• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22 
23 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
24 
25 static struct kmem_cache *ino_entry_slab;
26 struct kmem_cache *f2fs_inode_entry_slab;
27 
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io,unsigned char reason)28 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
29 						unsigned char reason)
30 {
31 	f2fs_build_fault_attr(sbi, 0, 0);
32 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
33 	if (!end_io) {
34 		f2fs_flush_merged_writes(sbi);
35 
36 		f2fs_handle_stop(sbi, reason);
37 	}
38 }
39 
40 /*
41  * We guarantee no failure on the returned page.
42  */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)43 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
44 {
45 	struct address_space *mapping = META_MAPPING(sbi);
46 	struct page *page;
47 repeat:
48 	page = f2fs_grab_cache_page(mapping, index, false);
49 	if (!page) {
50 		cond_resched();
51 		goto repeat;
52 	}
53 	f2fs_wait_on_page_writeback(page, META, true, true);
54 	if (!PageUptodate(page))
55 		SetPageUptodate(page);
56 	return page;
57 }
58 
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.op = REQ_OP_READ,
68 		.op_flags = REQ_META | REQ_PRIO,
69 		.old_blkaddr = index,
70 		.new_blkaddr = index,
71 		.encrypted_page = NULL,
72 		.is_por = !is_meta,
73 	};
74 	int err;
75 
76 	if (unlikely(!is_meta))
77 		fio.op_flags &= ~REQ_META;
78 repeat:
79 	page = f2fs_grab_cache_page(mapping, index, false);
80 	if (!page) {
81 		cond_resched();
82 		goto repeat;
83 	}
84 	if (PageUptodate(page))
85 		goto out;
86 
87 	fio.page = page;
88 
89 	err = f2fs_submit_page_bio(&fio);
90 	if (err) {
91 		f2fs_put_page(page, 1);
92 		return ERR_PTR(err);
93 	}
94 
95 	f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
96 
97 	lock_page(page);
98 	if (unlikely(page->mapping != mapping)) {
99 		f2fs_put_page(page, 1);
100 		goto repeat;
101 	}
102 
103 	if (unlikely(!PageUptodate(page))) {
104 		f2fs_put_page(page, 1);
105 		return ERR_PTR(-EIO);
106 	}
107 out:
108 	return page;
109 }
110 
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)111 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
112 {
113 	return __get_meta_page(sbi, index, true);
114 }
115 
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)116 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
117 {
118 	struct page *page;
119 	int count = 0;
120 
121 retry:
122 	page = __get_meta_page(sbi, index, true);
123 	if (IS_ERR(page)) {
124 		if (PTR_ERR(page) == -EIO &&
125 				++count <= DEFAULT_RETRY_IO_COUNT)
126 			goto retry;
127 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
128 	}
129 	return page;
130 }
131 
132 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)133 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
134 {
135 	return __get_meta_page(sbi, index, false);
136 }
137 
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)138 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
139 							int type)
140 {
141 	struct seg_entry *se;
142 	unsigned int segno, offset;
143 	bool exist;
144 
145 	if (type == DATA_GENERIC)
146 		return true;
147 
148 	segno = GET_SEGNO(sbi, blkaddr);
149 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
150 	se = get_seg_entry(sbi, segno);
151 
152 	exist = f2fs_test_bit(offset, se->cur_valid_map);
153 	if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
154 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
155 			 blkaddr, exist);
156 		set_sbi_flag(sbi, SBI_NEED_FSCK);
157 		return exist;
158 	}
159 
160 	if (!exist && type == DATA_GENERIC_ENHANCE) {
161 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
162 			 blkaddr, exist);
163 		set_sbi_flag(sbi, SBI_NEED_FSCK);
164 		dump_stack();
165 	}
166 	return exist;
167 }
168 
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)169 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
170 					block_t blkaddr, int type)
171 {
172 	switch (type) {
173 	case META_NAT:
174 		break;
175 	case META_SIT:
176 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
177 			return false;
178 		break;
179 	case META_SSA:
180 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
181 			blkaddr < SM_I(sbi)->ssa_blkaddr))
182 			return false;
183 		break;
184 	case META_CP:
185 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
186 			blkaddr < __start_cp_addr(sbi)))
187 			return false;
188 		break;
189 	case META_POR:
190 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
191 			blkaddr < MAIN_BLKADDR(sbi)))
192 			return false;
193 		break;
194 	case DATA_GENERIC:
195 	case DATA_GENERIC_ENHANCE:
196 	case DATA_GENERIC_ENHANCE_READ:
197 	case DATA_GENERIC_ENHANCE_UPDATE:
198 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
199 				blkaddr < MAIN_BLKADDR(sbi))) {
200 			f2fs_warn(sbi, "access invalid blkaddr:%u",
201 				  blkaddr);
202 			set_sbi_flag(sbi, SBI_NEED_FSCK);
203 			dump_stack();
204 			return false;
205 		} else {
206 			return __is_bitmap_valid(sbi, blkaddr, type);
207 		}
208 		break;
209 	case META_GENERIC:
210 		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
211 			blkaddr >= MAIN_BLKADDR(sbi)))
212 			return false;
213 		break;
214 	default:
215 		BUG();
216 	}
217 
218 	return true;
219 }
220 
221 /*
222  * Readahead CP/NAT/SIT/SSA/POR pages
223  */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)224 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
225 							int type, bool sync)
226 {
227 	struct page *page;
228 	block_t blkno = start;
229 	struct f2fs_io_info fio = {
230 		.sbi = sbi,
231 		.type = META,
232 		.op = REQ_OP_READ,
233 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
234 		.encrypted_page = NULL,
235 		.in_list = false,
236 		.is_por = (type == META_POR),
237 	};
238 	struct blk_plug plug;
239 	int err;
240 
241 	if (unlikely(type == META_POR))
242 		fio.op_flags &= ~REQ_META;
243 
244 	blk_start_plug(&plug);
245 	for (; nrpages-- > 0; blkno++) {
246 
247 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
248 			goto out;
249 
250 		switch (type) {
251 		case META_NAT:
252 			if (unlikely(blkno >=
253 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
254 				blkno = 0;
255 			/* get nat block addr */
256 			fio.new_blkaddr = current_nat_addr(sbi,
257 					blkno * NAT_ENTRY_PER_BLOCK);
258 			break;
259 		case META_SIT:
260 			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
261 				goto out;
262 			/* get sit block addr */
263 			fio.new_blkaddr = current_sit_addr(sbi,
264 					blkno * SIT_ENTRY_PER_BLOCK);
265 			break;
266 		case META_SSA:
267 		case META_CP:
268 		case META_POR:
269 			fio.new_blkaddr = blkno;
270 			break;
271 		default:
272 			BUG();
273 		}
274 
275 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
276 						fio.new_blkaddr, false);
277 		if (!page)
278 			continue;
279 		if (PageUptodate(page)) {
280 			f2fs_put_page(page, 1);
281 			continue;
282 		}
283 
284 		fio.page = page;
285 		err = f2fs_submit_page_bio(&fio);
286 		f2fs_put_page(page, err ? 1 : 0);
287 
288 		if (!err)
289 			f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
290 	}
291 out:
292 	blk_finish_plug(&plug);
