• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * CAN bus driver for Bosch C_CAN controller
3  *
4  * Copyright (C) 2010 ST Microelectronics
5  * Bhupesh Sharma <bhupesh.sharma@st.com>
6  *
7  * Borrowed heavily from the C_CAN driver originally written by:
8  * Copyright (C) 2007
9  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10  * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11  *
12  * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13  * written by:
14  * Copyright
15  * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16  * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17  *
18  * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19  * Bosch C_CAN user manual can be obtained from:
20  * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21  * users_manual_c_can.pdf
22  *
23  * This file is licensed under the terms of the GNU General Public
24  * License version 2. This program is licensed "as is" without any
25  * warranty of any kind, whether express or implied.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39 
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44 
45 #include "c_can.h"
46 
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN		11
49 #define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50 
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR		BIT(8)
53 
54 /* control register */
55 #define CONTROL_SWR		BIT(15)
56 #define CONTROL_TEST		BIT(7)
57 #define CONTROL_CCE		BIT(6)
58 #define CONTROL_DISABLE_AR	BIT(5)
59 #define CONTROL_ENABLE_AR	(0 << 5)
60 #define CONTROL_EIE		BIT(3)
61 #define CONTROL_SIE		BIT(2)
62 #define CONTROL_IE		BIT(1)
63 #define CONTROL_INIT		BIT(0)
64 
65 #define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
66 
67 /* test register */
68 #define TEST_RX			BIT(7)
69 #define TEST_TX1		BIT(6)
70 #define TEST_TX2		BIT(5)
71 #define TEST_LBACK		BIT(4)
72 #define TEST_SILENT		BIT(3)
73 #define TEST_BASIC		BIT(2)
74 
75 /* status register */
76 #define STATUS_PDA		BIT(10)
77 #define STATUS_BOFF		BIT(7)
78 #define STATUS_EWARN		BIT(6)
79 #define STATUS_EPASS		BIT(5)
80 #define STATUS_RXOK		BIT(4)
81 #define STATUS_TXOK		BIT(3)
82 
83 /* error counter register */
84 #define ERR_CNT_TEC_MASK	0xff
85 #define ERR_CNT_TEC_SHIFT	0
86 #define ERR_CNT_REC_SHIFT	8
87 #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
88 #define ERR_CNT_RP_SHIFT	15
89 #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
90 
91 /* bit-timing register */
92 #define BTR_BRP_MASK		0x3f
93 #define BTR_BRP_SHIFT		0
94 #define BTR_SJW_SHIFT		6
95 #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
96 #define BTR_TSEG1_SHIFT		8
97 #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
98 #define BTR_TSEG2_SHIFT		12
99 #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
100 
101 /* interrupt register */
102 #define INT_STS_PENDING		0x8000
103 
104 /* brp extension register */
105 #define BRP_EXT_BRPE_MASK	0x0f
106 #define BRP_EXT_BRPE_SHIFT	0
107 
108 /* IFx command request */
109 #define IF_COMR_BUSY		BIT(15)
110 
111 /* IFx command mask */
112 #define IF_COMM_WR		BIT(7)
113 #define IF_COMM_MASK		BIT(6)
114 #define IF_COMM_ARB		BIT(5)
115 #define IF_COMM_CONTROL		BIT(4)
116 #define IF_COMM_CLR_INT_PND	BIT(3)
117 #define IF_COMM_TXRQST		BIT(2)
118 #define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
119 #define IF_COMM_DATAA		BIT(1)
120 #define IF_COMM_DATAB		BIT(0)
121 
122 /* TX buffer setup */
123 #define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
124 				 IF_COMM_TXRQST |		 \
125 				 IF_COMM_DATAA | IF_COMM_DATAB)
126 
127 /* For the low buffers we clear the interrupt bit, but keep newdat */
128 #define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
129 				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
130 				 IF_COMM_DATAA | IF_COMM_DATAB)
131 
132 /* For the high buffers we clear the interrupt bit and newdat */
133 #define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
134 
135 
136 /* Receive setup of message objects */
137 #define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
138 
139 /* Invalidation of message objects */
140 #define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
141 
142 /* IFx arbitration */
143 #define IF_ARB_MSGVAL		BIT(31)
144 #define IF_ARB_MSGXTD		BIT(30)
145 #define IF_ARB_TRANSMIT		BIT(29)
146 
147 /* IFx message control */
148 #define IF_MCONT_NEWDAT		BIT(15)
149 #define IF_MCONT_MSGLST		BIT(14)
150 #define IF_MCONT_INTPND		BIT(13)
151 #define IF_MCONT_UMASK		BIT(12)
152 #define IF_MCONT_TXIE		BIT(11)
153 #define IF_MCONT_RXIE		BIT(10)
154 #define IF_MCONT_RMTEN		BIT(9)
155 #define IF_MCONT_TXRQST		BIT(8)
156 #define IF_MCONT_EOB		BIT(7)
157 #define IF_MCONT_DLC_MASK	0xf
158 
159 #define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
