• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
2 /*
3  * core.h - DesignWare HS OTG Controller common declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
40 
41 #include <linux/phy/phy.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/usb/gadget.h>
44 #include <linux/usb/otg.h>
45 #include <linux/usb/phy.h>
46 #include "hw.h"
47 
48 /*
49  * Suggested defines for tracers:
50  * - no_printk:    Disable tracing
51  * - pr_info:      Print this info to the console
52  * - trace_printk: Print this info to trace buffer (good for verbose logging)
53  */
54 
55 #define DWC2_TRACE_SCHEDULER		no_printk
56 #define DWC2_TRACE_SCHEDULER_VB		no_printk
57 
58 /* Detailed scheduler tracing, but won't overwhelm console */
59 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
60 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
61 			     dev_name(hsotg->dev), ##__VA_ARGS__)
62 
63 /* Verbose scheduler tracing */
64 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
65 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
66 				dev_name(hsotg->dev), ##__VA_ARGS__)
67 
68 /* Maximum number of Endpoints/HostChannels */
69 #define MAX_EPS_CHANNELS	16
70 
71 /* dwc2-hsotg declarations */
72 static const char * const dwc2_hsotg_supply_names[] = {
73 	"vusb_d",               /* digital USB supply, 1.2V */
74 	"vusb_a",               /* analog USB supply, 1.1V */
75 };
76 
77 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
78 
79 /*
80  * EP0_MPS_LIMIT
81  *
82  * Unfortunately there seems to be a limit of the amount of data that can
83  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
84  * packets (which practically means 1 packet and 63 bytes of data) when the
85  * MPS is set to 64.
86  *
87  * This means if we are wanting to move >127 bytes of data, we need to
88  * split the transactions up, but just doing one packet at a time does
89  * not work (this may be an implicit DATA0 PID on first packet of the
90  * transaction) and doing 2 packets is outside the controller's limits.
91  *
92  * If we try to lower the MPS size for EP0, then no transfers work properly
93  * for EP0, and the system will fail basic enumeration. As no cause for this
94  * has currently been found, we cannot support any large IN transfers for
95  * EP0.
96  */
97 #define EP0_MPS_LIMIT   64
98 
99 struct dwc2_hsotg;
100 struct dwc2_hsotg_req;
101 
102 /**
103  * struct dwc2_hsotg_ep - driver endpoint definition.
104  * @ep: The gadget layer representation of the endpoint.
105  * @name: The driver generated name for the endpoint.
106  * @queue: Queue of requests for this endpoint.
107  * @parent: Reference back to the parent device structure.
108  * @req: The current request that the endpoint is processing. This is
109  *       used to indicate an request has been loaded onto the endpoint
110  *       and has yet to be completed (maybe due to data move, or simply
111  *       awaiting an ack from the core all the data has been completed).
112  * @debugfs: File entry for debugfs file for this endpoint.
113  * @dir_in: Set to true if this endpoint is of the IN direction, which
114  *          means that it is sending data to the Host.
115  * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
116  * @index: The index for the endpoint registers.
117  * @mc: Multi Count - number of transactions per microframe
118  * @interval: Interval for periodic endpoints, in frames or microframes.
119  * @name: The name array passed to the USB core.
120  * @halted: Set if the endpoint has been halted.
121  * @periodic: Set if this is a periodic ep, such as Interrupt
122  * @isochronous: Set if this is a isochronous ep
123  * @send_zlp: Set if we need to send a zero-length packet.
124  * @desc_list_dma: The DMA address of descriptor chain currently in use.
125  * @desc_list: Pointer to descriptor DMA chain head currently in use.
126  * @desc_count: Count of entries within the DMA descriptor chain of EP.
127  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
128  * @compl_desc: index of next descriptor to be completed by xFerComplete
129  * @total_data: The total number of data bytes done.
130  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
131  * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
132  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
133  * @last_load: The offset of data for the last start of request.
134  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
135  * @target_frame: Targeted frame num to setup next ISOC transfer
136  * @frame_overrun: Indicates SOF number overrun in DSTS
137  *
138  * This is the driver's state for each registered endpoint, allowing it
139  * to keep track of transactions that need doing. Each endpoint has a
140  * lock to protect the state, to try and avoid using an overall lock
141  * for the host controller as much as possible.
142  *
143  * For periodic IN endpoints, we have fifo_size and fifo_load to try
144  * and keep track of the amount of data in the periodic FIFO for each
145  * of these as we don't have a status register that tells us how much
146  * is in each of them. (note, this may actually be useless information
147  * as in shared-fifo mode periodic in acts like a single-frame packet
148  * buffer than a fifo)
149  */
150 struct dwc2_hsotg_ep {
151 	struct usb_ep           ep;
152 	struct list_head        queue;
153 	struct dwc2_hsotg       *parent;
154 	struct dwc2_hsotg_req    *req;
155 	struct dentry           *debugfs;
156 
157 	unsigned long           total_data;
158 	unsigned int            size_loaded;
159 	unsigned int            last_load;
160 	unsigned int            fifo_load;
161 	unsigned short          fifo_size;
162 	unsigned short		fifo_index;
163 
164 	unsigned char           dir_in;
165 	unsigned char           map_dir;
166 	unsigned char           index;
167 	unsigned char           mc;
168 	u16                     interval;
169 
170 	unsigned int            halted:1;
171 	unsigned int            periodic:1;
172 	unsigned int            isochronous:1;
173 	unsigned int            send_zlp:1;
174 	unsigned int            target_frame;
175 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
176 	bool			frame_overrun;
177 
178 	dma_addr_t		desc_list_dma;
179 	struct dwc2_dma_desc	*desc_list;
180 	u8			desc_count;
181 
182 	unsigned int		next_desc;
183 	unsigned int		compl_desc;
184 
185 	char                    name[10];
186 };
187 
188 /**
189  * struct dwc2_hsotg_req - data transfer request
190  * @req: The USB gadget request
191  * @queue: The list of requests for the endpoint this is queued for.
192  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
193  */
194 struct dwc2_hsotg_req {
195 	struct usb_request      req;
196 	struct list_head        queue;
197 	void *saved_req_buf;
198 };
199 
200 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
201 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
202 #define call_gadget(_hs, _entry) \
203 do { \
204 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
205 		(_hs)->driver && (_hs)->driver->_entry) { \
206 		spin_unlock(&_hs->lock); \
207 		(_hs)->driver->_entry(&(_hs)->gadget); \
208 		spin_lock(&_hs->lock); \
209 	} \
210 } while (0)
211 #else
212 #define call_gadget(_hs, _entry)	do {} while (0)
213 #endif
214 
215 struct dwc2_hsotg;
216 struct dwc2_host_chan;
217 
218 /* Device States */
219 enum dwc2_lx_state {
220 	DWC2_L0,	/* On state */
221 	DWC2_L1,	/* LPM sleep state */
222 	DWC2_L2,	/* USB suspend state */
223 	DWC2_L3,	/* Off state */
224 };
225 
226 /* Gadget ep0 states */
227 enum dwc2_ep0_state {
228 	DWC2_EP0_SETUP,
229 	DWC2_EP0_DATA_IN,
230 	DWC2_EP0_DATA_OUT,
231 	DWC2_EP0_STATUS_IN,
232 	DWC2_EP0_STATUS_OUT,
233 };
234 
235 /**
236  * struct dwc2_core_params - Parameters for configuring the core
237  *
238  * @otg_cap:            Specifies the OTG capabilities.
