1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2019, 2020, Linaro Ltd.
5 */
6
7 #include <linux/debugfs.h>
8 #include <linux/err.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_platform.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 #include <linux/thermal.h>
20 #include "tsens.h"
21
22 /**
23 * struct tsens_irq_data - IRQ status and temperature violations
24 * @up_viol: upper threshold violated
25 * @up_thresh: upper threshold temperature value
26 * @up_irq_mask: mask register for upper threshold irqs
27 * @up_irq_clear: clear register for uppper threshold irqs
28 * @low_viol: lower threshold violated
29 * @low_thresh: lower threshold temperature value
30 * @low_irq_mask: mask register for lower threshold irqs
31 * @low_irq_clear: clear register for lower threshold irqs
32 * @crit_viol: critical threshold violated
33 * @crit_thresh: critical threshold temperature value
34 * @crit_irq_mask: mask register for critical threshold irqs
35 * @crit_irq_clear: clear register for critical threshold irqs
36 *
37 * Structure containing data about temperature threshold settings and
38 * irq status if they were violated.
39 */
40 struct tsens_irq_data {
41 u32 up_viol;
42 int up_thresh;
43 u32 up_irq_mask;
44 u32 up_irq_clear;
45 u32 low_viol;
46 int low_thresh;
47 u32 low_irq_mask;
48 u32 low_irq_clear;
49 u32 crit_viol;
50 u32 crit_thresh;
51 u32 crit_irq_mask;
52 u32 crit_irq_clear;
53 };
54
qfprom_read(struct device * dev,const char * cname)55 char *qfprom_read(struct device *dev, const char *cname)
56 {
57 struct nvmem_cell *cell;
58 ssize_t data;
59 char *ret;
60
61 cell = nvmem_cell_get(dev, cname);
62 if (IS_ERR(cell))
63 return ERR_CAST(cell);
64
65 ret = nvmem_cell_read(cell, &data);
66 nvmem_cell_put(cell);
67
68 return ret;
69 }
70
71 /*
72 * Use this function on devices where slope and offset calculations
73 * depend on calibration data read from qfprom. On others the slope
74 * and offset values are derived from tz->tzp->slope and tz->tzp->offset
75 * resp.
76 */
compute_intercept_slope(struct tsens_priv * priv,u32 * p1,u32 * p2,u32 mode)77 void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
78 u32 *p2, u32 mode)
79 {
80 int i;
81 int num, den;
82
83 for (i = 0; i < priv->num_sensors; i++) {
84 dev_dbg(priv->dev,
85 "%s: sensor%d - data_point1:%#x data_point2:%#x\n",
86 __func__, i, p1[i], p2[i]);
87
88 priv->sensor[i].slope = SLOPE_DEFAULT;
89 if (mode == TWO_PT_CALIB) {
90 /*
91 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
92 * temp_120_degc - temp_30_degc (x2 - x1)
93 */
94 num = p2[i] - p1[i];
95 num *= SLOPE_FACTOR;
96 den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
97 priv->sensor[i].slope = num / den;
98 }
99
100 priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
101 (CAL_DEGC_PT1 *
102 priv->sensor[i].slope);
103 dev_dbg(priv->dev, "%s: offset:%d\n", __func__,
104 priv->sensor[i].offset);
105 }
106 }
107
degc_to_code(int degc,const struct tsens_sensor * s)108 static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
109 {
110 u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
111
112 pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
113 return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
114 }
115
code_to_degc(u32 adc_code,const struct tsens_sensor * s)116 static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
117 {
118 int degc, num, den;
119
120 num = (adc_code * SLOPE_FACTOR) - s->offset;
121 den = s->slope;
122
123 if (num > 0)
124 degc = num + (den / 2);
125 else if (num < 0)
126 degc = num - (den / 2);
127 else
128 degc = num;
129
130 degc /= den;
131
132 return degc;
133 }
134
135 /**
136 * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
137 * @s: Pointer to sensor struct
138 * @field: Index into regmap_field array pointing to temperature data
139 *
140 * This function handles temperature returned in ADC code or deciCelsius
141 * depending on IP version.
