Tx/Rx events. We do this unconditionally */
1098 work_done += c_can_do_rx_poll(dev, (quota - work_done));
1099 c_can_do_tx(dev);
1100
1101 end:
1102 if (work_done < quota) {
1103 napi_complete_done(napi, work_done);
1104 /* enable all IRQs if we are not in bus off state */
1105 if (priv->can.state != CAN_STATE_BUS_OFF)
1106 c_can_irq_control(priv, true);
1107 }
1108
1109 return work_done;
1110 }
1111
c_can_isr(int irq,void * dev_id)1112 static irqreturn_t c_can_isr(int irq, void *dev_id)
1113 {
1114 struct net_device *dev = (struct net_device *)dev_id;
1115 struct c_can_priv *priv = netdev_priv(dev);
1116 int reg_int;
1117
1118 reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1119 if (!reg_int)
1120 return IRQ_NONE;
1121
1122 /* save for later use */
1123 if (reg_int & INT_STS_PENDING)
1124 atomic_set(&priv->sie_pending, 1);
1125
1126 /* disable all interrupts and schedule the NAPI */
1127 c_can_irq_control(priv, false);
1128 napi_schedule(&priv->napi);
1129
1130 return IRQ_HANDLED;
1131 }
1132
c_can_open(struct net_device * dev)1133 static int c_can_open(struct net_device *dev)
1134 {
1135 int err;
1136 struct c_can_priv *priv = netdev_priv(dev);
1137
1138 c_can_pm_runtime_get_sync(priv);
1139 c_can_reset_ram(priv, true);
1140
1141 /* open the can device */
1142 err = open_candev(dev);
1143 if (err) {
1144 netdev_err(dev, "failed to open can device\n");
1145 goto exit_open_fail;
1146 }
1147
1148 /* register interrupt handler */
1149 err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1150 dev);
1151 if (err < 0) {
1152 netdev_err(dev, "failed to request interrupt\n");
1153 goto exit_irq_fail;
1154 }
1155
1156 /* start the c_can controller */
1157 err = c_can_start(dev);
1158 if (err)
1159 goto exit_start_fail;
1160
1161 can_led_event(dev, CAN_LED_EVENT_OPEN);
1162
1163 napi_enable(&priv->napi);
1164 /* enable status change, error and module interrupts */
1165 c_can_irq_control(priv, true);
1166 netif_start_queue(dev);
1167
1168 return 0;
1169
1170 exit_start_fail:
1171 free_irq(dev->irq, dev);
1172 exit_irq_fail:
1173 close_candev(dev);
1174 exit_open_fail:
1175 c_can_reset_ram(priv, false);
1176 c_can_pm_runtime_put_sync(priv);
1177 return err;
1178 }
1179
c_can_close(struct net_device * dev)1180 static int c_can_close(struct net_device *dev)
1181 {
1182 struct c_can_priv *priv = netdev_priv(dev);
1183
1184 netif_stop_queue(dev);
1185 napi_disable(&priv->napi);
1186 c_can_stop(dev);
1187 free_irq(dev->irq, dev);
1188 close_candev(dev);
1189
1190 c_can_reset_ram(priv, false);
1191 c_can_pm_runtime_put_sync(priv);
1192
1193 can_led_event(dev, CAN_LED_EVENT_STOP);
1194
1195 return 0;
1196 }
1197
alloc_c_can_dev(void)1198 struct net_device *alloc_c_can_dev(void)
1199 {
1200 struct net_device *dev;
1201 struct c_can_priv *priv;
1202
1203 dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1204 if (!dev)
1205 return NULL;
1206
1207 priv = netdev_priv(dev);
1208 netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1209
1210 priv->dev = dev;
1211 priv->can.bittiming_const = &c_can_bittiming_const;
1212 priv->can.do_set_mode = c_can_set_mode;
1213 priv->can.do_get_berr_counter = c_can_get_berr_counter;
1214 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1215 CAN_CTRLMODE_LISTENONLY |
1216 CAN_CTRLMODE_BERR_REPORTING;
1217
1218 return dev;
1219 }
1220 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1221
1222 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1223 int c_can_power_down(struct net_device *dev)
1224 {
1225 u32 val;
1226 unsigned long time_out;
1227 struct c_can_priv *priv = netdev_priv(dev);