160 #define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
161 
162 #define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
163 
164 /*
165  * Use IF1 for RX and IF2 for TX
166  */
167 #define IF_RX			0
168 #define IF_TX			1
169 
170 /* minimum timeout for checking BUSY status */
171 #define MIN_TIMEOUT_VALUE	6
172 
173 /* Wait for ~1 sec for INIT bit */
174 #define INIT_WAIT_MS		1000
175 
176 /* napi related */
177 #define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
178 
179 /* c_can lec values */
180 enum c_can_lec_type {
181 	LEC_NO_ERROR = 0,
182 	LEC_STUFF_ERROR,
183 	LEC_FORM_ERROR,
184 	LEC_ACK_ERROR,
185 	LEC_BIT1_ERROR,
186 	LEC_BIT0_ERROR,
187 	LEC_CRC_ERROR,
188 	LEC_UNUSED,
189 	LEC_MASK = LEC_UNUSED,
190 };
191 
192 /*
193  * c_can error types:
194  * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
195  */
196 enum c_can_bus_error_types {
197 	C_CAN_NO_ERROR = 0,
198 	C_CAN_BUS_OFF,
199 	C_CAN_ERROR_WARNING,
200 	C_CAN_ERROR_PASSIVE,
201 };
202 
203 static const struct can_bittiming_const c_can_bittiming_const = {
204 	.name = KBUILD_MODNAME,
205 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
206 	.tseg1_max = 16,
207 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
208 	.tseg2_max = 8,
209 	.sjw_max = 4,
210 	.brp_min = 1,
211 	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
212 	.brp_inc = 1,
213 };
214 
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)215 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
216 {
217 	if (priv->device)
218 		pm_runtime_get_sync(priv->device);
219 }
220 
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)221 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
222 {
223 	if (priv->device)
224 		pm_runtime_put_sync(priv->device);
225 }
226 
c_can_reset_ram(const struct c_can_priv * priv,bool enable)227 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
228 {
229 	if (priv->raminit)
230 		priv->raminit(priv, enable);
231 }
232 
c_can_irq_control(struct c_can_priv * priv,bool enable)233 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
234 {
235 	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
236 
237 	if (enable)
238 		ctrl |= CONTROL_IRQMSK;
239 
240 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
241 }
242 
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)243 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
244 {
245 	struct c_can_priv *priv = netdev_priv(dev);
246 	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
247 
248 	priv->write_reg32(priv, reg, (cmd << 16) | obj);
249 
250 	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
251 		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
252 			return;
253 		udelay(1);
254 	}
255 	netdev_err(dev, "Updating object timed out\n");
256 
257 }
258 
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)259 static inline void c_can_object_get(struct net_device *dev, int iface,
260 				    u32 obj, u32 cmd)
261 {
262 	c_can_obj_update(dev, iface, cmd, obj);
263 }
264 
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)265 static inline void c_can_object_put(struct net_device *dev, int iface,
266 				    u32 obj, u32 cmd)
267 {
268 	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
269 }
270 
271 /*
272  * Note: According to documentation clearing TXIE while MSGVAL is set
273  * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
274  * load significantly.
275  */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)276 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
277 {
278 	struct c_can_priv *priv = netdev_priv(dev);
279 
280 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
281 	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
282 }
283 
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)284 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
285 {
286 	struct c_can_priv *priv = netdev_priv(dev);
287 
288 	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
289 	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
290 	c_can_inval_tx_object(dev, iface, obj);
291 }
292 
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)293 static void c_can_setup_tx_object(struct net_device *dev, int iface,
294 				  struct can_frame *frame, int idx)
295 {
296 	struct c_can_priv *priv = netdev_priv(dev);
297 	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
298 	bool rtr = frame->can_id & CAN_RTR_FLAG;
299 	u32 arb = IF_ARB_MSGVAL;
300 	int i;
301 
302 	if (frame->can_id & CAN_EFF_FLAG) {
303 		arb |= frame->can_id & CAN_EFF_MASK;
304 		arb |= IF_ARB_MSGXTD;
305 	} else {
306 		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
307 	}
308 
309 	if (!rtr)
310 		arb |= IF_ARB_TRANSMIT;
311 
312 	/*
313 	 * If we change the DIR bit, we need to invalidate the buffer
314 	 * first, i.e. clear the MSGVAL flag in the arbiter.
