1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <linux/page_pinner.h>
22
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25
26 #include "internal.h"
27
28 struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31 };
32
hpage_pincount_add(struct page * page,int refs)33 static void hpage_pincount_add(struct page *page, int refs)
34 {
35 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
36 VM_BUG_ON_PAGE(page != compound_head(page), page);
37
38 atomic_add(refs, compound_pincount_ptr(page));
39 }
40
hpage_pincount_sub(struct page * page,int refs)41 static void hpage_pincount_sub(struct page *page, int refs)
42 {
43 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
44 VM_BUG_ON_PAGE(page != compound_head(page), page);
45
46 atomic_sub(refs, compound_pincount_ptr(page));
47 }
48
49 /* Equivalent to calling put_page() @refs times. */
put_page_refs(struct page * page,int refs)50 static void put_page_refs(struct page *page, int refs)
51 {
52 #ifdef CONFIG_DEBUG_VM
53 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
54 return;
55 #endif
56
57 /*
58 * Calling put_page() for each ref is unnecessarily slow. Only the last
59 * ref needs a put_page().
60 */
61 if (refs > 1)
62 page_ref_sub(page, refs - 1);
63 put_page(page);
64 }
65
66 /*
67 * Return the compound head page with ref appropriately incremented,
68 * or NULL if that failed.
69 */
try_get_compound_head(struct page * page,int refs)70 static inline struct page *try_get_compound_head(struct page *page, int refs)
71 {
72 struct page *head = compound_head(page);
73
74 if (WARN_ON_ONCE(page_ref_count(head) < 0))
75 return NULL;
76 if (unlikely(!page_cache_add_speculative(head, refs)))
77 return NULL;
78
79 /*
80 * At this point we have a stable reference to the head page; but it
81 * could be that between the compound_head() lookup and the refcount
82 * increment, the compound page was split, in which case we'd end up
83 * holding a reference on a page that has nothing to do with the page
84 * we were given anymore.
85 * So now that the head page is stable, recheck that the pages still
86 * belong together.
87 */
88 if (unlikely(compound_head(page) != head)) {
89 put_page_refs(head, refs);
90 return NULL;
91 }
92
93 return head;
94 }
95
96 /*
97 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
98 * flags-dependent amount.
99 *
100 * "grab" names in this file mean, "look at flags to decide whether to use
101 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
102 *
103 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
104 * same time. (That's true throughout the get_user_pages*() and
105 * pin_user_pages*() APIs.) Cases:
106 *
107 * FOLL_GET: page's refcount will be incremented by 1.
108 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
109 *
110 * Return: head page (with refcount appropriately incremented) for success, or
111 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
112 * considered failure, and furthermore, a likely bug in the caller, so a warning
113 * is also emitted.
114 */
try_grab_compound_head(struct page * page,int refs,unsigned int flags)115 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
116 int refs,
117 unsigned int flags)
118 {
119 if (flags & FOLL_GET) {
120 struct page *head = try_get_compound_head(page, refs);
121 if (head)
122 set_page_pinner(head, compound_order(head));
123 return head;
124 } else if (flags & FOLL_PIN) {
125 int orig_refs = refs;
126
127 /*
128 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
129 * path, so fail and let the caller fall back to the slow path.
130 */
131 if (unlikely(flags & FOLL_LONGTERM) &&
132 is_migrate_cma_page(page))
133 return NULL;
134
135 /*
136 * CAUTION: Don't use compound_head() on the page before this
137 * point, the result won't be stable.
138 */
139 page = try_get_compound_head(page, refs);
140 if (!page)
141 return NULL;
142
143 /*
144 * When pinning a compound page of order > 1 (which is what
145 * hpage_pincount_available() checks for), use an exact count to
146 * track it, via hpage_pincount_add/_sub().
147 *
148 * However, be sure to *also* increment the normal page refcount
149 * field at least once, so that the page really is pinned.
150 */
151 if (hpage_pincount_available(page))
152 hpage_pincount_add(page, refs);
153 else
154 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
155
156 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
157 orig_refs);
158
159 return page;
160 }
161
162 WARN_ON_ONCE(1);
163 return NULL;
164 }
165
put_compound_head(struct page * page,int refs,unsigned int flags)166 static void put_compound_head(struct page *page, int refs, unsigned int flags)
167 {
168 if (flags & FOLL_PIN) {
169 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
170 refs);
171
172 if (hpage_pincount_available(page))
173 hpage_pincount_sub(page, refs);
174 else
175 refs *= GUP_PIN_COUNTING_BIAS;
176 }
177
178 if (flags & FOLL_GET)
179 reset_page_pinner(page, compound_order(page));
180 put_page_refs(page, refs);
181 }
182
183 /**
184 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
185 *
186 * This might not do anything at all, depending on the flags argument.
187 *
188 * "grab" names in this file mean, "look at flags to decide whether to use
189 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
190 *
191 * @page: pointer to page to be grabbed
192 * @flags: gup flags: these are the FOLL_* flag values.
193 *
194 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
195 * time. Cases:
196 *
197 * FOLL_GET: page's refcount will be incremented by 1.
198 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
199 *
200 * Return: true for success, or if no action was required (if neither FOLL_PIN
201 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
202 * FOLL_PIN was set, but the page could not be grabbed.
203 */
try_grab_page(struct page * page,unsigned int flags)204 bool __must_check try_grab_page(struct page *page, unsigned int flags)
205 {
206 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
207
208 if (flags & FOLL_GET) {
209 bool ret = try_get_page(page);
210
211 if (ret) {
212 page = compound_head(page);
213 set_page_pinner(page, compound_order(page));
214 }
215 return ret;
216 } else if (flags & FOLL_PIN) {
217 int refs = 1;
218
219 page = compound_head(page);
220
221 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
222 return false;
223
224 if (hpage_pincount_available(page))
225 hpage_pincount_add(page, 1);
226 else
227 refs = GUP_PIN_COUNTING_BIAS;
228
229 /*
230 * Similar to try_grab_compound_head(): even if using the
231 * hpage_pincount_add/_sub() routines, be sure to
232 * *also* increment the normal page refcount field at least
233 * once, so that the page really is pinned.
234 */
235 page_ref_add(page, refs);
236
237 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
238 }
239
240 return true;
241 }
242
243 /**
244 * unpin_user_page() - release a dma-pinned page
245 * @page: pointer to page to be released
246 *
247 * Pages that were pinned via pin_user_pages*() must be released via either
248 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
249 * that such pages can be separately tracked and uniquely handled. In
250 * particular, interactions with RDMA and filesystems need special handling.
251 */
unpin_user_page(struct page * page)252 void unpin_user_page(struct page *page)
253 {
254 put_compound_head(compound_head(page), 1, FOLL_PIN);
255 }
256 EXPORT_SYMBOL(unpin_user_page);
257
258 /*
259 * put_user_page() - release a page obtained using get_user_pages() or
260 * follow_page(FOLL_GET)
261 * @page: pointer to page to be released
262 *
263 * Pages that were obtained via get_user_pages()/follow_page(FOLL_GET) must be
264 * released via put_user_page.
265 * note: If it's not a page from GUP or follow_page(FOLL_GET), it's harmless.
266 */
put_user_page(struct page * page)267 void put_user_page(struct page *page)
268 {
269 struct page *head = compound_head(page);
270
271 reset_page_pinner(head, compound_order(head));
272 put_page(page);
273 }
274 EXPORT_SYMBOL(put_user_page);
275
276 /**
277 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
278 * @pages: array of pages to be maybe marked dirty, and definitely released.
279 * @npages: number of pages in the @pages array.
280 * @make_dirty: whether to mark the pages dirty
281 *
282 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
283 * variants called on that page.
284 *
285 * For each page in the @pages array, make that page (or its head page, if a
286 * compound page) dirty, if @make_dirty is true, and if the page was previously
287 * listed as clean. In any case, releases all pages using unpin_user_page(),
288 * possibly via unpin_user_pages(), for the non-dirty case.
289 *
290 * Please see the unpin_user_page() documentation for details.
291 *
292 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
293 * required, then the caller should a) verify that this is really correct,
294 * because _lock() is usually required, and b) hand code it:
295 * set_page_dirty_lock(), unpin_user_page().
296 *
297 */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)298 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
299 bool make_dirty)
300 {
301 unsigned long index;
302
303 /*
304 * TODO: this can be optimized for huge pages: if a series of pages is
305 * physically contiguous and part of the same compound page, then a
306 * single operation to the head page should suffice.