142 *
143 * Return: Temperature in milliCelsius on success, a negative errno will
144 * be returned in error cases
145 */
tsens_hw_to_mC(const struct tsens_sensor * s,int field)146 static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
147 {
148 struct tsens_priv *priv = s->priv;
149 u32 resolution;
150 u32 temp = 0;
151 int ret;
152
153 resolution = priv->fields[LAST_TEMP_0].msb -
154 priv->fields[LAST_TEMP_0].lsb;
155
156 ret = regmap_field_read(priv->rf[field], &temp);
157 if (ret)
158 return ret;
159
160 /* Convert temperature from ADC code to milliCelsius */
161 if (priv->feat->adc)
162 return code_to_degc(temp, s) * 1000;
163
164 /* deciCelsius -> milliCelsius along with sign extension */
165 return sign_extend32(temp, resolution) * 100;
166 }
167
168 /**
169 * tsens_mC_to_hw - Convert temperature to hardware register value
170 * @s: Pointer to sensor struct
171 * @temp: temperature in milliCelsius to be programmed to hardware
172 *
173 * This function outputs the value to be written to hardware in ADC code
174 * or deciCelsius depending on IP version.
175 *
176 * Return: ADC code or temperature in deciCelsius.
177 */
tsens_mC_to_hw(const struct tsens_sensor * s,int temp)178 static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
179 {
180 struct tsens_priv *priv = s->priv;
181
182 /* milliC to adc code */
183 if (priv->feat->adc)
184 return degc_to_code(temp / 1000, s);
185
186 /* milliC to deciC */
187 return temp / 100;
188 }
189
tsens_version(struct tsens_priv * priv)190 static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
191 {
192 return priv->feat->ver_major;
193 }
194
tsens_set_interrupt_v1(struct tsens_priv * priv,u32 hw_id,enum tsens_irq_type irq_type,bool enable)195 static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
196 enum tsens_irq_type irq_type, bool enable)
197 {
198 u32 index = 0;
199
200 switch (irq_type) {
201 case UPPER:
202 index = UP_INT_CLEAR_0 + hw_id;
203 break;
204 case LOWER:
205 index = LOW_INT_CLEAR_0 + hw_id;
206 break;
207 case CRITICAL:
208 /* No critical interrupts before v2 */
209 return;
210 }
211 regmap_field_write(priv->rf[index], enable ? 0 : 1);
212 }
213
tsens_set_interrupt_v2(struct tsens_priv * priv,u32 hw_id,enum tsens_irq_type irq_type,bool enable)214 static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
215 enum tsens_irq_type irq_type, bool enable)
216 {
217 u32 index_mask = 0, index_clear = 0;
218
219 /*
220 * To enable the interrupt flag for a sensor:
221 * - clear the mask bit
222 * To disable the interrupt flag for a sensor:
223 * - Mask further interrupts for this sensor
224 * - Write 1 followed by 0 to clear the interrupt
225 */
226 switch (irq_type) {
227 case UPPER:
228 index_mask = UP_INT_MASK_0 + hw_id;
229 index_clear = UP_INT_CLEAR_0 + hw_id;
230 break;
231 case LOWER:
232 index_mask = LOW_INT_MASK_0 + hw_id;
233 index_clear = LOW_INT_CLEAR_0 + hw_id;
234 break;
235 case CRITICAL:
236 index_mask = CRIT_INT_MASK_0 + hw_id;
237 index_clear = CRIT_INT_CLEAR_0 + hw_id;
238 break;
239 }
240
241 if (enable) {
242 regmap_field_write(priv->rf[index_mask], 0);
243 } else {
244 regmap_field_write(priv->rf[index_mask], 1);
245 regmap_field_write(priv->rf[index_clear], 1);
246 regmap_field_write(priv->rf[index_clear], 0);
247 }
248 }
249
250 /**
251 * tsens_set_interrupt - Set state of an interrupt
252 * @priv: Pointer to tsens controller private data
253 * @hw_id: Hardware ID aka. sensor number
254 * @irq_type: irq_type from enum tsens_irq_type
255 * @enable: false = disable, true = enable
256 *
257 * Call IP-specific function to set state of an interrupt
258 *
259 * Return: void
260 */
tsens_set_interrupt(struct tsens_priv * priv,u32 hw_id,enum tsens_irq_type irq_type,bool enable)261 static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
262 enum tsens_irq_type irq_type, bool enable)
263 {
264 dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
265 irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
266 enable ? "en" : "dis");
267 if (tsens_version(priv) > VER_1_X)
268 tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
269 else
270 tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
271 }
272
273 /**
274 * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
275 * @priv: Pointer to tsens controller private data
276 * @hw_id: Hardware ID aka. sensor number
277 * @d: Pointer to irq state data
278 *
279 * Return: 0 if threshold was not violated, 1 if it was violated and negative
280 * errno in case of errors
281 */
tsens_threshold_violated(struct tsens_priv * priv,u32 hw_id,struct tsens_irq_data * d)282 static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
283 struct tsens_irq_data *d)
284 {
285 int ret;
286
287 ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
288 if (ret)
289 return ret;