315 	 */
316 	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
317 		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
318 
319 		c_can_inval_msg_object(dev, iface, obj);
320 		change_bit(idx, &priv->tx_dir);
321 	}
322 
323 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
324 
325 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
326 
327 	if (priv->type == BOSCH_D_CAN) {
328 		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
329 
330 		for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
331 			data = (u32)frame->data[i];
332 			data |= (u32)frame->data[i + 1] << 8;
333 			data |= (u32)frame->data[i + 2] << 16;
334 			data |= (u32)frame->data[i + 3] << 24;
335 			priv->write_reg32(priv, dreg, data);
336 		}
337 	} else {
338 		for (i = 0; i < frame->can_dlc; i += 2) {
339 			priv->write_reg(priv,
340 					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
341 					frame->data[i] |
342 					(frame->data[i + 1] << 8));
343 		}
344 	}
345 }
346 
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)347 static int c_can_handle_lost_msg_obj(struct net_device *dev,
348 				     int iface, int objno, u32 ctrl)
349 {
350 	struct net_device_stats *stats = &dev->stats;
351 	struct c_can_priv *priv = netdev_priv(dev);
352 	struct can_frame *frame;
353 	struct sk_buff *skb;
354 
355 	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
356 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
357 	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
358 
359 	stats->rx_errors++;
360 	stats->rx_over_errors++;
361 
362 	/* create an error msg */
363 	skb = alloc_can_err_skb(dev, &frame);
364 	if (unlikely(!skb))
365 		return 0;
366 
367 	frame->can_id |= CAN_ERR_CRTL;
368 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
369 
370 	netif_receive_skb(skb);
371 	return 1;
372 }
373 
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)374 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
375 {
376 	struct net_device_stats *stats = &dev->stats;
377 	struct c_can_priv *priv = netdev_priv(dev);
378 	struct can_frame *frame;
379 	struct sk_buff *skb;
380 	u32 arb, data;
381 
382 	skb = alloc_can_skb(dev, &frame);
383 	if (!skb) {
384 		stats->rx_dropped++;
385 		return -ENOMEM;
386 	}
387 
388 	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
389 
390 	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
391 
392 	if (arb & IF_ARB_MSGXTD)
393 		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
394 	else
395 		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
396 
397 	if (arb & IF_ARB_TRANSMIT) {
398 		frame->can_id |= CAN_RTR_FLAG;
399 	} else {
400 		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
401 
402 		if (priv->type == BOSCH_D_CAN) {
403 			for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
404 				data = priv->read_reg32(priv, dreg);
405 				frame->data[i] = data;
406 				frame->data[i + 1] = data >> 8;
407 				frame->data[i + 2] = data >> 16;
408 				frame->data[i + 3] = data >> 24;
409 			}
410 		} else {
411 			for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
412 				data = priv->read_reg(priv, dreg);
413 				frame->data[i] = data;
414 				frame->data[i + 1] = data >> 8;
415 			}
416 		}
417 	}
418 
419 	stats->rx_packets++;
420 	stats->rx_bytes += frame->can_dlc;
421 
422 	netif_receive_skb(skb);
423 	return 0;
424 }
425 
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)426 static void c_can_setup_receive_object(struct net_device *dev, int iface,
427 				       u32 obj, u32 mask, u32 id, u32 mcont)
428 {
429 	struct c_can_priv *priv = netdev_priv(dev);
430 
431 	mask |= BIT(29);
432 	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
433 
434 	id |= IF_ARB_MSGVAL;
435 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
436 
437 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
438 	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
439 }
440 
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)441 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
442 				    struct net_device *dev)
443 {
444 	struct can_frame *frame = (struct can_frame *)skb->data;
445 	struct c_can_priv *priv = netdev_priv(dev);
446 	u32 idx, obj;
447 
448 	if (can_dropped_invalid_skb(dev, skb))
449 		return NETDEV_TX_OK;
450 	/*
451 	 * This is not a FIFO. C/D_CAN sends out the buffers
452 	 * prioritized. The lowest buffer number wins.
453 	 */
454 	idx = fls(atomic_read(&priv->tx_active));
455 	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
456 
457 	/* If this is the last buffer, stop the xmit queue */
458 	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
459 		netif_stop_queue(dev);
460 	/*
461 	 * Store the message in the interface so we can call
462 	 * can_put_echo_skb(). We must do this before we enable
463 	 * transmit as we might race against do_tx().
464 	 */
465 	c_can_setup_tx_object(dev, IF_TX, frame, idx);
466 	priv->dlc[idx] = frame->can_dlc;
467 	can_put_echo_skb(skb, dev, idx);
468 
469 	/* Update the active bits */
470 	atomic_add((1 << idx), &priv->tx_active);
471 	/* Start transmission */
472 	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
473 
474 	return NETDEV_TX_OK;
475 }
476 
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)477 static int c_can_wait_for_ctrl_init(struct net_device *dev,
478 				    struct c_can_priv *priv, u32 init)
479 {
480 	int retry = 0;
481 
482 	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
483 		udelay(10);
484 		if (retry++ > 1000) {
485 			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
486 			return -EIO;
487 		}
488 	}
489 	return 0;
490 }
491 
c_can_set_bittiming(struct net_device * dev)492 static int c_can_set_bittiming(struct net_device *dev)
493 {
494 	unsigned int reg_btr, reg_brpe, ctrl_save;
495 	u8 brp, brpe, sjw, tseg1, tseg2;
496 	u32 ten_bit_brp;
497 	struct c_can_priv *priv = netdev_priv(dev);
498 	const struct can_bittiming *bt = &priv->can.bittiming;
499 	int res;
500 
501 	/* c_can provides a 6-bit brp and 4-bit brpe fields */
502 	ten_bit_brp = bt->brp - 1;
503 	brp = ten_bit_brp & BTR_BRP_MASK;
504 	brpe = ten_bit_brp >> 6;
505 
506 	sjw = bt->sjw - 1;
507 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
508 	tseg2 = bt->phase_seg2 - 1;
509 	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
510 			(tseg2 << BTR_TSEG2_SHIFT);
511 	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
512 
513 	netdev_info(dev,
514 		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
515 
516 	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
517 	ctrl_save &= ~CONTROL_INIT;
518 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
519 	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
520 	if (res)
521 		return res;
522 
523 	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
524 	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
525 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
526 
527 	return c_can_wait_for_ctrl_init(dev, priv, 0);
528 }
529 
530 /*
531  * Configure C_CAN message objects for Tx and Rx purposes:
532  * C_CAN provides a total of 32 message objects that can be configured
533  * either for Tx or Rx purposes. Here the first 16 message objects are used as
534  * a reception FIFO. The end of reception FIFO is signified by the EoB bit
535  * being SET. The remaining 16 message objects are kept aside for Tx purposes.
