1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/crypto/hooks.c
4 *
5 * Encryption hooks for higher-level filesystem operations.
6 */
7
8 #include "fscrypt_private.h"
9
10 /**
11 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
12 * @inode: the inode being opened
13 * @filp: the struct file being set up
14 *
15 * Currently, an encrypted regular file can only be opened if its encryption key
16 * is available; access to the raw encrypted contents is not supported.
17 * Therefore, we first set up the inode's encryption key (if not already done)
18 * and return an error if it's unavailable.
19 *
20 * We also verify that if the parent directory (from the path via which the file
21 * is being opened) is encrypted, then the inode being opened uses the same
22 * encryption policy. This is needed as part of the enforcement that all files
23 * in an encrypted directory tree use the same encryption policy, as a
24 * protection against certain types of offline attacks. Note that this check is
25 * needed even when opening an *unencrypted* file, since it's forbidden to have
26 * an unencrypted file in an encrypted directory.
27 *
28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29 */
fscrypt_file_open(struct inode * inode,struct file * filp)30 int fscrypt_file_open(struct inode *inode, struct file *filp)
31 {
32 int err;
33 struct dentry *dir;
34
35 err = fscrypt_require_key(inode);
36 if (err)
37 return err;
38
39 dir = dget_parent(file_dentry(filp));
40 if (IS_ENCRYPTED(d_inode(dir)) &&
41 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42 fscrypt_warn(inode,
43 "Inconsistent encryption context (parent directory: %lu)",
44 d_inode(dir)->i_ino);
45 err = -EPERM;
46 }
47 dput(dir);
48 return err;
49 }
50 EXPORT_SYMBOL_GPL(fscrypt_file_open);
51
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)52 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
53 struct dentry *dentry)
54 {
55 if (fscrypt_is_nokey_name(dentry))
56 return -ENOKEY;
57 /*
58 * We don't need to separately check that the directory inode's key is
59 * available, as it's implied by the dentry not being a no-key name.
60 */
61
62 if (!fscrypt_has_permitted_context(dir, inode))
63 return -EXDEV;
64
65 return 0;
66 }
67 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
68
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)69 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
70 struct inode *new_dir, struct dentry *new_dentry,
71 unsigned int flags)
72 {
73 if (fscrypt_is_nokey_name(old_dentry) ||
74 fscrypt_is_nokey_name(new_dentry))
75 return -ENOKEY;
76 /*
77 * We don't need to separately check that the directory inodes' keys are
78 * available, as it's implied by the dentries not being no-key names.
79 */
80
81 if (old_dir != new_dir) {
82 if (IS_ENCRYPTED(new_dir) &&
83 !fscrypt_has_permitted_context(new_dir,
84 d_inode(old_dentry)))
85 return -EXDEV;
86
87 if ((flags & RENAME_EXCHANGE) &&
88 IS_ENCRYPTED(old_dir) &&
89 !fscrypt_has_permitted_context(old_dir,
90 d_inode(new_dentry)))
91 return -EXDEV;
92 }
93 return 0;
94 }
95 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
96
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)97 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
98 struct fscrypt_name *fname)
99 {
100 int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
101
102 if (err && err != -ENOENT)
103 return err;
104
105 if (fname->is_nokey_name) {
106 spin_lock(&dentry->d_lock);
107 dentry->d_flags |= DCACHE_NOKEY_NAME;
108 spin_unlock(&dentry->d_lock);
109 }
110 return err;
111 }
112 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
113
__fscrypt_prepare_readdir(struct inode * dir)114 int __fscrypt_prepare_readdir(struct inode *dir)
115 {
116 return fscrypt_get_encryption_info(dir, true);
117 }
118 EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
119
__fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)120 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
121 {
122 if (attr->ia_valid & ATTR_SIZE)
123 return fscrypt_require_key(d_inode(dentry));
124 return 0;
125 }
126 EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
127
128 /**
129 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
130 * @inode: the inode on which flags are being changed
131 * @oldflags: the old flags
132 * @flags: the new flags
133 *
134 * The caller should be holding i_rwsem for write.
135 *
136 * Return: 0 on success; -errno if the flags change isn't allowed or if
137 * another error occurs.
138 */
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)139 int fscrypt_prepare_setflags(struct inode *inode,
140 unsigned int oldflags, unsigned int flags)
141 {
142 struct fscrypt_info *ci;
143 struct fscrypt_master_key *mk;
144 int err;
145
146 /*
147 * When the CASEFOLD flag is set on an encrypted directory, we must
148 * derive the secret key needed for the dirhash. This is only possible
149 * if the directory uses a v2 encryption policy.