1228
1229 if (!(dev->flags & IFF_UP))
1230 return 0;
1231
1232 WARN_ON(priv->type != BOSCH_D_CAN);
1233
1234 /* set PDR value so the device goes to power down mode */
1235 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1236 val |= CONTROL_EX_PDR;
1237 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1238
1239 /* Wait for the PDA bit to get set */
1240 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1241 while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1242 time_after(time_out, jiffies))
1243 cpu_relax();
1244
1245 if (time_after(jiffies, time_out))
1246 return -ETIMEDOUT;
1247
1248 c_can_stop(dev);
1249
1250 c_can_reset_ram(priv, false);
1251 c_can_pm_runtime_put_sync(priv);
1252
1253 return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(c_can_power_down);
1256
c_can_power_up(struct net_device * dev)1257 int c_can_power_up(struct net_device *dev)
1258 {
1259 u32 val;
1260 unsigned long time_out;
1261 struct c_can_priv *priv = netdev_priv(dev);
1262 int ret;
1263
1264 if (!(dev->flags & IFF_UP))
1265 return 0;
1266
1267 WARN_ON(priv->type != BOSCH_D_CAN);
1268
1269 c_can_pm_runtime_get_sync(priv);
1270 c_can_reset_ram(priv, true);
1271
1272 /* Clear PDR and INIT bits */
1273 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1274 val &= ~CONTROL_EX_PDR;
1275 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1276 val = priv->read_reg(priv, C_CAN_CTRL_REG);
1277 val &= ~CONTROL_INIT;
1278 priv->write_reg(priv, C_CAN_CTRL_REG, val);
1279
1280 /* Wait for the PDA bit to get clear */
1281 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1282 while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1283 time_after(time_out, jiffies))
1284 cpu_relax();
1285
1286 if (time_after(jiffies, time_out)) {
1287 ret = -ETIMEDOUT;
1288 goto err_out;
1289 }
1290
1291 ret = c_can_start(dev);
1292 if (ret)
1293 goto err_out;
1294
1295 c_can_irq_control(priv, true);
1296
1297 return 0;
1298
1299 err_out:
1300 c_can_reset_ram(priv, false);
1301 c_can_pm_runtime_put_sync(priv);
1302
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(c_can_power_up);
1306 #endif
1307
free_c_can_dev(struct net_device * dev)1308 void free_c_can_dev(struct net_device *dev)
1309 {
1310 struct c_can_priv *priv = netdev_priv(dev);
1311
1312 netif_napi_del(&priv->napi);
1313 free_candev(dev);
1314 }
1315 EXPORT_SYMBOL_GPL(free_c_can_dev);
1316
1317 static const struct net_device_ops c_can_netdev_ops = {
1318 .ndo_open = c_can_open,
1319 .ndo_stop = c_can_close,
1320 .ndo_start_xmit = c_can_start_xmit,
1321 .ndo_change_mtu = can_change_mtu,
1322 };
1323
register_c_can_dev(struct net_device * dev)1324 int register_c_can_dev(struct net_device *dev)
1325 {
1326 int err;
1327
1328 /* Deactivate pins to prevent DRA7 DCAN IP from being
1329 * stuck in transition when module is disabled.
1330 * Pins are activated in c_can_start() and deactivated
1331 * in c_can_stop()
1332 */
1333 pinctrl_pm_select_sleep_state(dev->dev.parent);
1334
1335 dev->flags |= IFF_ECHO; /* we support local echo */
1336 dev->netdev_ops = &c_can_netdev_ops;
1337
1338 err = register_candev(dev);
1339 if (!err)
1340 devm_can_led_init(dev);
1341 return err;
1342 }
1343 EXPORT_SYMBOL_GPL(register_c_can_dev);
1344
unregister_c_can_dev(struct net_device * dev)1345 void unregister_c_can_dev(struct net_device *dev)
1346 {
1347 unregister_candev(dev);
1348 }
1349 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1350
1351 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1352 MODULE_LICENSE("GPL v2");
1353 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1354