1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 #include <linux/fs.h>
22
fuse_pages_alloc(unsigned int npages,gfp_t flags,struct fuse_page_desc ** desc)23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 struct fuse_page_desc **desc)
25 {
26 struct page **pages;
27
28 pages = kzalloc(npages * (sizeof(struct page *) +
29 sizeof(struct fuse_page_desc)), flags);
30 *desc = (void *) (pages + npages);
31
32 return pages;
33 }
34
fuse_send_open(struct fuse_mount * fm,u64 nodeid,struct file * file,int opcode,struct fuse_open_out * outargp)35 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
36 int opcode, struct fuse_open_out *outargp)
37 {
38 struct fuse_open_in inarg;
39 FUSE_ARGS(args);
40
41 memset(&inarg, 0, sizeof(inarg));
42 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 if (!fm->fc->atomic_o_trunc)
44 inarg.flags &= ~O_TRUNC;
45 args.opcode = opcode;
46 args.nodeid = nodeid;
47 args.in_numargs = 1;
48 args.in_args[0].size = sizeof(inarg);
49 args.in_args[0].value = &inarg;
50 args.out_numargs = 1;
51 args.out_args[0].size = sizeof(*outargp);
52 args.out_args[0].value = outargp;
53
54 return fuse_simple_request(fm, &args);
55 }
56
57 struct fuse_release_args {
58 struct fuse_args args;
59 struct fuse_release_in inarg;
60 struct inode *inode;
61 };
62
fuse_file_alloc(struct fuse_mount * fm)63 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
64 {
65 struct fuse_file *ff;
66
67 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
68 if (unlikely(!ff))
69 return NULL;
70
71 ff->fm = fm;
72 ff->release_args = kzalloc(sizeof(*ff->release_args),
73 GFP_KERNEL_ACCOUNT);
74 if (!ff->release_args) {
75 kfree(ff);
76 return NULL;
77 }
78
79 INIT_LIST_HEAD(&ff->write_entry);
80 mutex_init(&ff->readdir.lock);
81 refcount_set(&ff->count, 1);
82 RB_CLEAR_NODE(&ff->polled_node);
83 init_waitqueue_head(&ff->poll_wait);
84
85 ff->kh = atomic64_inc_return(&fm->fc->khctr);
86
87 return ff;
88 }
89
fuse_file_free(struct fuse_file * ff)90 void fuse_file_free(struct fuse_file *ff)
91 {
92 kfree(ff->release_args);
93 mutex_destroy(&ff->readdir.lock);
94 kfree(ff);
95 }
96
fuse_file_get(struct fuse_file * ff)97 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 {
99 refcount_inc(&ff->count);
100 return ff;
101 }
102
fuse_release_end(struct fuse_mount * fm,struct fuse_args * args,int error)103 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
104 int error)
105 {
106 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107
108 iput(ra->inode);
109 kfree(ra);
110 }
111
fuse_file_put(struct fuse_file * ff,bool sync,bool isdir)112 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 {
114 if (refcount_dec_and_test(&ff->count)) {
115 struct fuse_args *args = &ff->release_args->args;
116
117 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
118 /* Do nothing when client does not implement 'open' */
119 fuse_release_end(ff->fm, args, 0);
120 } else if (sync) {
121 fuse_simple_request(ff->fm, args);
122 fuse_release_end(ff->fm, args, 0);
123 } else {
124 args->end = fuse_release_end;
125 if (fuse_simple_background(ff->fm, args,
126 GFP_KERNEL | __GFP_NOFAIL))
127 fuse_release_end(ff->fm, args, -ENOTCONN);
128 }
129 kfree(ff);
130 }
131 }
132
fuse_do_open(struct fuse_mount * fm,u64 nodeid,struct file * file,bool isdir)133 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
134 bool isdir)
135 {
136 struct fuse_conn *fc = fm->fc;
137 struct fuse_file *ff;
138 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
139
140 ff = fuse_file_alloc(fm);
141 if (!ff)
142 return -ENOMEM;
143
144 ff->fh = 0;
145 /* Default for no-open */
146 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
147 if (isdir ? !fc->no_opendir : !fc->no_open) {
148 struct fuse_open_out outarg;
149 int err;
150
151 err = fuse_send_open(fm, nodeid, file, opcode, &outarg);
152 if (!err) {
153 ff->fh = outarg.fh;
154 ff->open_flags = outarg.open_flags;
155 fuse_passthrough_setup(fc, ff, &outarg);
156 } else if (err != -ENOSYS) {
157 fuse_file_free(ff);
158 return err;
159 } else {
160 if (isdir)
161 fc->no_opendir = 1;
162 else
163 fc->no_open = 1;
164 }
165 }
166
167 if (isdir)
168 ff->open_flags &= ~FOPEN_DIRECT_IO;
169
170 ff->nodeid = nodeid;
171 file->private_data = ff;
172
173 return 0;
174 }
175 EXPORT_SYMBOL_GPL(fuse_do_open);
176
fuse_link_write_file(struct file * file)177 static void fuse_link_write_file(struct file *file)
178 {
179 struct inode *inode = file_inode(file);
180 struct fuse_inode *fi = get_fuse_inode(inode);
181 struct fuse_file *ff = file->private_data;
182 /*
183 * file may be written through mmap, so chain it onto the
184 * inodes's write_file list
185 */
186 spin_lock(&fi->lock);
187 if (list_empty(&ff->write_entry))
188 list_add(&ff->write_entry, &fi->write_files);
189 spin_unlock(&fi->lock);
190 }
191
fuse_finish_open(struct inode * inode,struct file * file)192 void fuse_finish_open(struct inode *inode, struct file *file)
193 {
194 struct fuse_file *ff = file->private_data;
195 struct fuse_conn *fc = get_fuse_conn(inode);
196
197 if (ff->open_flags & FOPEN_STREAM)
198 stream_open(inode, file);
199 else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 nonseekable_open(inode, file);
201
202 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
203 struct fuse_inode *fi = get_fuse_inode(inode);
204
205 spin_lock(&fi->lock);
206 fi->attr_version = atomic64_inc_return(&fc->attr_version);
207 i_size_write(inode, 0);
208 spin_unlock(&fi->lock);
209 fuse_invalidate_attr(inode);
210 if (fc->writeback_cache)
211 file_update_time(file);
212 }
213 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
214 fuse_link_write_file(file);
215 }
216
fuse_open_common(struct inode * inode,struct file * file,bool isdir)217 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
218 {
219 struct fuse_mount *fm = get_fuse_mount(inode);
220 struct fuse_conn *fc = fm->fc;
221 int err;
222 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
223 fc->atomic_o_trunc &&
224 fc->writeback_cache;
225 bool dax_truncate = (file->f_flags & O_TRUNC) &&
226 fc->atomic_o_trunc && FUSE_IS_DAX(inode);
227
228 if (fuse_is_bad(inode))
229 return -EIO;
230
231 err = generic_file_open(inode, file);
232 if (err)
233 return err;
234
235 if (is_wb_truncate || dax_truncate)
236 inode_lock(inode);
237
238 if (dax_truncate) {
239 down_write(&get_fuse_inode(inode)->i_mmap_sem);
240 err = fuse_dax_break_layouts(inode, 0, 0);
241 if (err)
242 goto out_inode_unlock;
243 }
244
245 if (is_wb_truncate || dax_truncate)
246 fuse_set_nowrite(inode);
247
248 err = fuse_do_open(fm, get_node_id(inode), file, isdir);
249 if (!err)
250 fuse_finish_open(inode, file);
251
252 if (is_wb_truncate || dax_truncate)
253 fuse_release_nowrite(inode);
254 if (!err) {
255 struct fuse_file *ff = file->private_data;
256
257 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC))
258 truncate_pagecache(inode, 0);
259 else if (!(ff->open_flags & FOPEN_KEEP_CACHE))
260 invalidate_inode_pages2(inode->i_mapping);
261 }
262 if (dax_truncate)
263 up_write(&get_fuse_inode(inode)->i_mmap_sem);
264
265 out_inode_unlock:
266 if (is_wb_truncate || dax_truncate)
267 inode_unlock(inode);
268
269 return err;
270 }
271
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,int flags,int opcode)272 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
273 int flags, int opcode)
274 {
275 struct fuse_conn *fc = ff->fm->fc;
276 struct fuse_release_args *ra = ff->release_args;
277
278 /* Inode is NULL on error path of fuse_create_open() */
279 if (likely(fi)) {
280 spin_lock(&fi->lock);
281 list_del(&ff->write_entry);
282 spin_unlock(&fi->lock);
283 }
284 spin_lock(&fc->lock);
285 if (!RB_EMPTY_NODE(&ff->polled_node))
286 rb_erase(&ff->polled_node, &fc->polled_files);
287 spin_unlock(&fc->lock);
288
289 wake_up_interruptible_all(&ff->poll_wait);
290
291 ra->inarg.fh = ff->fh;
292 ra->inarg.flags = flags;
293 ra->args.in_numargs = 1;
294 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
295 ra->args.in_args[0].value = &ra->inarg;
296 ra->args.opcode = opcode;
297 ra->args.nodeid = ff->nodeid;
298 ra->args.force = true;
299 ra->args.nocreds = true;
300 }
301
fuse_release_common(struct file * file,bool isdir)302 void fuse_release_common(struct file *file, bool isdir)
303 {
304 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
305 struct fuse_file *ff = file->private_data;
306 struct fuse_release_args *ra = ff->release_args;
307 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
308
309 fuse_passthrough_release(&ff->passthrough);
310
311 fuse_prepare_release(fi, ff, file->f_flags, opcode);
312
313 if (ff->flock) {
314 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
315 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc,
316 (fl_owner_t) file);
317 }
318 /* Hold inode until release is finished */
319 ra->inode = igrab(file_inode(file));
320
321 /*
322 * Normally this will send the RELEASE request, however if
323 * some asynchronous READ or WRITE requests are outstanding,
324 * the sending will be delayed.
325 *
326 * Make the release synchronous if this is a fuseblk mount,
327 * synchronous RELEASE is allowed (and desirable) in this case
328 * because the server can be trusted not to screw up.
329 */
330 fuse_file_put(ff, ff->fm->fc->destroy, isdir);
331 }
332
fuse_open(struct inode * inode,struct file * file)333 static int fuse_open(struct inode *inode, struct file *file)
334 {
335 return fuse_open_common(inode, file, false);
336 }
337
fuse_release(struct inode * inode,struct file * file)338 static int fuse_release(struct inode *inode, struct file *file)
339 {
340 struct fuse_conn *fc = get_fuse_conn(inode);
341
342 /* see fuse_vma_close() for !writeback_cache case */
343 if (fc->writeback_cache)
344 write_inode_now(inode, 1);
345
346 fuse_release_common(file, false);
347
348 /* return value is ignored by VFS */
349 return 0;
350 }
351
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,int flags)352 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
353 {
354 WARN_ON(refcount_read(&ff->count) > 1);
355 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
356 /*
357 * iput(NULL) is a no-op and since the refcount is 1 and everything's
358 * synchronous, we are fine with not doing igrab() here"
359 */
360 fuse_file_put(ff, true, false);
361 }
362 EXPORT_SYMBOL_GPL(fuse_sync_release);
363
364 /*
365 * Scramble the ID space with XTEA, so that the value of the files_struct
366 * pointer is not exposed to userspace.
367 */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)368 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
369 {
370 u32 *k = fc->scramble_key;
371 u64 v = (unsigned long) id;
372 u32 v0 = v;
373 u32 v1 = v >> 32;
374 u32 sum = 0;
375 int i;
376
377 for (i = 0; i < 32; i++) {
378 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
379 sum += 0x9E3779B9;
380 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
381 }
382
383 return (u64) v0 + ((u64) v1 << 32);
384 }
385
386 struct fuse_writepage_args {
387 struct fuse_io_args ia;
388 struct rb_node writepages_entry;
389 struct list_head queue_entry;
390 struct fuse_writepage_args *next;
391 struct inode *inode;
392 };
393
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)394 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
395 pgoff_t idx_from, pgoff_t idx_to)
396 {
397 struct rb_node *n;
398
399 n = fi->writepages.rb_node;
400
401 while (n) {
402 struct fuse_writepage_args *wpa;
403 pgoff_t curr_index;
404
405 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
406 WARN_ON(get_fuse_inode(wpa->inode) != fi);
407 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
408 if (idx_from >= curr_index + wpa->ia.ap.num_pages)
409 n = n->rb_right;
410 else if (idx_to < curr_index)
411 n = n->rb_left;
412 else
413 return wpa;
414 }
415 return NULL;
416 }
417
418 /*
419 * Check if any page in a range is under writeback
420 *
421 * This is currently done by walking the list of writepage requests
422 * for the inode, which can be pretty inefficient.
423 */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)424 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
425 pgoff_t idx_to)
426 {
427 struct fuse_inode *fi = get_fuse_inode(inode);
428 bool found;
429
430 spin_lock(&fi->lock);
431 found = fuse_find_writeback(fi, idx_from, idx_to);
432 spin_unlock(&fi->lock);
433
434 return found;
435 }
436
fuse_page_is_writeback(struct inode * inode,pgoff_t index)437 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
438 {
439 return fuse_range_is_writeback(inode, index, index);
440 }
441
442 /*
443 * Wait for page writeback to be completed.
444 *
445 * Since fuse doesn't rely on the VM writeback tracking, this has to
446 * use some other means.
447 */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)448 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
449 {
450 struct fuse_inode *fi = get_fuse_inode(inode);
451
452 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
453 }
454
455 /*
456 * Wait for all pending writepages on the inode to finish.
457 *
458 * This is currently done by blocking further writes with FUSE_NOWRITE
459 * and waiting for all sent writes to complete.
460 *
461 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
462 * could conflict with truncation.