293 	return blkno - start;
294 }
295 
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)296 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
297 {
298 	struct page *page;
299 	bool readahead = false;
300 
301 	page = find_get_page(META_MAPPING(sbi), index);
302 	if (!page || !PageUptodate(page))
303 		readahead = true;
304 	f2fs_put_page(page, 0);
305 
306 	if (readahead)
307 		f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
308 }
309 
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)310 static int __f2fs_write_meta_page(struct page *page,
311 				struct writeback_control *wbc,
312 				enum iostat_type io_type)
313 {
314 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
315 
316 	trace_f2fs_writepage(page, META);
317 
318 	if (unlikely(f2fs_cp_error(sbi))) {
319 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
320 			ClearPageUptodate(page);
321 			dec_page_count(sbi, F2FS_DIRTY_META);
322 			unlock_page(page);
323 			return 0;
324 		}
325 		goto redirty_out;
326 	}
327 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
328 		goto redirty_out;
329 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
330 		goto redirty_out;
331 
332 	f2fs_do_write_meta_page(sbi, page, io_type);
333 	dec_page_count(sbi, F2FS_DIRTY_META);
334 
335 	if (wbc->for_reclaim)
336 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
337 
338 	unlock_page(page);
339 
340 	if (unlikely(f2fs_cp_error(sbi)))
341 		f2fs_submit_merged_write(sbi, META);
342 
343 	return 0;
344 
345 redirty_out:
346 	redirty_page_for_writepage(wbc, page);
347 	return AOP_WRITEPAGE_ACTIVATE;
348 }
349 
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)350 static int f2fs_write_meta_page(struct page *page,
351 				struct writeback_control *wbc)
352 {
353 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
354 }
355 
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)356 static int f2fs_write_meta_pages(struct address_space *mapping,
357 				struct writeback_control *wbc)
358 {
359 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
360 	long diff, written;
361 
362 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
363 		goto skip_write;
364 
365 	/* collect a number of dirty meta pages and write together */
366 	if (wbc->sync_mode != WB_SYNC_ALL &&
367 			get_pages(sbi, F2FS_DIRTY_META) <
368 					nr_pages_to_skip(sbi, META))
369 		goto skip_write;
370 
371 	/* if locked failed, cp will flush dirty pages instead */
372 	if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
373 		goto skip_write;
374 
375 	trace_f2fs_writepages(mapping->host, wbc, META);
376 	diff = nr_pages_to_write(sbi, META, wbc);
377 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
378 	f2fs_up_write(&sbi->cp_global_sem);
379 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
380 	return 0;
381 
382 skip_write:
383 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
384 	trace_f2fs_writepages(mapping->host, wbc, META);
385 	return 0;
386 }
387 
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)388 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
389 				long nr_to_write, enum iostat_type io_type)
390 {
391 	struct address_space *mapping = META_MAPPING(sbi);
392 	pgoff_t index = 0, prev = ULONG_MAX;
393 	struct pagevec pvec;
394 	long nwritten = 0;
395 	int nr_pages;
396 	struct writeback_control wbc = {
397 		.for_reclaim = 0,
398 	};
399 	struct blk_plug plug;
400 
401 	pagevec_init(&pvec);
402 
403 	blk_start_plug(&plug);
404 
405 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
406 				PAGECACHE_TAG_DIRTY))) {
407 		int i;
408 
409 		for (i = 0; i < nr_pages; i++) {
410 			struct page *page = pvec.pages[i];
411 
412 			if (prev == ULONG_MAX)
413 				prev = page->index - 1;
414 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
415 				pagevec_release(&pvec);
416 				goto stop;
417 			}
418 
419 			lock_page(page);
420 
421 			if (unlikely(page->mapping != mapping)) {
422 continue_unlock:
423 				unlock_page(page);
424 				continue;
425 			}
426 			if (!PageDirty(page)) {
427 				/* someone wrote it for us */
428 				goto continue_unlock;
429 			}
430 
431 			f2fs_wait_on_page_writeback(page, META, true, true);
432 
433 			if (!clear_page_dirty_for_io(page))
434 				goto continue_unlock;
435 
436 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
437 				unlock_page(page);
438 				break;
439 			}
440 			nwritten++;
441 			prev = page->index;
442 			if (unlikely(nwritten >= nr_to_write))
443 				break;
444 		}
445 		pagevec_release(&pvec);
446 		cond_resched();
447 	}
448 stop:
449 	if (nwritten)
450 		f2fs_submit_merged_write(sbi, type);
451 
452 	blk_finish_plug(&plug);
453 
454 	return nwritten;
455 }
456 
f2fs_set_meta_page_dirty(struct page * page)457 static int f2fs_set_meta_page_dirty(struct page *page)
458 {
459 	trace_f2fs_set_page_dirty(page, META);
460 
461 	if (!PageUptodate(page))
462 		SetPageUptodate(page);
463 	if (!PageDirty(page)) {
464 		__set_page_dirty_nobuffers(page);
465 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
466 		set_page_private_reference(page);
467 		return 1;
468 	}
469 	return 0;
470 }
471 
472 const struct address_space_operations f2fs_meta_aops = {
473 	.writepage	= f2fs_write_meta_page,
474 	.writepages	= f2fs_write_meta_pages,
475 	.set_page_dirty	= f2fs_set_meta_page_dirty,
476 	.invalidatepage = f2fs_invalidate_page,
477 	.releasepage	= f2fs_release_page,
478 #ifdef CONFIG_MIGRATION
479 	.migratepage    = f2fs_migrate_page,
480 #endif
481 };
482 
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)483 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
484 						unsigned int devidx, int type)
485 {
486 	struct inode_management *im = &sbi->im[type];
487 	struct ino_entry *e, *tmp;
488 
489 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
490 
491 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
492 
493 	spin_lock(&im->ino_lock);
494 	e = radix_tree_lookup(&im->ino_root, ino);
495 	if (!e) {
496 		e = tmp;
497 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
498 			f2fs_bug_on(sbi, 1);
499 
500 		memset(e, 0, sizeof(struct ino_entry));
501 		e->ino = ino;
502 
503 		list_add_tail(&e->list, &im->ino_list);
504 		if (type != ORPHAN_INO)
505 			im->ino_num++;
506 	}
507 
508 	if (type == FLUSH_INO)
509 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
510 
511 	spin_unlock(&im->ino_lock);
512 	radix_tree_preload_end();
513 
514 	if (e != tmp)
515 		kmem_cache_free(ino_entry_slab, tmp);
516 }
517 
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)518 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
519 {
520 	struct inode_management *im = &sbi->im[type];
521 	struct ino_entry *e;
522 
523 	spin_lock(&im->ino_lock);
524 	e = radix_tree_lookup(&im->ino_root, ino);
525 	if (e) {
526 		list_del(&e->list);
527 		radix_tree_delete(&im->ino_root, ino);
528 		im->ino_num--;
529 		spin_unlock(&im->ino_lock);
530 		kmem_cache_free(ino_entry_slab, e);
531 		return;
532 	}
533 	spin_unlock(&im->ino_lock);
534 }
535 
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)536 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
537 {
538 	/* add new dirty ino entry into list */