290 ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
291 if (ret)
292 return ret;
293
294 if (priv->feat->crit_int) {
295 ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
296 &d->crit_viol);
297 if (ret)
298 return ret;
299 }
300
301 if (d->up_viol || d->low_viol || d->crit_viol)
302 return 1;
303
304 return 0;
305 }
306
tsens_read_irq_state(struct tsens_priv * priv,u32 hw_id,const struct tsens_sensor * s,struct tsens_irq_data * d)307 static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
308 const struct tsens_sensor *s,
309 struct tsens_irq_data *d)
310 {
311 int ret;
312
313 ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
314 if (ret)
315 return ret;
316 ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
317 if (ret)
318 return ret;
319 if (tsens_version(priv) > VER_1_X) {
320 ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
321 if (ret)
322 return ret;
323 ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
324 if (ret)
325 return ret;
326 ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
327 &d->crit_irq_clear);
328 if (ret)
329 return ret;
330 ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
331 &d->crit_irq_mask);
332 if (ret)
333 return ret;
334
335 d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
336 } else {
337 /* No mask register on older TSENS */
338 d->up_irq_mask = 0;
339 d->low_irq_mask = 0;
340 d->crit_irq_clear = 0;
341 d->crit_irq_mask = 0;
342 d->crit_thresh = 0;
343 }
344
345 d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
346 d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
347
348 dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
349 hw_id, __func__,
350 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
351 d->low_viol, d->up_viol, d->crit_viol,
352 d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
353 d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
354 dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
355 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
356 d->low_thresh, d->up_thresh, d->crit_thresh);
357
358 return 0;
359 }
360
masked_irq(u32 hw_id,u32 mask,enum tsens_ver ver)361 static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
362 {
363 if (ver > VER_1_X)
364 return mask & (1 << hw_id);
365
366 /* v1, v0.1 don't have a irq mask register */
367 return 0;
368 }
369
370 /**
371 * tsens_critical_irq_thread() - Threaded handler for critical interrupts
372 * @irq: irq number
373 * @data: tsens controller private data
374 *
375 * Check FSM watchdog bark status and clear if needed.
376 * Check all sensors to find ones that violated their critical threshold limits.
377 * Clear and then re-enable the interrupt.
378 *
379 * The level-triggered interrupt might deassert if the temperature returned to
380 * within the threshold limits by the time the handler got scheduled. We
381 * consider the irq to have been handled in that case.
382 *
383 * Return: IRQ_HANDLED
384 */
tsens_critical_irq_thread(int irq,void * data)385 static irqreturn_t tsens_critical_irq_thread(int irq, void *data)
386 {
387 struct tsens_priv *priv = data;
388 struct tsens_irq_data d;
389 int temp, ret, i;
390 u32 wdog_status, wdog_count;
391
392 if (priv->feat->has_watchdog) {
393 ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
394 &wdog_status);
395 if (ret)
396 return ret;
397
398 if (wdog_status) {
399 /* Clear WDOG interrupt */
400 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
401 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
402 ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
403 &wdog_count);
404 if (ret)
405 return ret;
406 if (wdog_count)
407 dev_dbg(priv->dev, "%s: watchdog count: %d\n",
408 __func__, wdog_count);
409
410 /* Fall through to handle critical interrupts if any */
411 }
412 }
413
414 for (i = 0; i < priv->num_sensors; i++) {
415 const struct tsens_sensor *s = &priv->sensor[i];
416 u32 hw_id = s->hw_id;
417
418 if (!s->tzd)
419 continue;
420 if (!tsens_threshold_violated(priv, hw_id, &d))
421 continue;
422 ret = get_temp_tsens_valid(s, &temp);
423 if (ret) {
424 dev_err(priv->dev, "[%u] %s: error reading sensor\n",
425 hw_id, __func__);
426 continue;
427 }
428
429 tsens_read_irq_state(priv, hw_id, s, &d);
430 if (d.crit_viol &&
431 !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
432 /* Mask critical interrupts, unused on Linux */
433 tsens_set_interrupt(priv, hw_id, CRITICAL, false);
434 }
435 }
436
437 return IRQ_HANDLED;
438 }
439
440 /**
441 * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
442 * @irq: irq number
443 * @data: tsens controller private data
444 *
445 * Check all sensors to find ones that violated their threshold limits. If the
446 * temperature is still outside the limits, call thermal_zone_device_update() to
447 * update the thresholds, else re-enable the interrupts.