239  *                       0 - HNP and SRP capable
240  *                       1 - SRP Only capable
241  *                       2 - No HNP/SRP capable (always available)
242  *                      Defaults to best available option (0, 1, then 2)
243  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
244  *                      the data FIFOs. The driver will automatically detect the
245  *                      value for this parameter if none is specified.
246  *                       0 - Slave (always available)
247  *                       1 - DMA (default, if available)
248  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
249  *                      address DMA mode or descriptor DMA mode for accessing
250  *                      the data FIFOs. The driver will automatically detect the
251  *                      value for this if none is specified.
252  *                       0 - Address DMA
253  *                       1 - Descriptor DMA (default, if available)
254  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
255  *                      address DMA mode or descriptor DMA mode for accessing
256  *                      the data FIFOs in Full Speed mode only. The driver
257  *                      will automatically detect the value for this if none is
258  *                      specified.
259  *                       0 - Address DMA
260  *                       1 - Descriptor DMA in FS (default, if available)
261  * @speed:              Specifies the maximum speed of operation in host and
262  *                      device mode. The actual speed depends on the speed of
263  *                      the attached device and the value of phy_type.
264  *                       0 - High Speed
265  *                           (default when phy_type is UTMI+ or ULPI)
266  *                       1 - Full Speed
267  *                           (default when phy_type is Full Speed)
268  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
269  *                       1 - Allow dynamic FIFO sizing (default, if available)
270  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
271  *                      are enabled for non-periodic IN endpoints in device
272  *                      mode.
273  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
274  *                      dynamic FIFO sizing is enabled
275  *                       16 to 32768
276  *                      Actual maximum value is autodetected and also
277  *                      the default.
278  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
279  *                      in host mode when dynamic FIFO sizing is enabled
280  *                       16 to 32768
281  *                      Actual maximum value is autodetected and also
282  *                      the default.
283  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
284  *                      host mode when dynamic FIFO sizing is enabled
285  *                       16 to 32768
286  *                      Actual maximum value is autodetected and also
287  *                      the default.
288  * @max_transfer_size:  The maximum transfer size supported, in bytes
289  *                       2047 to 65,535
290  *                      Actual maximum value is autodetected and also
291  *                      the default.
292  * @max_packet_count:   The maximum number of packets in a transfer
293  *                       15 to 511
294  *                      Actual maximum value is autodetected and also
295  *                      the default.
296  * @host_channels:      The number of host channel registers to use
297  *                       1 to 16
298  *                      Actual maximum value is autodetected and also
299  *                      the default.
300  * @phy_type:           Specifies the type of PHY interface to use. By default,
301  *                      the driver will automatically detect the phy_type.
302  *                       0 - Full Speed Phy
303  *                       1 - UTMI+ Phy
304  *                       2 - ULPI Phy
305  *                      Defaults to best available option (2, 1, then 0)
306  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
307  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
308  *                      ULPI phy_type, this parameter indicates the data width
309  *                      between the MAC and the ULPI Wrapper.) Also, this
310  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
311  *                      parameter was set to "8 and 16 bits", meaning that the
312  *                      core has been configured to work at either data path
313  *                      width.
314  *                       8 or 16 (default 16 if available)
315  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
316  *                      data rate. This parameter is only applicable if phy_type
317  *                      is ULPI.
318  *                       0 - single data rate ULPI interface with 8 bit wide
319  *                           data bus (default)
320  *                       1 - double data rate ULPI interface with 4 bit wide
321  *                           data bus
322  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
323  *                      external supply to drive the VBus
324  *                       0 - Internal supply (default)
325  *                       1 - External supply
326  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
327  *                      speed PHY. This parameter is only applicable if phy_type
328  *                      is FS.
329  *                       0 - No (default)
330  *                       1 - Yes
331  * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
332  *                       0 - Disable (default)
333  *                       1 - Enable
334  * @acg_enable:		For enabling Active Clock Gating in the controller
335  *                       0 - No
336  *                       1 - Yes
337  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
338  *                       0 - No (default)
339  *                       1 - Yes
340  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
341  *                      when attached to a Full Speed or Low Speed device in
342  *                      host mode.
343  *                       0 - Don't support low power mode (default)
344  *                       1 - Support low power mode
345  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
346  *                      when connected to a Low Speed device in host
347  *                      mode. This parameter is applicable only if
348  *                      host_support_fs_ls_low_power is enabled.
349  *                       0 - 48 MHz
350  *                           (default when phy_type is UTMI+ or ULPI)
351  *                       1 - 6 MHz
352  *                           (default when phy_type is Full Speed)
353  * @oc_disable:		Flag to disable overcurrent condition.
354  *			0 - Allow overcurrent condition to get detected
355  *			1 - Disable overcurrent condtion to get detected
356  * @ts_dline:           Enable Term Select Dline pulsing
357  *                       0 - No (default)
358  *                       1 - Yes
359  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
360  *                       0 - No (default for core < 2.92a)
361  *                       1 - Yes (default for core >= 2.92a)
362  * @ahbcfg:             This field allows the default value of the GAHBCFG
363  *                      register to be overridden
364  *                       -1         - GAHBCFG value will be set to 0x06
365  *                                    (INCR, default)
366  *                       all others - GAHBCFG value will be overridden with
367  *                                    this value
368  *                      Not all bits can be controlled like this, the
369  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
370  *                      by the driver and are ignored in this
371  *                      configuration value.
372  * @uframe_sched:       True to enable the microframe scheduler
373  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
374  *                      Disable CONIDSTSCHNG controller interrupt in such
375  *                      case.
376  *                      0 - No (default)
377  *                      1 - Yes
378  * @power_down:         Specifies whether the controller support power_down.
379  *			If power_down is enabled, the controller will enter
380  *			power_down in both peripheral and host mode when
381  *			needed.
382  *			0 - No (default)
383  *			1 - Partial power down
384  *			2 - Hibernation
385  * @lpm:		Enable LPM support.
386  *			0 - No
387  *			1 - Yes
388  * @lpm_clock_gating:		Enable core PHY clock gating.
389  *			0 - No
390  *			1 - Yes
391  * @besl:		Enable LPM Errata support.
392  *			0 - No
393  *			1 - Yes
394  * @hird_threshold_en:	HIRD or HIRD Threshold enable.
395  *			0 - No
396  *			1 - Yes
397  * @hird_threshold:	Value of BESL or HIRD Threshold.