307 */
308
309 if (!make_dirty) {
310 unpin_user_pages(pages, npages);
311 return;
312 }
313
314 for (index = 0; index < npages; index++) {
315 struct page *page = compound_head(pages[index]);
316 /*
317 * Checking PageDirty at this point may race with
318 * clear_page_dirty_for_io(), but that's OK. Two key
319 * cases:
320 *
321 * 1) This code sees the page as already dirty, so it
322 * skips the call to set_page_dirty(). That could happen
323 * because clear_page_dirty_for_io() called
324 * page_mkclean(), followed by set_page_dirty().
325 * However, now the page is going to get written back,
326 * which meets the original intention of setting it
327 * dirty, so all is well: clear_page_dirty_for_io() goes
328 * on to call TestClearPageDirty(), and write the page
329 * back.
330 *
331 * 2) This code sees the page as clean, so it calls
332 * set_page_dirty(). The page stays dirty, despite being
333 * written back, so it gets written back again in the
334 * next writeback cycle. This is harmless.
335 */
336 if (!PageDirty(page))
337 set_page_dirty_lock(page);
338 unpin_user_page(page);
339 }
340 }
341 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
342
343 /**
344 * unpin_user_pages() - release an array of gup-pinned pages.
345 * @pages: array of pages to be marked dirty and released.
346 * @npages: number of pages in the @pages array.
347 *
348 * For each page in the @pages array, release the page using unpin_user_page().
349 *
350 * Please see the unpin_user_page() documentation for details.
351 */
unpin_user_pages(struct page ** pages,unsigned long npages)352 void unpin_user_pages(struct page **pages, unsigned long npages)
353 {
354 unsigned long index;
355
356 /*
357 * If this WARN_ON() fires, then the system *might* be leaking pages (by
358 * leaving them pinned), but probably not. More likely, gup/pup returned
359 * a hard -ERRNO error to the caller, who erroneously passed it here.
360 */
361 if (WARN_ON(IS_ERR_VALUE(npages)))
362 return;
363 /*
364 * TODO: this can be optimized for huge pages: if a series of pages is
365 * physically contiguous and part of the same compound page, then a
366 * single operation to the head page should suffice.
367 */
368 for (index = 0; index < npages; index++)
369 unpin_user_page(pages[index]);
370 }
371 EXPORT_SYMBOL(unpin_user_pages);
372
373 #ifdef CONFIG_MMU
no_page_table(struct vm_area_struct * vma,unsigned int flags)374 static struct page *no_page_table(struct vm_area_struct *vma,
375 unsigned int flags)
376 {
377 /*
378 * When core dumping an enormous anonymous area that nobody
379 * has touched so far, we don't want to allocate unnecessary pages or
380 * page tables. Return error instead of NULL to skip handle_mm_fault,
381 * then get_dump_page() will return NULL to leave a hole in the dump.
382 * But we can only make this optimization where a hole would surely
383 * be zero-filled if handle_mm_fault() actually did handle it.
384 */
385 if ((flags & FOLL_DUMP) &&
386 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
387 return ERR_PTR(-EFAULT);
388 return NULL;
389 }
390
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)391 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
392 pte_t *pte, unsigned int flags)
393 {
394 /* No page to get reference */
395 if (flags & FOLL_GET)
396 return -EFAULT;
397
398 if (flags & FOLL_TOUCH) {
399 pte_t entry = *pte;
400
401 if (flags & FOLL_WRITE)
402 entry = pte_mkdirty(entry);
403 entry = pte_mkyoung(entry);
404
405 if (!pte_same(*pte, entry)) {
406 set_pte_at(vma->vm_mm, address, pte, entry);
407 update_mmu_cache(vma, address, pte);
408 }
409 }
410
411 /* Proper page table entry exists, but no corresponding struct page */
412 return -EEXIST;
413 }
414
415 /*
416 * FOLL_FORCE can write to even unwritable pte's, but only
417 * after we've gone through a COW cycle and they are dirty.
418 */
can_follow_write_pte(pte_t pte,unsigned int flags)419 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
420 {
421 return pte_write(pte) ||
422 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
423 }
424
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)425 static struct page *follow_page_pte(struct vm_area_struct *vma,
426 unsigned long address, pmd_t *pmd, unsigned int flags,
427 struct dev_pagemap **pgmap)
428 {
429 struct mm_struct *mm = vma->vm_mm;
430 struct page *page;
431 spinlock_t *ptl;
432 pte_t *ptep, pte;
433 int ret;
434
435 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
436 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
437 (FOLL_PIN | FOLL_GET)))
438 return ERR_PTR(-EINVAL);
439
440 /*
441 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
442 * ARM64 architecture.
443 */
444 if (is_vm_hugetlb_page(vma)) {
445 page = follow_huge_pmd_pte(vma, address, flags);
446 if (page)
447 return page;
448 return no_page_table(vma, flags);
449 }
450
451 retry:
452 if (unlikely(pmd_bad(*pmd)))
453 return no_page_table(vma, flags);
454
455 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
456 pte = *ptep;
457 if (!pte_present(pte)) {
458 swp_entry_t entry;
459 /*
460 * KSM's break_ksm() relies upon recognizing a ksm page
461 * even while it is being migrated, so for that case we
462 * need migration_entry_wait().
463 */
464 if (likely(!(flags & FOLL_MIGRATION)))
465 goto no_page;
466 if (pte_none(pte))
467 goto no_page;
468 entry = pte_to_swp_entry(pte);
469 if (!is_migration_entry(entry))
470 goto no_page;
471 pte_unmap_unlock(ptep, ptl);
472 migration_entry_wait(mm, pmd, address);
473 goto retry;
474 }
475 if ((flags & FOLL_NUMA) && pte_protnone(pte))
476 goto no_page;
477 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
478 pte_unmap_unlock(ptep, ptl);
479 return NULL;
480 }
481
482 page = vm_normal_page(vma, address, pte);
483 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
484 /*
485 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
486 * case since they are only valid while holding the pgmap
487 * reference.
488 */
489 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
490 if (*pgmap)
491 page = pte_page(pte);
492 else
493 goto no_page;
494 } else if (unlikely(!page)) {
495 if (flags & FOLL_DUMP) {
496 /* Avoid special (like zero) pages in core dumps */
497 page = ERR_PTR(-EFAULT);
498 goto out;
499 }
500
501 if (is_zero_pfn(pte_pfn(pte))) {
502 page = pte_page(pte);
503 } else {
504 ret = follow_pfn_pte(vma, address, ptep, flags);
505 page = ERR_PTR(ret);
506 goto out;
507 }
508 }
509
510 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
511 get_page(page);
512 pte_unmap_unlock(ptep, ptl);
513 lock_page(page);
514 ret = split_huge_page(page);
515 unlock_page(page);
516 put_page(page);
517 if (ret)
518 return ERR_PTR(ret);
519 goto retry;
520 }
521
522 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
523 if (unlikely(!try_grab_page(page, flags))) {
524 page = ERR_PTR(-ENOMEM);
525 goto out;
526 }
527 /*
528 * We need to make the page accessible if and only if we are going
529 * to access its content (the FOLL_PIN case). Please see
530 * Documentation/core-api/pin_user_pages.rst for details.
531 */
532 if (flags & FOLL_PIN) {
533 ret = arch_make_page_accessible(page);
534 if (ret) {
535 unpin_user_page(page);
536 page = ERR_PTR(ret);
537 goto out;
538 }
539 }
540 if (flags & FOLL_TOUCH) {
541 if ((flags & FOLL_WRITE) &&
542 !pte_dirty(pte) && !PageDirty(page))
543 set_page_dirty(page);
544 /*
545 * pte_mkyoung() would be more correct here, but atomic care
546 * is needed to avoid losing the dirty bit: it is easier to use
547 * mark_page_accessed().
548 */
549 mark_page_accessed(page);
550 }
551 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
552 /* Do not mlock pte-mapped THP */
553 if (PageTransCompound(page))
554 goto out;
555
556 /*
557 * The preliminary mapping check is mainly to avoid the
558 * pointless overhead of lock_page on the ZERO_PAGE
559 * which might bounce very badly if there is contention.
560 *
561 * If the page is already locked, we don't need to
562 * handle it now - vmscan will handle it later if and
563 * when it attempts to reclaim the page.
564 */
565 if (page->mapping && trylock_page(page)) {
566 lru_add_drain(); /* push cached pages to LRU */
567 /*
568 * Because we lock page here, and migration is
569 * blocked by the pte's page reference, and we
570 * know the page is still mapped, we don't even
571 * need to check for file-cache page truncation.