463 */
fuse_sync_writes(struct inode * inode)464 static void fuse_sync_writes(struct inode *inode)
465 {
466 fuse_set_nowrite(inode);
467 fuse_release_nowrite(inode);
468 }
469
fuse_flush(struct file * file,fl_owner_t id)470 static int fuse_flush(struct file *file, fl_owner_t id)
471 {
472 struct inode *inode = file_inode(file);
473 struct fuse_mount *fm = get_fuse_mount(inode);
474 struct fuse_file *ff = file->private_data;
475 struct fuse_flush_in inarg;
476 FUSE_ARGS(args);
477 int err;
478
479 if (fuse_is_bad(inode))
480 return -EIO;
481
482 err = write_inode_now(inode, 1);
483 if (err)
484 return err;
485
486 inode_lock(inode);
487 fuse_sync_writes(inode);
488 inode_unlock(inode);
489
490 err = filemap_check_errors(file->f_mapping);
491 if (err)
492 return err;
493
494 err = 0;
495 if (fm->fc->no_flush)
496 goto inval_attr_out;
497
498 memset(&inarg, 0, sizeof(inarg));
499 inarg.fh = ff->fh;
500 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
501 args.opcode = FUSE_FLUSH;
502 args.nodeid = get_node_id(inode);
503 args.in_numargs = 1;
504 args.in_args[0].size = sizeof(inarg);
505 args.in_args[0].value = &inarg;
506 args.force = true;
507
508 err = fuse_simple_request(fm, &args);
509 if (err == -ENOSYS) {
510 fm->fc->no_flush = 1;
511 err = 0;
512 }
513
514 inval_attr_out:
515 /*
516 * In memory i_blocks is not maintained by fuse, if writeback cache is
517 * enabled, i_blocks from cached attr may not be accurate.
518 */
519 if (!err && fm->fc->writeback_cache)
520 fuse_invalidate_attr(inode);
521 return err;
522 }
523
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)524 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
525 int datasync, int opcode)
526 {
527 struct inode *inode = file->f_mapping->host;
528 struct fuse_mount *fm = get_fuse_mount(inode);
529 struct fuse_file *ff = file->private_data;
530 FUSE_ARGS(args);
531 struct fuse_fsync_in inarg;
532
533 memset(&inarg, 0, sizeof(inarg));
534 inarg.fh = ff->fh;
535 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
536 args.opcode = opcode;
537 args.nodeid = get_node_id(inode);
538 args.in_numargs = 1;
539 args.in_args[0].size = sizeof(inarg);
540 args.in_args[0].value = &inarg;
541 return fuse_simple_request(fm, &args);
542 }
543
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)544 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
545 int datasync)
546 {
547 struct inode *inode = file->f_mapping->host;
548 struct fuse_conn *fc = get_fuse_conn(inode);
549 int err;
550
551 if (fuse_is_bad(inode))
552 return -EIO;
553
554 inode_lock(inode);
555
556 /*
557 * Start writeback against all dirty pages of the inode, then
558 * wait for all outstanding writes, before sending the FSYNC
559 * request.
560 */
561 err = file_write_and_wait_range(file, start, end);
562 if (err)
563 goto out;
564
565 fuse_sync_writes(inode);
566
567 /*
568 * Due to implementation of fuse writeback
569 * file_write_and_wait_range() does not catch errors.
570 * We have to do this directly after fuse_sync_writes()
571 */
572 err = file_check_and_advance_wb_err(file);
573 if (err)
574 goto out;
575
576 err = sync_inode_metadata(inode, 1);
577 if (err)
578 goto out;
579
580 if (fc->no_fsync)
581 goto out;
582
583 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
584 if (err == -ENOSYS) {
585 fc->no_fsync = 1;
586 err = 0;
587 }
588 out:
589 inode_unlock(inode);
590
591 return err;
592 }
593
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)594 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
595 size_t count, int opcode)
596 {
597 struct fuse_file *ff = file->private_data;
598 struct fuse_args *args = &ia->ap.args;
599
600 ia->read.in.fh = ff->fh;
601 ia->read.in.offset = pos;
602 ia->read.in.size = count;
603 ia->read.in.flags = file->f_flags;
604 args->opcode = opcode;
605 args->nodeid = ff->nodeid;
606 args->in_numargs = 1;
607 args->in_args[0].size = sizeof(ia->read.in);
608 args->in_args[0].value = &ia->read.in;
609 args->out_argvar = true;
610 args->out_numargs = 1;
611 args->out_args[0].size = count;
612 }
613
fuse_release_user_pages(struct fuse_args_pages * ap,bool should_dirty)614 static void fuse_release_user_pages(struct fuse_args_pages *ap,
615 bool should_dirty)
616 {
617 unsigned int i;
618
619 for (i = 0; i < ap->num_pages; i++) {
620 if (should_dirty)
621 set_page_dirty_lock(ap->pages[i]);
622 put_page(ap->pages[i]);
623 }
624 }
625
fuse_io_release(struct kref * kref)626 static void fuse_io_release(struct kref *kref)
627 {
628 kfree(container_of(kref, struct fuse_io_priv, refcnt));
629 }
630
fuse_get_res_by_io(struct fuse_io_priv * io)631 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
632 {
633 if (io->err)
634 return io->err;
635
636 if (io->bytes >= 0 && io->write)
637 return -EIO;
638
639 return io->bytes < 0 ? io->size : io->bytes;
640 }
641
642 /**
643 * In case of short read, the caller sets 'pos' to the position of
644 * actual end of fuse request in IO request. Otherwise, if bytes_requested
645 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
646 *
647 * An example:
648 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
649 * both submitted asynchronously. The first of them was ACKed by userspace as
650 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
651 * second request was ACKed as short, e.g. only 1K was read, resulting in
652 * pos == 33K.
653 *
654 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
655 * will be equal to the length of the longest contiguous fragment of
656 * transferred data starting from the beginning of IO request.
657 */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)658 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
659 {
660 int left;
661
662 spin_lock(&io->lock);
663 if (err)
664 io->err = io->err ? : err;
665 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
666 io->bytes = pos;
667
668 left = --io->reqs;
669 if (!left && io->blocking)
670 complete(io->done);
671 spin_unlock(&io->lock);
672
673 if (!left && !io->blocking) {
674 ssize_t res = fuse_get_res_by_io(io);
675
676 if (res >= 0) {
677 struct inode *inode = file_inode(io->iocb->ki_filp);
678 struct fuse_conn *fc = get_fuse_conn(inode);
679 struct fuse_inode *fi = get_fuse_inode(inode);
680
681 spin_lock(&fi->lock);
682 fi->attr_version = atomic64_inc_return(&fc->attr_version);
683 spin_unlock(&fi->lock);
684 }
685
686 io->iocb->ki_complete(io->iocb, res, 0);
687 }
688
689 kref_put(&io->refcnt, fuse_io_release);
690 }
691
fuse_io_alloc(struct fuse_io_priv * io,unsigned int npages)692 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
693 unsigned int npages)
694 {
695 struct fuse_io_args *ia;
696
697 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
698 if (ia) {
699 ia->io = io;
700 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
701 &ia->ap.descs);
702 if (!ia->ap.pages) {
703 kfree(ia);
704 ia = NULL;
705 }
706 }
707 return ia;
708 }
709
fuse_io_free(struct fuse_io_args * ia)710 static void fuse_io_free(struct fuse_io_args *ia)
711 {
712 kfree(ia->ap.pages);
713 kfree(ia);
714 }
715
fuse_aio_complete_req(struct fuse_mount * fm,struct fuse_args * args,int err)716 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
717 int err)
718 {
719 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
720 struct fuse_io_priv *io = ia->io;
721 ssize_t pos = -1;
722
723 fuse_release_user_pages(&ia->ap, io->should_dirty);
724
725 if (err) {
726 /* Nothing */
727 } else if (io->write) {
728 if (ia->write.out.size > ia->write.in.size) {
729 err = -EIO;
730 } else if (ia->write.in.size != ia->write.out.size) {
731 pos = ia->write.in.offset - io->offset +
732 ia->write.out.size;
733 }
734 } else {
735 u32 outsize = args->out_args[0].size;
736
737 if (ia->read.in.size != outsize)
738 pos = ia->read.in.offset - io->offset + outsize;
739 }
740
741 fuse_aio_complete(io, err, pos);
742 fuse_io_free(ia);
743 }
744
fuse_async_req_send(struct fuse_mount * fm,struct fuse_io_args * ia,size_t num_bytes)745 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
746 struct fuse_io_args *ia, size_t num_bytes)
747 {
748 ssize_t err;
749 struct fuse_io_priv *io = ia->io;
750
751 spin_lock(&io->lock);
752 kref_get(&io->refcnt);
753 io->size += num_bytes;
754 io->reqs++;
755 spin_unlock(&io->lock);
756
757 ia->ap.args.end = fuse_aio_complete_req;
758 ia->ap.args.may_block = io->should_dirty;
759 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
760 if (err)
761 fuse_aio_complete_req(fm, &ia->ap.args, err);
762
763 return num_bytes;
764 }
765
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)766 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
767 fl_owner_t owner)
768 {
769 struct file *file = ia->io->iocb->ki_filp;
770 struct fuse_file *ff = file->private_data;
771 struct fuse_mount *fm = ff->fm;
772
773 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
774 if (owner != NULL) {
775 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
776 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
777 }
778
779 if (ia->io->async)
780 return fuse_async_req_send(fm, ia, count);
781
782 return fuse_simple_request(fm, &ia->ap.args);
783 }
784
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)785 static void fuse_read_update_size(struct inode *inode, loff_t size,
786 u64 attr_ver)
787 {
788 struct fuse_conn *fc = get_fuse_conn(inode);
789 struct fuse_inode *fi = get_fuse_inode(inode);
790
791 spin_lock(&fi->lock);
792 if (attr_ver >= fi->attr_version && size < inode->i_size &&
793 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
794 fi->attr_version = atomic64_inc_return(&fc->attr_version);
795 i_size_write(inode, size);
796 }
797 spin_unlock(&fi->lock);
798 }
799
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)800 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
801 struct fuse_args_pages *ap)
802 {
803 struct fuse_conn *fc = get_fuse_conn(inode);
804
805 if (fc->writeback_cache) {
806 /*
807 * A hole in a file. Some data after the hole are in page cache,
808 * but have not reached the client fs yet. So, the hole is not
809 * present there.
810 */
811 int i;
812 int start_idx = num_read >> PAGE_SHIFT;
813 size_t off = num_read & (PAGE_SIZE - 1);
814
815 for (i = start_idx; i < ap->num_pages; i++) {
816 zero_user_segment(ap->pages[i], off, PAGE_SIZE);
817 off = 0;
818 }
819 } else {
820 loff_t pos = page_offset(ap->pages[0]) + num_read;
821 fuse_read_update_size(inode, pos, attr_ver);
822 }
823 }
824
fuse_do_readpage(struct file * file,struct page * page)825 static int fuse_do_readpage(struct file *file, struct page *page)
826 {
827 struct inode *inode = page->mapping->host;
828 struct fuse_mount *fm = get_fuse_mount(inode);
829 loff_t pos = page_offset(page);
830 struct fuse_page_desc desc = { .length = PAGE_SIZE };
831 struct fuse_io_args ia = {
832 .ap.args.page_zeroing = true,
833 .ap.args.out_pages = true,
834 .ap.num_pages = 1,
835 .ap.pages = &page,
836 .ap.descs = &desc,
837 };
838 ssize_t res;
839 u64 attr_ver;
840
841 /*
842 * Page writeback can extend beyond the lifetime of the
843 * page-cache page, so make sure we read a properly synced
844 * page.