398  * @ref_clk_per:        Indicates in terms of pico seconds the period
399  *                      of ref_clk.
400  *			62500 - 16MHz
401  *                      58823 - 17MHz
402  *                      52083 - 19.2MHz
403  *			50000 - 20MHz
404  *			41666 - 24MHz
405  *			33333 - 30MHz (default)
406  *			25000 - 40MHz
407  * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
408  *                      the controller should generate an interrupt if the
409  *                      device had been in L1 state until that period.
410  *                      This is used by SW to initiate Remote WakeUp in the
411  *                      controller so as to sync to the uF number from the host.
412  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
413  *			register.
414  *			0 - Deactivate the transceiver (default)
415  *			1 - Activate the transceiver
416  * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
417  *			detection using GGPIO register.
418  *			0 - Deactivate the external level detection (default)
419  *			1 - Activate the external level detection
420  * @g_dma:              Enables gadget dma usage (default: autodetect).
421  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
422  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
423  *			DWORDS from 16-32768 (default: 2048 if
424  *			possible, otherwise autodetect).
425  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
426  *			DWORDS from 16-32768 (default: 1024 if
427  *			possible, otherwise autodetect).
428  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
429  *			mode. Each value corresponds to one EP
430  *			starting from EP1 (max 15 values). Sizes are
431  *			in DWORDS with possible values from from
432  *			16-32768 (default: 256, 256, 256, 256, 768,
433  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
434  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
435  *                      while full&low speed device connect. And change speed
436  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
437  *			0 - No (default)
438  *			1 - Yes
439  * @service_interval:   Enable service interval based scheduling.
440  *                      0 - No
441  *                      1 - Yes
442  *
443  * The following parameters may be specified when starting the module. These
444  * parameters define how the DWC_otg controller should be configured. A
445  * value of -1 (or any other out of range value) for any parameter means
446  * to read the value from hardware (if possible) or use the builtin
447  * default described above.
448  */
449 struct dwc2_core_params {
450 	u8 otg_cap;
451 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
452 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
453 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
454 
455 	u8 phy_type;
456 #define DWC2_PHY_TYPE_PARAM_FS		0
457 #define DWC2_PHY_TYPE_PARAM_UTMI	1
458 #define DWC2_PHY_TYPE_PARAM_ULPI	2
459 
460 	u8 speed;
461 #define DWC2_SPEED_PARAM_HIGH	0
462 #define DWC2_SPEED_PARAM_FULL	1
463 #define DWC2_SPEED_PARAM_LOW	2
464 
465 	u8 phy_utmi_width;
466 	bool phy_ulpi_ddr;
467 	bool phy_ulpi_ext_vbus;
468 	bool enable_dynamic_fifo;
469 	bool en_multiple_tx_fifo;
470 	bool i2c_enable;
471 	bool acg_enable;
472 	bool ulpi_fs_ls;
473 	bool ts_dline;
474 	bool reload_ctl;
475 	bool uframe_sched;
476 	bool external_id_pin_ctl;
477 
478 	int power_down;
479 #define DWC2_POWER_DOWN_PARAM_NONE		0
480 #define DWC2_POWER_DOWN_PARAM_PARTIAL		1
481 #define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
482 
483 	bool lpm;
484 	bool lpm_clock_gating;
485 	bool besl;
486 	bool hird_threshold_en;
487 	bool service_interval;
488 	u8 hird_threshold;
489 	bool activate_stm_fs_transceiver;
490 	bool activate_stm_id_vb_detection;
491 	bool ipg_isoc_en;
492 	u16 max_packet_count;
493 	u32 max_transfer_size;
494 	u32 ahbcfg;
495 
496 	/* GREFCLK parameters */
497 	u32 ref_clk_per;
498 	u16 sof_cnt_wkup_alert;
499 
500 	/* Host parameters */
501 	bool host_dma;
502 	bool dma_desc_enable;
503 	bool dma_desc_fs_enable;
504 	bool host_support_fs_ls_low_power;
505 	bool host_ls_low_power_phy_clk;
506 	bool oc_disable;
507 
508 	u8 host_channels;
509 	u16 host_rx_fifo_size;
510 	u16 host_nperio_tx_fifo_size;
511 	u16 host_perio_tx_fifo_size;
512 
513 	/* Gadget parameters */
514 	bool g_dma;
515 	bool g_dma_desc;
516 	u32 g_rx_fifo_size;
517 	u32 g_np_tx_fifo_size;
518 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
519 
520 	bool change_speed_quirk;
521 };
522 
523 /**
524  * struct dwc2_hw_params - Autodetected parameters.
525  *
526  * These parameters are the various parameters read from hardware
527  * registers during initialization. They typically contain the best
528  * supported or maximum value that can be configured in the
529  * corresponding dwc2_core_params value.
530  *
531  * The values that are not in dwc2_core_params are documented below.
532  *
533  * @op_mode:             Mode of Operation
534  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
535  *                       1 - SRP-Capable OTG (Host & Device)
536  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
537  *                       3 - SRP-Capable Device
538  *                       4 - Non-OTG Device
539  *                       5 - SRP-Capable Host
540  *                       6 - Non-OTG Host
541  * @arch:                Architecture
542  *                       0 - Slave only
543  *                       1 - External DMA
544  *                       2 - Internal DMA
545  * @ipg_isoc_en:        This feature indicates that the controller supports
546  *                      the worst-case scenario of Rx followed by Rx
547  *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
548  *                      specification for any token following ISOC OUT token.
549  *                       0 - Don't support
550  *                       1 - Support
551  * @power_optimized:    Are power optimizations enabled?
552  * @num_dev_ep:         Number of device endpoints available
553  * @num_dev_in_eps:     Number of device IN endpoints available
554  * @num_dev_perio_in_ep: Number of device periodic IN endpoints
555  *                       available
556  * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
557  *                      Depth
558  *                       0 to 30
559  * @host_perio_tx_q_depth:
560  *                      Host Mode Periodic Request Queue Depth
561  *                       2, 4 or 8
562  * @nperio_tx_q_depth:
563  *                      Non-Periodic Request Queue Depth
564  *                       2, 4 or 8
565  * @hs_phy_type:         High-speed PHY interface type
566  *                       0 - High-speed interface not supported
567  *                       1 - UTMI+
568  *                       2 - ULPI
569  *                       3 - UTMI+ and ULPI
570  * @fs_phy_type:         Full-speed PHY interface type
571  *                       0 - Full speed interface not supported
572  *                       1 - Dedicated full speed interface
573  *                       2 - FS pins shared with UTMI+ pins
574  *                       3 - FS pins shared with ULPI pins
575  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
576  * @hibernation:	Is hibernation enabled?
577  * @utmi_phy_data_width: UTMI+ PHY data width
578  *                       0 - 8 bits
579  *                       1 - 16 bits
580  *                       2 - 8 or 16 bits
581  * @snpsid:             Value from SNPSID register
582  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
583  * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
584  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
585  *                      address DMA mode or descriptor DMA mode for accessing
586  *                      the data FIFOs. The driver will automatically detect the
587  *                      value for this if none is specified.