539 	__add_ino_entry(sbi, ino, 0, type);
540 }
541 
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)542 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
543 {
544 	/* remove dirty ino entry from list */
545 	__remove_ino_entry(sbi, ino, type);
546 }
547 
548 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)549 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
550 {
551 	struct inode_management *im = &sbi->im[mode];
552 	struct ino_entry *e;
553 
554 	spin_lock(&im->ino_lock);
555 	e = radix_tree_lookup(&im->ino_root, ino);
556 	spin_unlock(&im->ino_lock);
557 	return e ? true : false;
558 }
559 
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)560 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
561 {
562 	struct ino_entry *e, *tmp;
563 	int i;
564 
565 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
566 		struct inode_management *im = &sbi->im[i];
567 
568 		spin_lock(&im->ino_lock);
569 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
570 			list_del(&e->list);
571 			radix_tree_delete(&im->ino_root, e->ino);
572 			kmem_cache_free(ino_entry_slab, e);
573 			im->ino_num--;
574 		}
575 		spin_unlock(&im->ino_lock);
576 	}
577 }
578 
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)579 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
580 					unsigned int devidx, int type)
581 {
582 	__add_ino_entry(sbi, ino, devidx, type);
583 }
584 
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)585 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
586 					unsigned int devidx, int type)
587 {
588 	struct inode_management *im = &sbi->im[type];
589 	struct ino_entry *e;
590 	bool is_dirty = false;
591 
592 	spin_lock(&im->ino_lock);
593 	e = radix_tree_lookup(&im->ino_root, ino);
594 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
595 		is_dirty = true;
596 	spin_unlock(&im->ino_lock);
597 	return is_dirty;
598 }
599 
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)600 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
601 {
602 	struct inode_management *im = &sbi->im[ORPHAN_INO];
603 	int err = 0;
604 
605 	spin_lock(&im->ino_lock);
606 
607 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
608 		spin_unlock(&im->ino_lock);
609 		f2fs_show_injection_info(sbi, FAULT_ORPHAN);
610 		return -ENOSPC;
611 	}
612 
613 	if (unlikely(im->ino_num >= sbi->max_orphans))
614 		err = -ENOSPC;
615 	else
616 		im->ino_num++;
617 	spin_unlock(&im->ino_lock);
618 
619 	return err;
620 }
621 
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)622 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
623 {
624 	struct inode_management *im = &sbi->im[ORPHAN_INO];
625 
626 	spin_lock(&im->ino_lock);
627 	f2fs_bug_on(sbi, im->ino_num == 0);
628 	im->ino_num--;
629 	spin_unlock(&im->ino_lock);
630 }
631 
f2fs_add_orphan_inode(struct inode * inode)632 void f2fs_add_orphan_inode(struct inode *inode)
633 {
634 	/* add new orphan ino entry into list */
635 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
636 	f2fs_update_inode_page(inode);
637 }
638 
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)639 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
640 {
641 	/* remove orphan entry from orphan list */
642 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
643 }
644 
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)645 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
646 {
647 	struct inode *inode;
648 	struct node_info ni;
649 	int err;
650 
651 	inode = f2fs_iget_retry(sbi->sb, ino);
652 	if (IS_ERR(inode)) {
653 		/*
654 		 * there should be a bug that we can't find the entry
655 		 * to orphan inode.
656 		 */
657 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
658 		return PTR_ERR(inode);
659 	}
660 
661 	err = dquot_initialize(inode);
662 	if (err) {
663 		iput(inode);
664 		goto err_out;
665 	}
666 
667 	clear_nlink(inode);
668 
669 	/* truncate all the data during iput */
670 	iput(inode);
671 
672 	err = f2fs_get_node_info(sbi, ino, &ni, false);
673 	if (err)
674 		goto err_out;
675 
676 	/* ENOMEM was fully retried in f2fs_evict_inode. */
677 	if (ni.blk_addr != NULL_ADDR) {
678 		err = -EIO;
679 		goto err_out;
680 	}
681 	return 0;
682 
683 err_out:
684 	set_sbi_flag(sbi, SBI_NEED_FSCK);
685 	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
686 		  __func__, ino);
687 	return err;
688 }
689 
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)690 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
691 {
692 	block_t start_blk, orphan_blocks, i, j;
693 	unsigned int s_flags = sbi->sb->s_flags;
694 	int err = 0;
695 #ifdef CONFIG_QUOTA
696 	int quota_enabled;
697 #endif
698 
699 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
700 		return 0;
701 
702 	if (bdev_read_only(sbi->sb->s_bdev)) {
703 		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
704 		return 0;
705 	}
706 
707 	if (s_flags & SB_RDONLY) {
708 		f2fs_info(sbi, "orphan cleanup on readonly fs");
709 		sbi->sb->s_flags &= ~SB_RDONLY;
710 	}
711 
712 #ifdef CONFIG_QUOTA
713 	/* Needed for iput() to work correctly and not trash data */
714 	sbi->sb->s_flags |= SB_ACTIVE;
715 
716 	/*
717 	 * Turn on quotas which were not enabled for read-only mounts if
718 	 * filesystem has quota feature, so that they are updated correctly.
719 	 */
720 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
721 #endif
722 
723 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
724 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
725 
726 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
727 
728 	for (i = 0; i < orphan_blocks; i++) {
729 		struct page *page;
730 		struct f2fs_orphan_block *orphan_blk;
731 
732 		page = f2fs_get_meta_page(sbi, start_blk + i);
733 		if (IS_ERR(page)) {
734 			err = PTR_ERR(page);
735 			goto out;
736 		}
737 
738 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
739 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
740 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
741 
742 			err = recover_orphan_inode(sbi, ino);
743 			if (err) {
744 				f2fs_put_page(page, 1);
745 				goto out;
746 			}
747 		}
748 		f2fs_put_page(page, 1);
749 	}
750 	/* clear Orphan Flag */
751 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
752 out:
753 	set_sbi_flag(sbi, SBI_IS_RECOVERED);
754 
755 #ifdef CONFIG_QUOTA
756 	/* Turn quotas off */
757 	if (quota_enabled)
758 		f2fs_quota_off_umount(sbi->sb);
759 #endif
760 	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
761 
762 	return err;
763 }
764 
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)765 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
766 {
767 	struct list_head *head;
768 	struct f2fs_orphan_block *orphan_blk = NULL;
769 	unsigned int nentries = 0;
770 	unsigned short index = 1;
771 	unsigned short orphan_blocks;
772 	struct page *page = NULL;
773 	struct ino_entry *orphan = NULL;
774 	struct inode_management *im = &sbi->im[ORPHAN_INO];
775 
776 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
777 
778 	/*
779 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
780 	 * orphan inode operations are covered under f2fs_lock_op().