845 */
846 fuse_wait_on_page_writeback(inode, page->index);
847
848 attr_ver = fuse_get_attr_version(fm->fc);
849
850 /* Don't overflow end offset */
851 if (pos + (desc.length - 1) == LLONG_MAX)
852 desc.length--;
853
854 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
855 res = fuse_simple_request(fm, &ia.ap.args);
856 if (res < 0)
857 return res;
858 /*
859 * Short read means EOF. If file size is larger, truncate it
860 */
861 if (res < desc.length)
862 fuse_short_read(inode, attr_ver, res, &ia.ap);
863
864 SetPageUptodate(page);
865
866 return 0;
867 }
868
fuse_readpage(struct file * file,struct page * page)869 static int fuse_readpage(struct file *file, struct page *page)
870 {
871 struct inode *inode = page->mapping->host;
872 int err;
873
874 err = -EIO;
875 if (fuse_is_bad(inode))
876 goto out;
877
878 err = fuse_do_readpage(file, page);
879 fuse_invalidate_atime(inode);
880 out:
881 unlock_page(page);
882 return err;
883 }
884
fuse_readpages_end(struct fuse_mount * fm,struct fuse_args * args,int err)885 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
886 int err)
887 {
888 int i;
889 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
890 struct fuse_args_pages *ap = &ia->ap;
891 size_t count = ia->read.in.size;
892 size_t num_read = args->out_args[0].size;
893 struct address_space *mapping = NULL;
894
895 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
896 mapping = ap->pages[i]->mapping;
897
898 if (mapping) {
899 struct inode *inode = mapping->host;
900
901 /*
902 * Short read means EOF. If file size is larger, truncate it
903 */
904 if (!err && num_read < count)
905 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
906
907 fuse_invalidate_atime(inode);
908 }
909
910 for (i = 0; i < ap->num_pages; i++) {
911 struct page *page = ap->pages[i];
912
913 if (!err)
914 SetPageUptodate(page);
915 else
916 SetPageError(page);
917 unlock_page(page);
918 put_page(page);
919 }
920 if (ia->ff)
921 fuse_file_put(ia->ff, false, false);
922
923 fuse_io_free(ia);
924 }
925
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)926 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
927 {
928 struct fuse_file *ff = file->private_data;
929 struct fuse_mount *fm = ff->fm;
930 struct fuse_args_pages *ap = &ia->ap;
931 loff_t pos = page_offset(ap->pages[0]);
932 size_t count = ap->num_pages << PAGE_SHIFT;
933 ssize_t res;
934 int err;
935
936 ap->args.out_pages = true;
937 ap->args.page_zeroing = true;
938 ap->args.page_replace = true;
939
940 /* Don't overflow end offset */
941 if (pos + (count - 1) == LLONG_MAX) {
942 count--;
943 ap->descs[ap->num_pages - 1].length--;
944 }
945 WARN_ON((loff_t) (pos + count) < 0);
946
947 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
948 ia->read.attr_ver = fuse_get_attr_version(fm->fc);
949 if (fm->fc->async_read) {
950 ia->ff = fuse_file_get(ff);
951 ap->args.end = fuse_readpages_end;
952 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
953 if (!err)
954 return;
955 } else {
956 res = fuse_simple_request(fm, &ap->args);
957 err = res < 0 ? res : 0;
958 }
959 fuse_readpages_end(fm, &ap->args, err);
960 }
961
fuse_readahead(struct readahead_control * rac)962 static void fuse_readahead(struct readahead_control *rac)
963 {
964 struct inode *inode = rac->mapping->host;
965 struct fuse_conn *fc = get_fuse_conn(inode);
966 unsigned int i, max_pages, nr_pages = 0;
967
968 if (fuse_is_bad(inode))
969 return;
970
971 max_pages = min_t(unsigned int, fc->max_pages,
972 fc->max_read / PAGE_SIZE);
973
974 for (;;) {
975 struct fuse_io_args *ia;
976 struct fuse_args_pages *ap;
977
978 nr_pages = readahead_count(rac) - nr_pages;
979 if (nr_pages > max_pages)
980 nr_pages = max_pages;
981 if (nr_pages == 0)
982 break;
983 ia = fuse_io_alloc(NULL, nr_pages);
984 if (!ia)
985 return;
986 ap = &ia->ap;
987 nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
988 for (i = 0; i < nr_pages; i++) {
989 fuse_wait_on_page_writeback(inode,
990 readahead_index(rac) + i);
991 ap->descs[i].length = PAGE_SIZE;
992 }
993 ap->num_pages = nr_pages;
994 fuse_send_readpages(ia, rac->file);
995 }
996 }
997
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)998 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
999 {
1000 struct inode *inode = iocb->ki_filp->f_mapping->host;
1001 struct fuse_conn *fc = get_fuse_conn(inode);
1002
1003 /*
1004 * In auto invalidate mode, always update attributes on read.
1005 * Otherwise, only update if we attempt to read past EOF (to ensure
1006 * i_size is up to date).
1007 */
1008 if (fc->auto_inval_data ||
1009 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1010 int err;
1011 err = fuse_update_attributes(inode, iocb->ki_filp);
1012 if (err)
1013 return err;
1014 }
1015
1016 return generic_file_read_iter(iocb, to);
1017 }
1018
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1019 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1020 loff_t pos, size_t count)
1021 {
1022 struct fuse_args *args = &ia->ap.args;
1023
1024 ia->write.in.fh = ff->fh;
1025 ia->write.in.offset = pos;
1026 ia->write.in.size = count;
1027 args->opcode = FUSE_WRITE;
1028 args->nodeid = ff->nodeid;
1029 args->in_numargs = 2;
1030 if (ff->fm->fc->minor < 9)
1031 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1032 else
1033 args->in_args[0].size = sizeof(ia->write.in);
1034 args->in_args[0].value = &ia->write.in;
1035 args->in_args[1].size = count;
1036 args->out_numargs = 1;
1037 args->out_args[0].size = sizeof(ia->write.out);
1038 args->out_args[0].value = &ia->write.out;
1039 }
1040
fuse_write_flags(struct kiocb * iocb)1041 static unsigned int fuse_write_flags(struct kiocb *iocb)
1042 {
1043 unsigned int flags = iocb->ki_filp->f_flags;
1044
1045 if (iocb->ki_flags & IOCB_DSYNC)
1046 flags |= O_DSYNC;
1047 if (iocb->ki_flags & IOCB_SYNC)
1048 flags |= O_SYNC;
1049
1050 return flags;
1051 }
1052
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1053 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1054 size_t count, fl_owner_t owner)
1055 {
1056 struct kiocb *iocb = ia->io->iocb;
1057 struct file *file = iocb->ki_filp;
1058 struct fuse_file *ff = file->private_data;
1059 struct fuse_mount *fm = ff->fm;
1060 struct fuse_write_in *inarg = &ia->write.in;
1061 ssize_t err;
1062
1063 fuse_write_args_fill(ia, ff, pos, count);
1064 inarg->flags = fuse_write_flags(iocb);
1065 if (owner != NULL) {
1066 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1067 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1068 }
1069
1070 if (ia->io->async)
1071 return fuse_async_req_send(fm, ia, count);
1072
1073 err = fuse_simple_request(fm, &ia->ap.args);
1074 if (!err && ia->write.out.size > count)
1075 err = -EIO;
1076
1077 return err ?: ia->write.out.size;
1078 }
1079
fuse_write_update_size(struct inode * inode,loff_t pos)1080 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1081 {
1082 struct fuse_conn *fc = get_fuse_conn(inode);
1083 struct fuse_inode *fi = get_fuse_inode(inode);
1084 bool ret = false;
1085
1086 spin_lock(&fi->lock);
1087 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1088 if (pos > inode->i_size) {
1089 i_size_write(inode, pos);
1090 ret = true;
1091 }
1092 spin_unlock(&fi->lock);
1093
1094 return ret;
1095 }
1096
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1097 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1098 struct kiocb *iocb, struct inode *inode,
1099 loff_t pos, size_t count)
1100 {
1101 struct fuse_args_pages *ap = &ia->ap;
1102 struct file *file = iocb->ki_filp;
1103 struct fuse_file *ff = file->private_data;
1104 struct fuse_mount *fm = ff->fm;
1105 unsigned int offset, i;
1106 bool short_write;
1107 int err;
1108
1109 for (i = 0; i < ap->num_pages; i++)
1110 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1111
1112 fuse_write_args_fill(ia, ff, pos, count);
1113 ia->write.in.flags = fuse_write_flags(iocb);
1114
1115 err = fuse_simple_request(fm, &ap->args);
1116 if (!err && ia->write.out.size > count)
1117 err = -EIO;
1118
1119 short_write = ia->write.out.size < count;
1120 offset = ap->descs[0].offset;
1121 count = ia->write.out.size;
1122 for (i = 0; i < ap->num_pages; i++) {
1123 struct page *page = ap->pages[i];
1124
1125 if (err) {
1126 ClearPageUptodate(page);
1127 } else {
1128 if (count >= PAGE_SIZE - offset)
1129 count -= PAGE_SIZE - offset;
1130 else {
1131 if (short_write)
1132 ClearPageUptodate(page);
1133 count = 0;
1134 }
1135 offset = 0;
1136 }
1137 if (ia->write.page_locked && (i == ap->num_pages - 1))
1138 unlock_page(page);
1139 put_page(page);
1140 }
1141
1142 return err;
1143 }
1144
fuse_fill_write_pages(struct fuse_io_args * ia,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1145 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1146 struct address_space *mapping,
1147 struct iov_iter *ii, loff_t pos,
1148 unsigned int max_pages)
1149 {
1150 struct fuse_args_pages *ap = &ia->ap;
1151 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1152 unsigned offset = pos & (PAGE_SIZE - 1);
1153 size_t count = 0;
1154 int err;
1155
1156 ap->args.in_pages = true;
1157 ap->descs[0].offset = offset;
1158
1159 do {
1160 size_t tmp;
1161 struct page *page;
1162 pgoff_t index = pos >> PAGE_SHIFT;
1163 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1164 iov_iter_count(ii));
1165
1166 bytes = min_t(size_t, bytes, fc->max_write - count);
1167
1168 again:
1169 err = -EFAULT;
1170 if (iov_iter_fault_in_readable(ii, bytes))
1171 break;
1172
1173 err = -ENOMEM;
1174 page = grab_cache_page_write_begin(mapping, index, 0);
1175 if (!page)
1176 break;
1177
1178 if (mapping_writably_mapped(mapping))
1179 flush_dcache_page(page);
1180
1181 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1182 flush_dcache_page(page);
1183
1184 iov_iter_advance(ii, tmp);
1185 if (!tmp) {
1186 unlock_page(page);
1187 put_page(page);
1188 bytes = min(bytes, iov_iter_single_seg_count(ii));
1189 goto again;
1190 }
1191
1192 err = 0;
1193 ap->pages[ap->num_pages] = page;
1194 ap->descs[ap->num_pages].length = tmp;
1195 ap->num_pages++;
1196
1197 count += tmp;
1198 pos += tmp;
1199 offset += tmp;
1200 if (offset == PAGE_SIZE)
1201 offset = 0;
1202
1203 /* If we copied full page, mark it uptodate */
1204 if (tmp == PAGE_SIZE)
1205 SetPageUptodate(page);
1206
1207 if (PageUptodate(page)) {
1208 unlock_page(page);
1209 } else {
1210 ia->write.page_locked = true;
1211 break;
1212 }
1213 if (!fc->big_writes)
1214 break;
1215 } while (iov_iter_count(ii) && count < fc->max_write &&
1216 ap->num_pages < max_pages && offset == 0);
1217
1218 return count > 0 ? count : err;
1219 }
1220
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1221 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1222 unsigned int max_pages)
1223 {
1224 return min_t(unsigned int,
1225 ((pos + len - 1) >> PAGE_SHIFT) -
1226 (pos >> PAGE_SHIFT) + 1,
1227 max_pages);
1228 }
1229
fuse_perform_write(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * ii,loff_t pos)1230 static ssize_t fuse_perform_write(struct kiocb *iocb,
1231 struct address_space *mapping,
1232 struct iov_iter *ii, loff_t pos)
1233 {
1234 struct inode *inode = mapping->host;
1235 struct fuse_conn *fc = get_fuse_conn(inode);
1236 struct fuse_inode *fi = get_fuse_inode(inode);
1237 int err = 0;
1238 ssize_t res = 0;
1239
1240 if (inode->i_size < pos + iov_iter_count(ii))
1241 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1242
1243 do {
1244 ssize_t count;
1245 struct fuse_io_args ia = {};
1246 struct fuse_args_pages *ap = &ia.ap;
1247 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1248 fc->max_pages);
1249
1250 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1251 if (!ap->pages) {
1252 err = -ENOMEM;
1253 break;
1254 }
1255
1256 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1257 if (count <= 0) {
1258 err = count;
1259 } else {
1260 err = fuse_send_write_pages(&ia, iocb, inode,
1261 pos, count);
1262 if (!err) {
1263 size_t num_written = ia.write.out.size;
1264
1265 res += num_written;
1266 pos += num_written;
1267
1268 /* break out of the loop on short write */
1269 if (num_written != count)
1270 err = -EIO;
1271 }
1272 }
1273 kfree(ap->pages);
1274 } while (!err && iov_iter_count(ii));
1275
1276 if (res > 0)
1277 fuse_write_update_size(inode, pos);
1278
1279 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1280 fuse_invalidate_attr(inode);
1281
1282 return res > 0 ? res : err;
1283 }
1284
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1285 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1286 {
1287 struct file *file = iocb->ki_filp;
1288 struct address_space *mapping = file->f_mapping;
1289 ssize_t written = 0;
1290 ssize_t written_buffered = 0;
1291 struct inode *inode = mapping->host;
1292 ssize_t err;
1293 loff_t endbyte = 0;
1294
1295 if (get_fuse_conn(inode)->writeback_cache) {
1296 /* Update size (EOF optimization) and mode (SUID clearing) */
1297 err = fuse_update_attributes(mapping->host, file);
1298 if (err)
1299 return err;
1300
1301 return generic_file_write_iter(iocb, from);
1302 }
1303
1304 inode_lock(inode);
1305
1306 /* We can write back this queue in page reclaim */
1307 current->backing_dev_info = inode_to_bdi(inode);
1308
1309 err = generic_write_checks(iocb, from);
1310 if (err <= 0)
1311 goto out;
1312
1313 err = file_remove_privs(file);
1314 if (err)
1315 goto out;
1316
1317 err = file_update_time(file);
1318 if (err)
1319 goto out;
1320
1321 if (iocb->ki_flags & IOCB_DIRECT) {
1322 loff_t pos = iocb->ki_pos;
1323 written = generic_file_direct_write(iocb, from);
1324 if (written < 0 || !iov_iter_count(from))
1325 goto out;
1326
1327 pos += written;
1328
1329 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1330 if (written_buffered < 0) {
1331 err = written_buffered;
1332 goto out;
1333 }
1334 endbyte = pos + written_buffered - 1;
1335
1336 err = filemap_write_and_wait_range(file->f_mapping, pos,
1337 endbyte);
1338 if (err)
1339 goto out;
1340
1341 invalidate_mapping_pages(file->f_mapping,
1342 pos >> PAGE_SHIFT,