572 */
573 mlock_vma_page(page);
574 unlock_page(page);
575 }
576 }
577 out:
578 pte_unmap_unlock(ptep, ptl);
579 return page;
580 no_page:
581 pte_unmap_unlock(ptep, ptl);
582 if (!pte_none(pte))
583 return NULL;
584 return no_page_table(vma, flags);
585 }
586
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)587 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
588 unsigned long address, pud_t *pudp,
589 unsigned int flags,
590 struct follow_page_context *ctx)
591 {
592 pmd_t *pmd, pmdval;
593 spinlock_t *ptl;
594 struct page *page;
595 struct mm_struct *mm = vma->vm_mm;
596
597 pmd = pmd_offset(pudp, address);
598 /*
599 * The READ_ONCE() will stabilize the pmdval in a register or
600 * on the stack so that it will stop changing under the code.
601 */
602 pmdval = READ_ONCE(*pmd);
603 if (pmd_none(pmdval))
604 return no_page_table(vma, flags);
605 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
606 page = follow_huge_pmd_pte(vma, address, flags);
607 if (page)
608 return page;
609 return no_page_table(vma, flags);
610 }
611 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
612 page = follow_huge_pd(vma, address,
613 __hugepd(pmd_val(pmdval)), flags,
614 PMD_SHIFT);
615 if (page)
616 return page;
617 return no_page_table(vma, flags);
618 }
619 retry:
620 if (!pmd_present(pmdval)) {
621 if (likely(!(flags & FOLL_MIGRATION)))
622 return no_page_table(vma, flags);
623 VM_BUG_ON(thp_migration_supported() &&
624 !is_pmd_migration_entry(pmdval));
625 if (is_pmd_migration_entry(pmdval))
626 pmd_migration_entry_wait(mm, pmd);
627 pmdval = READ_ONCE(*pmd);
628 /*
629 * MADV_DONTNEED may convert the pmd to null because
630 * mmap_lock is held in read mode
631 */
632 if (pmd_none(pmdval))
633 return no_page_table(vma, flags);
634 goto retry;
635 }
636 if (pmd_devmap(pmdval)) {
637 ptl = pmd_lock(mm, pmd);
638 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
639 spin_unlock(ptl);
640 if (page)
641 return page;
642 }
643 if (likely(!pmd_trans_huge(pmdval)))
644 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
645
646 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
647 return no_page_table(vma, flags);
648
649 retry_locked:
650 ptl = pmd_lock(mm, pmd);
651 if (unlikely(pmd_none(*pmd))) {
652 spin_unlock(ptl);
653 return no_page_table(vma, flags);
654 }
655 if (unlikely(!pmd_present(*pmd))) {
656 spin_unlock(ptl);
657 if (likely(!(flags & FOLL_MIGRATION)))
658 return no_page_table(vma, flags);
659 pmd_migration_entry_wait(mm, pmd);
660 goto retry_locked;
661 }
662 if (unlikely(!pmd_trans_huge(*pmd))) {
663 spin_unlock(ptl);
664 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
665 }
666 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
667 int ret;
668 page = pmd_page(*pmd);
669 if (is_huge_zero_page(page)) {
670 spin_unlock(ptl);
671 ret = 0;
672 split_huge_pmd(vma, pmd, address);
673 if (pmd_trans_unstable(pmd))
674 ret = -EBUSY;
675 } else if (flags & FOLL_SPLIT) {
676 if (unlikely(!try_get_page(page))) {
677 spin_unlock(ptl);
678 return ERR_PTR(-ENOMEM);
679 }
680 spin_unlock(ptl);
681 lock_page(page);
682 ret = split_huge_page(page);
683 unlock_page(page);
684 put_page(page);
685 if (pmd_none(*pmd))
686 return no_page_table(vma, flags);
687 } else { /* flags & FOLL_SPLIT_PMD */
688 spin_unlock(ptl);
689 split_huge_pmd(vma, pmd, address);
690 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
691 }
692
693 return ret ? ERR_PTR(ret) :
694 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
695 }
696 page = follow_trans_huge_pmd(vma, address, pmd, flags);
697 spin_unlock(ptl);
698 ctx->page_mask = HPAGE_PMD_NR - 1;
699 return page;
700 }
701
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)702 static struct page *follow_pud_mask(struct vm_area_struct *vma,
703 unsigned long address, p4d_t *p4dp,
704 unsigned int flags,
705 struct follow_page_context *ctx)
706 {
707 pud_t *pud;
708 spinlock_t *ptl;
709 struct page *page;
710 struct mm_struct *mm = vma->vm_mm;
711
712 pud = pud_offset(p4dp, address);
713 if (pud_none(*pud))
714 return no_page_table(vma, flags);
715 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
716 page = follow_huge_pud(mm, address, pud, flags);
717 if (page)
718 return page;
719 return no_page_table(vma, flags);
720 }
721 if (is_hugepd(__hugepd(pud_val(*pud)))) {
722 page = follow_huge_pd(vma, address,
723 __hugepd(pud_val(*pud)), flags,
724 PUD_SHIFT);
725 if (page)
726 return page;
727 return no_page_table(vma, flags);
728 }
729 if (pud_devmap(*pud)) {
730 ptl = pud_lock(mm, pud);
731 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
732 spin_unlock(ptl);
733 if (page)
734 return page;
735 }
736 if (unlikely(pud_bad(*pud)))
737 return no_page_table(vma, flags);
738
739 return follow_pmd_mask(vma, address, pud, flags, ctx);
740 }
741
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)742 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
743 unsigned long address, pgd_t *pgdp,
744 unsigned int flags,
745 struct follow_page_context *ctx)
746 {
747 p4d_t *p4d;
748 struct page *page;
749
750 p4d = p4d_offset(pgdp, address);
751 if (p4d_none(*p4d))
752 return no_page_table(vma, flags);
753 BUILD_BUG_ON(p4d_huge(*p4d));
754 if (unlikely(p4d_bad(*p4d)))
755 return no_page_table(vma, flags);
756
757 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
758 page = follow_huge_pd(vma, address,
759 __hugepd(p4d_val(*p4d)), flags,
760 P4D_SHIFT);
761 if (page)
762 return page;
763 return no_page_table(vma, flags);
764 }
765 return follow_pud_mask(vma, address, p4d, flags, ctx);
766 }
767
768 /**
769 * follow_page_mask - look up a page descriptor from a user-virtual address
770 * @vma: vm_area_struct mapping @address
771 * @address: virtual address to look up
772 * @flags: flags modifying lookup behaviour
773 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
774 * pointer to output page_mask
775 *
776 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
777 *
778 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
779 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
780 *
781 * On output, the @ctx->page_mask is set according to the size of the page.
782 *
783 * Return: the mapped (struct page *), %NULL if no mapping exists, or
784 * an error pointer if there is a mapping to something not represented
785 * by a page descriptor (see also vm_normal_page()).
786 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)787 static struct page *follow_page_mask(struct vm_area_struct *vma,
788 unsigned long address, unsigned int flags,
789 struct follow_page_context *ctx)
790 {
791 pgd_t *pgd;
792 struct page *page;
793 struct mm_struct *mm = vma->vm_mm;
794
795 ctx->page_mask = 0;
796
797 /* make this handle hugepd */
798 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
799 if (!IS_ERR(page)) {
800 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
801 return page;
802 }
803
804 pgd = pgd_offset(mm, address);
805
806 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
807 return no_page_table(vma, flags);
808
809 if (pgd_huge(*pgd)) {
810 page = follow_huge_pgd(mm, address, pgd, flags);
811 if (page)
812 return page;
813 return no_page_table(vma, flags);
814 }
815 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
816 page = follow_huge_pd(vma, address,
817 __hugepd(pgd_val(*pgd)), flags,
818 PGDIR_SHIFT);
819 if (page)
820 return page;
821 return no_page_table(vma, flags);
822 }
823
824 return follow_p4d_mask(vma, address, pgd, flags, ctx);
825 }
826
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)827 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
828 unsigned int foll_flags)
829 {
830 struct follow_page_context ctx = { NULL };
831 struct page *page;
832
833 page = follow_page_mask(vma, address, foll_flags, &ctx);
834 if (ctx.pgmap)
835 put_dev_pagemap(ctx.pgmap);
836 return page;
837 }
838
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)839 static int get_gate_page(struct mm_struct *mm, unsigned long address,
840 unsigned int gup_flags, struct vm_area_struct **vma,
841 struct page **page)
842 {
843 pgd_t *pgd;
844 p4d_t *p4d;
845 pud_t *pud;
846 pmd_t *pmd;
847 pte_t *pte;
848 int ret = -EFAULT;
849
850 /* user gate pages are read-only */
851 if (gup_flags & FOLL_WRITE)
852 return -EFAULT;
853 if (address > TASK_SIZE)
854 pgd = pgd_offset_k(address);
855 else
856 pgd = pgd_offset_gate(mm, address);
857 if (pgd_none(*pgd))
858 return -EFAULT;
859 p4d = p4d_offset(pgd, address);
860 if (p4d_none(*p4d))
861 return -EFAULT;
862 pud = pud_offset(p4d, address);
863 if (pud_none(*pud))
864 return -EFAULT;
865 pmd = pmd_offset(pud, address);
866 if (!pmd_present(*pmd))
867 return -EFAULT;
868 VM_BUG_ON(pmd_trans_huge(*pmd));
869 pte = pte_offset_map(pmd, address);
870 if (pte_none(*pte))
871 goto unmap;
872 *vma = get_gate_vma(mm);
873 if (!page)
874 goto out;
875 *page = vm_normal_page(*vma, address, *pte);
876 if (!*page) {
877 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
878 goto unmap;
879 *page = pte_page(*pte);
880 }
881 if (unlikely(!try_grab_page(*page, gup_flags))) {
882 ret = -ENOMEM;
883 goto unmap;
884 }
885 out:
886 ret = 0;
887 unmap:
888 pte_unmap(pte);
889 return ret;
890 }
891
892 /*
893 * mmap_lock must be held on entry. If @locked != NULL and *@flags
894 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
895 * is, *@locked will be set to 0 and -EBUSY returned.