781 	 * And, spin_lock should be avoided due to page operations below.
782 	 */
783 	head = &im->ino_list;
784 
785 	/* loop for each orphan inode entry and write them in Jornal block */
786 	list_for_each_entry(orphan, head, list) {
787 		if (!page) {
788 			page = f2fs_grab_meta_page(sbi, start_blk++);
789 			orphan_blk =
790 				(struct f2fs_orphan_block *)page_address(page);
791 			memset(orphan_blk, 0, sizeof(*orphan_blk));
792 		}
793 
794 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
795 
796 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
797 			/*
798 			 * an orphan block is full of 1020 entries,
799 			 * then we need to flush current orphan blocks
800 			 * and bring another one in memory
801 			 */
802 			orphan_blk->blk_addr = cpu_to_le16(index);
803 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
804 			orphan_blk->entry_count = cpu_to_le32(nentries);
805 			set_page_dirty(page);
806 			f2fs_put_page(page, 1);
807 			index++;
808 			nentries = 0;
809 			page = NULL;
810 		}
811 	}
812 
813 	if (page) {
814 		orphan_blk->blk_addr = cpu_to_le16(index);
815 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
816 		orphan_blk->entry_count = cpu_to_le32(nentries);
817 		set_page_dirty(page);
818 		f2fs_put_page(page, 1);
819 	}
820 }
821 
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)822 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
823 						struct f2fs_checkpoint *ckpt)
824 {
825 	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
826 	__u32 chksum;
827 
828 	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
829 	if (chksum_ofs < CP_CHKSUM_OFFSET) {
830 		chksum_ofs += sizeof(chksum);
831 		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
832 						F2FS_BLKSIZE - chksum_ofs);
833 	}
834 	return chksum;
835 }
836 
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)837 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
838 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
839 		unsigned long long *version)
840 {
841 	size_t crc_offset = 0;
842 	__u32 crc;
843 
844 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
845 	if (IS_ERR(*cp_page))
846 		return PTR_ERR(*cp_page);
847 
848 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
849 
850 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
851 	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
852 			crc_offset > CP_CHKSUM_OFFSET) {
853 		f2fs_put_page(*cp_page, 1);
854 		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
855 		return -EINVAL;
856 	}
857 
858 	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
859 	if (crc != cur_cp_crc(*cp_block)) {
860 		f2fs_put_page(*cp_page, 1);
861 		f2fs_warn(sbi, "invalid crc value");
862 		return -EINVAL;
863 	}
864 
865 	*version = cur_cp_version(*cp_block);
866 	return 0;
867 }
868 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)869 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
870 				block_t cp_addr, unsigned long long *version)
871 {
872 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
873 	struct f2fs_checkpoint *cp_block = NULL;
874 	unsigned long long cur_version = 0, pre_version = 0;
875 	unsigned int cp_blocks;
876 	int err;
877 
878 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
879 					&cp_page_1, version);
880 	if (err)
881 		return NULL;
882 
883 	cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
884 
885 	if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
886 		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
887 			  le32_to_cpu(cp_block->cp_pack_total_block_count));
888 		goto invalid_cp;
889 	}
890 	pre_version = *version;
891 
892 	cp_addr += cp_blocks - 1;
893 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
894 					&cp_page_2, version);
895 	if (err)
896 		goto invalid_cp;
897 	cur_version = *version;
898 
899 	if (cur_version == pre_version) {
900 		*version = cur_version;
901 		f2fs_put_page(cp_page_2, 1);
902 		return cp_page_1;
903 	}
904 	f2fs_put_page(cp_page_2, 1);
905 invalid_cp:
906 	f2fs_put_page(cp_page_1, 1);
907 	return NULL;
908 }
909 
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)910 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
911 {
912 	struct f2fs_checkpoint *cp_block;
913 	struct f2fs_super_block *fsb = sbi->raw_super;
914 	struct page *cp1, *cp2, *cur_page;
915 	unsigned long blk_size = sbi->blocksize;
916 	unsigned long long cp1_version = 0, cp2_version = 0;
917 	unsigned long long cp_start_blk_no;
918 	unsigned int cp_blks = 1 + __cp_payload(sbi);
919 	block_t cp_blk_no;
920 	int i;
921 	int err;
922 
923 	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
924 				  GFP_KERNEL);
925 	if (!sbi->ckpt)
926 		return -ENOMEM;
927 	/*
928 	 * Finding out valid cp block involves read both
929 	 * sets( cp pack 1 and cp pack 2)
930 	 */
931 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
932 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
933 
934 	/* The second checkpoint pack should start at the next segment */
935 	cp_start_blk_no += ((unsigned long long)1) <<
936 				le32_to_cpu(fsb->log_blocks_per_seg);
937 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
938 
939 	if (cp1 && cp2) {
940 		if (ver_after(cp2_version, cp1_version))
941 			cur_page = cp2;
942 		else
943 			cur_page = cp1;
944 	} else if (cp1) {
945 		cur_page = cp1;
946 	} else if (cp2) {
947 		cur_page = cp2;
948 	} else {
949 		err = -EFSCORRUPTED;
950 		goto fail_no_cp;
951 	}
952 
953 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
954 	memcpy(sbi->ckpt, cp_block, blk_size);
955 
956 	if (cur_page == cp1)
957 		sbi->cur_cp_pack = 1;
958 	else
959 		sbi->cur_cp_pack = 2;
960 
961 	/* Sanity checking of checkpoint */
962 	if (f2fs_sanity_check_ckpt(sbi)) {
963 		err = -EFSCORRUPTED;
964 		goto free_fail_no_cp;
965 	}
966 
967 	if (cp_blks <= 1)
968 		goto done;
969 
970 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
971 	if (cur_page == cp2)
972 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
973 
974 	for (i = 1; i < cp_blks; i++) {
975 		void *sit_bitmap_ptr;
976 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
977 
978 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
979 		if (IS_ERR(cur_page)) {
980 			err = PTR_ERR(cur_page);
981 			goto free_fail_no_cp;
982 		}
983 		sit_bitmap_ptr = page_address(cur_page);
984 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
985 		f2fs_put_page(cur_page, 1);
986 	}
987 done:
988 	f2fs_put_page(cp1, 1);
989 	f2fs_put_page(cp2, 1);
990 	return 0;
991 
992 free_fail_no_cp:
993 	f2fs_put_page(cp1, 1);
994 	f2fs_put_page(cp2, 1);
995 fail_no_cp:
996 	kvfree(sbi->ckpt);
997 	return err;
998 }
999 
__add_dirty_inode(struct inode * inode,enum inode_type type)1000 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1001 {
1002 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1003 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1004 
1005 	if (is_inode_flag_set(inode, flag))
1006 		return;
1007 
1008 	set_inode_flag(inode, flag);
1009 	if (!f2fs_is_volatile_file(inode))
1010 		list_add_tail(&F2FS_I(inode)->dirty_list,
1011 						&sbi->inode_list[type]);
1012 	stat_inc_dirty_inode(sbi, type);
1013 }
1014 
__remove_dirty_inode(struct inode * inode,enum inode_type type)1015 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1016 {
1017 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1018 
1019 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1020 		return;
1021 
1022 	list_del_init(&F2FS_I(inode)->dirty_list);
1023 	clear_inode_flag(inode, flag);
1024 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1025 }
1026 
f2fs_update_dirty_page(struct inode * inode,struct page * page)1027 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1028 {
1029 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1030 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1031 
1032 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1033 			!S_ISLNK(inode->i_mode))
1034 		return;
1035 
1036 	spin_lock(&sbi->inode_lock[type]);
1037 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1038 		__add_dirty_inode(inode, type);
1039 	inode_inc_dirty_pages(inode);
1040 	spin_unlock(&sbi->inode_lock[type]);
1041 
1042 	set_page_private_reference(page);
1043 }
1044 
f2fs_remove_dirty_inode(struct inode * inode)1045 void f2fs_remove_dirty_inode(struct inode *inode)
1046 {
1047 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1048 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1049 
1050 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1051 			!S_ISLNK(inode->i_mode))
1052 		return;
1053 
1054 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1055 		return;
1056 
1057 	spin_lock(&sbi->inode_lock[type]);
1058 	__remove_dirty_inode(inode, type);
1059 	spin_unlock(&sbi->inode_lock[type]);
1060 }
1061 
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type,bool from_cp)1062 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1063 						bool from_cp)
1064 {
1065 	struct list_head *head;
1066 	struct inode *inode;
1067 	struct f2fs_inode_info *fi;
1068 	bool is_dir = (type == DIR_INODE);
1069 	unsigned long ino = 0;
1070 
1071 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1072 				get_pages(sbi, is_dir ?