1343 endbyte >> PAGE_SHIFT);
1344
1345 written += written_buffered;
1346 iocb->ki_pos = pos + written_buffered;
1347 } else {
1348 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1349 if (written >= 0)
1350 iocb->ki_pos += written;
1351 }
1352 out:
1353 current->backing_dev_info = NULL;
1354 inode_unlock(inode);
1355 if (written > 0)
1356 written = generic_write_sync(iocb, written);
1357
1358 return written ? written : err;
1359 }
1360
fuse_page_descs_length_init(struct fuse_page_desc * descs,unsigned int index,unsigned int nr_pages)1361 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1362 unsigned int index,
1363 unsigned int nr_pages)
1364 {
1365 int i;
1366
1367 for (i = index; i < index + nr_pages; i++)
1368 descs[i].length = PAGE_SIZE - descs[i].offset;
1369 }
1370
fuse_get_user_addr(const struct iov_iter * ii)1371 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1372 {
1373 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1374 }
1375
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1376 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1377 size_t max_size)
1378 {
1379 return min(iov_iter_single_seg_count(ii), max_size);
1380 }
1381
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages)1382 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1383 size_t *nbytesp, int write,
1384 unsigned int max_pages)
1385 {
1386 size_t nbytes = 0; /* # bytes already packed in req */
1387 ssize_t ret = 0;
1388
1389 /* Special case for kernel I/O: can copy directly into the buffer */
1390 if (iov_iter_is_kvec(ii)) {
1391 unsigned long user_addr = fuse_get_user_addr(ii);
1392 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1393
1394 if (write)
1395 ap->args.in_args[1].value = (void *) user_addr;
1396 else
1397 ap->args.out_args[0].value = (void *) user_addr;
1398
1399 iov_iter_advance(ii, frag_size);
1400 *nbytesp = frag_size;
1401 return 0;
1402 }
1403
1404 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1405 unsigned npages;
1406 size_t start;
1407 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1408 *nbytesp - nbytes,
1409 max_pages - ap->num_pages,
1410 &start);
1411 if (ret < 0)
1412 break;
1413
1414 iov_iter_advance(ii, ret);
1415 nbytes += ret;
1416
1417 ret += start;
1418 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1419
1420 ap->descs[ap->num_pages].offset = start;
1421 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1422
1423 ap->num_pages += npages;
1424 ap->descs[ap->num_pages - 1].length -=
1425 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1426 }
1427
1428 ap->args.user_pages = true;
1429 if (write)
1430 ap->args.in_pages = true;
1431 else
1432 ap->args.out_pages = true;
1433
1434 *nbytesp = nbytes;
1435
1436 return ret < 0 ? ret : 0;
1437 }
1438
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1439 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1440 loff_t *ppos, int flags)
1441 {
1442 int write = flags & FUSE_DIO_WRITE;
1443 int cuse = flags & FUSE_DIO_CUSE;
1444 struct file *file = io->iocb->ki_filp;
1445 struct inode *inode = file->f_mapping->host;
1446 struct fuse_file *ff = file->private_data;
1447 struct fuse_conn *fc = ff->fm->fc;
1448 size_t nmax = write ? fc->max_write : fc->max_read;
1449 loff_t pos = *ppos;
1450 size_t count = iov_iter_count(iter);
1451 pgoff_t idx_from = pos >> PAGE_SHIFT;
1452 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1453 ssize_t res = 0;
1454 int err = 0;
1455 struct fuse_io_args *ia;
1456 unsigned int max_pages;
1457
1458 max_pages = iov_iter_npages(iter, fc->max_pages);
1459 ia = fuse_io_alloc(io, max_pages);
1460 if (!ia)
1461 return -ENOMEM;
1462
1463 ia->io = io;
1464 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1465 if (!write)
1466 inode_lock(inode);
1467 fuse_sync_writes(inode);
1468 if (!write)
1469 inode_unlock(inode);
1470 }
1471
1472 io->should_dirty = !write && iter_is_iovec(iter);
1473 while (count) {
1474 ssize_t nres;
1475 fl_owner_t owner = current->files;
1476 size_t nbytes = min(count, nmax);
1477
1478 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1479 max_pages);
1480 if (err && !nbytes)
1481 break;
1482
1483 if (write) {
1484 if (!capable(CAP_FSETID))
1485 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1486
1487 nres = fuse_send_write(ia, pos, nbytes, owner);
1488 } else {
1489 nres = fuse_send_read(ia, pos, nbytes, owner);
1490 }
1491
1492 if (!io->async || nres < 0) {
1493 fuse_release_user_pages(&ia->ap, io->should_dirty);
1494 fuse_io_free(ia);
1495 }
1496 ia = NULL;
1497 if (nres < 0) {
1498 iov_iter_revert(iter, nbytes);
1499 err = nres;
1500 break;
1501 }
1502 WARN_ON(nres > nbytes);
1503
1504 count -= nres;
1505 res += nres;
1506 pos += nres;
1507 if (nres != nbytes) {
1508 iov_iter_revert(iter, nbytes - nres);
1509 break;
1510 }
1511 if (count) {
1512 max_pages = iov_iter_npages(iter, fc->max_pages);
1513 ia = fuse_io_alloc(io, max_pages);
1514 if (!ia)
1515 break;
1516 }
1517 }
1518 if (ia)
1519 fuse_io_free(ia);
1520 if (res > 0)
1521 *ppos = pos;
1522
1523 return res > 0 ? res : err;
1524 }
1525 EXPORT_SYMBOL_GPL(fuse_direct_io);
1526
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1527 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1528 struct iov_iter *iter,
1529 loff_t *ppos)
1530 {
1531 ssize_t res;
1532 struct inode *inode = file_inode(io->iocb->ki_filp);
1533
1534 res = fuse_direct_io(io, iter, ppos, 0);
1535
1536 fuse_invalidate_atime(inode);
1537
1538 return res;
1539 }
1540
1541 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1542
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1543 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1544 {
1545 ssize_t res;
1546
1547 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1548 res = fuse_direct_IO(iocb, to);
1549 } else {
1550 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1551
1552 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1553 }
1554
1555 return res;
1556 }
1557
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1558 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1559 {
1560 struct inode *inode = file_inode(iocb->ki_filp);
1561 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1562 ssize_t res;
1563
1564 /* Don't allow parallel writes to the same file */
1565 inode_lock(inode);
1566 res = generic_write_checks(iocb, from);
1567 if (res > 0) {
1568 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1569 res = fuse_direct_IO(iocb, from);
1570 } else {
1571 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1572 FUSE_DIO_WRITE);
1573 }
1574 }
1575 fuse_invalidate_attr(inode);
1576 if (res > 0)
1577 fuse_write_update_size(inode, iocb->ki_pos);
1578 inode_unlock(inode);
1579
1580 return res;
1581 }
1582
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1583 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1584 {
1585 struct file *file = iocb->ki_filp;
1586 struct fuse_file *ff = file->private_data;
1587 struct inode *inode = file_inode(file);
1588
1589 if (fuse_is_bad(inode))
1590 return -EIO;
1591
1592 if (FUSE_IS_DAX(inode))
1593 return fuse_dax_read_iter(iocb, to);
1594
1595 if (ff->passthrough.filp)
1596 return fuse_passthrough_read_iter(iocb, to);
1597 else if (!(ff->open_flags & FOPEN_DIRECT_IO))
1598 return fuse_cache_read_iter(iocb, to);
1599 else
1600 return fuse_direct_read_iter(iocb, to);
1601 }
1602
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1603 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1604 {
1605 struct file *file = iocb->ki_filp;
1606 struct fuse_file *ff = file->private_data;
1607 struct inode *inode = file_inode(file);
1608
1609 if (fuse_is_bad(inode))
1610 return -EIO;
1611
1612 if (FUSE_IS_DAX(inode))
1613 return fuse_dax_write_iter(iocb, from);
1614
1615 if (ff->passthrough.filp)
1616 return fuse_passthrough_write_iter(iocb, from);
1617 else if (!(ff->open_flags & FOPEN_DIRECT_IO))
1618 return fuse_cache_write_iter(iocb, from);
1619 else
1620 return fuse_direct_write_iter(iocb, from);
1621 }
1622
fuse_writepage_free(struct fuse_writepage_args * wpa)1623 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1624 {
1625 struct fuse_args_pages *ap = &wpa->ia.ap;
1626 int i;
1627
1628 for (i = 0; i < ap->num_pages; i++)
1629 __free_page(ap->pages[i]);
1630
1631 if (wpa->ia.ff)
1632 fuse_file_put(wpa->ia.ff, false, false);
1633
1634 kfree(ap->pages);
1635 kfree(wpa);
1636 }
1637
fuse_writepage_finish(struct fuse_mount * fm,struct fuse_writepage_args * wpa)1638 static void fuse_writepage_finish(struct fuse_mount *fm,
1639 struct fuse_writepage_args *wpa)
1640 {
1641 struct fuse_args_pages *ap = &wpa->ia.ap;
1642 struct inode *inode = wpa->inode;
1643 struct fuse_inode *fi = get_fuse_inode(inode);
1644 struct backing_dev_info *bdi = inode_to_bdi(inode);
1645 int i;
1646
1647 for (i = 0; i < ap->num_pages; i++) {
1648 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1649 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1650 wb_writeout_inc(&bdi->wb);
1651 }
1652 wake_up(&fi->page_waitq);
1653 }
1654
1655 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_mount * fm,struct fuse_writepage_args * wpa,loff_t size)1656 static void fuse_send_writepage(struct fuse_mount *fm,
1657 struct fuse_writepage_args *wpa, loff_t size)
1658 __releases(fi->lock)
1659 __acquires(fi->lock)
1660 {
1661 struct fuse_writepage_args *aux, *next;
1662 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1663 struct fuse_write_in *inarg = &wpa->ia.write.in;
1664 struct fuse_args *args = &wpa->ia.ap.args;
1665 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1666 int err;
1667
1668 fi->writectr++;
1669 if (inarg->offset + data_size <= size) {
1670 inarg->size = data_size;
1671 } else if (inarg->offset < size) {
1672 inarg->size = size - inarg->offset;
1673 } else {
1674 /* Got truncated off completely */
1675 goto out_free;
1676 }
1677
1678 args->in_args[1].size = inarg->size;
1679 args->force = true;
1680 args->nocreds = true;
1681
1682 err = fuse_simple_background(fm, args, GFP_ATOMIC);
1683 if (err == -ENOMEM) {
1684 spin_unlock(&fi->lock);
1685 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1686 spin_lock(&fi->lock);
1687 }
1688
1689 /* Fails on broken connection only */
1690 if (unlikely(err))
1691 goto out_free;
1692
1693 return;
1694
1695 out_free:
1696 fi->writectr--;
1697 rb_erase(&wpa->writepages_entry, &fi->writepages);
1698 fuse_writepage_finish(fm, wpa);
1699 spin_unlock(&fi->lock);
1700
1701 /* After fuse_writepage_finish() aux request list is private */
1702 for (aux = wpa->next; aux; aux = next) {
1703 next = aux->next;
1704 aux->next = NULL;
1705 fuse_writepage_free(aux);
1706 }
1707
1708 fuse_writepage_free(wpa);
1709 spin_lock(&fi->lock);
1710 }
1711
1712 /*
1713 * If fi->writectr is positive (no truncate or fsync going on) send
1714 * all queued writepage requests.
1715 *
1716 * Called with fi->lock
1717 */
fuse_flush_writepages(struct inode * inode)1718 void fuse_flush_writepages(struct inode *inode)
1719 __releases(fi->lock)
1720 __acquires(fi->lock)
1721 {
1722 struct fuse_mount *fm = get_fuse_mount(inode);
1723 struct fuse_inode *fi = get_fuse_inode(inode);
1724 loff_t crop = i_size_read(inode);
1725 struct fuse_writepage_args *wpa;
1726
1727 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1728 wpa = list_entry(fi->queued_writes.next,
1729 struct fuse_writepage_args, queue_entry);
1730 list_del_init(&wpa->queue_entry);
1731 fuse_send_writepage(fm, wpa, crop);
1732 }
1733 }
1734
fuse_insert_writeback(struct rb_root * root,struct fuse_writepage_args * wpa)1735 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1736 struct fuse_writepage_args *wpa)
1737 {
1738 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1739 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1740 struct rb_node **p = &root->rb_node;
1741 struct rb_node *parent = NULL;
1742
1743 WARN_ON(!wpa->ia.ap.num_pages);
1744 while (*p) {
1745 struct fuse_writepage_args *curr;
1746 pgoff_t curr_index;
1747
1748 parent = *p;
1749 curr = rb_entry(parent, struct fuse_writepage_args,
1750 writepages_entry);
1751 WARN_ON(curr->inode != wpa->inode);
1752 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1753
1754 if (idx_from >= curr_index + curr->ia.ap.num_pages)
1755 p = &(*p)->rb_right;
1756 else if (idx_to < curr_index)
1757 p = &(*p)->rb_left;
1758 else
1759 return curr;
1760 }
1761
1762 rb_link_node(&wpa->writepages_entry, parent, p);
1763 rb_insert_color(&wpa->writepages_entry, root);
1764 return NULL;
1765 }
1766
tree_insert(struct rb_root * root,struct fuse_writepage_args * wpa)1767 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1768 {
1769 WARN_ON(fuse_insert_writeback(root, wpa));
1770 }
1771
fuse_writepage_end(struct fuse_mount * fm,struct fuse_args * args,int error)1772 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1773 int error)
1774 {
1775 struct fuse_writepage_args *wpa =
1776 container_of(args, typeof(*wpa), ia.ap.args);
1777 struct inode *inode = wpa->inode;
1778 struct fuse_inode *fi = get_fuse_inode(inode);
1779 struct fuse_conn *fc = get_fuse_conn(inode);
1780
1781 mapping_set_error(inode->i_mapping, error);
1782 /*
1783 * A writeback finished and this might have updated mtime/ctime on
1784 * server making local mtime/ctime stale. Hence invalidate attrs.
1785 * Do this only if writeback_cache is not enabled. If writeback_cache
1786 * is enabled, we trust local ctime/mtime.
1787 */
1788 if (!fc->writeback_cache)
1789 fuse_invalidate_attr(inode);
1790 spin_lock(&fi->lock);
1791 rb_erase(&wpa->writepages_entry, &fi->writepages);
1792 while (wpa->next) {
1793 struct fuse_mount *fm = get_fuse_mount(inode);
1794 struct fuse_write_in *inarg = &wpa->ia.write.in;
1795 struct fuse_writepage_args *next = wpa->next;
1796
1797 wpa->next = next->next;
1798 next->next = NULL;
1799 next->ia.ff = fuse_file_get(wpa->ia.ff);
1800 tree_insert(&fi->writepages, next);
1801
1802 /*
1803 * Skip fuse_flush_writepages() to make it easy to crop requests
1804 * based on primary request size.