448 *
449 * The level-triggered interrupt might deassert if the temperature returned to
450 * within the threshold limits by the time the handler got scheduled. We
451 * consider the irq to have been handled in that case.
452 *
453 * Return: IRQ_HANDLED
454 */
tsens_irq_thread(int irq,void * data)455 static irqreturn_t tsens_irq_thread(int irq, void *data)
456 {
457 struct tsens_priv *priv = data;
458 struct tsens_irq_data d;
459 bool enable = true, disable = false;
460 unsigned long flags;
461 int temp, ret, i;
462
463 for (i = 0; i < priv->num_sensors; i++) {
464 bool trigger = false;
465 const struct tsens_sensor *s = &priv->sensor[i];
466 u32 hw_id = s->hw_id;
467
468 if (!s->tzd)
469 continue;
470 if (!tsens_threshold_violated(priv, hw_id, &d))
471 continue;
472 ret = get_temp_tsens_valid(s, &temp);
473 if (ret) {
474 dev_err(priv->dev, "[%u] %s: error reading sensor\n",
475 hw_id, __func__);
476 continue;
477 }
478
479 spin_lock_irqsave(&priv->ul_lock, flags);
480
481 tsens_read_irq_state(priv, hw_id, s, &d);
482
483 if (d.up_viol &&
484 !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
485 tsens_set_interrupt(priv, hw_id, UPPER, disable);
486 if (d.up_thresh > temp) {
487 dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
488 hw_id, __func__);
489 tsens_set_interrupt(priv, hw_id, UPPER, enable);
490 } else {
491 trigger = true;
492 /* Keep irq masked */
493 }
494 } else if (d.low_viol &&
495 !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
496 tsens_set_interrupt(priv, hw_id, LOWER, disable);
497 if (d.low_thresh < temp) {
498 dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
499 hw_id, __func__);
500 tsens_set_interrupt(priv, hw_id, LOWER, enable);
501 } else {
502 trigger = true;
503 /* Keep irq masked */
504 }
505 }
506
507 spin_unlock_irqrestore(&priv->ul_lock, flags);
508
509 if (trigger) {
510 dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
511 hw_id, __func__, temp);
512 thermal_zone_device_update(s->tzd,
513 THERMAL_EVENT_UNSPECIFIED);
514 } else {
515 dev_dbg(priv->dev, "[%u] %s: no violation: %d\n",
516 hw_id, __func__, temp);
517 }
518 }
519
520 return IRQ_HANDLED;
521 }
522
tsens_set_trips(void * _sensor,int low,int high)523 static int tsens_set_trips(void *_sensor, int low, int high)
524 {
525 struct tsens_sensor *s = _sensor;
526 struct tsens_priv *priv = s->priv;
527 struct device *dev = priv->dev;
528 struct tsens_irq_data d;
529 unsigned long flags;
530 int high_val, low_val, cl_high, cl_low;
531 u32 hw_id = s->hw_id;
532
533 dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
534 hw_id, __func__, low, high);
535
536 cl_high = clamp_val(high, -40000, 120000);
537 cl_low = clamp_val(low, -40000, 120000);
538
539 high_val = tsens_mC_to_hw(s, cl_high);
540 low_val = tsens_mC_to_hw(s, cl_low);
541
542 spin_lock_irqsave(&priv->ul_lock, flags);
543
544 tsens_read_irq_state(priv, hw_id, s, &d);
545
546 /* Write the new thresholds and clear the status */
547 regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
548 regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
549 tsens_set_interrupt(priv, hw_id, LOWER, true);
550 tsens_set_interrupt(priv, hw_id, UPPER, true);
551
552 spin_unlock_irqrestore(&priv->ul_lock, flags);
553
554 dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
555 hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
556
557 return 0;
558 }
559
tsens_enable_irq(struct tsens_priv * priv)560 static int tsens_enable_irq(struct tsens_priv *priv)
561 {
562 int ret;
563 int val = tsens_version(priv) > VER_1_X ? 7 : 1;
564
565 ret = regmap_field_write(priv->rf[INT_EN], val);
566 if (ret < 0)
567 dev_err(priv->dev, "%s: failed to enable interrupts\n",
568 __func__);
569
570 return ret;
571 }
572
tsens_disable_irq(struct tsens_priv * priv)573 static void tsens_disable_irq(struct tsens_priv *priv)
574 {
575 regmap_field_write(priv->rf[INT_EN], 0);
576 }
577
get_temp_tsens_valid(const struct tsens_sensor * s,int * temp)578 int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
579 {
580 struct tsens_priv *priv = s->priv;
581 int hw_id = s->hw_id;
582 u32 temp_idx = LAST_TEMP_0 + hw_id;
583 u32 valid_idx = VALID_0 + hw_id;
584 u32 valid;
585 int ret;
586
587 ret = regmap_field_read(priv->rf[valid_idx], &valid);
588 if (ret)
589 return ret;
590 while (!valid) {
591 /* Valid bit is 0 for 6 AHB clock cycles.