1073 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1074 retry:
1075 	if (unlikely(f2fs_cp_error(sbi))) {
1076 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1077 				get_pages(sbi, is_dir ?
1078 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1079 		return -EIO;
1080 	}
1081 
1082 	spin_lock(&sbi->inode_lock[type]);
1083 
1084 	head = &sbi->inode_list[type];
1085 	if (list_empty(head)) {
1086 		spin_unlock(&sbi->inode_lock[type]);
1087 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1088 				get_pages(sbi, is_dir ?
1089 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1090 		return 0;
1091 	}
1092 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1093 	inode = igrab(&fi->vfs_inode);
1094 	spin_unlock(&sbi->inode_lock[type]);
1095 	if (inode) {
1096 		unsigned long cur_ino = inode->i_ino;
1097 
1098 		if (from_cp)
1099 			F2FS_I(inode)->cp_task = current;
1100 		F2FS_I(inode)->wb_task = current;
1101 
1102 		filemap_fdatawrite(inode->i_mapping);
1103 
1104 		F2FS_I(inode)->wb_task = NULL;
1105 		if (from_cp)
1106 			F2FS_I(inode)->cp_task = NULL;
1107 
1108 		iput(inode);
1109 		/* We need to give cpu to another writers. */
1110 		if (ino == cur_ino)
1111 			cond_resched();
1112 		else
1113 			ino = cur_ino;
1114 	} else {
1115 		/*
1116 		 * We should submit bio, since it exists several
1117 		 * wribacking dentry pages in the freeing inode.
1118 		 */
1119 		f2fs_submit_merged_write(sbi, DATA);
1120 		cond_resched();
1121 	}
1122 	goto retry;
1123 }
1124 
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1125 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1126 {
1127 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1128 	struct inode *inode;
1129 	struct f2fs_inode_info *fi;
1130 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1131 
1132 	while (total--) {
1133 		if (unlikely(f2fs_cp_error(sbi)))
1134 			return -EIO;
1135 
1136 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1137 		if (list_empty(head)) {
1138 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1139 			return 0;
1140 		}
1141 		fi = list_first_entry(head, struct f2fs_inode_info,
1142 							gdirty_list);
1143 		inode = igrab(&fi->vfs_inode);
1144 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1145 		if (inode) {
1146 			sync_inode_metadata(inode, 0);
1147 
1148 			/* it's on eviction */
1149 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1150 				f2fs_update_inode_page(inode);
1151 			iput(inode);
1152 		}
1153 	}
1154 	return 0;
1155 }
1156 
__prepare_cp_block(struct f2fs_sb_info * sbi)1157 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1158 {
1159 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1160 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1161 	nid_t last_nid = nm_i->next_scan_nid;
1162 
1163 	next_free_nid(sbi, &last_nid);
1164 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1165 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1166 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1167 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1168 }
1169 
__need_flush_quota(struct f2fs_sb_info * sbi)1170 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1171 {
1172 	bool ret = false;
1173 
1174 	if (!is_journalled_quota(sbi))
1175 		return false;
1176 
1177 	if (!f2fs_down_write_trylock(&sbi->quota_sem))
1178 		return true;
1179 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1180 		ret = false;
1181 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1182 		ret = false;
1183 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1184 		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1185 		ret = true;
1186 	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1187 		ret = true;
1188 	}
1189 	f2fs_up_write(&sbi->quota_sem);
1190 	return ret;
1191 }
1192 
1193 /*
1194  * Freeze all the FS-operations for checkpoint.
1195  */
block_operations(struct f2fs_sb_info * sbi)1196 static int block_operations(struct f2fs_sb_info *sbi)
1197 {
1198 	struct writeback_control wbc = {
1199 		.sync_mode = WB_SYNC_ALL,
1200 		.nr_to_write = LONG_MAX,
1201 		.for_reclaim = 0,
1202 	};
1203 	int err = 0, cnt = 0;
1204 
1205 	/*
1206 	 * Let's flush inline_data in dirty node pages.
1207 	 */
1208 	f2fs_flush_inline_data(sbi);
1209 
1210 retry_flush_quotas:
1211 	f2fs_lock_all(sbi);
1212 	if (__need_flush_quota(sbi)) {
1213 		int locked;
1214 
1215 		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1216 			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1217 			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1218 			goto retry_flush_dents;
1219 		}
1220 		f2fs_unlock_all(sbi);
1221 
1222 		/* only failed during mount/umount/freeze/quotactl */
1223 		locked = down_read_trylock(&sbi->sb->s_umount);
1224 		f2fs_quota_sync(sbi->sb, -1);
1225 		if (locked)
1226 			up_read(&sbi->sb->s_umount);
1227 		cond_resched();
1228 		goto retry_flush_quotas;
1229 	}
1230 
1231 retry_flush_dents:
1232 	/* write all the dirty dentry pages */
1233 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1234 		f2fs_unlock_all(sbi);
1235 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1236 		if (err)
1237 			return err;
1238 		cond_resched();
1239 		goto retry_flush_quotas;
1240 	}
1241 
1242 	/*
1243 	 * POR: we should ensure that there are no dirty node pages
1244 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1245 	 */
1246 	f2fs_down_write(&sbi->node_change);
1247 
1248 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1249 		f2fs_up_write(&sbi->node_change);
1250 		f2fs_unlock_all(sbi);
1251 		err = f2fs_sync_inode_meta(sbi);
1252 		if (err)
1253 			return err;
1254 		cond_resched();
1255 		goto retry_flush_quotas;
1256 	}
1257 
1258 retry_flush_nodes:
1259 	f2fs_down_write(&sbi->node_write);
1260 
1261 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1262 		f2fs_up_write(&sbi->node_write);
1263 		atomic_inc(&sbi->wb_sync_req[NODE]);
1264 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1265 		atomic_dec(&sbi->wb_sync_req[NODE]);
1266 		if (err) {
1267 			f2fs_up_write(&sbi->node_change);
1268 			f2fs_unlock_all(sbi);
1269 			return err;
1270 		}
1271 		cond_resched();
1272 		goto retry_flush_nodes;
1273 	}
1274 
1275 	/*
1276 	 * sbi->node_change is used only for AIO write_begin path which produces
1277 	 * dirty node blocks and some checkpoint values by block allocation.