1805 *
1806 * 1st case (trivial): there are no concurrent activities using
1807 * fuse_set/release_nowrite. Then we're on safe side because
1808 * fuse_flush_writepages() would call fuse_send_writepage()
1809 * anyway.
1810 *
1811 * 2nd case: someone called fuse_set_nowrite and it is waiting
1812 * now for completion of all in-flight requests. This happens
1813 * rarely and no more than once per page, so this should be
1814 * okay.
1815 *
1816 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1817 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1818 * that fuse_set_nowrite returned implies that all in-flight
1819 * requests were completed along with all of their secondary
1820 * requests. Further primary requests are blocked by negative
1821 * writectr. Hence there cannot be any in-flight requests and
1822 * no invocations of fuse_writepage_end() while we're in
1823 * fuse_set_nowrite..fuse_release_nowrite section.
1824 */
1825 fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1826 }
1827 fi->writectr--;
1828 fuse_writepage_finish(fm, wpa);
1829 spin_unlock(&fi->lock);
1830 fuse_writepage_free(wpa);
1831 }
1832
__fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1833 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1834 struct fuse_inode *fi)
1835 {
1836 struct fuse_file *ff = NULL;
1837
1838 spin_lock(&fi->lock);
1839 if (!list_empty(&fi->write_files)) {
1840 ff = list_entry(fi->write_files.next, struct fuse_file,
1841 write_entry);
1842 fuse_file_get(ff);
1843 }
1844 spin_unlock(&fi->lock);
1845
1846 return ff;
1847 }
1848
fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1849 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1850 struct fuse_inode *fi)
1851 {
1852 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1853 WARN_ON(!ff);
1854 return ff;
1855 }
1856
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)1857 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1858 {
1859 struct fuse_conn *fc = get_fuse_conn(inode);
1860 struct fuse_inode *fi = get_fuse_inode(inode);
1861 struct fuse_file *ff;
1862 int err;
1863
1864 /*
1865 * Inode is always written before the last reference is dropped and
1866 * hence this should not be reached from reclaim.
1867 *
1868 * Writing back the inode from reclaim can deadlock if the request
1869 * processing itself needs an allocation. Allocations triggering
1870 * reclaim while serving a request can't be prevented, because it can
1871 * involve any number of unrelated userspace processes.
1872 */
1873 WARN_ON(wbc->for_reclaim);
1874
1875 ff = __fuse_write_file_get(fc, fi);
1876 err = fuse_flush_times(inode, ff);
1877 if (ff)
1878 fuse_file_put(ff, false, false);
1879
1880 return err;
1881 }
1882
fuse_writepage_args_alloc(void)1883 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1884 {
1885 struct fuse_writepage_args *wpa;
1886 struct fuse_args_pages *ap;
1887
1888 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1889 if (wpa) {
1890 ap = &wpa->ia.ap;
1891 ap->num_pages = 0;
1892 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1893 if (!ap->pages) {
1894 kfree(wpa);
1895 wpa = NULL;
1896 }
1897 }
1898 return wpa;
1899
1900 }
1901
fuse_writepage_locked(struct page * page)1902 static int fuse_writepage_locked(struct page *page)
1903 {
1904 struct address_space *mapping = page->mapping;
1905 struct inode *inode = mapping->host;
1906 struct fuse_conn *fc = get_fuse_conn(inode);
1907 struct fuse_inode *fi = get_fuse_inode(inode);
1908 struct fuse_writepage_args *wpa;
1909 struct fuse_args_pages *ap;
1910 struct page *tmp_page;
1911 int error = -ENOMEM;
1912
1913 set_page_writeback(page);
1914
1915 wpa = fuse_writepage_args_alloc();
1916 if (!wpa)
1917 goto err;
1918 ap = &wpa->ia.ap;
1919
1920 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1921 if (!tmp_page)
1922 goto err_free;
1923
1924 error = -EIO;
1925 wpa->ia.ff = fuse_write_file_get(fc, fi);
1926 if (!wpa->ia.ff)
1927 goto err_nofile;
1928
1929 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1930
1931 copy_highpage(tmp_page, page);
1932 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1933 wpa->next = NULL;
1934 ap->args.in_pages = true;
1935 ap->num_pages = 1;
1936 ap->pages[0] = tmp_page;
1937 ap->descs[0].offset = 0;
1938 ap->descs[0].length = PAGE_SIZE;
1939 ap->args.end = fuse_writepage_end;
1940 wpa->inode = inode;
1941
1942 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1943 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1944
1945 spin_lock(&fi->lock);
1946 tree_insert(&fi->writepages, wpa);
1947 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1948 fuse_flush_writepages(inode);
1949 spin_unlock(&fi->lock);
1950
1951 end_page_writeback(page);
1952
1953 return 0;
1954
1955 err_nofile:
1956 __free_page(tmp_page);
1957 err_free:
1958 kfree(wpa);
1959 err:
1960 mapping_set_error(page->mapping, error);
1961 end_page_writeback(page);
1962 return error;
1963 }
1964
fuse_writepage(struct page * page,struct writeback_control * wbc)1965 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1966 {
1967 int err;
1968
1969 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1970 /*
1971 * ->writepages() should be called for sync() and friends. We
1972 * should only get here on direct reclaim and then we are
1973 * allowed to skip a page which is already in flight
1974 */
1975 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1976
1977 redirty_page_for_writepage(wbc, page);
1978 unlock_page(page);
1979 return 0;
1980 }
1981
1982 err = fuse_writepage_locked(page);
1983 unlock_page(page);
1984
1985 return err;
1986 }
1987
1988 struct fuse_fill_wb_data {
1989 struct fuse_writepage_args *wpa;
1990 struct fuse_file *ff;
1991 struct inode *inode;
1992 struct page **orig_pages;
1993 unsigned int max_pages;
1994 };
1995
fuse_pages_realloc(struct fuse_fill_wb_data * data)1996 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1997 {
1998 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1999 struct fuse_conn *fc = get_fuse_conn(data->inode);
2000 struct page **pages;
2001 struct fuse_page_desc *descs;
2002 unsigned int npages = min_t(unsigned int,
2003 max_t(unsigned int, data->max_pages * 2,
2004 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2005 fc->max_pages);
2006 WARN_ON(npages <= data->max_pages);
2007
2008 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2009 if (!pages)
2010 return false;
2011
2012 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2013 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2014 kfree(ap->pages);
2015 ap->pages = pages;
2016 ap->descs = descs;
2017 data->max_pages = npages;
2018
2019 return true;
2020 }
2021
fuse_writepages_send(struct fuse_fill_wb_data * data)2022 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2023 {
2024 struct fuse_writepage_args *wpa = data->wpa;
2025 struct inode *inode = data->inode;
2026 struct fuse_inode *fi = get_fuse_inode(inode);
2027 int num_pages = wpa->ia.ap.num_pages;
2028 int i;
2029
2030 wpa->ia.ff = fuse_file_get(data->ff);
2031 spin_lock(&fi->lock);
2032 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2033 fuse_flush_writepages(inode);
2034 spin_unlock(&fi->lock);
2035
2036 for (i = 0; i < num_pages; i++)
2037 end_page_writeback(data->orig_pages[i]);
2038 }
2039
2040 /*
2041 * Check under fi->lock if the page is under writeback, and insert it onto the
2042 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2043 * one already added for a page at this offset. If there's none, then insert
2044 * this new request onto the auxiliary list, otherwise reuse the existing one by
2045 * swapping the new temp page with the old one.
2046 */
fuse_writepage_add(struct fuse_writepage_args * new_wpa,struct page * page)2047 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2048 struct page *page)
2049 {
2050 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2051 struct fuse_writepage_args *tmp;
2052 struct fuse_writepage_args *old_wpa;
2053 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2054
2055 WARN_ON(new_ap->num_pages != 0);
2056 new_ap->num_pages = 1;
2057
2058 spin_lock(&fi->lock);
2059 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2060 if (!old_wpa) {
2061 spin_unlock(&fi->lock);
2062 return true;
2063 }
2064
2065 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2066 pgoff_t curr_index;
2067
2068 WARN_ON(tmp->inode != new_wpa->inode);
2069 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2070 if (curr_index == page->index) {
2071 WARN_ON(tmp->ia.ap.num_pages != 1);
2072 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2073 break;
2074 }
2075 }
2076
2077 if (!tmp) {
2078 new_wpa->next = old_wpa->next;
2079 old_wpa->next = new_wpa;
2080 }
2081
2082 spin_unlock(&fi->lock);
2083
2084 if (tmp) {
2085 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2086
2087 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2088 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2089 wb_writeout_inc(&bdi->wb);
2090 fuse_writepage_free(new_wpa);
2091 }
2092
2093 return false;
2094 }
2095
fuse_writepage_need_send(struct fuse_conn * fc,struct page * page,struct fuse_args_pages * ap,struct fuse_fill_wb_data * data)2096 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2097 struct fuse_args_pages *ap,
2098 struct fuse_fill_wb_data *data)
2099 {
2100 WARN_ON(!ap->num_pages);
2101
2102 /*
2103 * Being under writeback is unlikely but possible. For example direct
2104 * read to an mmaped fuse file will set the page dirty twice; once when
2105 * the pages are faulted with get_user_pages(), and then after the read
2106 * completed.
2107 */
2108 if (fuse_page_is_writeback(data->inode, page->index))
2109 return true;
2110
2111 /* Reached max pages */
2112 if (ap->num_pages == fc->max_pages)
2113 return true;
2114
2115 /* Reached max write bytes */
2116 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2117 return true;
2118
2119 /* Discontinuity */
2120 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2121 return true;
2122
2123 /* Need to grow the pages array? If so, did the expansion fail? */
2124 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2125 return true;
2126
2127 return false;
2128 }
2129
fuse_writepages_fill(struct page * page,struct writeback_control * wbc,void * _data)2130 static int fuse_writepages_fill(struct page *page,
2131 struct writeback_control *wbc, void *_data)
2132 {
2133 struct fuse_fill_wb_data *data = _data;
2134 struct fuse_writepage_args *wpa = data->wpa;
2135 struct fuse_args_pages *ap = &wpa->ia.ap;
2136 struct inode *inode = data->inode;
2137 struct fuse_inode *fi = get_fuse_inode(inode);
2138 struct fuse_conn *fc = get_fuse_conn(inode);
2139 struct page *tmp_page;
2140 int err;
2141
2142 if (!data->ff) {
2143 err = -EIO;
2144 data->ff = fuse_write_file_get(fc, fi);
2145 if (!data->ff)
2146 goto out_unlock;
2147 }
2148
2149 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2150 fuse_writepages_send(data);
2151 data->wpa = NULL;
2152 }
2153
2154 err = -ENOMEM;
2155 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2156 if (!tmp_page)
2157 goto out_unlock;
2158
2159 /*
2160 * The page must not be redirtied until the writeout is completed
2161 * (i.e. userspace has sent a reply to the write request). Otherwise
2162 * there could be more than one temporary page instance for each real
2163 * page.
2164 *
2165 * This is ensured by holding the page lock in page_mkwrite() while
2166 * checking fuse_page_is_writeback(). We already hold the page lock
2167 * since clear_page_dirty_for_io() and keep it held until we add the
2168 * request to the fi->writepages list and increment ap->num_pages.
2169 * After this fuse_page_is_writeback() will indicate that the page is
2170 * under writeback, so we can release the page lock.
2171 */
2172 if (data->wpa == NULL) {
2173 err = -ENOMEM;
2174 wpa = fuse_writepage_args_alloc();
2175 if (!wpa) {
2176 __free_page(tmp_page);
2177 goto out_unlock;
2178 }
2179 data->max_pages = 1;
2180
2181 ap = &wpa->ia.ap;
2182 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2183 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2184 wpa->next = NULL;
2185 ap->args.in_pages = true;
2186 ap->args.end = fuse_writepage_end;
2187 ap->num_pages = 0;
2188 wpa->inode = inode;
2189 }
2190 set_page_writeback(page);
2191
2192 copy_highpage(tmp_page, page);
2193 ap->pages[ap->num_pages] = tmp_page;
2194 ap->descs[ap->num_pages].offset = 0;
2195 ap->descs[ap->num_pages].length = PAGE_SIZE;
2196 data->orig_pages[ap->num_pages] = page;
2197
2198 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2199 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2200
2201 err = 0;
2202 if (data->wpa) {
2203 /*
2204 * Protected by fi->lock against concurrent access by
2205 * fuse_page_is_writeback().
2206 */
2207 spin_lock(&fi->lock);
2208 ap->num_pages++;
2209 spin_unlock(&fi->lock);
2210 } else if (fuse_writepage_add(wpa, page)) {
2211 data->wpa = wpa;
2212 } else {
2213 end_page_writeback(page);
2214 }
2215 out_unlock:
2216 unlock_page(page);
2217
2218 return err;
2219 }
2220
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2221 static int fuse_writepages(struct address_space *mapping,
2222 struct writeback_control *wbc)
2223 {
2224 struct inode *inode = mapping->host;
2225 struct fuse_conn *fc = get_fuse_conn(inode);
2226 struct fuse_fill_wb_data data;
2227 int err;
2228
2229 err = -EIO;
2230 if (fuse_is_bad(inode))
2231 goto out;
2232
2233 data.inode = inode;
2234 data.wpa = NULL;
2235 data.ff = NULL;
2236
2237 err = -ENOMEM;
2238 data.orig_pages = kcalloc(fc->max_pages,
2239 sizeof(struct page *),
2240 GFP_NOFS);
2241 if (!data.orig_pages)
2242 goto out;
2243
2244 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2245 if (data.wpa) {
2246 WARN_ON(!data.wpa->ia.ap.num_pages);
2247 fuse_writepages_send(&data);
2248 }
2249 if (data.ff)
2250 fuse_file_put(data.ff, false, false);
2251
2252 kfree(data.orig_pages);
2253 out:
2254 return err;
2255 }
2256
2257 /*
2258 * It's worthy to make sure that space is reserved on disk for the write,
2259 * but how to implement it without killing performance need more thinking.