896 */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int * flags,int * locked)897 static int faultin_page(struct vm_area_struct *vma,
898 unsigned long address, unsigned int *flags, int *locked)
899 {
900 unsigned int fault_flags = 0;
901 vm_fault_t ret;
902
903 /* mlock all present pages, but do not fault in new pages */
904 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
905 return -ENOENT;
906 if (*flags & FOLL_WRITE)
907 fault_flags |= FAULT_FLAG_WRITE;
908 if (*flags & FOLL_REMOTE)
909 fault_flags |= FAULT_FLAG_REMOTE;
910 if (locked)
911 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
912 if (*flags & FOLL_NOWAIT)
913 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
914 if (*flags & FOLL_TRIED) {
915 /*
916 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
917 * can co-exist
918 */
919 fault_flags |= FAULT_FLAG_TRIED;
920 }
921
922 ret = handle_mm_fault(vma, address, fault_flags, NULL);
923 if (ret & VM_FAULT_ERROR) {
924 int err = vm_fault_to_errno(ret, *flags);
925
926 if (err)
927 return err;
928 BUG();
929 }
930
931 if (ret & VM_FAULT_RETRY) {
932 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
933 *locked = 0;
934 return -EBUSY;
935 }
936
937 /*
938 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
939 * necessary, even if maybe_mkwrite decided not to set pte_write. We
940 * can thus safely do subsequent page lookups as if they were reads.
941 * But only do so when looping for pte_write is futile: in some cases
942 * userspace may also be wanting to write to the gotten user page,
943 * which a read fault here might prevent (a readonly page might get
944 * reCOWed by userspace write).
945 */
946 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
947 *flags |= FOLL_COW;
948 return 0;
949 }
950
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)951 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
952 {
953 vm_flags_t vm_flags = vma->vm_flags;
954 int write = (gup_flags & FOLL_WRITE);
955 int foreign = (gup_flags & FOLL_REMOTE);
956
957 if (vm_flags & (VM_IO | VM_PFNMAP))
958 return -EFAULT;
959
960 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
961 return -EFAULT;
962
963 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
964 return -EOPNOTSUPP;
965
966 if (write) {
967 if (!(vm_flags & VM_WRITE)) {
968 if (!(gup_flags & FOLL_FORCE))
969 return -EFAULT;
970 /*
971 * We used to let the write,force case do COW in a
972 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
973 * set a breakpoint in a read-only mapping of an
974 * executable, without corrupting the file (yet only
975 * when that file had been opened for writing!).
976 * Anon pages in shared mappings are surprising: now
977 * just reject it.
978 */
979 if (!is_cow_mapping(vm_flags))
980 return -EFAULT;
981 }
982 } else if (!(vm_flags & VM_READ)) {
983 if (!(gup_flags & FOLL_FORCE))
984 return -EFAULT;
985 /*
986 * Is there actually any vma we can reach here which does not
987 * have VM_MAYREAD set?
988 */
989 if (!(vm_flags & VM_MAYREAD))
990 return -EFAULT;
991 }
992 /*
993 * gups are always data accesses, not instruction
994 * fetches, so execute=false here
995 */
996 if (!arch_vma_access_permitted(vma, write, false, foreign))
997 return -EFAULT;
998 return 0;
999 }
1000
1001 /**
1002 * __get_user_pages() - pin user pages in memory
1003 * @mm: mm_struct of target mm
1004 * @start: starting user address
1005 * @nr_pages: number of pages from start to pin
1006 * @gup_flags: flags modifying pin behaviour
1007 * @pages: array that receives pointers to the pages pinned.
1008 * Should be at least nr_pages long. Or NULL, if caller
1009 * only intends to ensure the pages are faulted in.
1010 * @vmas: array of pointers to vmas corresponding to each page.
1011 * Or NULL if the caller does not require them.
1012 * @locked: whether we're still with the mmap_lock held
1013 *
1014 * Returns either number of pages pinned (which may be less than the
1015 * number requested), or an error. Details about the return value:
1016 *
1017 * -- If nr_pages is 0, returns 0.
1018 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1019 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1020 * pages pinned. Again, this may be less than nr_pages.
1021 * -- 0 return value is possible when the fault would need to be retried.
1022 *
1023 * The caller is responsible for releasing returned @pages, via put_page().
1024 *
1025 * @vmas are valid only as long as mmap_lock is held.
1026 *
1027 * Must be called with mmap_lock held. It may be released. See below.
1028 *
1029 * __get_user_pages walks a process's page tables and takes a reference to
1030 * each struct page that each user address corresponds to at a given
1031 * instant. That is, it takes the page that would be accessed if a user
1032 * thread accesses the given user virtual address at that instant.
1033 *
1034 * This does not guarantee that the page exists in the user mappings when
1035 * __get_user_pages returns, and there may even be a completely different
1036 * page there in some cases (eg. if mmapped pagecache has been invalidated
1037 * and subsequently re faulted). However it does guarantee that the page
1038 * won't be freed completely. And mostly callers simply care that the page
1039 * contains data that was valid *at some point in time*. Typically, an IO
1040 * or similar operation cannot guarantee anything stronger anyway because
1041 * locks can't be held over the syscall boundary.
1042 *
1043 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1044 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1045 * appropriate) must be called after the page is finished with, and
1046 * before put_page is called.
1047 *
1048 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1049 * released by an up_read(). That can happen if @gup_flags does not
1050 * have FOLL_NOWAIT.
1051 *
1052 * A caller using such a combination of @locked and @gup_flags
1053 * must therefore hold the mmap_lock for reading only, and recognize
1054 * when it's been released. Otherwise, it must be held for either
1055 * reading or writing and will not be released.
1056 *
1057 * In most cases, get_user_pages or get_user_pages_fast should be used
1058 * instead of __get_user_pages. __get_user_pages should be used only if
1059 * you need some special @gup_flags.
1060 */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1061 static long __get_user_pages(struct mm_struct *mm,
1062 unsigned long start, unsigned long nr_pages,
1063 unsigned int gup_flags, struct page **pages,
1064 struct vm_area_struct **vmas, int *locked)
1065 {
1066 long ret = 0, i = 0;
1067 struct vm_area_struct *vma = NULL;
1068 struct follow_page_context ctx = { NULL };
1069
1070 if (!nr_pages)
1071 return 0;
1072
1073 start = untagged_addr(start);
1074
1075 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1076
1077 /*
1078 * If FOLL_FORCE is set then do not force a full fault as the hinting
1079 * fault information is unrelated to the reference behaviour of a task
1080 * using the address space
1081 */
1082 if (!(gup_flags & FOLL_FORCE))
1083 gup_flags |= FOLL_NUMA;
1084
1085 do {
1086 struct page *page;
1087 unsigned int foll_flags = gup_flags;
1088 unsigned int page_increm;
1089
1090 /* first iteration or cross vma bound */
1091 if (!vma || start >= vma->vm_end) {
1092 vma = find_extend_vma(mm, start);
1093 if (!vma && in_gate_area(mm, start)) {
1094 ret = get_gate_page(mm, start & PAGE_MASK,
1095 gup_flags, &vma,
1096 pages ? &pages[i] : NULL);
1097 if (ret)
1098 goto out;
1099 ctx.page_mask = 0;
1100 goto next_page;
1101 }
1102
1103 if (!vma) {
1104 ret = -EFAULT;
1105 goto out;
1106 }
1107 ret = check_vma_flags(vma, gup_flags);
1108 if (ret)
1109 goto out;
1110
1111 if (is_vm_hugetlb_page(vma)) {
1112 i = follow_hugetlb_page(mm, vma, pages, vmas,
1113 &start, &nr_pages, i,
1114 gup_flags, locked);
1115 if (locked && *locked == 0) {
1116 /*
1117 * We've got a VM_FAULT_RETRY
1118 * and we've lost mmap_lock.