536  * See user guide document for further details on configuring message
537  * objects.
538  */
c_can_configure_msg_objects(struct net_device * dev)539 static void c_can_configure_msg_objects(struct net_device *dev)
540 {
541 	int i;
542 
543 	/* first invalidate all message objects */
544 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
545 		c_can_inval_msg_object(dev, IF_RX, i);
546 
547 	/* setup receive message objects */
548 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
549 		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
550 
551 	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
552 				   IF_MCONT_RCV_EOB);
553 }
554 
c_can_software_reset(struct net_device * dev)555 static int c_can_software_reset(struct net_device *dev)
556 {
557 	struct c_can_priv *priv = netdev_priv(dev);
558 	int retry = 0;
559 
560 	if (priv->type != BOSCH_D_CAN)
561 		return 0;
562 
563 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
564 	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
565 		msleep(20);
566 		if (retry++ > 100) {
567 			netdev_err(dev, "CCTRL: software reset failed\n");
568 			return -EIO;
569 		}
570 	}
571 
572 	return 0;
573 }
574 
575 /*
576  * Configure C_CAN chip:
577  * - enable/disable auto-retransmission
578  * - set operating mode
579  * - configure message objects
580  */
c_can_chip_config(struct net_device * dev)581 static int c_can_chip_config(struct net_device *dev)
582 {
583 	struct c_can_priv *priv = netdev_priv(dev);
584 	int err;
585 
586 	err = c_can_software_reset(dev);
587 	if (err)
588 		return err;
589 
590 	/* enable automatic retransmission */
591 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
592 
593 	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
594 	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
595 		/* loopback + silent mode : useful for hot self-test */
596 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
597 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
598 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
599 		/* loopback mode : useful for self-test function */
600 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
601 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
602 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
603 		/* silent mode : bus-monitoring mode */
604 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
605 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
606 	}
607 
608 	/* configure message objects */
609 	c_can_configure_msg_objects(dev);
610 
611 	/* set a `lec` value so that we can check for updates later */
612 	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
613 
614 	/* Clear all internal status */
615 	atomic_set(&priv->tx_active, 0);
616 	priv->rxmasked = 0;
617 	priv->tx_dir = 0;
618 
619 	/* set bittiming params */
620 	return c_can_set_bittiming(dev);
621 }
622 
c_can_start(struct net_device * dev)623 static int c_can_start(struct net_device *dev)
624 {
625 	struct c_can_priv *priv = netdev_priv(dev);
626 	int err;
627 	struct pinctrl *p;
628 
629 	/* basic c_can configuration */
630 	err = c_can_chip_config(dev);
631 	if (err)
632 		return err;
633 
634 	/* Setup the command for new messages */
635 	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
636 		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
637 
638 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
639 
640 	/* Attempt to use "active" if available else use "default" */
641 	p = pinctrl_get_select(priv->device, "active");
642 	if (!IS_ERR(p))
643 		pinctrl_put(p);
644 	else
645 		pinctrl_pm_select_default_state(priv->device);
646 
647 	return 0;
648 }
649 
c_can_stop(struct net_device * dev)650 static void c_can_stop(struct net_device *dev)
651 {
652 	struct c_can_priv *priv = netdev_priv(dev);
653 
654 	c_can_irq_control(priv, false);
655 
656 	/* put ctrl to init on stop to end ongoing transmission */
657 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
658 
659 	/* deactivate pins */
660 	pinctrl_pm_select_sleep_state(dev->dev.parent);
661 	priv->can.state = CAN_STATE_STOPPED;
662 }
663 
c_can_set_mode(struct net_device * dev,enum can_mode mode)664 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
665 {
666 	struct c_can_priv *priv = netdev_priv(dev);
667 	int err;
668 
669 	switch (mode) {
670 	case CAN_MODE_START:
671 		err = c_can_start(dev);
672 		if (err)
673 			return err;
674 		netif_wake_queue(dev);
675 		c_can_irq_control(priv, true);
676 		break;
677 	default:
678 		return -EOPNOTSUPP;
679 	}
680 
681 	return 0;
682 }
683 
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)684 static int __c_can_get_berr_counter(const struct net_device *dev,
685 				    struct can_berr_counter *bec)
686 {
687 	unsigned int reg_err_counter;
688 	struct c_can_priv *priv = netdev_priv(dev);
689 
690 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
691 	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
692 				ERR_CNT_REC_SHIFT;
693 	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
694 
695 	return 0;
696 }
697 
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)698 static int c_can_get_berr_counter(const struct net_device *dev,
699 				  struct can_berr_counter *bec)
700 {
701 	struct c_can_priv *priv = netdev_priv(dev);
702 	int err;
703 
704 	c_can_pm_runtime_get_sync(priv);
705 	err = __c_can_get_berr_counter(dev, bec);
706 	c_can_pm_runtime_put_sync(priv);
707 
708 	return err;
709 }
710 
c_can_do_tx(struct net_device * dev)711 static void c_can_do_tx(struct net_device *dev)
712 {
713 	struct c_can_priv *priv = netdev_priv(dev);
714 	struct net_device_stats *stats = &dev->stats;
715 	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
716 
717 	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
718 
719 	while ((idx = ffs(pend))) {
720 		idx--;
721 		pend &= ~(1 << idx);
722 		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
723 		c_can_inval_tx_object(dev, IF_RX, obj);
724 		can_get_echo_skb(dev, idx);
725 		bytes += priv->dlc[idx];
726 		pkts++;
727 	}
728 
729 	/* Clear the bits in the tx_active mask */
730 	atomic_sub(clr, &priv->tx_active);
731 
732 	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
733 		netif_wake_queue(dev);
734 
735 	if (pkts) {
736 		stats->tx_bytes += bytes;
737 		stats->tx_packets += pkts;
738 		can_led_event(dev, CAN_LED_EVENT_TX);
739 	}
740 }
741 
742 /*
743  * If we have a gap in the pending bits, that means we either
744  * raced with the hardware or failed to readout all upper
745  * objects in the last run due to quota limit.