2260 */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2261 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2262 loff_t pos, unsigned len, unsigned flags,
2263 struct page **pagep, void **fsdata)
2264 {
2265 pgoff_t index = pos >> PAGE_SHIFT;
2266 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2267 struct page *page;
2268 loff_t fsize;
2269 int err = -ENOMEM;
2270
2271 WARN_ON(!fc->writeback_cache);
2272
2273 page = grab_cache_page_write_begin(mapping, index, flags);
2274 if (!page)
2275 goto error;
2276
2277 fuse_wait_on_page_writeback(mapping->host, page->index);
2278
2279 if (PageUptodate(page) || len == PAGE_SIZE)
2280 goto success;
2281 /*
2282 * Check if the start this page comes after the end of file, in which
2283 * case the readpage can be optimized away.
2284 */
2285 fsize = i_size_read(mapping->host);
2286 if (fsize <= (pos & PAGE_MASK)) {
2287 size_t off = pos & ~PAGE_MASK;
2288 if (off)
2289 zero_user_segment(page, 0, off);
2290 goto success;
2291 }
2292 err = fuse_do_readpage(file, page);
2293 if (err)
2294 goto cleanup;
2295 success:
2296 *pagep = page;
2297 return 0;
2298
2299 cleanup:
2300 unlock_page(page);
2301 put_page(page);
2302 error:
2303 return err;
2304 }
2305
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2306 static int fuse_write_end(struct file *file, struct address_space *mapping,
2307 loff_t pos, unsigned len, unsigned copied,
2308 struct page *page, void *fsdata)
2309 {
2310 struct inode *inode = page->mapping->host;
2311
2312 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2313 if (!copied)
2314 goto unlock;
2315
2316 if (!PageUptodate(page)) {
2317 /* Zero any unwritten bytes at the end of the page */
2318 size_t endoff = (pos + copied) & ~PAGE_MASK;
2319 if (endoff)
2320 zero_user_segment(page, endoff, PAGE_SIZE);
2321 SetPageUptodate(page);
2322 }
2323
2324 fuse_write_update_size(inode, pos + copied);
2325 set_page_dirty(page);
2326
2327 unlock:
2328 unlock_page(page);
2329 put_page(page);
2330
2331 return copied;
2332 }
2333
fuse_launder_page(struct page * page)2334 static int fuse_launder_page(struct page *page)
2335 {
2336 int err = 0;
2337 if (clear_page_dirty_for_io(page)) {
2338 struct inode *inode = page->mapping->host;
2339 err = fuse_writepage_locked(page);
2340 if (!err)
2341 fuse_wait_on_page_writeback(inode, page->index);
2342 }
2343 return err;
2344 }
2345
2346 /*
2347 * Write back dirty pages now, because there may not be any suitable
2348 * open files later
2349 */
fuse_vma_close(struct vm_area_struct * vma)2350 static void fuse_vma_close(struct vm_area_struct *vma)
2351 {
2352 filemap_write_and_wait(vma->vm_file->f_mapping);
2353 }
2354
2355 /*
2356 * Wait for writeback against this page to complete before allowing it
2357 * to be marked dirty again, and hence written back again, possibly
2358 * before the previous writepage completed.
2359 *
2360 * Block here, instead of in ->writepage(), so that the userspace fs
2361 * can only block processes actually operating on the filesystem.
2362 *
2363 * Otherwise unprivileged userspace fs would be able to block
2364 * unrelated:
2365 *
2366 * - page migration
2367 * - sync(2)
2368 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2369 */
fuse_page_mkwrite(struct vm_fault * vmf)2370 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2371 {
2372 struct page *page = vmf->page;
2373 struct inode *inode = file_inode(vmf->vma->vm_file);
2374
2375 file_update_time(vmf->vma->vm_file);
2376 lock_page(page);
2377 if (page->mapping != inode->i_mapping) {
2378 unlock_page(page);
2379 return VM_FAULT_NOPAGE;
2380 }
2381
2382 fuse_wait_on_page_writeback(inode, page->index);
2383 return VM_FAULT_LOCKED;
2384 }
2385
2386 static const struct vm_operations_struct fuse_file_vm_ops = {
2387 .close = fuse_vma_close,
2388 .fault = filemap_fault,
2389 .map_pages = filemap_map_pages,
2390 .page_mkwrite = fuse_page_mkwrite,
2391 };
2392
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2393 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2394 {
2395 struct fuse_file *ff = file->private_data;
2396
2397 /* DAX mmap is superior to direct_io mmap */
2398 if (FUSE_IS_DAX(file_inode(file)))
2399 return fuse_dax_mmap(file, vma);
2400
2401 if (ff->passthrough.filp)
2402 return fuse_passthrough_mmap(file, vma);
2403
2404 if (ff->open_flags & FOPEN_DIRECT_IO) {
2405 /* Can't provide the coherency needed for MAP_SHARED */
2406 if (vma->vm_flags & VM_MAYSHARE)
2407 return -ENODEV;
2408
2409 invalidate_inode_pages2(file->f_mapping);
2410
2411 return generic_file_mmap(file, vma);
2412 }
2413
2414 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2415 fuse_link_write_file(file);
2416
2417 file_accessed(file);
2418 vma->vm_ops = &fuse_file_vm_ops;
2419 return 0;
2420 }
2421
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2422 static int convert_fuse_file_lock(struct fuse_conn *fc,
2423 const struct fuse_file_lock *ffl,
2424 struct file_lock *fl)
2425 {
2426 switch (ffl->type) {
2427 case F_UNLCK:
2428 break;
2429
2430 case F_RDLCK:
2431 case F_WRLCK:
2432 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2433 ffl->end < ffl->start)
2434 return -EIO;
2435
2436 fl->fl_start = ffl->start;
2437 fl->fl_end = ffl->end;
2438
2439 /*
2440 * Convert pid into init's pid namespace. The locks API will
2441 * translate it into the caller's pid namespace.
2442 */
2443 rcu_read_lock();
2444 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2445 rcu_read_unlock();
2446 break;
2447
2448 default:
2449 return -EIO;
2450 }
2451 fl->fl_type = ffl->type;
2452 return 0;
2453 }
2454
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2455 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2456 const struct file_lock *fl, int opcode, pid_t pid,
2457 int flock, struct fuse_lk_in *inarg)
2458 {
2459 struct inode *inode = file_inode(file);
2460 struct fuse_conn *fc = get_fuse_conn(inode);
2461 struct fuse_file *ff = file->private_data;
2462
2463 memset(inarg, 0, sizeof(*inarg));
2464 inarg->fh = ff->fh;
2465 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2466 inarg->lk.start = fl->fl_start;
2467 inarg->lk.end = fl->fl_end;
2468 inarg->lk.type = fl->fl_type;
2469 inarg->lk.pid = pid;
2470 if (flock)
2471 inarg->lk_flags |= FUSE_LK_FLOCK;
2472 args->opcode = opcode;
2473 args->nodeid = get_node_id(inode);
2474 args->in_numargs = 1;
2475 args->in_args[0].size = sizeof(*inarg);
2476 args->in_args[0].value = inarg;
2477 }
2478
fuse_getlk(struct file * file,struct file_lock * fl)2479 static int fuse_getlk(struct file *file, struct file_lock *fl)
2480 {
2481 struct inode *inode = file_inode(file);
2482 struct fuse_mount *fm = get_fuse_mount(inode);
2483 FUSE_ARGS(args);
2484 struct fuse_lk_in inarg;
2485 struct fuse_lk_out outarg;
2486 int err;
2487
2488 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2489 args.out_numargs = 1;
2490 args.out_args[0].size = sizeof(outarg);
2491 args.out_args[0].value = &outarg;
2492 err = fuse_simple_request(fm, &args);
2493 if (!err)
2494 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2495
2496 return err;
2497 }
2498
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2499 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2500 {
2501 struct inode *inode = file_inode(file);
2502 struct fuse_mount *fm = get_fuse_mount(inode);
2503 FUSE_ARGS(args);
2504 struct fuse_lk_in inarg;
2505 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2506 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2507 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2508 int err;
2509
2510 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2511 /* NLM needs asynchronous locks, which we don't support yet */
2512 return -ENOLCK;
2513 }
2514
2515 /* Unlock on close is handled by the flush method */
2516 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2517 return 0;
2518
2519 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2520 err = fuse_simple_request(fm, &args);
2521
2522 /* locking is restartable */
2523 if (err == -EINTR)
2524 err = -ERESTARTSYS;
2525
2526 return err;
2527 }
2528
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2529 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2530 {
2531 struct inode *inode = file_inode(file);
2532 struct fuse_conn *fc = get_fuse_conn(inode);
2533 int err;
2534
2535 if (cmd == F_CANCELLK) {
2536 err = 0;
2537 } else if (cmd == F_GETLK) {
2538 if (fc->no_lock) {
2539 posix_test_lock(file, fl);
2540 err = 0;
2541 } else
2542 err = fuse_getlk(file, fl);
2543 } else {
2544 if (fc->no_lock)
2545 err = posix_lock_file(file, fl, NULL);
2546 else
2547 err = fuse_setlk(file, fl, 0);
2548 }
2549 return err;
2550 }
2551
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2552 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2553 {
2554 struct inode *inode = file_inode(file);
2555 struct fuse_conn *fc = get_fuse_conn(inode);
2556 int err;
2557
2558 if (fc->no_flock) {
2559 err = locks_lock_file_wait(file, fl);
2560 } else {
2561 struct fuse_file *ff = file->private_data;
2562
2563 /* emulate flock with POSIX locks */
2564 ff->flock = true;
2565 err = fuse_setlk(file, fl, 1);
2566 }
2567
2568 return err;
2569 }
2570
fuse_bmap(struct address_space * mapping,sector_t block)2571 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2572 {
2573 struct inode *inode = mapping->host;
2574 struct fuse_mount *fm = get_fuse_mount(inode);
2575 FUSE_ARGS(args);
2576 struct fuse_bmap_in inarg;
2577 struct fuse_bmap_out outarg;
2578 int err;
2579
2580 if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2581 return 0;
2582
2583 memset(&inarg, 0, sizeof(inarg));
2584 inarg.block = block;
2585 inarg.blocksize = inode->i_sb->s_blocksize;
2586 args.opcode = FUSE_BMAP;
2587 args.nodeid = get_node_id(inode);
2588 args.in_numargs = 1;
2589 args.in_args[0].size = sizeof(inarg);
2590 args.in_args[0].value = &inarg;
2591 args.out_numargs = 1;
2592 args.out_args[0].size = sizeof(outarg);
2593 args.out_args[0].value = &outarg;
2594 err = fuse_simple_request(fm, &args);
2595 if (err == -ENOSYS)
2596 fm->fc->no_bmap = 1;
2597
2598 return err ? 0 : outarg.block;
2599 }
2600
fuse_lseek(struct file * file,loff_t offset,int whence)2601 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2602 {
2603 struct inode *inode = file->f_mapping->host;
2604 struct fuse_mount *fm = get_fuse_mount(inode);
2605 struct fuse_file *ff = file->private_data;
2606 FUSE_ARGS(args);
2607 struct fuse_lseek_in inarg = {
2608 .fh = ff->fh,
2609 .offset = offset,
2610 .whence = whence
2611 };
2612 struct fuse_lseek_out outarg;
2613 int err;
2614
2615 if (fm->fc->no_lseek)
2616 goto fallback;
2617
2618 args.opcode = FUSE_LSEEK;
2619 args.nodeid = ff->nodeid;
2620 args.in_numargs = 1;
2621 args.in_args[0].size = sizeof(inarg);
2622 args.in_args[0].value = &inarg;
2623 args.out_numargs = 1;
2624 args.out_args[0].size = sizeof(outarg);
2625 args.out_args[0].value = &outarg;
2626 err = fuse_simple_request(fm, &args);
2627 if (err) {
2628 if (err == -ENOSYS) {
2629 fm->fc->no_lseek = 1;
2630 goto fallback;
2631 }
2632 return err;
2633 }
2634
2635 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2636
2637 fallback:
2638 err = fuse_update_attributes(inode, file);
2639 if (!err)
2640 return generic_file_llseek(file, offset, whence);
2641 else
2642 return err;
2643 }
2644
fuse_file_llseek(struct file * file,loff_t offset,int whence)2645 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2646 {
2647 loff_t retval;
2648 struct inode *inode = file_inode(file);
2649
2650 switch (whence) {
2651 case SEEK_SET:
2652 case SEEK_CUR:
2653 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2654 retval = generic_file_llseek(file, offset, whence);
2655 break;
2656 case SEEK_END:
2657 inode_lock(inode);
2658 retval = fuse_update_attributes(inode, file);
2659 if (!retval)
2660 retval = generic_file_llseek(file, offset, whence);
2661 inode_unlock(inode);
2662 break;
2663 case SEEK_HOLE:
2664 case SEEK_DATA:
2665 inode_lock(inode);
2666 retval = fuse_lseek(file, offset, whence);
2667 inode_unlock(inode);
2668 break;
2669 default:
2670 retval = -EINVAL;
2671 }
2672
2673 return retval;
2674 }
2675
2676 /*
2677 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2678 * ABI was defined to be 'struct iovec' which is different on 32bit
2679 * and 64bit. Fortunately we can determine which structure the server
2680 * used from the size of the reply.