592 * At 19.2MHz, 1 AHB clock is ~60ns.
593 * We should enter this loop very, very rarely.
594 */
595 ndelay(400);
596 ret = regmap_field_read(priv->rf[valid_idx], &valid);
597 if (ret)
598 return ret;
599 }
600
601 /* Valid bit is set, OK to read the temperature */
602 *temp = tsens_hw_to_mC(s, temp_idx);
603
604 return 0;
605 }
606
get_temp_common(const struct tsens_sensor * s,int * temp)607 int get_temp_common(const struct tsens_sensor *s, int *temp)
608 {
609 struct tsens_priv *priv = s->priv;
610 int hw_id = s->hw_id;
611 int last_temp = 0, ret;
612
613 ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
614 if (ret)
615 return ret;
616
617 *temp = code_to_degc(last_temp, s) * 1000;
618
619 return 0;
620 }
621
622 #ifdef CONFIG_DEBUG_FS
dbg_sensors_show(struct seq_file * s,void * data)623 static int dbg_sensors_show(struct seq_file *s, void *data)
624 {
625 struct platform_device *pdev = s->private;
626 struct tsens_priv *priv = platform_get_drvdata(pdev);
627 int i;
628
629 seq_printf(s, "max: %2d\nnum: %2d\n\n",
630 priv->feat->max_sensors, priv->num_sensors);
631
632 seq_puts(s, " id slope offset\n--------------------------\n");
633 for (i = 0; i < priv->num_sensors; i++) {
634 seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
635 priv->sensor[i].slope, priv->sensor[i].offset);
636 }
637
638 return 0;
639 }
640
dbg_version_show(struct seq_file * s,void * data)641 static int dbg_version_show(struct seq_file *s, void *data)
642 {
643 struct platform_device *pdev = s->private;
644 struct tsens_priv *priv = platform_get_drvdata(pdev);
645 u32 maj_ver, min_ver, step_ver;
646 int ret;
647
648 if (tsens_version(priv) > VER_0_1) {
649 ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
650 if (ret)
651 return ret;
652 ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
653 if (ret)
654 return ret;
655 ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
656 if (ret)
657 return ret;
658 seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
659 } else {
660 seq_puts(s, "0.1.0\n");
661 }
662
663 return 0;
664 }
665
666 DEFINE_SHOW_ATTRIBUTE(dbg_version);
667 DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
668
tsens_debug_init(struct platform_device * pdev)669 static void tsens_debug_init(struct platform_device *pdev)
670 {
671 struct tsens_priv *priv = platform_get_drvdata(pdev);
672 struct dentry *root, *file;
673
674 root = debugfs_lookup("tsens", NULL);
675 if (!root)
676 priv->debug_root = debugfs_create_dir("tsens", NULL);
677 else
678 priv->debug_root = root;
679
680 file = debugfs_lookup("version", priv->debug_root);
681 if (!file)
682 debugfs_create_file("version", 0444, priv->debug_root,
683 pdev, &dbg_version_fops);
684
685 /* A directory for each instance of the TSENS IP */
686 priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
687 debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
688 }
689 #else
tsens_debug_init(struct platform_device * pdev)690 static inline void tsens_debug_init(struct platform_device *pdev) {}
691 #endif
692
693 static const struct regmap_config tsens_config = {
694 .name = "tm",
695 .reg_bits = 32,
696 .val_bits = 32,
697 .reg_stride = 4,
698 };
699
700 static const struct regmap_config tsens_srot_config = {
701 .name = "srot",
702 .reg_bits = 32,
703 .val_bits = 32,
704 .reg_stride = 4,
705 };
706
init_common(struct tsens_priv * priv)707 int __init init_common(struct tsens_priv *priv)
708 {
709 void __iomem *tm_base, *srot_base;
710 struct device *dev = priv->dev;
711 u32 ver_minor;
712 struct resource *res;
713 u32 enabled;
714 int ret, i, j;