746  */
c_can_adjust_pending(u32 pend)747 static u32 c_can_adjust_pending(u32 pend)
748 {
749 	u32 weight, lasts;
750 
751 	if (pend == RECEIVE_OBJECT_BITS)
752 		return pend;
753 
754 	/*
755 	 * If the last set bit is larger than the number of pending
756 	 * bits we have a gap.
757 	 */
758 	weight = hweight32(pend);
759 	lasts = fls(pend);
760 
761 	/* If the bits are linear, nothing to do */
762 	if (lasts == weight)
763 		return pend;
764 
765 	/*
766 	 * Find the first set bit after the gap. We walk backwards
767 	 * from the last set bit.
768 	 */
769 	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
770 
771 	return pend & ~((1 << lasts) - 1);
772 }
773 
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)774 static inline void c_can_rx_object_get(struct net_device *dev,
775 				       struct c_can_priv *priv, u32 obj)
776 {
777 		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
778 }
779 
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)780 static inline void c_can_rx_finalize(struct net_device *dev,
781 				     struct c_can_priv *priv, u32 obj)
782 {
783 	if (priv->type != BOSCH_D_CAN)
784 		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
785 }
786 
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)787 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
788 			      u32 pend, int quota)
789 {
790 	u32 pkts = 0, ctrl, obj;
791 
792 	while ((obj = ffs(pend)) && quota > 0) {
793 		pend &= ~BIT(obj - 1);
794 
795 		c_can_rx_object_get(dev, priv, obj);
796 		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
797 
798 		if (ctrl & IF_MCONT_MSGLST) {
799 			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
800 
801 			pkts += n;
802 			quota -= n;
803 			continue;
804 		}
805 
806 		/*
807 		 * This really should not happen, but this covers some
808 		 * odd HW behaviour. Do not remove that unless you
809 		 * want to brick your machine.
810 		 */
811 		if (!(ctrl & IF_MCONT_NEWDAT))
812 			continue;
813 
814 		/* read the data from the message object */
815 		c_can_read_msg_object(dev, IF_RX, ctrl);
816 
817 		c_can_rx_finalize(dev, priv, obj);
818 
819 		pkts++;
820 		quota--;
821 	}
822 
823 	return pkts;
824 }
825 
c_can_get_pending(struct c_can_priv * priv)826 static inline u32 c_can_get_pending(struct c_can_priv *priv)
827 {
828 	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
829 
830 	return pend;
831 }
832 
833 /*
834  * theory of operation:
835  *
836  * c_can core saves a received CAN message into the first free message
837  * object it finds free (starting with the lowest). Bits NEWDAT and
838  * INTPND are set for this message object indicating that a new message
839  * has arrived. To work-around this issue, we keep two groups of message
840  * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
841  *
842  * We clear the newdat bit right away.
843  *
844  * This can result in packet reordering when the readout is slow.
845  */
c_can_do_rx_poll(struct net_device * dev,int quota)846 static int c_can_do_rx_poll(struct net_device *dev, int quota)
847 {
848 	struct c_can_priv *priv = netdev_priv(dev);
849 	u32 pkts = 0, pend = 0, toread, n;
850 
851 	/*
852 	 * It is faster to read only one 16bit register. This is only possible
853 	 * for a maximum number of 16 objects.
854 	 */
855 	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
856 			"Implementation does not support more message objects than 16");
857 
858 	while (quota > 0) {
859 		if (!pend) {
860 			pend = c_can_get_pending(priv);
861 			if (!pend)
862 				break;
863 			/*
864 			 * If the pending field has a gap, handle the
865 			 * bits above the gap first.