588  *                       0 - Address DMA
589  *                       1 - Descriptor DMA (default, if available)
590  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
591  *                       1 - Allow dynamic FIFO sizing (default, if available)
592  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
593  *                      are enabled for non-periodic IN endpoints in device
594  *                      mode.
595  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
596  *                      in host mode when dynamic FIFO sizing is enabled
597  *                       16 to 32768
598  *                      Actual maximum value is autodetected and also
599  *                      the default.
600  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
601  *                      host mode when dynamic FIFO sizing is enabled
602  *                       16 to 32768
603  *                      Actual maximum value is autodetected and also
604  *                      the default.
605  * @max_transfer_size:  The maximum transfer size supported, in bytes
606  *                       2047 to 65,535
607  *                      Actual maximum value is autodetected and also
608  *                      the default.
609  * @max_packet_count:   The maximum number of packets in a transfer
610  *                       15 to 511
611  *                      Actual maximum value is autodetected and also
612  *                      the default.
613  * @host_channels:      The number of host channel registers to use
614  *                       1 to 16
615  *                      Actual maximum value is autodetected and also
616  *                      the default.
617  * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
618  *			     in device mode when dynamic FIFO sizing is enabled
619  *			     16 to 32768
620  *			     Actual maximum value is autodetected and also
621  *			     the default.
622  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
623  *                      speed PHY. This parameter is only applicable if phy_type
624  *                      is FS.
625  *                       0 - No (default)
626  *                       1 - Yes
627  * @acg_enable:		For enabling Active Clock Gating in the controller
628  *                       0 - Disable
629  *                       1 - Enable
630  * @lpm_mode:		For enabling Link Power Management in the controller
631  *                       0 - Disable
632  *                       1 - Enable
633  * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
634  *			FIFO sizing is enabled 16 to 32768
635  *			Actual maximum value is autodetected and also
636  *			the default.
637  * @service_interval_mode: For enabling service interval based scheduling in the
638  *                         controller.
639  *                           0 - Disable
640  *                           1 - Enable
641  */
642 struct dwc2_hw_params {
643 	unsigned op_mode:3;
644 	unsigned arch:2;
645 	unsigned dma_desc_enable:1;
646 	unsigned enable_dynamic_fifo:1;
647 	unsigned en_multiple_tx_fifo:1;
648 	unsigned rx_fifo_size:16;
649 	unsigned host_nperio_tx_fifo_size:16;
650 	unsigned dev_nperio_tx_fifo_size:16;
651 	unsigned host_perio_tx_fifo_size:16;
652 	unsigned nperio_tx_q_depth:3;
653 	unsigned host_perio_tx_q_depth:3;
654 	unsigned dev_token_q_depth:5;
655 	unsigned max_transfer_size:26;
656 	unsigned max_packet_count:11;
657 	unsigned host_channels:5;
658 	unsigned hs_phy_type:2;
659 	unsigned fs_phy_type:2;
660 	unsigned i2c_enable:1;
661 	unsigned acg_enable:1;
662 	unsigned num_dev_ep:4;
663 	unsigned num_dev_in_eps : 4;
664 	unsigned num_dev_perio_in_ep:4;
665 	unsigned total_fifo_size:16;
666 	unsigned power_optimized:1;
667 	unsigned hibernation:1;
668 	unsigned utmi_phy_data_width:2;
669 	unsigned lpm_mode:1;
670 	unsigned ipg_isoc_en:1;
671 	unsigned service_interval_mode:1;
672 	u32 snpsid;
673 	u32 dev_ep_dirs;
674 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
675 };
676 
677 /* Size of control and EP0 buffers */
678 #define DWC2_CTRL_BUFF_SIZE 8
679 
680 /**
681  * struct dwc2_gregs_backup - Holds global registers state before
682  * entering partial power down
683  * @gotgctl:		Backup of GOTGCTL register
684  * @gintmsk:		Backup of GINTMSK register
685  * @gahbcfg:		Backup of GAHBCFG register
686  * @gusbcfg:		Backup of GUSBCFG register
687  * @grxfsiz:		Backup of GRXFSIZ register
688  * @gnptxfsiz:		Backup of GNPTXFSIZ register
689  * @gi2cctl:		Backup of GI2CCTL register
690  * @glpmcfg:		Backup of GLPMCFG register
691  * @gdfifocfg:		Backup of GDFIFOCFG register
692  * @pcgcctl:		Backup of PCGCCTL register
693  * @pcgcctl1:		Backup of PCGCCTL1 register
694  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
695  * @gpwrdn:		Backup of GPWRDN register
696  * @valid:		True if registers values backuped.
697  */
698 struct dwc2_gregs_backup {
699 	u32 gotgctl;
700 	u32 gintmsk;
701 	u32 gahbcfg;
702 	u32 gusbcfg;
703 	u32 grxfsiz;
704 	u32 gnptxfsiz;
705 	u32 gi2cctl;
706 	u32 glpmcfg;
707 	u32 pcgcctl;
708 	u32 pcgcctl1;
709 	u32 gdfifocfg;
710 	u32 gpwrdn;
711 	bool valid;
712 };
713 
714 /**
715  * struct dwc2_dregs_backup - Holds device registers state before
716  * entering partial power down
717  * @dcfg:		Backup of DCFG register
718  * @dctl:		Backup of DCTL register
719  * @daintmsk:		Backup of DAINTMSK register
720  * @diepmsk:		Backup of DIEPMSK register
721  * @doepmsk:		Backup of DOEPMSK register
722  * @diepctl:		Backup of DIEPCTL register
723  * @dieptsiz:		Backup of DIEPTSIZ register
724  * @diepdma:		Backup of DIEPDMA register
725  * @doepctl:		Backup of DOEPCTL register
726  * @doeptsiz:		Backup of DOEPTSIZ register
727  * @doepdma:		Backup of DOEPDMA register
728  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
729  * @valid:      True if registers values backuped.
730  */
731 struct dwc2_dregs_backup {
732 	u32 dcfg;
733 	u32 dctl;
734 	u32 daintmsk;
735 	u32 diepmsk;
736 	u32 doepmsk;
737 	u32 diepctl[MAX_EPS_CHANNELS];
738 	u32 dieptsiz[MAX_EPS_CHANNELS];
739 	u32 diepdma[MAX_EPS_CHANNELS];
740 	u32 doepctl[MAX_EPS_CHANNELS];
741 	u32 doeptsiz[MAX_EPS_CHANNELS];
742 	u32 doepdma[MAX_EPS_CHANNELS];
743 	u32 dtxfsiz[MAX_EPS_CHANNELS];
744 	bool valid;
745 };
746 
747 /**
748  * struct dwc2_hregs_backup - Holds host registers state before
749  * entering partial power down
750  * @hcfg:		Backup of HCFG register
751  * @haintmsk:		Backup of HAINTMSK register
752  * @hcintmsk:		Backup of HCINTMSK register
753  * @hprt0:		Backup of HPTR0 register
754  * @hfir:		Backup of HFIR register
755  * @hptxfsiz:		Backup of HPTXFSIZ register
756  * @valid:      True if registers values backuped.