715 struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
716
717 if (!op)
718 return -EINVAL;
719
720 if (op->num_resources > 1) {
721 /* DT with separate SROT and TM address space */
722 priv->tm_offset = 0;
723 res = platform_get_resource(op, IORESOURCE_MEM, 1);
724 srot_base = devm_ioremap_resource(dev, res);
725 if (IS_ERR(srot_base)) {
726 ret = PTR_ERR(srot_base);
727 goto err_put_device;
728 }
729
730 priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
731 &tsens_srot_config);
732 if (IS_ERR(priv->srot_map)) {
733 ret = PTR_ERR(priv->srot_map);
734 goto err_put_device;
735 }
736 } else {
737 /* old DTs where SROT and TM were in a contiguous 2K block */
738 priv->tm_offset = 0x1000;
739 }
740
741 res = platform_get_resource(op, IORESOURCE_MEM, 0);
742 tm_base = devm_ioremap_resource(dev, res);
743 if (IS_ERR(tm_base)) {
744 ret = PTR_ERR(tm_base);
745 goto err_put_device;
746 }
747
748 priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
749 if (IS_ERR(priv->tm_map)) {
750 ret = PTR_ERR(priv->tm_map);
751 goto err_put_device;
752 }
753
754 if (tsens_version(priv) > VER_0_1) {
755 for (i = VER_MAJOR; i <= VER_STEP; i++) {
756 priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
757 priv->fields[i]);
758 if (IS_ERR(priv->rf[i])) {
759 ret = PTR_ERR(priv->rf[i]);
760 goto err_put_device;
761 }
762 }
763 ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
764 if (ret)
765 goto err_put_device;
766 }
767
768 priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
769 priv->fields[TSENS_EN]);
770 if (IS_ERR(priv->rf[TSENS_EN])) {
771 ret = PTR_ERR(priv->rf[TSENS_EN]);
772 goto err_put_device;
773 }
774 ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
775 if (ret)
776 goto err_put_device;
777 if (!enabled) {
778 dev_err(dev, "%s: device not enabled\n", __func__);
779 ret = -ENODEV;
780 goto err_put_device;
781 }
782
783 priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
784 priv->fields[SENSOR_EN]);
785 if (IS_ERR(priv->rf[SENSOR_EN])) {
786 ret = PTR_ERR(priv->rf[SENSOR_EN]);
787 goto err_put_device;
788 }
789 priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
790 priv->fields[INT_EN]);
791 if (IS_ERR(priv->rf[INT_EN])) {
792 ret = PTR_ERR(priv->rf[INT_EN]);
793 goto err_put_device;
794 }
795
796 /* This loop might need changes if enum regfield_ids is reordered */
797 for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
798 for (i = 0; i < priv->feat->max_sensors; i++) {
799 int idx = j + i;
800
801 priv->rf[idx] = devm_regmap_field_alloc(dev,
802 priv->tm_map,
803 priv->fields[idx]);
804 if (IS_ERR(priv->rf[idx])) {
805 ret = PTR_ERR(priv->rf[idx]);
806 goto err_put_device;
807 }
808 }
809 }
810
811 if (priv->feat->crit_int) {
812 /* Loop might need changes if enum regfield_ids is reordered */
813 for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
814 for (i = 0; i < priv->feat->max_sensors; i++) {
815 int idx = j + i;
816
817 priv->rf[idx] =
818 devm_regmap_field_alloc(dev,
819 priv->tm_map,
820 priv->fields[idx]);
821 if (IS_ERR(priv->rf[idx])) {
822 ret = PTR_ERR(priv->rf[idx]);
823 goto err_put_device;
824 }
825 }
826 }
827 }
828
829 if (tsens_version(priv) > VER_1_X && ver_minor > 2) {
830 /* Watchdog is present only on v2.3+ */
831 priv->feat->has_watchdog = 1;
832 for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
833 priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
834 priv->fields[i]);
835 if (IS_ERR(priv->rf[i])) {
836 ret = PTR_ERR(priv->rf[i]);
837 goto err_put_device;
838 }
839 }
840 /*
841 * Watchdog is already enabled, unmask the bark.