2681 */
fuse_copy_ioctl_iovec_old(struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2682 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2683 size_t transferred, unsigned count,
2684 bool is_compat)
2685 {
2686 #ifdef CONFIG_COMPAT
2687 if (count * sizeof(struct compat_iovec) == transferred) {
2688 struct compat_iovec *ciov = src;
2689 unsigned i;
2690
2691 /*
2692 * With this interface a 32bit server cannot support
2693 * non-compat (i.e. ones coming from 64bit apps) ioctl
2694 * requests
2695 */
2696 if (!is_compat)
2697 return -EINVAL;
2698
2699 for (i = 0; i < count; i++) {
2700 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2701 dst[i].iov_len = ciov[i].iov_len;
2702 }
2703 return 0;
2704 }
2705 #endif
2706
2707 if (count * sizeof(struct iovec) != transferred)
2708 return -EIO;
2709
2710 memcpy(dst, src, transferred);
2711 return 0;
2712 }
2713
2714 /* Make sure iov_length() won't overflow */
fuse_verify_ioctl_iov(struct fuse_conn * fc,struct iovec * iov,size_t count)2715 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2716 size_t count)
2717 {
2718 size_t n;
2719 u32 max = fc->max_pages << PAGE_SHIFT;
2720
2721 for (n = 0; n < count; n++, iov++) {
2722 if (iov->iov_len > (size_t) max)
2723 return -ENOMEM;
2724 max -= iov->iov_len;
2725 }
2726 return 0;
2727 }
2728
fuse_copy_ioctl_iovec(struct fuse_conn * fc,struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2729 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2730 void *src, size_t transferred, unsigned count,
2731 bool is_compat)
2732 {
2733 unsigned i;
2734 struct fuse_ioctl_iovec *fiov = src;
2735
2736 if (fc->minor < 16) {
2737 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2738 count, is_compat);
2739 }
2740
2741 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2742 return -EIO;
2743
2744 for (i = 0; i < count; i++) {
2745 /* Did the server supply an inappropriate value? */
2746 if (fiov[i].base != (unsigned long) fiov[i].base ||
2747 fiov[i].len != (unsigned long) fiov[i].len)
2748 return -EIO;
2749
2750 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2751 dst[i].iov_len = (size_t) fiov[i].len;
2752
2753 #ifdef CONFIG_COMPAT
2754 if (is_compat &&
2755 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2756 (compat_size_t) dst[i].iov_len != fiov[i].len))
2757 return -EIO;
2758 #endif
2759 }
2760
2761 return 0;
2762 }
2763
2764
2765 /*
2766 * For ioctls, there is no generic way to determine how much memory
2767 * needs to be read and/or written. Furthermore, ioctls are allowed
2768 * to dereference the passed pointer, so the parameter requires deep
2769 * copying but FUSE has no idea whatsoever about what to copy in or
2770 * out.
2771 *
2772 * This is solved by allowing FUSE server to retry ioctl with
2773 * necessary in/out iovecs. Let's assume the ioctl implementation
2774 * needs to read in the following structure.
2775 *
2776 * struct a {
2777 * char *buf;
2778 * size_t buflen;
2779 * }
2780 *
2781 * On the first callout to FUSE server, inarg->in_size and
2782 * inarg->out_size will be NULL; then, the server completes the ioctl
2783 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2784 * the actual iov array to
2785 *
2786 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2787 *
2788 * which tells FUSE to copy in the requested area and retry the ioctl.
2789 * On the second round, the server has access to the structure and
2790 * from that it can tell what to look for next, so on the invocation,
2791 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2792 *
2793 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2794 * { .iov_base = a.buf, .iov_len = a.buflen } }
2795 *
2796 * FUSE will copy both struct a and the pointed buffer from the
2797 * process doing the ioctl and retry ioctl with both struct a and the
2798 * buffer.
2799 *
2800 * This time, FUSE server has everything it needs and completes ioctl
2801 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2802 *
2803 * Copying data out works the same way.
2804 *
2805 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2806 * automatically initializes in and out iovs by decoding @cmd with
2807 * _IOC_* macros and the server is not allowed to request RETRY. This
2808 * limits ioctl data transfers to well-formed ioctls and is the forced
2809 * behavior for all FUSE servers.
2810 */
fuse_do_ioctl(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2811 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2812 unsigned int flags)
2813 {
2814 struct fuse_file *ff = file->private_data;
2815 struct fuse_mount *fm = ff->fm;
2816 struct fuse_ioctl_in inarg = {
2817 .fh = ff->fh,
2818 .cmd = cmd,
2819 .arg = arg,
2820 .flags = flags
2821 };
2822 struct fuse_ioctl_out outarg;
2823 struct iovec *iov_page = NULL;
2824 struct iovec *in_iov = NULL, *out_iov = NULL;
2825 unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2826 size_t in_size, out_size, c;
2827 ssize_t transferred;
2828 int err, i;
2829 struct iov_iter ii;
2830 struct fuse_args_pages ap = {};
2831
2832 #if BITS_PER_LONG == 32
2833 inarg.flags |= FUSE_IOCTL_32BIT;
2834 #else
2835 if (flags & FUSE_IOCTL_COMPAT) {
2836 inarg.flags |= FUSE_IOCTL_32BIT;
2837 #ifdef CONFIG_X86_X32
2838 if (in_x32_syscall())
2839 inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2840 #endif
2841 }
2842 #endif
2843
2844 /* assume all the iovs returned by client always fits in a page */
2845 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2846
2847 err = -ENOMEM;
2848 ap.pages = fuse_pages_alloc(fm->fc->max_pages, GFP_KERNEL, &ap.descs);
2849 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2850 if (!ap.pages || !iov_page)
2851 goto out;
2852
2853 fuse_page_descs_length_init(ap.descs, 0, fm->fc->max_pages);
2854
2855 /*
2856 * If restricted, initialize IO parameters as encoded in @cmd.
2857 * RETRY from server is not allowed.
2858 */
2859 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2860 struct iovec *iov = iov_page;
2861
2862 iov->iov_base = (void __user *)arg;
2863
2864 switch (cmd) {
2865 case FS_IOC_GETFLAGS:
2866 case FS_IOC_SETFLAGS:
2867 iov->iov_len = sizeof(int);
2868 break;
2869 default:
2870 iov->iov_len = _IOC_SIZE(cmd);
2871 break;
2872 }
2873
2874 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2875 in_iov = iov;
2876 in_iovs = 1;
2877 }
2878
2879 if (_IOC_DIR(cmd) & _IOC_READ) {
2880 out_iov = iov;
2881 out_iovs = 1;
2882 }
2883 }
2884
2885 retry:
2886 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2887 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2888
2889 /*
2890 * Out data can be used either for actual out data or iovs,
2891 * make sure there always is at least one page.
2892 */
2893 out_size = max_t(size_t, out_size, PAGE_SIZE);
2894 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2895
2896 /* make sure there are enough buffer pages and init request with them */
2897 err = -ENOMEM;
2898 if (max_pages > fm->fc->max_pages)
2899 goto out;
2900 while (ap.num_pages < max_pages) {
2901 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2902 if (!ap.pages[ap.num_pages])
2903 goto out;
2904 ap.num_pages++;
2905 }
2906
2907
2908 /* okay, let's send it to the client */
2909 ap.args.opcode = FUSE_IOCTL;
2910 ap.args.nodeid = ff->nodeid;
2911 ap.args.in_numargs = 1;
2912 ap.args.in_args[0].size = sizeof(inarg);
2913 ap.args.in_args[0].value = &inarg;
2914 if (in_size) {
2915 ap.args.in_numargs++;
2916 ap.args.in_args[1].size = in_size;
2917 ap.args.in_pages = true;
2918
2919 err = -EFAULT;
2920 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2921 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2922 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2923 if (c != PAGE_SIZE && iov_iter_count(&ii))
2924 goto out;
2925 }
2926 }
2927
2928 ap.args.out_numargs = 2;
2929 ap.args.out_args[0].size = sizeof(outarg);
2930 ap.args.out_args[0].value = &outarg;
2931 ap.args.out_args[1].size = out_size;
2932 ap.args.out_pages = true;
2933 ap.args.out_argvar = true;
2934
2935 transferred = fuse_simple_request(fm, &ap.args);
2936 err = transferred;
2937 if (transferred < 0)
2938 goto out;
2939
2940 /* did it ask for retry? */
2941 if (outarg.flags & FUSE_IOCTL_RETRY) {
2942 void *vaddr;
2943
2944 /* no retry if in restricted mode */
2945 err = -EIO;
2946 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2947 goto out;
2948
2949 in_iovs = outarg.in_iovs;
2950 out_iovs = outarg.out_iovs;
2951
2952 /*
2953 * Make sure things are in boundary, separate checks
2954 * are to protect against overflow.
2955 */
2956 err = -ENOMEM;
2957 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2958 out_iovs > FUSE_IOCTL_MAX_IOV ||
2959 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2960 goto out;
2961
2962 vaddr = kmap_atomic(ap.pages[0]);
2963 err = fuse_copy_ioctl_iovec(fm->fc, iov_page, vaddr,
2964 transferred, in_iovs + out_iovs,
2965 (flags & FUSE_IOCTL_COMPAT) != 0);
2966 kunmap_atomic(vaddr);
2967 if (err)
2968 goto out;
2969
2970 in_iov = iov_page;
2971 out_iov = in_iov + in_iovs;
2972
2973 err = fuse_verify_ioctl_iov(fm->fc, in_iov, in_iovs);
2974 if (err)
2975 goto out;
2976
2977 err = fuse_verify_ioctl_iov(fm->fc, out_iov, out_iovs);
2978 if (err)
2979 goto out;
2980
2981 goto retry;
2982 }
2983
2984 err = -EIO;
2985 if (transferred > inarg.out_size)
2986 goto out;
2987
2988 err = -EFAULT;
2989 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2990 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2991 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2992 if (c != PAGE_SIZE && iov_iter_count(&ii))
2993 goto out;
2994 }
2995 err = 0;
2996 out:
2997 free_page((unsigned long) iov_page);
2998 while (ap.num_pages)
2999 __free_page(ap.pages[--ap.num_pages]);
3000 kfree(ap.pages);
3001
3002 return err ? err : outarg.result;
3003 }
3004 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
3005
fuse_ioctl_common(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)3006 long fuse_ioctl_common(struct file *file, unsigned int cmd,
3007 unsigned long arg, unsigned int flags)
3008 {
3009 struct inode *inode = file_inode(file);
3010 struct fuse_conn *fc = get_fuse_conn(inode);
3011
3012 if (!fuse_allow_current_process(fc))
3013 return -EACCES;
3014
3015 if (fuse_is_bad(inode))
3016 return -EIO;
3017
3018 return fuse_do_ioctl(file, cmd, arg, flags);
3019 }
3020
fuse_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3021 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
3022 unsigned long arg)
3023 {
3024 return fuse_ioctl_common(file, cmd, arg, 0);
3025 }
3026
fuse_file_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3027 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
3028 unsigned long arg)
3029 {
3030 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
3031 }
3032
3033 /*
3034 * All files which have been polled are linked to RB tree
3035 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
3036 * find the matching one.
3037 */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)3038 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
3039 struct rb_node **parent_out)
3040 {
3041 struct rb_node **link = &fc->polled_files.rb_node;
3042 struct rb_node *last = NULL;
3043
3044 while (*link) {
3045 struct fuse_file *ff;
3046
3047 last = *link;
3048 ff = rb_entry(last, struct fuse_file, polled_node);
3049
3050 if (kh < ff->kh)
3051 link = &last->rb_left;
3052 else if (kh > ff->kh)
3053 link = &last->rb_right;
3054 else
3055 return link;
3056 }
3057
3058 if (parent_out)
3059 *parent_out = last;
3060 return link;
3061 }
3062
3063 /*
3064 * The file is about to be polled. Make sure it's on the polled_files
3065 * RB tree. Note that files once added to the polled_files tree are
3066 * not removed before the file is released. This is because a file
3067 * polled once is likely to be polled again.
3068 */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)3069 static void fuse_register_polled_file(struct fuse_conn *fc,
3070 struct fuse_file *ff)
3071 {
3072 spin_lock(&fc->lock);
3073 if (RB_EMPTY_NODE(&ff->polled_node)) {
3074 struct rb_node **link, *parent;
3075
3076 link = fuse_find_polled_node(fc, ff->kh, &parent);
3077 BUG_ON(*link);
3078 rb_link_node(&ff->polled_node, parent, link);
3079 rb_insert_color(&ff->polled_node, &fc->polled_files);
3080 }
3081 spin_unlock(&fc->lock);
3082 }
3083
fuse_file_poll(struct file * file,poll_table * wait)3084 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
3085 {
3086 struct fuse_file *ff = file->private_data;
3087 struct fuse_mount *fm = ff->fm;
3088 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3089 struct fuse_poll_out outarg;
3090 FUSE_ARGS(args);
3091 int err;
3092
3093 if (fm->fc->no_poll)
3094 return DEFAULT_POLLMASK;
3095
3096 poll_wait(file, &ff->poll_wait, wait);
3097 inarg.events = mangle_poll(poll_requested_events(wait));
3098
3099 /*
3100 * Ask for notification iff there's someone waiting for it.
3101 * The client may ignore the flag and always notify.
3102 */
3103 if (waitqueue_active(&ff->poll_wait)) {
3104 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3105 fuse_register_polled_file(fm->fc, ff);
3106 }
3107
3108 args.opcode = FUSE_POLL;
3109 args.nodeid = ff->nodeid;
3110 args.in_numargs = 1;
3111 args.in_args[0].size = sizeof(inarg);
3112 args.in_args[0].value = &inarg;
3113 args.out_numargs = 1;
3114 args.out_args[0].size = sizeof(outarg);
3115 args.out_args[0].value = &outarg;
3116 err = fuse_simple_request(fm, &args);
3117
3118 if (!err)
3119 return demangle_poll(outarg.revents);
3120 if (err == -ENOSYS) {
3121 fm->fc->no_poll = 1;
3122 return DEFAULT_POLLMASK;
3123 }
3124 return EPOLLERR;
3125 }
3126 EXPORT_SYMBOL_GPL(fuse_file_poll);
3127
3128 /*
3129 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3130 * wakes up the poll waiters.