757  */
758 struct dwc2_hregs_backup {
759 	u32 hcfg;
760 	u32 haintmsk;
761 	u32 hcintmsk[MAX_EPS_CHANNELS];
762 	u32 hprt0;
763 	u32 hfir;
764 	u32 hptxfsiz;
765 	bool valid;
766 };
767 
768 /*
769  * Constants related to high speed periodic scheduling
770  *
771  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
772  * reservation point of view it's assumed that the schedule goes right back to
773  * the beginning after the end of the schedule.
774  *
775  * What does that mean for scheduling things with a long interval?  It means
776  * we'll reserve time for them in every possible microframe that they could
777  * ever be scheduled in.  ...but we'll still only actually schedule them as
778  * often as they were requested.
779  *
780  * We keep our schedule in a "bitmap" structure.  This simplifies having
781  * to keep track of and merge intervals: we just let the bitmap code do most
782  * of the heavy lifting.  In a way scheduling is much like memory allocation.
783  *
784  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
785  * supposed to schedule for periodic transfers).  That's according to spec.
786  *
787  * Note that though we only schedule 80% of each microframe, the bitmap that we
788  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
789  * space for each uFrame).
790  *
791  * Requirements:
792  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
793  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
794  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
795  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
796  */
797 #define DWC2_US_PER_UFRAME		125
798 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
799 
800 #define DWC2_HS_SCHEDULE_UFRAMES	8
801 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
802 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
803 
804 /*
805  * Constants related to low speed scheduling
806  *
807  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
808  * so we make up a unit called a "slice" that's worth 25us.  There are 40
809  * slices in a full frame and we can schedule 36 of those (90%) for periodic
810  * transfers.
811  *
812  * Our low speed schedule can be as short as 1 frame or could be longer.  When
813  * we only schedule 1 frame it means that we'll need to reserve a time every
814  * frame even for things that only transfer very rarely, so something that runs
815  * every 2048 frames will get time reserved in every frame.  Our low speed
816  * schedule can be longer and we'll be able to handle more overlap, but that
817  * will come at increased memory cost and increased time to schedule.
818  *
819  * Note: one other advantage of a short low speed schedule is that if we mess
820  * up and miss scheduling we can jump in and use any of the slots that we
821  * happened to reserve.
822  *
823  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
824  * the schedule.  There will be one schedule per TT.
825  *
826  * Requirements:
827  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
828  */
829 #define DWC2_US_PER_SLICE	25
830 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
831 
832 #define DWC2_ROUND_US_TO_SLICE(us) \
833 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
834 				 DWC2_US_PER_SLICE)
835 
836 #define DWC2_LS_PERIODIC_US_PER_FRAME \
837 				900
838 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
839 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
840 				 DWC2_US_PER_SLICE)
841 
842 #define DWC2_LS_SCHEDULE_FRAMES	1
843 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
844 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
845 
846 /**
847  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
848  * and periodic schedules
849  *
850  * These are common for both host and peripheral modes:
851  *
852  * @dev:                The struct device pointer
853  * @regs:		Pointer to controller regs
854  * @hw_params:          Parameters that were autodetected from the
855  *                      hardware registers
856  * @params:	Parameters that define how the core should be configured
857  * @op_state:           The operational State, during transitions (a_host=>
858  *                      a_peripheral and b_device=>b_host) this may not match
859  *                      the core, but allows the software to determine
860  *                      transitions
861  * @dr_mode:            Requested mode of operation, one of following:
862  *                      - USB_DR_MODE_PERIPHERAL
863  *                      - USB_DR_MODE_HOST
864  *                      - USB_DR_MODE_OTG
865  * @role_sw:		usb_role_switch handle
866  * @hcd_enabled:	Host mode sub-driver initialization indicator.
867  * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
868  * @ll_hw_enabled:	Status of low-level hardware resources.
869  * @hibernated:		True if core is hibernated
870  * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
871  *			remote wakeup.
872  * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
873  * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
874  *			suspend if we need USB to wake us up.
875  * @frame_number:       Frame number read from the core. For both device
876  *			and host modes. The value ranges are from 0
877  *			to HFNUM_MAX_FRNUM.
878  * @phy:                The otg phy transceiver structure for phy control.
879  * @uphy:               The otg phy transceiver structure for old USB phy
880  *                      control.
881  * @plat:               The platform specific configuration data. This can be
882  *                      removed once all SoCs support usb transceiver.
883  * @supplies:           Definition of USB power supplies
884  * @vbus_supply:        Regulator supplying vbus.
885  * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
886  *			supply ID and VBUS detection hardware.
887  * @lock:		Spinlock that protects all the driver data structures
888  * @priv:		Stores a pointer to the struct usb_hcd
889  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
890  *                      transfer are in process of being queued
891  * @srp_success:        Stores status of SRP request in the case of a FS PHY
892  *                      with an I2C interface
893  * @wq_otg:             Workqueue object used for handling of some interrupts
894  * @wf_otg:             Work object for handling Connector ID Status Change
895  *                      interrupt
896  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
897  * @lx_state:           Lx state of connected device
898  * @gr_backup: Backup of global registers during suspend
899  * @dr_backup: Backup of device registers during suspend
900  * @hr_backup: Backup of host registers during suspend
901  * @needs_byte_swap:		Specifies whether the opposite endianness.
902  *
903  * These are for host mode:
904  *
905  * @flags:              Flags for handling root port state changes
906  * @flags.d32:          Contain all root port flags
907  * @flags.b:            Separate root port flags from each other
908  * @flags.b.port_connect_status_change: True if root port connect status
909  *                      changed
910  * @flags.b.port_connect_status: True if device connected to root port
911  * @flags.b.port_reset_change: True if root port reset status changed
912  * @flags.b.port_enable_change: True if root port enable status changed
913  * @flags.b.port_suspend_change: True if root port suspend status changed
914  * @flags.b.port_over_current_change: True if root port over current state
915  *                       changed.
916  * @flags.b.port_l1_change: True if root port l1 status changed
917  * @flags.b.reserved:   Reserved bits of root port register
918  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
919  *                      Transfers associated with these QHs are not currently
920  *                      assigned to a host channel.
921  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
922  *                      Transfers associated with these QHs are currently
923  *                      assigned to a host channel.
924  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
925  *                      non-periodic schedule
926  * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
927  *                      Transfers associated with these QHs are not currently
928  *                      assigned to a host channel.