842 * Disable cycle completion monitoring
843 */
844 regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
845 regmap_field_write(priv->rf[CC_MON_MASK], 1);
846 }
847
848 spin_lock_init(&priv->ul_lock);
849 tsens_enable_irq(priv);
850 tsens_debug_init(op);
851
852 err_put_device:
853 put_device(&op->dev);
854 return ret;
855 }
856
tsens_get_temp(void * data,int * temp)857 static int tsens_get_temp(void *data, int *temp)
858 {
859 struct tsens_sensor *s = data;
860 struct tsens_priv *priv = s->priv;
861
862 return priv->ops->get_temp(s, temp);
863 }
864
tsens_get_trend(void * data,int trip,enum thermal_trend * trend)865 static int tsens_get_trend(void *data, int trip, enum thermal_trend *trend)
866 {
867 struct tsens_sensor *s = data;
868 struct tsens_priv *priv = s->priv;
869
870 if (priv->ops->get_trend)
871 return priv->ops->get_trend(s, trend);
872
873 return -ENOTSUPP;
874 }
875
tsens_suspend(struct device * dev)876 static int __maybe_unused tsens_suspend(struct device *dev)
877 {
878 struct tsens_priv *priv = dev_get_drvdata(dev);
879
880 if (priv->ops && priv->ops->suspend)
881 return priv->ops->suspend(priv);
882
883 return 0;
884 }
885
tsens_resume(struct device * dev)886 static int __maybe_unused tsens_resume(struct device *dev)
887 {
888 struct tsens_priv *priv = dev_get_drvdata(dev);
889
890 if (priv->ops && priv->ops->resume)
891 return priv->ops->resume(priv);
892
893 return 0;
894 }
895
896 static SIMPLE_DEV_PM_OPS(tsens_pm_ops, tsens_suspend, tsens_resume);
897
898 static const struct of_device_id tsens_table[] = {
899 {
900 .compatible = "qcom,msm8916-tsens",
901 .data = &data_8916,
902 }, {
903 .compatible = "qcom,msm8939-tsens",
904 .data = &data_8939,
905 }, {
906 .compatible = "qcom,msm8956-tsens",
907 .data = &data_8956,
908 }, {
909 .compatible = "qcom,msm8960-tsens",
910 .data = &data_8960,
911 }, {
912 .compatible = "qcom,msm8974-tsens",
913 .data = &data_8974,
914 }, {
915 .compatible = "qcom,msm8976-tsens",
916 .data = &data_8976,
917 }, {
918 .compatible = "qcom,msm8996-tsens",
919 .data = &data_8996,
920 }, {
921 .compatible = "qcom,tsens-v1",
922 .data = &data_tsens_v1,
923 }, {
924 .compatible = "qcom,tsens-v2",
925 .data = &data_tsens_v2,
926 },
927 {}
928 };
929 MODULE_DEVICE_TABLE(of, tsens_table);
930
931 static const struct thermal_zone_of_device_ops tsens_of_ops = {
932 .get_temp = tsens_get_temp,
933 .get_trend = tsens_get_trend,
934 .set_trips = tsens_set_trips,
935 };
936
tsens_register_irq(struct tsens_priv * priv,char * irqname,irq_handler_t thread_fn)937 static int tsens_register_irq(struct tsens_priv *priv, char *irqname,
938 irq_handler_t thread_fn)
939 {
940 struct platform_device *pdev;
941 int ret, irq;
942
943 pdev = of_find_device_by_node(priv->dev->of_node);
944 if (!pdev)
945 return -ENODEV;
946
947 irq = platform_get_irq_byname(pdev, irqname);
948 if (irq < 0) {
949 ret = irq;
950 /* For old DTs with no IRQ defined */
951 if (irq == -ENXIO)
952 ret = 0;
953 } else {
954 ret = devm_request_threaded_irq(&pdev->dev, irq,
955 NULL, thread_fn,
956 IRQF_ONESHOT,
957 dev_name(&pdev->dev), priv);
958 if (ret)
959 dev_err(&pdev->dev, "%s: failed to get irq\n",
960 __func__);
961 else
962 enable_irq_wake(irq);
963 }
964
965 put_device(&pdev->dev);
966 return ret;
967 }
968