1119 * We must stop here.
1120 */
1121 BUG_ON(gup_flags & FOLL_NOWAIT);
1122 BUG_ON(ret != 0);
1123 goto out;
1124 }
1125 continue;
1126 }
1127 }
1128 retry:
1129 /*
1130 * If we have a pending SIGKILL, don't keep faulting pages and
1131 * potentially allocating memory.
1132 */
1133 if (fatal_signal_pending(current)) {
1134 ret = -EINTR;
1135 goto out;
1136 }
1137 cond_resched();
1138
1139 page = follow_page_mask(vma, start, foll_flags, &ctx);
1140 if (!page) {
1141 ret = faultin_page(vma, start, &foll_flags, locked);
1142 switch (ret) {
1143 case 0:
1144 goto retry;
1145 case -EBUSY:
1146 ret = 0;
1147 fallthrough;
1148 case -EFAULT:
1149 case -ENOMEM:
1150 case -EHWPOISON:
1151 goto out;
1152 case -ENOENT:
1153 goto next_page;
1154 }
1155 BUG();
1156 } else if (PTR_ERR(page) == -EEXIST) {
1157 /*
1158 * Proper page table entry exists, but no corresponding
1159 * struct page.
1160 */
1161 goto next_page;
1162 } else if (IS_ERR(page)) {
1163 ret = PTR_ERR(page);
1164 goto out;
1165 }
1166 if (pages) {
1167 pages[i] = page;
1168 flush_anon_page(vma, page, start);
1169 flush_dcache_page(page);
1170 ctx.page_mask = 0;
1171 }
1172 next_page:
1173 if (vmas) {
1174 vmas[i] = vma;
1175 ctx.page_mask = 0;
1176 }
1177 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1178 if (page_increm > nr_pages)
1179 page_increm = nr_pages;
1180 i += page_increm;
1181 start += page_increm * PAGE_SIZE;
1182 nr_pages -= page_increm;
1183 } while (nr_pages);
1184 out:
1185 if (ctx.pgmap)
1186 put_dev_pagemap(ctx.pgmap);
1187 return i ? i : ret;
1188 }
1189
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1190 static bool vma_permits_fault(struct vm_area_struct *vma,
1191 unsigned int fault_flags)
1192 {
1193 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1194 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1195 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1196
1197 if (!(vm_flags & vma->vm_flags))
1198 return false;
1199
1200 /*
1201 * The architecture might have a hardware protection
1202 * mechanism other than read/write that can deny access.
1203 *
1204 * gup always represents data access, not instruction
1205 * fetches, so execute=false here:
1206 */
1207 if (!arch_vma_access_permitted(vma, write, false, foreign))
1208 return false;
1209
1210 return true;
1211 }
1212
1213 /**
1214 * fixup_user_fault() - manually resolve a user page fault
1215 * @mm: mm_struct of target mm
1216 * @address: user address
1217 * @fault_flags:flags to pass down to handle_mm_fault()
1218 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1219 * does not allow retry. If NULL, the caller must guarantee
1220 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1221 *
1222 * This is meant to be called in the specific scenario where for locking reasons
1223 * we try to access user memory in atomic context (within a pagefault_disable()
1224 * section), this returns -EFAULT, and we want to resolve the user fault before
1225 * trying again.
1226 *
1227 * Typically this is meant to be used by the futex code.
1228 *
1229 * The main difference with get_user_pages() is that this function will
1230 * unconditionally call handle_mm_fault() which will in turn perform all the
1231 * necessary SW fixup of the dirty and young bits in the PTE, while
1232 * get_user_pages() only guarantees to update these in the struct page.
1233 *
1234 * This is important for some architectures where those bits also gate the
1235 * access permission to the page because they are maintained in software. On
1236 * such architectures, gup() will not be enough to make a subsequent access
1237 * succeed.
1238 *
1239 * This function will not return with an unlocked mmap_lock. So it has not the
1240 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1241 */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1242 int fixup_user_fault(struct mm_struct *mm,
1243 unsigned long address, unsigned int fault_flags,
1244 bool *unlocked)
1245 {
1246 struct vm_area_struct *vma;
1247 vm_fault_t ret, major = 0;
1248
1249 address = untagged_addr(address);
1250
1251 if (unlocked)
1252 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1253
1254 retry:
1255 vma = find_extend_vma(mm, address);
1256 if (!vma || address < vma->vm_start)
1257 return -EFAULT;
1258
1259 if (!vma_permits_fault(vma, fault_flags))
1260 return -EFAULT;
1261
1262 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1263 fatal_signal_pending(current))
1264 return -EINTR;
1265
1266 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1267 major |= ret & VM_FAULT_MAJOR;
1268 if (ret & VM_FAULT_ERROR) {
1269 int err = vm_fault_to_errno(ret, 0);
1270
1271 if (err)
1272 return err;
1273 BUG();
1274 }
1275
1276 if (ret & VM_FAULT_RETRY) {
1277 mmap_read_lock(mm);
1278 *unlocked = true;
1279 fault_flags |= FAULT_FLAG_TRIED;
1280 goto retry;
1281 }
1282
1283 return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(fixup_user_fault);
1286
1287 /*
1288 * Please note that this function, unlike __get_user_pages will not
1289 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1290 */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int flags)1291 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1292 unsigned long start,
1293 unsigned long nr_pages,
1294 struct page **pages,
1295 struct vm_area_struct **vmas,
1296 int *locked,
1297 unsigned int flags)
1298 {
1299 long ret, pages_done;
1300 bool lock_dropped;
1301
1302 if (locked) {
1303 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1304 BUG_ON(vmas);
1305 /* check caller initialized locked */
1306 BUG_ON(*locked != 1);
1307 }
1308
1309 if (flags & FOLL_PIN)
1310 atomic_set(&mm->has_pinned, 1);
1311
1312 /*
1313 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1314 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1315 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1316 * for FOLL_GET, not for the newer FOLL_PIN.
1317 *
1318 * FOLL_PIN always expects pages to be non-null, but no need to assert
1319 * that here, as any failures will be obvious enough.
1320 */
1321 if (pages && !(flags & FOLL_PIN))
1322 flags |= FOLL_GET;
1323
1324 pages_done = 0;
1325 lock_dropped = false;
1326 for (;;) {
1327 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1328 vmas, locked);
1329 if (!locked)
1330 /* VM_FAULT_RETRY couldn't trigger, bypass */
1331 return ret;
1332
1333 /* VM_FAULT_RETRY cannot return errors */
1334 if (!*locked) {
1335 BUG_ON(ret < 0);
1336 BUG_ON(ret >= nr_pages);
1337 }
1338
1339 if (ret > 0) {
1340 nr_pages -= ret;
1341 pages_done += ret;
1342 if (!nr_pages)
1343 break;
1344 }
1345 if (*locked) {
1346 /*
1347 * VM_FAULT_RETRY didn't trigger or it was a
1348 * FOLL_NOWAIT.
1349 */
1350 if (!pages_done)
1351 pages_done = ret;
1352 break;
1353 }
1354 /*
1355 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1356 * For the prefault case (!pages) we only update counts.
1357 */
1358 if (likely(pages))
1359 pages += ret;
1360 start += ret << PAGE_SHIFT;
1361 lock_dropped = true;
1362
1363 retry:
1364 /*
1365 * Repeat on the address that fired VM_FAULT_RETRY
1366 * with both FAULT_FLAG_ALLOW_RETRY and
1367 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1368 * by fatal signals, so we need to check it before we
1369 * start trying again otherwise it can loop forever.
1370 */
1371
1372 if (fatal_signal_pending(current)) {
1373 if (!pages_done)
1374 pages_done = -EINTR;
1375 break;
1376 }
1377
1378 ret = mmap_read_lock_killable(mm);
1379 if (ret) {
1380 BUG_ON(ret > 0);
1381 if (!pages_done)
1382 pages_done = ret;
1383 break;
1384 }
1385
1386 *locked = 1;
1387 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1388 pages, NULL, locked);
1389 if (!*locked) {
1390 /* Continue to retry until we succeeded */
1391 BUG_ON(ret != 0);
1392 goto retry;
1393 }
1394 if (ret != 1) {
1395 BUG_ON(ret > 1);
1396 if (!pages_done)
1397 pages_done = ret;
1398 break;
1399 }
1400 nr_pages--;
1401 pages_done++;
1402 if (!nr_pages)
1403 break;
1404 if (likely(pages))
1405 pages++;
1406 start += PAGE_SIZE;
1407 }
1408 if (lock_dropped && *locked) {
1409 /*
1410 * We must let the caller know we temporarily dropped the lock
1411 * and so the critical section protected by it was lost.