1278 	 */
1279 	__prepare_cp_block(sbi);
1280 	f2fs_up_write(&sbi->node_change);
1281 	return err;
1282 }
1283 
unblock_operations(struct f2fs_sb_info * sbi)1284 static void unblock_operations(struct f2fs_sb_info *sbi)
1285 {
1286 	f2fs_up_write(&sbi->node_write);
1287 	f2fs_unlock_all(sbi);
1288 }
1289 
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1290 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1291 {
1292 	DEFINE_WAIT(wait);
1293 
1294 	for (;;) {
1295 		if (!get_pages(sbi, type))
1296 			break;
1297 
1298 		if (unlikely(f2fs_cp_error(sbi) &&
1299 			!is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1300 			break;
1301 
1302 		if (type == F2FS_DIRTY_META)
1303 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1304 							FS_CP_META_IO);
1305 		else if (type == F2FS_WB_CP_DATA)
1306 			f2fs_submit_merged_write(sbi, DATA);
1307 
1308 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1309 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1310 	}
1311 	finish_wait(&sbi->cp_wait, &wait);
1312 }
1313 
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1314 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1315 {
1316 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1317 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1318 	unsigned long flags;
1319 
1320 	spin_lock_irqsave(&sbi->cp_lock, flags);
1321 
1322 	if ((cpc->reason & CP_UMOUNT) &&
1323 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1324 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1325 		disable_nat_bits(sbi, false);
1326 
1327 	if (cpc->reason & CP_TRIMMED)
1328 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1329 	else
1330 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1331 
1332 	if (cpc->reason & CP_UMOUNT)
1333 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1334 	else
1335 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1336 
1337 	if (cpc->reason & CP_FASTBOOT)
1338 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1339 	else
1340 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1341 
1342 	if (orphan_num)
1343 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1344 	else
1345 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1346 
1347 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1348 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1349 
1350 	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1351 		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1352 	else
1353 		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1354 
1355 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1356 		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1357 	else
1358 		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1359 
1360 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1361 		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1362 	else
1363 		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1364 
1365 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1366 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1367 	else
1368 		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1369 
1370 	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1371 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1372 
1373 	/* set this flag to activate crc|cp_ver for recovery */
1374 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1375 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1376 
1377 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1378 }
1379 
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1380 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1381 	void *src, block_t blk_addr)
1382 {
1383 	struct writeback_control wbc = {
1384 		.for_reclaim = 0,
1385 	};
1386 
1387 	/*
1388 	 * pagevec_lookup_tag and lock_page again will take
1389 	 * some extra time. Therefore, f2fs_update_meta_pages and
1390 	 * f2fs_sync_meta_pages are combined in this function.
1391 	 */
1392 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1393 	int err;
1394 
1395 	f2fs_wait_on_page_writeback(page, META, true, true);
1396 
1397 	memcpy(page_address(page), src, PAGE_SIZE);
1398 
1399 	set_page_dirty(page);
1400 	if (unlikely(!clear_page_dirty_for_io(page)))
1401 		f2fs_bug_on(sbi, 1);
1402 
1403 	/* writeout cp pack 2 page */
1404 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1405 	if (unlikely(err && f2fs_cp_error(sbi))) {
1406 		f2fs_put_page(page, 1);
1407 		return;
1408 	}
1409 
1410 	f2fs_bug_on(sbi, err);
1411 	f2fs_put_page(page, 0);
1412 
1413 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1414 	f2fs_submit_merged_write(sbi, META_FLUSH);
1415 }
1416 
get_sectors_written(struct block_device * bdev)1417 static inline u64 get_sectors_written(struct block_device *bdev)
1418 {
1419 	return (u64)part_stat_read(bdev->bd_part, sectors[STAT_WRITE]);
1420 }
1421 
f2fs_get_sectors_written(struct f2fs_sb_info * sbi)1422 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1423 {
1424 	if (f2fs_is_multi_device(sbi)) {
1425 		u64 sectors = 0;
1426 		int i;
1427 
1428 		for (i = 0; i < sbi->s_ndevs; i++)
1429 			sectors += get_sectors_written(FDEV(i).bdev);
1430 
1431 		return sectors;
1432 	}
1433 
1434 	return get_sectors_written(sbi->sb->s_bdev);
1435 }
1436 
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1437 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1438 {
1439 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1440 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1441 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1442 	block_t start_blk;
1443 	unsigned int data_sum_blocks, orphan_blocks;
1444 	__u32 crc32 = 0;
1445 	int i;
1446 	int cp_payload_blks = __cp_payload(sbi);
1447 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1448 	u64 kbytes_written;
1449 	int err;
1450 
1451 	/* Flush all the NAT/SIT pages */
1452 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1453 
1454 	/* start to update checkpoint, cp ver is already updated previously */
1455 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1456 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1457 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1458 		ckpt->cur_node_segno[i] =
1459 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1460 		ckpt->cur_node_blkoff[i] =
1461 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1462 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1463 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1464 	}
1465 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1466 		ckpt->cur_data_segno[i] =
1467 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1468 		ckpt->cur_data_blkoff[i] =
1469 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1470 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1471 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1472 	}
1473 
1474 	/* 2 cp + n data seg summary + orphan inode blocks */
1475 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1476 	spin_lock_irqsave(&sbi->cp_lock, flags);
1477 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1478 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1479 	else
1480 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1481 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1482 