150 */
151 if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
152 err = fscrypt_require_key(inode);
153 if (err)
154 return err;
155 ci = inode->i_crypt_info;
156 if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
157 return -EINVAL;
158 mk = ci->ci_master_key;
159 down_read(&mk->mk_sem);
160 if (is_master_key_secret_present(&mk->mk_secret))
161 err = fscrypt_derive_dirhash_key(ci, mk);
162 else
163 err = -ENOKEY;
164 up_read(&mk->mk_sem);
165 return err;
166 }
167 return 0;
168 }
169
170 /**
171 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
172 * @dir: directory in which the symlink is being created
173 * @target: plaintext symlink target
174 * @len: length of @target excluding null terminator
175 * @max_len: space the filesystem has available to store the symlink target
176 * @disk_link: (out) the on-disk symlink target being prepared
177 *
178 * This function computes the size the symlink target will require on-disk,
179 * stores it in @disk_link->len, and validates it against @max_len. An
180 * encrypted symlink may be longer than the original.
181 *
182 * Additionally, @disk_link->name is set to @target if the symlink will be
183 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted
184 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
185 * on-disk target later. (The reason for the two-step process is that some
186 * filesystems need to know the size of the symlink target before creating the
187 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
188 *
189 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
190 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
191 * occurred while setting up the encryption key.
192 */
fscrypt_prepare_symlink(struct inode * dir,const char * target,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)193 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
194 unsigned int len, unsigned int max_len,
195 struct fscrypt_str *disk_link)
196 {
197 const union fscrypt_policy *policy;
198
199 /*
200 * To calculate the size of the encrypted symlink target we need to know
201 * the amount of NUL padding, which is determined by the flags set in
202 * the encryption policy which will be inherited from the directory.
203 */
204 policy = fscrypt_policy_to_inherit(dir);
205 if (policy == NULL) {
206 /* Not encrypted */
207 disk_link->name = (unsigned char *)target;
208 disk_link->len = len + 1;
209 if (disk_link->len > max_len)
210 return -ENAMETOOLONG;
211 return 0;
212 }
213 if (IS_ERR(policy))
214 return PTR_ERR(policy);
215
216 /*
217 * Calculate the size of the encrypted symlink and verify it won't
218 * exceed max_len. Note that for historical reasons, encrypted symlink
219 * targets are prefixed with the ciphertext length, despite this
220 * actually being redundant with i_size. This decreases by 2 bytes the
221 * longest symlink target we can accept.
222 *
223 * We could recover 1 byte by not counting a null terminator, but
224 * counting it (even though it is meaningless for ciphertext) is simpler
225 * for now since filesystems will assume it is there and subtract it.
226 */
227 if (!fscrypt_fname_encrypted_size(policy, len,
228 max_len - sizeof(struct fscrypt_symlink_data),
229 &disk_link->len))
230 return -ENAMETOOLONG;
231 disk_link->len += sizeof(struct fscrypt_symlink_data);
232
233 disk_link->name = NULL;
234 return 0;
235 }
236 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
237
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)238 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
239 unsigned int len, struct fscrypt_str *disk_link)
240 {
241 int err;
242 struct qstr iname = QSTR_INIT(target, len);
243 struct fscrypt_symlink_data *sd;
244 unsigned int ciphertext_len;
245
246 /*
247 * fscrypt_prepare_new_inode() should have already set up the new
248 * symlink inode's encryption key. We don't wait until now to do it,
249 * since we may be in a filesystem transaction now.
250 */
251 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
252 return -ENOKEY;
253
254 if (disk_link->name) {
255 /* filesystem-provided buffer */
256 sd = (struct fscrypt_symlink_data *)disk_link->name;
257 } else {
258 sd = kmalloc(disk_link->len, GFP_NOFS);
259 if (!sd)
260 return -ENOMEM;
261 }
262 ciphertext_len = disk_link->len - sizeof(*sd);
263 sd->len = cpu_to_le16(ciphertext_len);
264
265 err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
266 ciphertext_len);
267 if (err)
268 goto err_free_sd;
269
270 /*
271 * Null-terminating the ciphertext doesn't make sense, but we still
272 * count the null terminator in the length, so we might as well
273 * initialize it just in case the filesystem writes it out.
274 */
275 sd->encrypted_path[ciphertext_len] = '\0';
276
277 /* Cache the plaintext symlink target for later use by get_link() */
278 err = -ENOMEM;
279 inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
280 if (!inode->i_link)
281 goto err_free_sd;
282
283 if (!disk_link->name)
284 disk_link->name = (unsigned char *)sd;
285 return 0;
286
287 err_free_sd:
288 if (!disk_link->name)
289 kfree(sd);
290 return err;
291 }
292 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
293
294 /**
295 * fscrypt_get_symlink() - get the target of an encrypted symlink
296 * @inode: the symlink inode
297 * @caddr: the on-disk contents of the symlink
298 * @max_size: size of @caddr buffer
299 * @done: if successful, will be set up to free the returned target if needed
300 *
301 * If the symlink's encryption key is available, we decrypt its target.