1412 */
1413 mmap_read_unlock(mm);
1414 *locked = 0;
1415 }
1416 return pages_done;
1417 }
1418
1419 /**
1420 * populate_vma_page_range() - populate a range of pages in the vma.
1421 * @vma: target vma
1422 * @start: start address
1423 * @end: end address
1424 * @locked: whether the mmap_lock is still held
1425 *
1426 * This takes care of mlocking the pages too if VM_LOCKED is set.
1427 *
1428 * Return either number of pages pinned in the vma, or a negative error
1429 * code on error.
1430 *
1431 * vma->vm_mm->mmap_lock must be held.
1432 *
1433 * If @locked is NULL, it may be held for read or write and will
1434 * be unperturbed.
1435 *
1436 * If @locked is non-NULL, it must held for read only and may be
1437 * released. If it's released, *@locked will be set to 0.
1438 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1439 long populate_vma_page_range(struct vm_area_struct *vma,
1440 unsigned long start, unsigned long end, int *locked)
1441 {
1442 struct mm_struct *mm = vma->vm_mm;
1443 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1444 int gup_flags;
1445
1446 VM_BUG_ON(start & ~PAGE_MASK);
1447 VM_BUG_ON(end & ~PAGE_MASK);
1448 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1449 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1450 mmap_assert_locked(mm);
1451
1452 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1453 if (vma->vm_flags & VM_LOCKONFAULT)
1454 gup_flags &= ~FOLL_POPULATE;
1455 /*
1456 * We want to touch writable mappings with a write fault in order
1457 * to break COW, except for shared mappings because these don't COW
1458 * and we would not want to dirty them for nothing.
1459 */
1460 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1461 gup_flags |= FOLL_WRITE;
1462
1463 /*
1464 * We want mlock to succeed for regions that have any permissions
1465 * other than PROT_NONE.
1466 */
1467 if (vma_is_accessible(vma))
1468 gup_flags |= FOLL_FORCE;
1469
1470 /*
1471 * We made sure addr is within a VMA, so the following will
1472 * not result in a stack expansion that recurses back here.
1473 */
1474 return __get_user_pages(mm, start, nr_pages, gup_flags,
1475 NULL, NULL, locked);
1476 }
1477
1478 /*
1479 * __mm_populate - populate and/or mlock pages within a range of address space.
1480 *
1481 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1482 * flags. VMAs must be already marked with the desired vm_flags, and
1483 * mmap_lock must not be held.
1484 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1485 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1486 {
1487 struct mm_struct *mm = current->mm;
1488 unsigned long end, nstart, nend;
1489 struct vm_area_struct *vma = NULL;
1490 int locked = 0;
1491 long ret = 0;
1492
1493 end = start + len;
1494
1495 for (nstart = start; nstart < end; nstart = nend) {
1496 /*
1497 * We want to fault in pages for [nstart; end) address range.
1498 * Find first corresponding VMA.
1499 */
1500 if (!locked) {
1501 locked = 1;
1502 mmap_read_lock(mm);
1503 vma = find_vma(mm, nstart);
1504 } else if (nstart >= vma->vm_end)
1505 vma = vma->vm_next;
1506 if (!vma || vma->vm_start >= end)
1507 break;
1508 /*
1509 * Set [nstart; nend) to intersection of desired address
1510 * range with the first VMA. Also, skip undesirable VMA types.
1511 */
1512 nend = min(end, vma->vm_end);
1513 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1514 continue;
1515 if (nstart < vma->vm_start)
1516 nstart = vma->vm_start;
1517 /*
1518 * Now fault in a range of pages. populate_vma_page_range()
1519 * double checks the vma flags, so that it won't mlock pages
1520 * if the vma was already munlocked.
1521 */
1522 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1523 if (ret < 0) {
1524 if (ignore_errors) {
1525 ret = 0;
1526 continue; /* continue at next VMA */
1527 }
1528 break;
1529 }
1530 nend = nstart + ret * PAGE_SIZE;
1531 ret = 0;
1532 }
1533 if (locked)
1534 mmap_read_unlock(mm);
1535 return ret; /* 0 or negative error code */
1536 }
1537 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int foll_flags)1538 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1539 unsigned long nr_pages, struct page **pages,
1540 struct vm_area_struct **vmas, int *locked,
1541 unsigned int foll_flags)
1542 {
1543 struct vm_area_struct *vma;
1544 unsigned long vm_flags;
1545 int i;
1546
1547 /* calculate required read or write permissions.
1548 * If FOLL_FORCE is set, we only require the "MAY" flags.
1549 */
1550 vm_flags = (foll_flags & FOLL_WRITE) ?
1551 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1552 vm_flags &= (foll_flags & FOLL_FORCE) ?
1553 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1554
1555 for (i = 0; i < nr_pages; i++) {
1556 vma = find_vma(mm, start);
1557 if (!vma)
1558 goto finish_or_fault;
1559
1560 /* protect what we can, including chardevs */
1561 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1562 !(vm_flags & vma->vm_flags))
1563 goto finish_or_fault;
1564
1565 if (pages) {
1566 pages[i] = virt_to_page(start);
1567 if (pages[i])
1568 get_page(pages[i]);
1569 }
1570 if (vmas)
1571 vmas[i] = vma;
1572 start = (start + PAGE_SIZE) & PAGE_MASK;
1573 }
1574
1575 return i;
1576
1577 finish_or_fault:
1578 return i ? : -EFAULT;
1579 }
1580 #endif /* !CONFIG_MMU */
1581
1582 /**
1583 * get_dump_page() - pin user page in memory while writing it to core dump
1584 * @addr: user address
1585 *
1586 * Returns struct page pointer of user page pinned for dump,
1587 * to be freed afterwards by put_page().
1588 *
1589 * Returns NULL on any kind of failure - a hole must then be inserted into
1590 * the corefile, to preserve alignment with its headers; and also returns
1591 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1592 * allowing a hole to be left in the corefile to save diskspace.
1593 *
1594 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1595 */
1596 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1597 struct page *get_dump_page(unsigned long addr)
1598 {
1599 struct mm_struct *mm = current->mm;
1600 struct page *page;
1601 int locked = 1;
1602 int ret;
1603
1604 if (mmap_read_lock_killable(mm))
1605 return NULL;
1606 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1607 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1608 if (locked)
1609 mmap_read_unlock(mm);
1610 return (ret == 1) ? page : NULL;
1611 }
1612 #endif /* CONFIG_ELF_CORE */
1613
1614 #ifdef CONFIG_CMA
check_and_migrate_cma_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1615 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1616 unsigned long start,
1617 unsigned long nr_pages,
1618 struct page **pages,
1619 struct vm_area_struct **vmas,
1620 unsigned int gup_flags)
1621 {
1622 unsigned long i, isolation_error_count;
1623 bool drain_allow;
1624 LIST_HEAD(cma_page_list);
1625 long ret = nr_pages;
1626 struct page *prev_head, *head;
1627 struct migration_target_control mtc = {
1628 .nid = NUMA_NO_NODE,
1629 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1630 };
1631
1632 check_again:
1633 prev_head = NULL;
1634 isolation_error_count = 0;
1635 drain_allow = true;
1636 for (i = 0; i < nr_pages; i++) {
1637 head = compound_head(pages[i]);
1638 if (head == prev_head)
1639 continue;
1640 prev_head = head;
1641 /*
1642 * If we get a page from the CMA zone, since we are going to
1643 * be pinning these entries, we might as well move them out
1644 * of the CMA zone if possible.
1645 */
1646 if (is_migrate_cma_page(head)) {
1647 if (PageHuge(head)) {
1648 if (isolate_hugetlb(head, &cma_page_list))
1649 isolation_error_count++;
1650 } else {
1651 if (!PageLRU(head) && drain_allow) {
1652 lru_add_drain_all();
1653 drain_allow = false;
1654 }
1655
1656 if (isolate_lru_page(head)) {
1657 isolation_error_count++;
1658 continue;
1659 }
1660 list_add_tail(&head->lru, &cma_page_list);
1661 mod_node_page_state(page_pgdat(head),
1662 NR_ISOLATED_ANON +
1663 page_is_file_lru(head),
1664 thp_nr_pages(head));
1665 }
1666 }
1667 }
1668
1669 /*
1670 * If list is empty, and no isolation errors, means that all pages are
1671 * in the correct zone.
1672 */
1673 if (list_empty(&cma_page_list) && !isolation_error_count)
1674 return ret;
1675
1676 if (!list_empty(&cma_page_list)) {
1677 /*
1678 * drop the above get_user_pages reference.