1483 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1484 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1485 			orphan_blocks);
1486 
1487 	if (__remain_node_summaries(cpc->reason))
1488 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1489 				cp_payload_blks + data_sum_blocks +
1490 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1491 	else
1492 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1493 				cp_payload_blks + data_sum_blocks +
1494 				orphan_blocks);
1495 
1496 	/* update ckpt flag for checkpoint */
1497 	update_ckpt_flags(sbi, cpc);
1498 
1499 	/* update SIT/NAT bitmap */
1500 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1501 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1502 
1503 	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1504 	*((__le32 *)((unsigned char *)ckpt +
1505 				le32_to_cpu(ckpt->checksum_offset)))
1506 				= cpu_to_le32(crc32);
1507 
1508 	start_blk = __start_cp_next_addr(sbi);
1509 
1510 	/* write nat bits */
1511 	if (enabled_nat_bits(sbi, cpc)) {
1512 		__u64 cp_ver = cur_cp_version(ckpt);
1513 		block_t blk;
1514 
1515 		cp_ver |= ((__u64)crc32 << 32);
1516 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1517 
1518 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1519 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1520 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1521 					(i << F2FS_BLKSIZE_BITS), blk + i);
1522 	}
1523 
1524 	/* write out checkpoint buffer at block 0 */
1525 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1526 
1527 	for (i = 1; i < 1 + cp_payload_blks; i++)
1528 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1529 							start_blk++);
1530 
1531 	if (orphan_num) {
1532 		write_orphan_inodes(sbi, start_blk);
1533 		start_blk += orphan_blocks;
1534 	}
1535 
1536 	f2fs_write_data_summaries(sbi, start_blk);
1537 	start_blk += data_sum_blocks;
1538 
1539 	/* Record write statistics in the hot node summary */
1540 	kbytes_written = sbi->kbytes_written;
1541 	kbytes_written += (f2fs_get_sectors_written(sbi) -
1542 				sbi->sectors_written_start) >> 1;
1543 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1544 
1545 	if (__remain_node_summaries(cpc->reason)) {
1546 		f2fs_write_node_summaries(sbi, start_blk);
1547 		start_blk += NR_CURSEG_NODE_TYPE;
1548 	}
1549 
1550 	/* update user_block_counts */
1551 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1552 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1553 
1554 	/* Here, we have one bio having CP pack except cp pack 2 page */
1555 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1556 	/* Wait for all dirty meta pages to be submitted for IO */
1557 	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1558 
1559 	/* wait for previous submitted meta pages writeback */
1560 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1561 
1562 	/* flush all device cache */
1563 	err = f2fs_flush_device_cache(sbi);
1564 	if (err)
1565 		return err;
1566 
1567 	/* barrier and flush checkpoint cp pack 2 page if it can */
1568 	commit_checkpoint(sbi, ckpt, start_blk);
1569 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1570 
1571 	/*
1572 	 * invalidate intermediate page cache borrowed from meta inode which are
1573 	 * used for migration of encrypted, verity or compressed inode's blocks.
1574 	 */
1575 	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1576 		f2fs_sb_has_compression(sbi))
1577 		invalidate_mapping_pages(META_MAPPING(sbi),
1578 				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1579 
1580 	f2fs_release_ino_entry(sbi, false);
1581 
1582 	f2fs_reset_fsync_node_info(sbi);
1583 
1584 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1585 	clear_sbi_flag(sbi, SBI_NEED_CP);
1586 	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1587 
1588 	spin_lock(&sbi->stat_lock);
1589 	sbi->unusable_block_count = 0;
1590 	spin_unlock(&sbi->stat_lock);
1591 
1592 	__set_cp_next_pack(sbi);
1593 
1594 	/*
1595 	 * redirty superblock if metadata like node page or inode cache is
1596 	 * updated during writing checkpoint.
1597 	 */
1598 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1599 			get_pages(sbi, F2FS_DIRTY_IMETA))
1600 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1601 
1602 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1603 
1604 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1605 }
1606 
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1607 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1608 {
1609 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1610 	unsigned long long ckpt_ver;
1611 	int err = 0;
1612 
1613 	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1614 		return -EROFS;
1615 
1616 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1617 		if (cpc->reason != CP_PAUSE)
1618 			return 0;
1619 		f2fs_warn(sbi, "Start checkpoint disabled!");
1620 	}
1621 	if (cpc->reason != CP_RESIZE)
1622 		f2fs_down_write(&sbi->cp_global_sem);
1623 
1624 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1625 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1626 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1627 		goto out;
1628 	if (unlikely(f2fs_cp_error(sbi))) {
1629 		err = -EIO;
1630 		goto out;
1631 	}
1632 
1633 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1634 
1635 	err = block_operations(sbi);
1636 	if (err)
1637 		goto out;
1638 
1639 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1640 
1641 	f2fs_flush_merged_writes(sbi);
1642 
1643 	/* this is the case of multiple fstrims without any changes */
1644 	if (cpc->reason & CP_DISCARD) {
1645 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1646 			unblock_operations(sbi);
1647 			goto out;
1648 		}
1649 
1650 		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1651 				SIT_I(sbi)->dirty_sentries == 0 &&
1652 				prefree_segments(sbi) == 0) {
1653 			f2fs_flush_sit_entries(sbi, cpc);
1654 			f2fs_clear_prefree_segments(sbi, cpc);
1655 			unblock_operations(sbi);
1656 			goto out;
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * update checkpoint pack index
1662 	 * Increase the version number so that
1663 	 * SIT entries and seg summaries are written at correct place
1664 	 */
1665 	ckpt_ver = cur_cp_version(ckpt);
1666 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1667 
1668 	/* write cached NAT/SIT entries to NAT/SIT area */
1669 	err = f2fs_flush_nat_entries(sbi, cpc);
1670 	if (err)
1671 		goto stop;
1672 
1673 	f2fs_flush_sit_entries(sbi, cpc);
1674 
1675 	/* save inmem log status */
1676 	f2fs_save_inmem_curseg(sbi);
1677 
1678 	err = do_checkpoint(sbi, cpc);
1679 	if (err)
1680 		f2fs_release_discard_addrs(sbi);
1681 	else
1682 		f2fs_clear_prefree_segments(sbi, cpc);
1683 
1684 	f2fs_restore_inmem_curseg(sbi);
1685 stop:
1686 	unblock_operations(sbi);
1687 	stat_inc_cp_count(sbi->stat_info);
1688 
1689 	if (cpc->reason & CP_RECOVERY)
1690 		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1691 
1692 	/* update CP_TIME to trigger checkpoint periodically */
1693 	f2fs_update_time(sbi, CP_TIME);
1694 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1695 out:
1696 	if (cpc->reason != CP_RESIZE)
1697 		f2fs_up_write(&sbi->cp_global_sem);