866 			 */
867 			toread = c_can_adjust_pending(pend);
868 		} else {
869 			toread = pend;
870 		}
871 		/* Remove the bits from pend */
872 		pend &= ~toread;
873 		/* Read the objects */
874 		n = c_can_read_objects(dev, priv, toread, quota);
875 		pkts += n;
876 		quota -= n;
877 	}
878 
879 	if (pkts)
880 		can_led_event(dev, CAN_LED_EVENT_RX);
881 
882 	return pkts;
883 }
884 
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)885 static int c_can_handle_state_change(struct net_device *dev,
886 				enum c_can_bus_error_types error_type)
887 {
888 	unsigned int reg_err_counter;
889 	unsigned int rx_err_passive;
890 	struct c_can_priv *priv = netdev_priv(dev);
891 	struct net_device_stats *stats = &dev->stats;
892 	struct can_frame *cf;
893 	struct sk_buff *skb;
894 	struct can_berr_counter bec;
895 
896 	switch (error_type) {
897 	case C_CAN_NO_ERROR:
898 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
899 		break;
900 	case C_CAN_ERROR_WARNING:
901 		/* error warning state */
902 		priv->can.can_stats.error_warning++;
903 		priv->can.state = CAN_STATE_ERROR_WARNING;
904 		break;
905 	case C_CAN_ERROR_PASSIVE:
906 		/* error passive state */
907 		priv->can.can_stats.error_passive++;
908 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
909 		break;
910 	case C_CAN_BUS_OFF:
911 		/* bus-off state */
912 		priv->can.state = CAN_STATE_BUS_OFF;
913 		priv->can.can_stats.bus_off++;
914 		break;
915 	default:
916 		break;
917 	}
918 
919 	/* propagate the error condition to the CAN stack */
920 	skb = alloc_can_err_skb(dev, &cf);
921 	if (unlikely(!skb))
922 		return 0;
923 
924 	__c_can_get_berr_counter(dev, &bec);
925 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
926 	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
927 				ERR_CNT_RP_SHIFT;
928 
929 	switch (error_type) {
930 	case C_CAN_NO_ERROR:
931 		/* error warning state */
932 		cf->can_id |= CAN_ERR_CRTL;
933 		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
934 		cf->data[6] = bec.txerr;
935 		cf->data[7] = bec.rxerr;
936 		break;
937 	case C_CAN_ERROR_WARNING:
938 		/* error warning state */
939 		cf->can_id |= CAN_ERR_CRTL;
940 		cf->data[1] = (bec.txerr > bec.rxerr) ?
941 			CAN_ERR_CRTL_TX_WARNING :
942 			CAN_ERR_CRTL_RX_WARNING;
943 		cf->data[6] = bec.txerr;
944 		cf->data[7] = bec.rxerr;
945 
946 		break;
947 	case C_CAN_ERROR_PASSIVE:
948 		/* error passive state */
949 		cf->can_id |= CAN_ERR_CRTL;
950 		if (rx_err_passive)
951 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
952 		if (bec.txerr > 127)
953 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
954 
955 		cf->data[6] = bec.txerr;
956 		cf->data[7] = bec.rxerr;
957 		break;
958 	case C_CAN_BUS_OFF:
959 		/* bus-off state */
960 		cf->can_id |= CAN_ERR_BUSOFF;
961 		can_bus_off(dev);
962 		break;
963 	default:
964 		break;
965 	}
966 
967 	stats->rx_packets++;
968 	stats->rx_bytes += cf->can_dlc;
969 	netif_receive_skb(skb);
970 
971 	return 1;
972 }
973 
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)974 static int c_can_handle_bus_err(struct net_device *dev,
975 				enum c_can_lec_type lec_type)
976 {
977 	struct c_can_priv *priv = netdev_priv(dev);
978 	struct net_device_stats *stats = &dev->stats;
979 	struct can_frame *cf;
980 	struct sk_buff *skb;
981 
982 	/*
983 	 * early exit if no lec update or no error.
984 	 * no lec update means that no CAN bus event has been detected
985 	 * since CPU wrote 0x7 value to status reg.