929  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
930  *                      list of QHs for periodic transfers that are _not_
931  *                      scheduled for the next frame. Each QH in the list has an
932  *                      interval counter that determines when it needs to be
933  *                      scheduled for execution. This scheduling mechanism
934  *                      allows only a simple calculation for periodic bandwidth
935  *                      used (i.e. must assume that all periodic transfers may
936  *                      need to execute in the same frame). However, it greatly
937  *                      simplifies scheduling and should be sufficient for the
938  *                      vast majority of OTG hosts, which need to connect to a
939  *                      small number of peripherals at one time. Items move from
940  *                      this list to periodic_sched_ready when the QH interval
941  *                      counter is 0 at SOF.
942  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
943  *                      the next frame, but have not yet been assigned to host
944  *                      channels. Items move from this list to
945  *                      periodic_sched_assigned as host channels become
946  *                      available during the current frame.
947  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
948  *                      frame that are assigned to host channels. Items move
949  *                      from this list to periodic_sched_queued as the
950  *                      transactions for the QH are queued to the DWC_otg
951  *                      controller.
952  * @periodic_sched_queued: List of periodic QHs that have been queued for
953  *                      execution. Items move from this list to either
954  *                      periodic_sched_inactive or periodic_sched_ready when the
955  *                      channel associated with the transfer is released. If the
956  *                      interval for the QH is 1, the item moves to
957  *                      periodic_sched_ready because it must be rescheduled for
958  *                      the next frame. Otherwise, the item moves to
959  *                      periodic_sched_inactive.
960  * @split_order:        List keeping track of channels doing splits, in order.
961  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
962  *                      This value is in microseconds per (micro)frame. The
963  *                      assumption is that all periodic transfers may occur in
964  *                      the same (micro)frame.
965  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
966  *                      host is in high speed mode; low speed schedules are
967  *                      stored elsewhere since we need one per TT.
968  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
969  *                      SOF enable/disable.
970  * @free_hc_list:       Free host channels in the controller. This is a list of
971  *                      struct dwc2_host_chan items.
972  * @periodic_channels:  Number of host channels assigned to periodic transfers.
973  *                      Currently assuming that there is a dedicated host
974  *                      channel for each periodic transaction and at least one
975  *                      host channel is available for non-periodic transactions.
976  * @non_periodic_channels: Number of host channels assigned to non-periodic
977  *                      transfers
978  * @available_host_channels: Number of host channels available for the
979  *			     microframe scheduler to use
980  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
981  *                      Allows accessing a host channel descriptor given the
982  *                      host channel number. This is useful in interrupt
983  *                      handlers.
984  * @status_buf:         Buffer used for data received during the status phase of
985  *                      a control transfer.
986  * @status_buf_dma:     DMA address for status_buf
987  * @start_work:         Delayed work for handling host A-cable connection
988  * @reset_work:         Delayed work for handling a port reset
989  * @phy_reset_work:     Work structure for doing a PHY reset
990  * @otg_port:           OTG port number
991  * @frame_list:         Frame list
992  * @frame_list_dma:     Frame list DMA address
993  * @frame_list_sz:      Frame list size
994  * @desc_gen_cache:     Kmem cache for generic descriptors
995  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
996  * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
997  *
998  * These are for peripheral mode:
999  *
1000  * @driver:             USB gadget driver
1001  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1002  * @num_of_eps:         Number of available EPs (excluding EP0)
1003  * @debug_root:         Root directrory for debugfs.
1004  * @ep0_reply:          Request used for ep0 reply.
1005  * @ep0_buff:           Buffer for EP0 reply data, if needed.
1006  * @ctrl_buff:          Buffer for EP0 control requests.
1007  * @ctrl_req:           Request for EP0 control packets.
1008  * @ep0_state:          EP0 control transfers state
1009  * @delayed_status:		true when gadget driver asks for delayed status
1010  * @test_mode:          USB test mode requested by the host
1011  * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1012  *                      remote-wakeup signalling
1013  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1014  * @setup_desc:		EP0 setup stage desc chain pointer
1015  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1016  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1017  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1018  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1019  * @irq:		Interrupt request line number
1020  * @clk:		Pointer to otg clock
1021  * @reset:		Pointer to dwc2 reset controller
1022  * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1023  * @regset:		A pointer to a struct debugfs_regset32, which contains
1024  *			a pointer to an array of register definitions, the
1025  *			array size and the base address where the register bank
1026  *			is to be found.
1027  * @bus_suspended:	True if bus is suspended
1028  * @last_frame_num:	Number of last frame. Range from 0 to  32768
1029  * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1030  *			defined, for missed SOFs tracking. Array holds that
1031  *			frame numbers, which not equal to last_frame_num +1
1032  * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1033  *			    defined, for missed SOFs tracking.
1034  *			    If current_frame_number != last_frame_num+1
1035  *			    then last_frame_num added to this array
1036  * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1037  * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1038  *				0 - if missed SOFs frame numbers not dumbed
1039  * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1040  * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1041  *			then that fifo is used
1042  * @gadget:		Represents a usb gadget device
1043  * @connected:		Used in slave mode. True if device connected with host
1044  * @eps_in:		The IN endpoints being supplied to the gadget framework
1045  * @eps_out:		The OUT endpoints being supplied to the gadget framework
1046  * @new_connection:	Used in host mode. True if there are new connected
1047  *			device
1048  * @enabled:		Indicates the enabling state of controller
1049  *
1050  */
1051 struct dwc2_hsotg {
1052 	struct device *dev;
1053 	void __iomem *regs;
1054 	/** Params detected from hardware */
1055 	struct dwc2_hw_params hw_params;
1056 	/** Params to actually use */
1057 	struct dwc2_core_params params;
1058 	enum usb_otg_state op_state;
1059 	enum usb_dr_mode dr_mode;
1060 	struct usb_role_switch *role_sw;
1061 	unsigned int hcd_enabled:1;
1062 	unsigned int gadget_enabled:1;
1063 	unsigned int ll_hw_enabled:1;
1064 	unsigned int hibernated:1;
1065 	unsigned int reset_phy_on_wake:1;
1066 	unsigned int need_phy_for_wake:1;
1067 	unsigned int phy_off_for_suspend:1;
1068 	u16 frame_number;
1069 
1070 	struct phy *phy;
1071 	struct usb_phy *uphy;
1072 	struct dwc2_hsotg_plat *plat;