1679 */
1680 if (gup_flags & FOLL_PIN)
1681 unpin_user_pages(pages, nr_pages);
1682 else
1683 for (i = 0; i < nr_pages; i++)
1684 put_page(pages[i]);
1685
1686 ret = migrate_pages(&cma_page_list, alloc_migration_target,
1687 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1688 MR_CONTIG_RANGE);
1689 if (ret) {
1690 if (!list_empty(&cma_page_list))
1691 putback_movable_pages(&cma_page_list);
1692 return ret > 0 ? -ENOMEM : ret;
1693 }
1694
1695 /* We unpinned pages before migration, pin them again */
1696 ret = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1697 NULL, gup_flags);
1698 if (ret <= 0)
1699 return ret;
1700 nr_pages = ret;
1701 }
1702
1703 /*
1704 * check again because pages were unpinned, and we also might have
1705 * had isolation errors and need more pages to migrate.
1706 */
1707 goto check_again;
1708 }
1709 #else
check_and_migrate_cma_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1710 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1711 unsigned long start,
1712 unsigned long nr_pages,
1713 struct page **pages,
1714 struct vm_area_struct **vmas,
1715 unsigned int gup_flags)
1716 {
1717 return nr_pages;
1718 }
1719 #endif /* CONFIG_CMA */
1720
1721 /*
1722 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1723 * allows us to process the FOLL_LONGTERM flag.
1724 */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1725 static long __gup_longterm_locked(struct mm_struct *mm,
1726 unsigned long start,
1727 unsigned long nr_pages,
1728 struct page **pages,
1729 struct vm_area_struct **vmas,
1730 unsigned int gup_flags)
1731 {
1732 unsigned long flags = 0;
1733 long rc;
1734
1735 if (gup_flags & FOLL_LONGTERM)
1736 flags = memalloc_nocma_save();
1737
1738 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
1739 gup_flags);
1740
1741 if (gup_flags & FOLL_LONGTERM) {
1742 if (rc > 0)
1743 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1744 vmas, gup_flags);
1745 memalloc_nocma_restore(flags);
1746 }
1747 return rc;
1748 }
1749
is_valid_gup_flags(unsigned int gup_flags)1750 static bool is_valid_gup_flags(unsigned int gup_flags)
1751 {
1752 /*
1753 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1754 * never directly by the caller, so enforce that with an assertion:
1755 */
1756 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1757 return false;
1758 /*
1759 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1760 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1761 * FOLL_PIN.
1762 */
1763 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1764 return false;
1765
1766 return true;
1767 }
1768
1769 #ifdef CONFIG_MMU
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1770 static long __get_user_pages_remote(struct mm_struct *mm,
1771 unsigned long start, unsigned long nr_pages,
1772 unsigned int gup_flags, struct page **pages,
1773 struct vm_area_struct **vmas, int *locked)
1774 {
1775 /*
1776 * Parts of FOLL_LONGTERM behavior are incompatible with
1777 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1778 * vmas. However, this only comes up if locked is set, and there are
1779 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1780 * allow what we can.
1781 */
1782 if (gup_flags & FOLL_LONGTERM) {
1783 if (WARN_ON_ONCE(locked))
1784 return -EINVAL;
1785 /*
1786 * This will check the vmas (even if our vmas arg is NULL)
1787 * and return -ENOTSUPP if DAX isn't allowed in this case:
1788 */
1789 return __gup_longterm_locked(mm, start, nr_pages, pages,
1790 vmas, gup_flags | FOLL_TOUCH |
1791 FOLL_REMOTE);
1792 }
1793
1794 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1795 locked,
1796 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1797 }
1798
1799 /**
1800 * get_user_pages_remote() - pin user pages in memory
1801 * @mm: mm_struct of target mm
1802 * @start: starting user address
1803 * @nr_pages: number of pages from start to pin
1804 * @gup_flags: flags modifying lookup behaviour
1805 * @pages: array that receives pointers to the pages pinned.
1806 * Should be at least nr_pages long. Or NULL, if caller
1807 * only intends to ensure the pages are faulted in.
1808 * @vmas: array of pointers to vmas corresponding to each page.
1809 * Or NULL if the caller does not require them.
1810 * @locked: pointer to lock flag indicating whether lock is held and
1811 * subsequently whether VM_FAULT_RETRY functionality can be
1812 * utilised. Lock must initially be held.
1813 *
1814 * Returns either number of pages pinned (which may be less than the
1815 * number requested), or an error. Details about the return value:
1816 *
1817 * -- If nr_pages is 0, returns 0.
1818 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1819 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1820 * pages pinned. Again, this may be less than nr_pages.
1821 *
1822 * The caller is responsible for releasing returned @pages, via put_page().
1823 *
1824 * @vmas are valid only as long as mmap_lock is held.
1825 *
1826 * Must be called with mmap_lock held for read or write.
1827 *
1828 * get_user_pages_remote walks a process's page tables and takes a reference
1829 * to each struct page that each user address corresponds to at a given
1830 * instant. That is, it takes the page that would be accessed if a user
1831 * thread accesses the given user virtual address at that instant.
1832 *
1833 * This does not guarantee that the page exists in the user mappings when
1834 * get_user_pages_remote returns, and there may even be a completely different
1835 * page there in some cases (eg. if mmapped pagecache has been invalidated
1836 * and subsequently re faulted). However it does guarantee that the page
1837 * won't be freed completely. And mostly callers simply care that the page
1838 * contains data that was valid *at some point in time*. Typically, an IO
1839 * or similar operation cannot guarantee anything stronger anyway because
1840 * locks can't be held over the syscall boundary.
1841 *
1842 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1843 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1844 * be called after the page is finished with, and before put_page is called.
1845 *
1846 * get_user_pages_remote is typically used for fewer-copy IO operations,
1847 * to get a handle on the memory by some means other than accesses
1848 * via the user virtual addresses. The pages may be submitted for
1849 * DMA to devices or accessed via their kernel linear mapping (via the
1850 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1851 *
1852 * See also get_user_pages_fast, for performance critical applications.
1853 *
1854 * get_user_pages_remote should be phased out in favor of
1855 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1856 * should use get_user_pages_remote because it cannot pass
1857 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1858 */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1859 long get_user_pages_remote(struct mm_struct *mm,
1860 unsigned long start, unsigned long nr_pages,
1861 unsigned int gup_flags, struct page **pages,
1862 struct vm_area_struct **vmas, int *locked)
1863 {
1864 if (!is_valid_gup_flags(gup_flags))
1865 return -EINVAL;
1866
1867 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1868 pages, vmas, locked);
1869 }
1870 EXPORT_SYMBOL(get_user_pages_remote);
1871
1872 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1873 long get_user_pages_remote(struct mm_struct *mm,
1874 unsigned long start, unsigned long nr_pages,
1875 unsigned int gup_flags, struct page **pages,
1876 struct vm_area_struct **vmas, int *locked)
1877 {
1878 return 0;
1879 }
1880
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1881 static long __get_user_pages_remote(struct mm_struct *mm,
1882 unsigned long start, unsigned long nr_pages,
1883 unsigned int gup_flags, struct page **pages,
1884 struct vm_area_struct **vmas, int *locked)
1885 {
1886 return 0;
1887 }
1888 #endif /* !CONFIG_MMU */
1889
1890 /**
1891 * get_user_pages() - pin user pages in memory
1892 * @start: starting user address
1893 * @nr_pages: number of pages from start to pin
1894 * @gup_flags: flags modifying lookup behaviour
1895 * @pages: array that receives pointers to the pages pinned.
1896 * Should be at least nr_pages long. Or NULL, if caller
1897 * only intends to ensure the pages are faulted in.
1898 * @vmas: array of pointers to vmas corresponding to each page.
1899 * Or NULL if the caller does not require them.
1900 *
1901 * This is the same as get_user_pages_remote(), just with a less-flexible
1902 * calling convention where we assume that the mm being operated on belongs to
1903 * the current task, and doesn't allow passing of a locked parameter. We also
1904 * obviously don't pass FOLL_REMOTE in here.
1905 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1906 long get_user_pages(unsigned long start, unsigned long nr_pages,
1907 unsigned int gup_flags, struct page **pages,
1908 struct vm_area_struct **vmas)
1909 {
1910 if (!is_valid_gup_flags(gup_flags))
1911 return -EINVAL;
1912
1913 return __gup_longterm_locked(current->mm, start, nr_pages,
1914 pages, vmas, gup_flags | FOLL_TOUCH);
1915 }
1916 EXPORT_SYMBOL(get_user_pages);
1917
1918 /**
1919 * get_user_pages_locked() is suitable to replace the form:
1920 *
1921 * mmap_read_lock(mm);
1922 * do_something()
1923 * get_user_pages(mm, ..., pages, NULL);
1924 * mmap_read_unlock(mm);
1925 *
1926 * to:
1927 *
1928 * int locked = 1;
1929 * mmap_read_lock(mm);
1930 * do_something()
1931 * get_user_pages_locked(mm, ..., pages, &locked);
1932 * if (locked)
1933 * mmap_read_unlock(mm);
1934 *
1935 * @start: starting user address
1936 * @nr_pages: number of pages from start to pin
1937 * @gup_flags: flags modifying lookup behaviour
1938 * @pages: array that receives pointers to the pages pinned.