1698 	return err;
1699 }
1700 
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1701 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1702 {
1703 	int i;
1704 
1705 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1706 		struct inode_management *im = &sbi->im[i];
1707 
1708 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1709 		spin_lock_init(&im->ino_lock);
1710 		INIT_LIST_HEAD(&im->ino_list);
1711 		im->ino_num = 0;
1712 	}
1713 
1714 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1715 			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1716 				F2FS_ORPHANS_PER_BLOCK;
1717 }
1718 
f2fs_create_checkpoint_caches(void)1719 int __init f2fs_create_checkpoint_caches(void)
1720 {
1721 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1722 			sizeof(struct ino_entry));
1723 	if (!ino_entry_slab)
1724 		return -ENOMEM;
1725 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1726 			sizeof(struct inode_entry));
1727 	if (!f2fs_inode_entry_slab) {
1728 		kmem_cache_destroy(ino_entry_slab);
1729 		return -ENOMEM;
1730 	}
1731 	return 0;
1732 }
1733 
f2fs_destroy_checkpoint_caches(void)1734 void f2fs_destroy_checkpoint_caches(void)
1735 {
1736 	kmem_cache_destroy(ino_entry_slab);
1737 	kmem_cache_destroy(f2fs_inode_entry_slab);
1738 }
1739 
__write_checkpoint_sync(struct f2fs_sb_info * sbi)1740 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1741 {
1742 	struct cp_control cpc = { .reason = CP_SYNC, };
1743 	int err;
1744 
1745 	f2fs_down_write(&sbi->gc_lock);
1746 	err = f2fs_write_checkpoint(sbi, &cpc);
1747 	f2fs_up_write(&sbi->gc_lock);
1748 
1749 	return err;
1750 }
1751 
__checkpoint_and_complete_reqs(struct f2fs_sb_info * sbi)1752 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1753 {
1754 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1755 	struct ckpt_req *req, *next;
1756 	struct llist_node *dispatch_list;
1757 	u64 sum_diff = 0, diff, count = 0;
1758 	int ret;
1759 
1760 	dispatch_list = llist_del_all(&cprc->issue_list);
1761 	if (!dispatch_list)
1762 		return;
1763 	dispatch_list = llist_reverse_order(dispatch_list);
1764 
1765 	ret = __write_checkpoint_sync(sbi);
1766 	atomic_inc(&cprc->issued_ckpt);
1767 
1768 	llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1769 		diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1770 		req->ret = ret;
1771 		complete(&req->wait);
1772 
1773 		sum_diff += diff;
1774 		count++;
1775 	}
1776 	atomic_sub(count, &cprc->queued_ckpt);
1777 	atomic_add(count, &cprc->total_ckpt);
1778 
1779 	spin_lock(&cprc->stat_lock);
1780 	cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1781 	if (cprc->peak_time < cprc->cur_time)
1782 		cprc->peak_time = cprc->cur_time;
1783 	spin_unlock(&cprc->stat_lock);
1784 }
1785 
issue_checkpoint_thread(void * data)1786 static int issue_checkpoint_thread(void *data)
1787 {
1788 	struct f2fs_sb_info *sbi = data;
1789 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1790 	wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1791 repeat:
1792 	if (kthread_should_stop())
1793 		return 0;
1794 
1795 	if (!llist_empty(&cprc->issue_list))
1796 		__checkpoint_and_complete_reqs(sbi);
1797 
1798 	wait_event_interruptible(*q,
1799 		kthread_should_stop() || !llist_empty(&cprc->issue_list));
1800 	goto repeat;
1801 }
1802 
flush_remained_ckpt_reqs(struct f2fs_sb_info * sbi,struct ckpt_req * wait_req)1803 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1804 		struct ckpt_req *wait_req)
1805 {
1806 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1807 
1808 	if (!llist_empty(&cprc->issue_list)) {
1809 		__checkpoint_and_complete_reqs(sbi);
1810 	} else {
1811 		/* already dispatched by issue_checkpoint_thread */
1812 		if (wait_req)
1813 			wait_for_completion(&wait_req->wait);
1814 	}
1815 }
1816 
init_ckpt_req(struct ckpt_req * req)1817 static void init_ckpt_req(struct ckpt_req *req)
1818 {
1819 	memset(req, 0, sizeof(struct ckpt_req));
1820 
1821 	init_completion(&req->wait);
1822 	req->queue_time = ktime_get();
1823 }
1824 
f2fs_issue_checkpoint(struct f2fs_sb_info * sbi)1825 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1826 {
1827 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1828 	struct ckpt_req req;
1829 	struct cp_control cpc;
1830 
1831 	cpc.reason = __get_cp_reason(sbi);
1832 	if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1833 		int ret;
1834 
1835 		f2fs_down_write(&sbi->gc_lock);
1836 		ret = f2fs_write_checkpoint(sbi, &cpc);
1837 		f2fs_up_write(&sbi->gc_lock);
1838 
1839 		return ret;
1840 	}
1841 
1842 	if (!cprc->f2fs_issue_ckpt)
1843 		return __write_checkpoint_sync(sbi);
1844 
1845 	init_ckpt_req(&req);
1846 
1847 	llist_add(&req.llnode, &cprc->issue_list);
1848 	atomic_inc(&cprc->queued_ckpt);
1849 
1850 	/*
1851 	 * update issue_list before we wake up issue_checkpoint thread,
1852 	 * this smp_mb() pairs with another barrier in ___wait_event(),
1853 	 * see more details in comments of waitqueue_active().
1854 	 */
1855 	smp_mb();
1856 
1857 	if (waitqueue_active(&cprc->ckpt_wait_queue))
1858 		wake_up(&cprc->ckpt_wait_queue);
1859 
1860 	if (cprc->f2fs_issue_ckpt)
1861 		wait_for_completion(&req.wait);
1862 	else
1863 		flush_remained_ckpt_reqs(sbi, &req);
1864 
1865 	return req.ret;
1866 }
1867 
f2fs_start_ckpt_thread(struct f2fs_sb_info * sbi)1868 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1869 {
1870 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1871 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1872 
1873 	if (cprc->f2fs_issue_ckpt)
1874 		return 0;
1875 
1876 	cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1877 			"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1878 	if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1879 		cprc->f2fs_issue_ckpt = NULL;
1880 		return -ENOMEM;
1881 	}
1882 
1883 	set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1884 
1885 	return 0;
1886 }
1887 
f2fs_stop_ckpt_thread(struct f2fs_sb_info * sbi)1888 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1889 {
1890 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1891 	struct task_struct *ckpt_task;
1892 
1893 	if (!cprc->f2fs_issue_ckpt)
1894 		return;
1895 
1896 	ckpt_task = cprc->f2fs_issue_ckpt;
1897 	cprc->f2fs_issue_ckpt = NULL;
1898 	kthread_stop(ckpt_task);
1899 
1900 	f2fs_flush_ckpt_thread(sbi);
1901 }
1902 
f2fs_flush_ckpt_thread(struct f2fs_sb_info * sbi)1903 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1904 {
1905 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1906 
1907 	flush_remained_ckpt_reqs(sbi, NULL);
1908 
1909 	/* Let's wait for the previous dispatched checkpoint. */
1910 	while (atomic_read(&cprc->queued_ckpt))
1911 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1912 }
1913 
f2fs_init_ckpt_req_control(struct f2fs_sb_info * sbi)1914 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1915 {
1916 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1917 
1918 	atomic_set(&cprc->issued_ckpt, 0);
1919 	atomic_set(&cprc->total_ckpt, 0);
1920 	atomic_set(&cprc->queued_ckpt, 0);
1921 	cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1922 	init_waitqueue_head(&cprc->ckpt_wait_queue);
1923 	init_llist_head(&cprc->issue_list);
1924 	spin_lock_init(&cprc->stat_lock);
1925 }
1926