tsens_register(struct tsens_priv * priv)969 static int tsens_register(struct tsens_priv *priv)
970 {
971 int i, ret;
972 struct thermal_zone_device *tzd;
973
974 for (i = 0; i < priv->num_sensors; i++) {
975 priv->sensor[i].priv = priv;
976 tzd = devm_thermal_zone_of_sensor_register(priv->dev, priv->sensor[i].hw_id,
977 &priv->sensor[i],
978 &tsens_of_ops);
979 if (IS_ERR(tzd))
980 continue;
981 priv->sensor[i].tzd = tzd;
982 if (priv->ops->enable)
983 priv->ops->enable(priv, i);
984 }
985
986 ret = tsens_register_irq(priv, "uplow", tsens_irq_thread);
987 if (ret < 0)
988 return ret;
989
990 if (priv->feat->crit_int)
991 ret = tsens_register_irq(priv, "critical",
992 tsens_critical_irq_thread);
993
994 return ret;
995 }
996
tsens_probe(struct platform_device * pdev)997 static int tsens_probe(struct platform_device *pdev)
998 {
999 int ret, i;
1000 struct device *dev;
1001 struct device_node *np;
1002 struct tsens_priv *priv;
1003 const struct tsens_plat_data *data;
1004 const struct of_device_id *id;
1005 u32 num_sensors;
1006
1007 if (pdev->dev.of_node)
1008 dev = &pdev->dev;
1009 else
1010 dev = pdev->dev.parent;
1011
1012 np = dev->of_node;
1013
1014 id = of_match_node(tsens_table, np);
1015 if (id)
1016 data = id->data;
1017 else
1018 data = &data_8960;
1019
1020 num_sensors = data->num_sensors;
1021
1022 if (np)
1023 of_property_read_u32(np, "#qcom,sensors", &num_sensors);
1024
1025 if (num_sensors <= 0) {
1026 dev_err(dev, "%s: invalid number of sensors\n", __func__);
1027 return -EINVAL;
1028 }
1029
1030 priv = devm_kzalloc(dev,
1031 struct_size(priv, sensor, num_sensors),
1032 GFP_KERNEL);
1033 if (!priv)
1034 return -ENOMEM;
1035
1036 priv->dev = dev;
1037 priv->num_sensors = num_sensors;
1038 priv->ops = data->ops;
1039 for (i = 0; i < priv->num_sensors; i++) {
1040 if (data->hw_ids)
1041 priv->sensor[i].hw_id = data->hw_ids[i];
1042 else
1043 priv->sensor[i].hw_id = i;
1044 }
1045 priv->feat = data->feat;
1046 priv->fields = data->fields;
1047
1048 platform_set_drvdata(pdev, priv);
1049
1050 if (!priv->ops || !priv->ops->init || !priv->ops->get_temp)
1051 return -EINVAL;
1052
1053 ret = priv->ops->init(priv);
1054 if (ret < 0) {
1055 dev_err(dev, "%s: init failed\n", __func__);
1056 return ret;
1057 }
1058
1059 if (priv->ops->calibrate) {
1060 ret = priv->ops->calibrate(priv);
1061 if (ret < 0) {
1062 if (ret != -EPROBE_DEFER)
1063 dev_err(dev, "%s: calibration failed\n", __func__);
1064 return ret;
1065 }
1066 }
1067
1068 return tsens_register(priv);
1069 }
1070
tsens_remove(struct platform_device * pdev)1071 static int tsens_remove(struct platform_device *pdev)
1072 {
1073 struct tsens_priv *priv = platform_get_drvdata(pdev);
1074
1075 debugfs_remove_recursive(priv->debug_root);
1076 tsens_disable_irq(priv);
1077 if (priv->ops->disable)
1078 priv->ops->disable(priv);
1079
1080 return 0;
1081 }
1082
1083 static struct platform_driver tsens_driver = {
1084 .probe = tsens_probe,
1085 .remove = tsens_remove,
1086 .driver = {
1087 .name = "qcom-tsens",
1088 .pm = &tsens_pm_ops,
1089 .of_match_table = tsens_table,
1090 },
1091 };
1092 module_platform_driver(tsens_driver);
1093
1094 MODULE_LICENSE("GPL v2");
1095 MODULE_DESCRIPTION("QCOM Temperature Sensor driver");
1096 MODULE_ALIAS("platform:qcom-tsens");
1097