1073 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1074 	struct regulator *vbus_supply;
1075 	struct regulator *usb33d;
1076 
1077 	spinlock_t lock;
1078 	void *priv;
1079 	int     irq;
1080 	struct clk *clk;
1081 	struct reset_control *reset;
1082 	struct reset_control *reset_ecc;
1083 
1084 	unsigned int queuing_high_bandwidth:1;
1085 	unsigned int srp_success:1;
1086 
1087 	struct workqueue_struct *wq_otg;
1088 	struct work_struct wf_otg;
1089 	struct timer_list wkp_timer;
1090 	enum dwc2_lx_state lx_state;
1091 	struct dwc2_gregs_backup gr_backup;
1092 	struct dwc2_dregs_backup dr_backup;
1093 	struct dwc2_hregs_backup hr_backup;
1094 
1095 	struct dentry *debug_root;
1096 	struct debugfs_regset32 *regset;
1097 	bool needs_byte_swap;
1098 
1099 	/* DWC OTG HW Release versions */
1100 #define DWC2_CORE_REV_2_71a	0x4f54271a
1101 #define DWC2_CORE_REV_2_72a     0x4f54272a
1102 #define DWC2_CORE_REV_2_80a	0x4f54280a
1103 #define DWC2_CORE_REV_2_90a	0x4f54290a
1104 #define DWC2_CORE_REV_2_91a	0x4f54291a
1105 #define DWC2_CORE_REV_2_92a	0x4f54292a
1106 #define DWC2_CORE_REV_2_94a	0x4f54294a
1107 #define DWC2_CORE_REV_3_00a	0x4f54300a
1108 #define DWC2_CORE_REV_3_10a	0x4f54310a
1109 #define DWC2_CORE_REV_4_00a	0x4f54400a
1110 #define DWC2_CORE_REV_4_20a	0x4f54420a
1111 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
1112 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
1113 #define DWC2_CORE_REV_MASK	0x0000ffff
1114 
1115 	/* DWC OTG HW Core ID */
1116 #define DWC2_OTG_ID		0x4f540000
1117 #define DWC2_FS_IOT_ID		0x55310000
1118 #define DWC2_HS_IOT_ID		0x55320000
1119 
1120 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1121 	union dwc2_hcd_internal_flags {
1122 		u32 d32;
1123 		struct {
1124 			unsigned port_connect_status_change:1;
1125 			unsigned port_connect_status:1;
1126 			unsigned port_reset_change:1;
1127 			unsigned port_enable_change:1;
1128 			unsigned port_suspend_change:1;
1129 			unsigned port_over_current_change:1;
1130 			unsigned port_l1_change:1;
1131 			unsigned reserved:25;
1132 		} b;
1133 	} flags;
1134 
1135 	struct list_head non_periodic_sched_inactive;
1136 	struct list_head non_periodic_sched_waiting;
1137 	struct list_head non_periodic_sched_active;
1138 	struct list_head *non_periodic_qh_ptr;
1139 	struct list_head periodic_sched_inactive;
1140 	struct list_head periodic_sched_ready;
1141 	struct list_head periodic_sched_assigned;
1142 	struct list_head periodic_sched_queued;
1143 	struct list_head split_order;
1144 	u16 periodic_usecs;
1145 	unsigned long hs_periodic_bitmap[
1146 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1147 	u16 periodic_qh_count;
1148 	bool bus_suspended;
1149 	bool new_connection;
1150 
1151 	u16 last_frame_num;
1152 
1153 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1154 #define FRAME_NUM_ARRAY_SIZE 1000
1155 	u16 *frame_num_array;
1156 	u16 *last_frame_num_array;
1157 	int frame_num_idx;
1158 	int dumped_frame_num_array;
1159 #endif
1160 
1161 	struct list_head free_hc_list;
1162 	int periodic_channels;
1163 	int non_periodic_channels;
1164 	int available_host_channels;
1165 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1166 	u8 *status_buf;
1167 	dma_addr_t status_buf_dma;
1168 #define DWC2_HCD_STATUS_BUF_SIZE 64
1169 
1170 	struct delayed_work start_work;
1171 	struct delayed_work reset_work;
1172 	struct work_struct phy_reset_work;
1173 	u8 otg_port;
1174 	u32 *frame_list;
1175 	dma_addr_t frame_list_dma;
1176 	u32 frame_list_sz;
1177 	struct kmem_cache *desc_gen_cache;
1178 	struct kmem_cache *desc_hsisoc_cache;
1179 	struct kmem_cache *unaligned_cache;
1180 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1181 
1182 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1183 
1184 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1185 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1186 	/* Gadget structures */
1187 	struct usb_gadget_driver *driver;
1188 	int fifo_mem;
1189 	unsigned int dedicated_fifos:1;
1190 	unsigned char num_of_eps;
1191 	u32 fifo_map;
1192 
1193 	struct usb_request *ep0_reply;
1194 	struct usb_request *ctrl_req;
1195 	void *ep0_buff;
1196 	void *ctrl_buff;
1197 	enum dwc2_ep0_state ep0_state;
1198 	unsigned delayed_status : 1;
1199 	u8 test_mode;
1200 
1201 	dma_addr_t setup_desc_dma[2];
1202 	struct dwc2_dma_desc *setup_desc[2];
1203 	dma_addr_t ctrl_in_desc_dma;
1204 	struct dwc2_dma_desc *ctrl_in_desc;
1205 	dma_addr_t ctrl_out_desc_dma;
1206 	struct dwc2_dma_desc *ctrl_out_desc;
1207 
1208 	struct usb_gadget gadget;
1209 	unsigned int enabled:1;
1210 	unsigned int connected:1;
1211 	unsigned int remote_wakeup_allowed:1;
1212 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1213 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1214 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1215 };
1216 
1217 /* Normal architectures just use readl/write */
dwc2_readl(struct dwc2_hsotg * hsotg,u32 offset)1218 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1219 {
1220 	u32 val;
1221 
1222 	val = readl(hsotg->regs + offset);
1223 	if (hsotg->needs_byte_swap)
1224 		return swab32(val);
1225 	else
1226 		return val;
1227 }
1228 
dwc2_writel(struct dwc2_hsotg * hsotg,u32 value,u32 offset)1229 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1230 {
1231 	if (hsotg->needs_byte_swap)
1232 		writel(swab32(value), hsotg->regs + offset);
1233 	else
1234 		writel(value, hsotg->regs + offset);
1235 
1236 #ifdef DWC2_LOG_WRITES
1237 	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1238 #endif
1239 }
1240 
dwc2_readl_rep(struct dwc2_hsotg * hsotg,u32 offset,void * buffer,unsigned int count)1241 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1242 				  void *buffer, unsigned int count)
1243 {
1244 	if (count) {
1245 		u32 *buf = buffer;
1246 
1247 		do {
1248 			u32 x = dwc2_readl(hsotg, offset);
1249 			*buf++ = x;
1250 		} while (--count);
1251 	}
1252 }
1253 
dwc2_writel_rep(struct dwc2_hsotg * hsotg,u32 offset,const void * buffer,unsigned int count)1254 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1255 				   const void *buffer, unsigned int count)
1256 {
1257 	if (count) {
1258 		const u32 *buf = buffer;
1259 
1260 		do {
1261 			dwc2_writel(hsotg, *buf++, offset);
1262 		} while (--count);
1263 	}
1264 }
1265 
1266 /* Reasons for halting a host channel */
1267 enum dwc2_halt_status {
1268 	DWC2_HC_XFER_NO_HALT_STATUS,
1269 	DWC2_HC_XFER_COMPLETE,
1270 	DWC2_HC_XFER_URB_COMPLETE,
1271 	DWC2_HC_XFER_ACK,
1272 	DWC2_HC_XFER_NAK,
1273 	DWC2_HC_XFER_NYET,
1274 	DWC2_HC_XFER_STALL,
1275 	DWC2_HC_XFER_XACT_ERR,
1276 	DWC2_HC_XFER_FRAME_OVERRUN,
1277 	DWC2_HC_XFER_BABBLE_ERR,
1278 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1279 	DWC2_HC_XFER_AHB_ERR,
1280 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1281 	DWC2_HC_XFER_URB_DEQUEUE,
1282 };
1283 
1284 /* Core version information */
dwc2_is_iot(struct dwc2_hsotg * hsotg)1285 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1286 {
1287 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1288 }
1289 
dwc2_is_fs_iot(struct dwc2_hsotg * hsotg)1290 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1291 {
1292 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1293 }
1294 
dwc2_is_hs_iot(struct dwc2_hsotg * hsotg)1295 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1296 {
1297 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1298 }
1299 
1300 /*
1301  * The following functions support initialization of the core driver component
1302  * and the DWC_otg controller
1303  */
1304 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1305 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1306 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, bool restore);
1307 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1308 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1309 		int reset, int is_host);
1310 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1311 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1312 
1313 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1314 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1315 
1316 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1317 
1318 int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1319 
1320 /*
1321  * Common core Functions.