3131 */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)3132 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3133 struct fuse_notify_poll_wakeup_out *outarg)
3134 {
3135 u64 kh = outarg->kh;
3136 struct rb_node **link;
3137
3138 spin_lock(&fc->lock);
3139
3140 link = fuse_find_polled_node(fc, kh, NULL);
3141 if (*link) {
3142 struct fuse_file *ff;
3143
3144 ff = rb_entry(*link, struct fuse_file, polled_node);
3145 wake_up_interruptible_sync(&ff->poll_wait);
3146 }
3147
3148 spin_unlock(&fc->lock);
3149 return 0;
3150 }
3151
fuse_do_truncate(struct file * file)3152 static void fuse_do_truncate(struct file *file)
3153 {
3154 struct inode *inode = file->f_mapping->host;
3155 struct iattr attr;
3156
3157 attr.ia_valid = ATTR_SIZE;
3158 attr.ia_size = i_size_read(inode);
3159
3160 attr.ia_file = file;
3161 attr.ia_valid |= ATTR_FILE;
3162
3163 fuse_do_setattr(file_dentry(file), &attr, file);
3164 }
3165
fuse_round_up(struct fuse_conn * fc,loff_t off)3166 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3167 {
3168 return round_up(off, fc->max_pages << PAGE_SHIFT);
3169 }
3170
3171 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3172 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3173 {
3174 DECLARE_COMPLETION_ONSTACK(wait);
3175 ssize_t ret = 0;
3176 struct file *file = iocb->ki_filp;
3177 struct fuse_file *ff = file->private_data;
3178 loff_t pos = 0;
3179 struct inode *inode;
3180 loff_t i_size;
3181 size_t count = iov_iter_count(iter), shortened = 0;
3182 loff_t offset = iocb->ki_pos;
3183 struct fuse_io_priv *io;
3184
3185 pos = offset;
3186 inode = file->f_mapping->host;
3187 i_size = i_size_read(inode);
3188
3189 if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3190 return 0;
3191
3192 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3193 if (!io)
3194 return -ENOMEM;
3195 spin_lock_init(&io->lock);
3196 kref_init(&io->refcnt);
3197 io->reqs = 1;
3198 io->bytes = -1;
3199 io->size = 0;
3200 io->offset = offset;
3201 io->write = (iov_iter_rw(iter) == WRITE);
3202 io->err = 0;
3203 /*
3204 * By default, we want to optimize all I/Os with async request
3205 * submission to the client filesystem if supported.
3206 */
3207 io->async = ff->fm->fc->async_dio;
3208 io->iocb = iocb;
3209 io->blocking = is_sync_kiocb(iocb);
3210
3211 /* optimization for short read */
3212 if (io->async && !io->write && offset + count > i_size) {
3213 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3214 shortened = count - iov_iter_count(iter);
3215 count -= shortened;
3216 }
3217
3218 /*
3219 * We cannot asynchronously extend the size of a file.
3220 * In such case the aio will behave exactly like sync io.
3221 */
3222 if ((offset + count > i_size) && io->write)
3223 io->blocking = true;
3224
3225 if (io->async && io->blocking) {
3226 /*
3227 * Additional reference to keep io around after
3228 * calling fuse_aio_complete()
3229 */
3230 kref_get(&io->refcnt);
3231 io->done = &wait;
3232 }
3233
3234 if (iov_iter_rw(iter) == WRITE) {
3235 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3236 fuse_invalidate_attr(inode);
3237 } else {
3238 ret = __fuse_direct_read(io, iter, &pos);
3239 }
3240 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3241
3242 if (io->async) {
3243 bool blocking = io->blocking;
3244
3245 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3246
3247 /* we have a non-extending, async request, so return */
3248 if (!blocking)
3249 return -EIOCBQUEUED;
3250
3251 wait_for_completion(&wait);
3252 ret = fuse_get_res_by_io(io);
3253 }
3254
3255 kref_put(&io->refcnt, fuse_io_release);
3256
3257 if (iov_iter_rw(iter) == WRITE) {
3258 if (ret > 0)
3259 fuse_write_update_size(inode, pos);
3260 else if (ret < 0 && offset + count > i_size)
3261 fuse_do_truncate(file);
3262 }
3263
3264 return ret;
3265 }
3266
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)3267 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3268 {
3269 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3270
3271 if (!err)
3272 fuse_sync_writes(inode);
3273
3274 return err;
3275 }
3276
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)3277 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3278 loff_t length)
3279 {
3280 struct fuse_file *ff = file->private_data;
3281 struct inode *inode = file_inode(file);
3282 struct fuse_inode *fi = get_fuse_inode(inode);
3283 struct fuse_mount *fm = ff->fm;
3284 FUSE_ARGS(args);
3285 struct fuse_fallocate_in inarg = {
3286 .fh = ff->fh,
3287 .offset = offset,
3288 .length = length,
3289 .mode = mode
3290 };
3291 int err;
3292 bool block_faults = FUSE_IS_DAX(inode) &&
3293 (!(mode & FALLOC_FL_KEEP_SIZE) ||
3294 (mode & FALLOC_FL_PUNCH_HOLE));
3295
3296 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3297 return -EOPNOTSUPP;
3298
3299 if (fm->fc->no_fallocate)
3300 return -EOPNOTSUPP;
3301
3302 inode_lock(inode);
3303 if (block_faults) {
3304 down_write(&fi->i_mmap_sem);
3305 err = fuse_dax_break_layouts(inode, 0, 0);
3306 if (err)
3307 goto out;
3308 }
3309
3310 if (mode & FALLOC_FL_PUNCH_HOLE) {
3311 loff_t endbyte = offset + length - 1;
3312
3313 err = fuse_writeback_range(inode, offset, endbyte);
3314 if (err)
3315 goto out;
3316 }
3317
3318 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3319 offset + length > i_size_read(inode)) {
3320 err = inode_newsize_ok(inode, offset + length);
3321 if (err)
3322 goto out;
3323 }
3324
3325 err = file_modified(file);
3326 if (err)
3327 goto out;
3328
3329 if (!(mode & FALLOC_FL_KEEP_SIZE))
3330 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3331
3332 args.opcode = FUSE_FALLOCATE;
3333 args.nodeid = ff->nodeid;
3334 args.in_numargs = 1;
3335 args.in_args[0].size = sizeof(inarg);
3336 args.in_args[0].value = &inarg;
3337 err = fuse_simple_request(fm, &args);
3338 if (err == -ENOSYS) {
3339 fm->fc->no_fallocate = 1;
3340 err = -EOPNOTSUPP;
3341 }
3342 if (err)
3343 goto out;
3344
3345 /* we could have extended the file */
3346 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3347 bool changed = fuse_write_update_size(inode, offset + length);
3348
3349 if (changed && fm->fc->writeback_cache)
3350 file_update_time(file);
3351 }
3352
3353 if (mode & FALLOC_FL_PUNCH_HOLE)
3354 truncate_pagecache_range(inode, offset, offset + length - 1);
3355
3356 fuse_invalidate_attr(inode);
3357
3358 out:
3359 if (!(mode & FALLOC_FL_KEEP_SIZE))
3360 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3361
3362 if (block_faults)
3363 up_write(&fi->i_mmap_sem);
3364
3365 inode_unlock(inode);
3366
3367 fuse_flush_time_update(inode);
3368
3369 return err;
3370 }
3371
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3372 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3373 struct file *file_out, loff_t pos_out,
3374 size_t len, unsigned int flags)
3375 {
3376 struct fuse_file *ff_in = file_in->private_data;
3377 struct fuse_file *ff_out = file_out->private_data;
3378 struct inode *inode_in = file_inode(file_in);
3379 struct inode *inode_out = file_inode(file_out);
3380 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3381 struct fuse_mount *fm = ff_in->fm;
3382 struct fuse_conn *fc = fm->fc;
3383 FUSE_ARGS(args);
3384 struct fuse_copy_file_range_in inarg = {
3385 .fh_in = ff_in->fh,
3386 .off_in = pos_in,
3387 .nodeid_out = ff_out->nodeid,
3388 .fh_out = ff_out->fh,
3389 .off_out = pos_out,
3390 .len = len,
3391 .flags = flags
3392 };
3393 struct fuse_write_out outarg;
3394 ssize_t err;
3395 /* mark unstable when write-back is not used, and file_out gets
3396 * extended */
3397 bool is_unstable = (!fc->writeback_cache) &&
3398 ((pos_out + len) > inode_out->i_size);
3399
3400 if (fc->no_copy_file_range)
3401 return -EOPNOTSUPP;
3402
3403 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3404 return -EXDEV;
3405
3406 inode_lock(inode_in);
3407 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3408 inode_unlock(inode_in);
3409 if (err)
3410 return err;
3411
3412 inode_lock(inode_out);
3413
3414 err = file_modified(file_out);
3415 if (err)
3416 goto out;
3417
3418 /*
3419 * Write out dirty pages in the destination file before sending the COPY
3420 * request to userspace. After the request is completed, truncate off
3421 * pages (including partial ones) from the cache that have been copied,
3422 * since these contain stale data at that point.
3423 *
3424 * This should be mostly correct, but if the COPY writes to partial
3425 * pages (at the start or end) and the parts not covered by the COPY are
3426 * written through a memory map after calling fuse_writeback_range(),
3427 * then these partial page modifications will be lost on truncation.
3428 *
3429 * It is unlikely that someone would rely on such mixed style
3430 * modifications. Yet this does give less guarantees than if the
3431 * copying was performed with write(2).
3432 *
3433 * To fix this a i_mmap_sem style lock could be used to prevent new
3434 * faults while the copy is ongoing.
3435 */
3436 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3437 if (err)
3438 goto out;
3439
3440 if (is_unstable)
3441 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3442
3443 args.opcode = FUSE_COPY_FILE_RANGE;
3444 args.nodeid = ff_in->nodeid;
3445 args.in_numargs = 1;
3446 args.in_args[0].size = sizeof(inarg);
3447 args.in_args[0].value = &inarg;
3448 args.out_numargs = 1;
3449 args.out_args[0].size = sizeof(outarg);
3450 args.out_args[0].value = &outarg;
3451 err = fuse_simple_request(fm, &args);
3452 if (err == -ENOSYS) {
3453 fc->no_copy_file_range = 1;
3454 err = -EOPNOTSUPP;
3455 }
3456 if (err)
3457 goto out;
3458
3459 truncate_inode_pages_range(inode_out->i_mapping,
3460 ALIGN_DOWN(pos_out, PAGE_SIZE),
3461 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3462
3463 if (fc->writeback_cache) {
3464 fuse_write_update_size(inode_out, pos_out + outarg.size);
3465 file_update_time(file_out);
3466 }
3467
3468 fuse_invalidate_attr(inode_out);
3469
3470 err = outarg.size;
3471 out:
3472 if (is_unstable)
3473 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3474
3475 inode_unlock(inode_out);
3476 file_accessed(file_in);
3477
3478 fuse_flush_time_update(inode_out);
3479
3480 return err;
3481 }
3482
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3483 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3484 struct file *dst_file, loff_t dst_off,
3485 size_t len, unsigned int flags)
3486 {
3487 ssize_t ret;
3488
3489 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3490 len, flags);
3491
3492 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3493 ret = generic_copy_file_range(src_file, src_off, dst_file,
3494 dst_off, len, flags);
3495 return ret;
3496 }
3497
3498 static const struct file_operations fuse_file_operations = {
3499 .llseek = fuse_file_llseek,
3500 .read_iter = fuse_file_read_iter,
3501 .write_iter = fuse_file_write_iter,
3502 .mmap = fuse_file_mmap,
3503 .open = fuse_open,
3504 .flush = fuse_flush,
3505 .release = fuse_release,
3506 .fsync = fuse_fsync,
3507 .lock = fuse_file_lock,
3508 .get_unmapped_area = thp_get_unmapped_area,
3509 .flock = fuse_file_flock,
3510 .splice_read = generic_file_splice_read,
3511 .splice_write = iter_file_splice_write,
3512 .unlocked_ioctl = fuse_file_ioctl,
3513 .compat_ioctl = fuse_file_compat_ioctl,
3514 .poll = fuse_file_poll,
3515 .fallocate = fuse_file_fallocate,
3516 .copy_file_range = fuse_copy_file_range,
3517 };
3518
3519 static const struct address_space_operations fuse_file_aops = {
3520 .readpage = fuse_readpage,
3521 .readahead = fuse_readahead,
3522 .writepage = fuse_writepage,
3523 .writepages = fuse_writepages,
3524 .launder_page = fuse_launder_page,
3525 .set_page_dirty = __set_page_dirty_nobuffers,
3526 .bmap = fuse_bmap,
3527 .direct_IO = fuse_direct_IO,
3528 .write_begin = fuse_write_begin,
3529 .write_end = fuse_write_end,
3530 };
3531
fuse_init_file_inode(struct inode * inode)3532 void fuse_init_file_inode(struct inode *inode)
3533 {
3534 struct fuse_inode *fi = get_fuse_inode(inode);
3535
3536 inode->i_fop = &fuse_file_operations;
3537 inode->i_data.a_ops = &fuse_file_aops;
3538
3539 INIT_LIST_HEAD(&fi->write_files);
3540 INIT_LIST_HEAD(&fi->queued_writes);
3541 fi->writectr = 0;
3542 init_waitqueue_head(&fi->page_waitq);
3543 fi->writepages = RB_ROOT;
3544
3545 if (IS_ENABLED(CONFIG_FUSE_DAX))
3546 fuse_dax_inode_init(inode);
3547 }
3548