986 	 */
987 	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
988 		return 0;
989 
990 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
991 		return 0;
992 
993 	/* common for all type of bus errors */
994 	priv->can.can_stats.bus_error++;
995 	stats->rx_errors++;
996 
997 	/* propagate the error condition to the CAN stack */
998 	skb = alloc_can_err_skb(dev, &cf);
999 	if (unlikely(!skb))
1000 		return 0;
1001 
1002 	/*
1003 	 * check for 'last error code' which tells us the
1004 	 * type of the last error to occur on the CAN bus
1005 	 */
1006 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1007 
1008 	switch (lec_type) {
1009 	case LEC_STUFF_ERROR:
1010 		netdev_dbg(dev, "stuff error\n");
1011 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1012 		break;
1013 	case LEC_FORM_ERROR:
1014 		netdev_dbg(dev, "form error\n");
1015 		cf->data[2] |= CAN_ERR_PROT_FORM;
1016 		break;
1017 	case LEC_ACK_ERROR:
1018 		netdev_dbg(dev, "ack error\n");
1019 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1020 		break;
1021 	case LEC_BIT1_ERROR:
1022 		netdev_dbg(dev, "bit1 error\n");
1023 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1024 		break;
1025 	case LEC_BIT0_ERROR:
1026 		netdev_dbg(dev, "bit0 error\n");
1027 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1028 		break;
1029 	case LEC_CRC_ERROR:
1030 		netdev_dbg(dev, "CRC error\n");
1031 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1032 		break;
1033 	default:
1034 		break;
1035 	}
1036 
1037 	stats->rx_packets++;
1038 	stats->rx_bytes += cf->can_dlc;
1039 	netif_receive_skb(skb);
1040 	return 1;
1041 }
1042 
c_can_poll(struct napi_struct * napi,int quota)1043 static int c_can_poll(struct napi_struct *napi, int quota)
1044 {
1045 	struct net_device *dev = napi->dev;
1046 	struct c_can_priv *priv = netdev_priv(dev);
1047 	u16 curr, last = priv->last_status;
1048 	int work_done = 0;
1049 
1050 	/* Only read the status register if a status interrupt was pending */
1051 	if (atomic_xchg(&priv->sie_pending, 0)) {
1052 		priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1053 		/* Ack status on C_CAN. D_CAN is self clearing */
1054 		if (priv->type != BOSCH_D_CAN)
1055 			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1056 	} else {
1057 		/* no change detected ... */
1058 		curr = last;
1059 	}
1060 
1061 	/* handle state changes */
1062 	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1063 		netdev_dbg(dev, "entered error warning state\n");
1064 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1065 	}
1066 
1067 	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1068 		netdev_dbg(dev, "entered error passive state\n");
1069 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1070 	}
1071 
1072 	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1073 		netdev_dbg(dev, "entered bus off state\n");
1074 		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1075 		goto end;
1076 	}
1077 
1078 	/* handle bus recovery events */
1079 	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1080 		netdev_dbg(dev, "left bus off state\n");
1081 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1082 	}
1083 
1084 	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1085 		netdev_dbg(dev, "left error passive state\n");
1086 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1087 	}
1088 
1089 	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1090 		netdev_dbg(dev, "left error warning state\n");
1091 		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1092 	}
1093 
1094 	/* handle lec errors on the bus */
1095 	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1096 
1097 	/* Handle Tx/Rx events. We do this unconditionally */
1098 	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1099 	c_can_do_tx(dev);
1100 
1101 end:
1102 	if (work_done < quota) {
1103 		napi_complete_done(napi, work_done);
1104 		/* enable all IRQs if we are not in bus off state */
1105 		if (priv->can.state != CAN_STATE_BUS_OFF)
1106 			c_can_irq_control(priv, true);
1107 	}
1108 
1109 	return work_done;
1110 }
1111 
c_can_isr(int irq,void * dev_id)1112 static irqreturn_t c_can_isr(int irq, void *dev_id)
1113 {
1114 	struct net_device *dev = (struct net_device *)dev_id;
1115 	struct c_can_priv *priv = netdev_priv(dev);
1116 	int reg_int;
1117 
1118 	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1119 	if (!reg_int)
1120 		return IRQ_NONE;
1121 
1122 	/* save for later use */
1123 	if (reg_int & INT_STS_PENDING)
1124 		atomic_set(&priv->sie_pending, 1);
1125 
1126 	/* disable all interrupts and schedule the NAPI */
1127 	c_can_irq_control(priv, false);
1128 	napi_schedule(&priv->napi);
1129 
1130 	return IRQ_HANDLED;
1131 }
1132 
c_can_open(struct net_device * dev)1133 static int c_can_open(struct net_device *dev)
1134 {
1135 	int err;
1136 	struct c_can_priv *priv = netdev_priv(dev);
1137 
1138 	c_can_pm_runtime_get_sync(priv);
1139 	c_can_reset_ram(priv, true);
1140 
1141 	/* open the can device */
1142 	err = open_candev(dev);
1143 	if (err) {
1144 		netdev_err(dev, "failed to open can device\n");
1145 		goto exit_open_fail;
1146 	}
1147 
1148 	/* register interrupt handler */
1149 	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1150 				dev);
1151 	if (err < 0) {
1152 		netdev_err(dev, "failed to request interrupt\n");
1153 		goto exit_irq_fail;
1154 	}
1155 
1156 	/* start the c_can controller */
1157 	err = c_can_start(dev);
1158 	if (err)
1159 		goto exit_start_fail;
1160 
1161 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1162 