1322  * The following functions support managing the DWC_otg controller in either
1323  * device or host mode.
1324  */
1325 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1326 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1327 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1328 
1329 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1330 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1331 
1332 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1333 			     int is_host);
1334 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1335 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1336 
1337 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1338 
1339 /* This function should be called on every hardware interrupt. */
1340 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1341 
1342 /* The device ID match table */
1343 extern const struct of_device_id dwc2_of_match_table[];
1344 
1345 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1346 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1347 
1348 /* Common polling functions */
1349 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1350 			    u32 timeout);
1351 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1352 			      u32 timeout);
1353 /* Parameters */
1354 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1355 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1356 
1357 /*
1358  * The following functions check the controller's OTG operation mode
1359  * capability (GHWCFG2.OTG_MODE).
1360  *
1361  * These functions can be used before the internal hsotg->hw_params
1362  * are read in and cached so they always read directly from the
1363  * GHWCFG2 register.
1364  */
1365 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1366 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1367 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1368 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1369 
1370 /*
1371  * Returns the mode of operation, host or device
1372  */
dwc2_is_host_mode(struct dwc2_hsotg * hsotg)1373 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1374 {
1375 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1376 }
1377 
dwc2_is_device_mode(struct dwc2_hsotg * hsotg)1378 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1379 {
1380 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1381 }
1382 
1383 int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1384 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1385 void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1386 void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1387 
1388 /*
1389  * Dump core registers and SPRAM
1390  */
1391 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1392 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1393 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1394 
1395 /* Gadget defines */
1396 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1397 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1398 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1399 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1400 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1401 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1402 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1403 				       bool reset);
1404 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1405 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1406 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1407 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1408 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1409 #define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
1410 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1411 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1412 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1413 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1414 				 int rem_wakeup, int reset);
1415 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1416 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1417 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1418 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1419 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1420 #else
dwc2_hsotg_remove(struct dwc2_hsotg * dwc2)1421 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1422 { return 0; }
dwc2_hsotg_suspend(struct dwc2_hsotg * dwc2)1423 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1424 { return 0; }
dwc2_hsotg_resume(struct dwc2_hsotg * dwc2)1425 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1426 { return 0; }
dwc2_gadget_init(struct dwc2_hsotg * hsotg)1427 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1428 { return 0; }
dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg * dwc2,bool reset)1429 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1430 						     bool reset) {}
dwc2_hsotg_core_disconnect(struct dwc2_hsotg * hsotg)1431 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
dwc2_hsotg_core_connect(struct dwc2_hsotg * hsotg)1432 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hsotg_disconnect(struct dwc2_hsotg * dwc2)1433 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
dwc2_hsotg_set_test_mode(struct dwc2_hsotg * hsotg,int testmode)1434 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1435 					   int testmode)
1436 { return 0; }
1437 #define dwc2_is_device_connected(hsotg) (0)
1438 #define dwc2_is_device_enabled(hsotg) (0)
dwc2_backup_device_registers(struct dwc2_hsotg * hsotg)1439 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1440 { return 0; }
dwc2_restore_device_registers(struct dwc2_hsotg * hsotg,int remote_wakeup)1441 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1442 						int remote_wakeup)
1443 { return 0; }
dwc2_gadget_enter_hibernation(struct dwc2_hsotg * hsotg)1444 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1445 { return 0; }
dwc2_gadget_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)1446 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1447 					       int rem_wakeup, int reset)
1448 { return 0; }
dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg * hsotg)1449 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1450 { return 0; }
dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg * hsotg)1451 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1452 { return 0; }
dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg * hsotg)1453 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1454 { return 0; }
dwc2_gadget_init_lpm(struct dwc2_hsotg * hsotg)1455 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
dwc2_gadget_program_ref_clk(struct dwc2_hsotg * hsotg)1456 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1457 #endif
1458 
1459 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1460 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1461 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1462 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1463 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1464 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1465 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1466 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1467 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1468 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1469 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1470 			       int rem_wakeup, int reset);
1471 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
dwc2_host_schedule_phy_reset(struct dwc2_hsotg * hsotg)1472 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1473 { schedule_work(&hsotg->phy_reset_work); }
1474 #else
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)1475 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1476 { return 0; }
dwc2_hcd_get_future_frame_number(struct dwc2_hsotg * hsotg,int us)1477 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1478 						   int us)
1479 { return 0; }
dwc2_hcd_connect(struct dwc2_hsotg * hsotg)1480 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg,bool force)1481 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
dwc2_hcd_start(struct dwc2_hsotg * hsotg)1482 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_remove(struct dwc2_hsotg * hsotg)1483 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
dwc2_core_init(struct dwc2_hsotg * hsotg,bool initial_setup)1484 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1485 { return 0; }
dwc2_hcd_init(struct dwc2_hsotg * hsotg)1486 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1487 { return 0; }
dwc2_backup_host_registers(struct dwc2_hsotg * hsotg)1488 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1489 { return 0; }
dwc2_restore_host_registers(struct dwc2_hsotg * hsotg)1490 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1491 { return 0; }
dwc2_host_enter_hibernation(struct dwc2_hsotg * hsotg)1492 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1493 { return 0; }
dwc2_host_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)1494 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1495 					     int rem_wakeup, int reset)
1496 { return 0; }
dwc2_host_can_poweroff_phy(struct dwc2_hsotg * dwc2)1497 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1498 { return false; }
dwc2_host_schedule_phy_reset(struct dwc2_hsotg * hsotg)1499 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1500 
1501 #endif
1502 
1503 #endif /* __DWC2_CORE_H__ */
1504