302 * Otherwise, we encode its target for presentation.
303 *
304 * This may sleep, so the filesystem must have dropped out of RCU mode already.
305 *
306 * Return: the presentable symlink target or an ERR_PTR()
307 */
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)308 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
309 unsigned int max_size,
310 struct delayed_call *done)
311 {
312 const struct fscrypt_symlink_data *sd;
313 struct fscrypt_str cstr, pstr;
314 bool has_key;
315 int err;
316
317 /* This is for encrypted symlinks only */
318 if (WARN_ON(!IS_ENCRYPTED(inode)))
319 return ERR_PTR(-EINVAL);
320
321 /* If the decrypted target is already cached, just return it. */
322 pstr.name = READ_ONCE(inode->i_link);
323 if (pstr.name)
324 return pstr.name;
325
326 /*
327 * Try to set up the symlink's encryption key, but we can continue
328 * regardless of whether the key is available or not.
329 */
330 err = fscrypt_get_encryption_info(inode, false);
331 if (err)
332 return ERR_PTR(err);
333 has_key = fscrypt_has_encryption_key(inode);
334
335 /*
336 * For historical reasons, encrypted symlink targets are prefixed with
337 * the ciphertext length, even though this is redundant with i_size.
338 */
339
340 if (max_size < sizeof(*sd))
341 return ERR_PTR(-EUCLEAN);
342 sd = caddr;
343 cstr.name = (unsigned char *)sd->encrypted_path;
344 cstr.len = le16_to_cpu(sd->len);
345
346 if (cstr.len == 0)
347 return ERR_PTR(-EUCLEAN);
348
349 if (cstr.len + sizeof(*sd) - 1 > max_size)
350 return ERR_PTR(-EUCLEAN);
351
352 err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
353 if (err)
354 return ERR_PTR(err);
355
356 err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
357 if (err)
358 goto err_kfree;
359
360 err = -EUCLEAN;
361 if (pstr.name[0] == '\0')
362 goto err_kfree;
363
364 pstr.name[pstr.len] = '\0';
365
366 /*
367 * Cache decrypted symlink targets in i_link for later use. Don't cache
368 * symlink targets encoded without the key, since those become outdated
369 * once the key is added. This pairs with the READ_ONCE() above and in
370 * the VFS path lookup code.
371 */
372 if (!has_key ||
373 cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
374 set_delayed_call(done, kfree_link, pstr.name);
375
376 return pstr.name;
377
378 err_kfree:
379 kfree(pstr.name);
380 return ERR_PTR(err);
381 }
382 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
383
384 /**
385 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
386 * @path: the path for the encrypted symlink being queried
387 * @stat: the struct being filled with the symlink's attributes
388 *
389 * Override st_size of encrypted symlinks to be the length of the decrypted
390 * symlink target (or the no-key encoded symlink target, if the key is
391 * unavailable) rather than the length of the encrypted symlink target. This is
392 * necessary for st_size to match the symlink target that userspace actually
393 * sees. POSIX requires this, and some userspace programs depend on it.
394 *
395 * This requires reading the symlink target from disk if needed, setting up the
396 * inode's encryption key if possible, and then decrypting or encoding the
397 * symlink target. This makes lstat() more heavyweight than is normally the
398 * case. However, decrypted symlink targets will be cached in ->i_link, so
399 * usually the symlink won't have to be read and decrypted again later if/when
400 * it is actually followed, readlink() is called, or lstat() is called again.
401 *
402 * Return: 0 on success, -errno on failure
403 */
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)404 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
405 {
406 struct dentry *dentry = path->dentry;
407 struct inode *inode = d_inode(dentry);
408 const char *link;
409 DEFINE_DELAYED_CALL(done);
410
411 /*
412 * To get the symlink target that userspace will see (whether it's the
413 * decrypted target or the no-key encoded target), we can just get it in
414 * the same way the VFS does during path resolution and readlink().
415 */
416 link = READ_ONCE(inode->i_link);
417 if (!link) {
418 link = inode->i_op->get_link(dentry, inode, &done);
419 if (IS_ERR(link))
420 return PTR_ERR(link);
421 }
422 stat->size = strlen(link);
423 do_delayed_call(&done);
424 return 0;
425 }
426 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
427