1163 	napi_enable(&priv->napi);
1164 	/* enable status change, error and module interrupts */
1165 	c_can_irq_control(priv, true);
1166 	netif_start_queue(dev);
1167 
1168 	return 0;
1169 
1170 exit_start_fail:
1171 	free_irq(dev->irq, dev);
1172 exit_irq_fail:
1173 	close_candev(dev);
1174 exit_open_fail:
1175 	c_can_reset_ram(priv, false);
1176 	c_can_pm_runtime_put_sync(priv);
1177 	return err;
1178 }
1179 
c_can_close(struct net_device * dev)1180 static int c_can_close(struct net_device *dev)
1181 {
1182 	struct c_can_priv *priv = netdev_priv(dev);
1183 
1184 	netif_stop_queue(dev);
1185 	napi_disable(&priv->napi);
1186 	c_can_stop(dev);
1187 	free_irq(dev->irq, dev);
1188 	close_candev(dev);
1189 
1190 	c_can_reset_ram(priv, false);
1191 	c_can_pm_runtime_put_sync(priv);
1192 
1193 	can_led_event(dev, CAN_LED_EVENT_STOP);
1194 
1195 	return 0;
1196 }
1197 
alloc_c_can_dev(void)1198 struct net_device *alloc_c_can_dev(void)
1199 {
1200 	struct net_device *dev;
1201 	struct c_can_priv *priv;
1202 
1203 	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1204 	if (!dev)
1205 		return NULL;
1206 
1207 	priv = netdev_priv(dev);
1208 	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1209 
1210 	priv->dev = dev;
1211 	priv->can.bittiming_const = &c_can_bittiming_const;
1212 	priv->can.do_set_mode = c_can_set_mode;
1213 	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1214 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1215 					CAN_CTRLMODE_LISTENONLY |
1216 					CAN_CTRLMODE_BERR_REPORTING;
1217 
1218 	return dev;
1219 }
1220 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1221 
1222 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1223 int c_can_power_down(struct net_device *dev)
1224 {
1225 	u32 val;
1226 	unsigned long time_out;
1227 	struct c_can_priv *priv = netdev_priv(dev);
1228 
1229 	if (!(dev->flags & IFF_UP))
1230 		return 0;
1231 
1232 	WARN_ON(priv->type != BOSCH_D_CAN);
1233 
1234 	/* set PDR value so the device goes to power down mode */
1235 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1236 	val |= CONTROL_EX_PDR;
1237 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1238 
1239 	/* Wait for the PDA bit to get set */
1240 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1241 	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1242 				time_after(time_out, jiffies))
1243 		cpu_relax();
1244 
1245 	if (time_after(jiffies, time_out))
1246 		return -ETIMEDOUT;
1247 
1248 	c_can_stop(dev);
1249 
1250 	c_can_reset_ram(priv, false);
1251 	c_can_pm_runtime_put_sync(priv);
1252 
1253 	return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(c_can_power_down);
1256 
c_can_power_up(struct net_device * dev)1257 int c_can_power_up(struct net_device *dev)
1258 {
1259 	u32 val;
1260 	unsigned long time_out;
1261 	struct c_can_priv *priv = netdev_priv(dev);
1262 	int ret;
1263 
1264 	if (!(dev->flags & IFF_UP))
1265 		return 0;
1266 
1267 	WARN_ON(priv->type != BOSCH_D_CAN);
1268 
1269 	c_can_pm_runtime_get_sync(priv);
1270 	c_can_reset_ram(priv, true);
1271 
1272 	/* Clear PDR and INIT bits */
1273 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1274 	val &= ~CONTROL_EX_PDR;
1275 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1276 	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1277 	val &= ~CONTROL_INIT;
1278 	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1279 
1280 	/* Wait for the PDA bit to get clear */
1281 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1282 	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1283 				time_after(time_out, jiffies))
1284 		cpu_relax();
1285 
1286 	if (time_after(jiffies, time_out)) {
1287 		ret = -ETIMEDOUT;
1288 		goto err_out;
1289 	}
1290 
1291 	ret = c_can_start(dev);
1292 	if (ret)
1293 		goto err_out;
1294 
1295 	c_can_irq_control(priv, true);
1296 
1297 	return 0;
1298 
1299 err_out:
1300 	c_can_reset_ram(priv, false);
1301 	c_can_pm_runtime_put_sync(priv);
1302 
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(c_can_power_up);
1306 #endif
1307 
free_c_can_dev(struct net_device * dev)1308 void free_c_can_dev(struct net_device *dev)
1309 {
1310 	struct c_can_priv *priv = netdev_priv(dev);
1311 
1312 	netif_napi_del(&priv->napi);
1313 	free_candev(dev);
1314 }
1315 EXPORT_SYMBOL_GPL(free_c_can_dev);
1316 
1317 static const struct net_device_ops c_can_netdev_ops = {
1318 	.ndo_open = c_can_open,
1319 	.ndo_stop = c_can_close,
1320 	.ndo_start_xmit = c_can_start_xmit,
1321 	.ndo_change_mtu = can_change_mtu,
1322 };
1323 
register_c_can_dev(struct net_device * dev)1324 int register_c_can_dev(struct net_device *dev)
1325 {
1326 	int err;
1327 
1328 	/* Deactivate pins to prevent DRA7 DCAN IP from being
1329 	 * stuck in transition when module is disabled.
1330 	 * Pins are activated in c_can_start() and deactivated
1331 	 * in c_can_stop()
1332 	 */
1333 	pinctrl_pm_select_sleep_state(dev->dev.parent);
1334 
1335 	dev->flags |= IFF_ECHO;	/* we support local echo */
1336 	dev->netdev_ops = &c_can_netdev_ops;
1337 
1338 	err = register_candev(dev);
1339 	if (!err)
1340 		devm_can_led_init(dev);
1341 	return err;
1342 }
1343 EXPORT_SYMBOL_GPL(register_c_can_dev);
1344 
unregister_c_can_dev(struct net_device * dev)1345 void unregister_c_can_dev(struct net_device *dev)
1346 {
1347 	unregister_candev(dev);
1348 }
1349 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1350 
1351 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1352 MODULE_LICENSE("GPL v2");
1353 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1354