1939 * Should be at least nr_pages long. Or NULL, if caller
1940 * only intends to ensure the pages are faulted in.
1941 * @locked: pointer to lock flag indicating whether lock is held and
1942 * subsequently whether VM_FAULT_RETRY functionality can be
1943 * utilised. Lock must initially be held.
1944 *
1945 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1946 * paths better by using either get_user_pages_locked() or
1947 * get_user_pages_unlocked().
1948 *
1949 */
get_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1950 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1951 unsigned int gup_flags, struct page **pages,
1952 int *locked)
1953 {
1954 /*
1955 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1956 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1957 * vmas. As there are no users of this flag in this call we simply
1958 * disallow this option for now.
1959 */
1960 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1961 return -EINVAL;
1962 /*
1963 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1964 * never directly by the caller, so enforce that:
1965 */
1966 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1967 return -EINVAL;
1968
1969 return __get_user_pages_locked(current->mm, start, nr_pages,
1970 pages, NULL, locked,
1971 gup_flags | FOLL_TOUCH);
1972 }
1973 EXPORT_SYMBOL(get_user_pages_locked);
1974
1975 /*
1976 * get_user_pages_unlocked() is suitable to replace the form:
1977 *
1978 * mmap_read_lock(mm);
1979 * get_user_pages(mm, ..., pages, NULL);
1980 * mmap_read_unlock(mm);
1981 *
1982 * with:
1983 *
1984 * get_user_pages_unlocked(mm, ..., pages);
1985 *
1986 * It is functionally equivalent to get_user_pages_fast so
1987 * get_user_pages_fast should be used instead if specific gup_flags
1988 * (e.g. FOLL_FORCE) are not required.
1989 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1990 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1991 struct page **pages, unsigned int gup_flags)
1992 {
1993 struct mm_struct *mm = current->mm;
1994 int locked = 1;
1995 long ret;
1996
1997 /*
1998 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1999 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2000 * vmas. As there are no users of this flag in this call we simply
2001 * disallow this option for now.
2002 */
2003 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2004 return -EINVAL;
2005
2006 mmap_read_lock(mm);
2007 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2008 &locked, gup_flags | FOLL_TOUCH);
2009 if (locked)
2010 mmap_read_unlock(mm);
2011 return ret;
2012 }
2013 EXPORT_SYMBOL(get_user_pages_unlocked);
2014
2015 /*
2016 * Fast GUP
2017 *
2018 * get_user_pages_fast attempts to pin user pages by walking the page
2019 * tables directly and avoids taking locks. Thus the walker needs to be
2020 * protected from page table pages being freed from under it, and should
2021 * block any THP splits.
2022 *
2023 * One way to achieve this is to have the walker disable interrupts, and
2024 * rely on IPIs from the TLB flushing code blocking before the page table
2025 * pages are freed. This is unsuitable for architectures that do not need
2026 * to broadcast an IPI when invalidating TLBs.
2027 *
2028 * Another way to achieve this is to batch up page table containing pages
2029 * belonging to more than one mm_user, then rcu_sched a callback to free those
2030 * pages. Disabling interrupts will allow the fast_gup walker to both block
2031 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2032 * (which is a relatively rare event). The code below adopts this strategy.
2033 *
2034 * Before activating this code, please be aware that the following assumptions
2035 * are currently made:
2036 *
2037 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2038 * free pages containing page tables or TLB flushing requires IPI broadcast.
2039 *
2040 * *) ptes can be read atomically by the architecture.
2041 *
2042 * *) access_ok is sufficient to validate userspace address ranges.
2043 *
2044 * The last two assumptions can be relaxed by the addition of helper functions.
2045 *
2046 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2047 */
2048 #ifdef CONFIG_HAVE_FAST_GUP
2049 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2050
2051 /*
2052 * WARNING: only to be used in the get_user_pages_fast() implementation.
2053 *
2054 * With get_user_pages_fast(), we walk down the pagetables without taking any
2055 * locks. For this we would like to load the pointers atomically, but sometimes
2056 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2057 * we do have is the guarantee that a PTE will only either go from not present
2058 * to present, or present to not present or both -- it will not switch to a
2059 * completely different present page without a TLB flush in between; something
2060 * that we are blocking by holding interrupts off.
2061 *
2062 * Setting ptes from not present to present goes:
2063 *
2064 * ptep->pte_high = h;
2065 * smp_wmb();
2066 * ptep->pte_low = l;
2067 *
2068 * And present to not present goes:
2069 *
2070 * ptep->pte_low = 0;
2071 * smp_wmb();
2072 * ptep->pte_high = 0;
2073 *
2074 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2075 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2076 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2077 * picked up a changed pte high. We might have gotten rubbish values from
2078 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2079 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2080 * operates on present ptes we're safe.
2081 */
gup_get_pte(pte_t * ptep)2082 static inline pte_t gup_get_pte(pte_t *ptep)
2083 {
2084 pte_t pte;
2085
2086 do {
2087 pte.pte_low = ptep->pte_low;
2088 smp_rmb();
2089 pte.pte_high = ptep->pte_high;
2090 smp_rmb();
2091 } while (unlikely(pte.pte_low != ptep->pte_low));
2092
2093 return pte;
2094 }
2095 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2096 /*
2097 * We require that the PTE can be read atomically.
2098 */
gup_get_pte(pte_t * ptep)2099 static inline pte_t gup_get_pte(pte_t *ptep)
2100 {
2101 return ptep_get(ptep);
2102 }
2103 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2104
undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2105 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2106 unsigned int flags,
2107 struct page **pages)
2108 {
2109 while ((*nr) - nr_start) {
2110 struct page *page = pages[--(*nr)];
2111
2112 ClearPageReferenced(page);
2113 if (flags & FOLL_PIN)
2114 unpin_user_page(page);
2115 else
2116 put_page(page);
2117 }
2118 }
2119
2120 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2121 /*
2122 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2123 * operations.
2124 *
2125 * To pin the page, fast-gup needs to do below in order:
2126 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2127 *
2128 * For the rest of pgtable operations where pgtable updates can be racy
2129 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2130 * is pinned.
2131 *
2132 * Above will work for all pte-level operations, including THP split.
2133 *
2134 * For THP collapse, it's a bit more complicated because fast-gup may be
2135 * walking a pgtable page that is being freed (pte is still valid but pmd
2136 * can be cleared already). To avoid race in such condition, we need to
2137 * also check pmd here to make sure pmd doesn't change (corresponds to
2138 * pmdp_collapse_flush() in the THP collapse code path).
2139 */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2140 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2141 unsigned long end, unsigned int flags,
2142 struct page **pages, int *nr)
2143 {
2144 struct dev_pagemap *pgmap = NULL;
2145 int nr_start = *nr, ret = 0;
2146 pte_t *ptep, *ptem;
2147
2148 ptem = ptep = pte_offset_map(&pmd, addr);
2149 do {
2150 pte_t pte = gup_get_pte(ptep);
2151 struct page *head, *page;
2152
2153 /*
2154 * Similar to the PMD case below, NUMA hinting must take slow
2155 * path using the pte_protnone check.
2156 */
2157 if (pte_protnone(pte))
2158 goto pte_unmap;
2159
2160 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2161 goto pte_unmap;
2162
2163 if (pte_devmap(pte)) {
2164 if (unlikely(flags & FOLL_LONGTERM))
2165 goto pte_unmap;
2166
2167 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2168 if (unlikely(!pgmap)) {
2169 undo_dev_pagemap(nr, nr_start, flags, pages);
2170 goto pte_unmap;
2171 }
2172 } else if (pte_special(pte))
2173 goto pte_unmap;
2174
2175 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2176 page = pte_page(pte);
2177
2178 head = try_grab_compound_head(page, 1, flags);
2179 if (!head)
2180 goto pte_unmap;
2181
2182 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2183 unlikely(pte_val(pte) != pte_val(*ptep))) {
2184 put_compound_head(head, 1, flags);
2185 goto pte_unmap;
2186 }
2187
2188 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2189
2190 /*
2191 * We need to make the page accessible if and only if we are
2192 * going to access its content (the FOLL_PIN case). Please
2193 * see Documentation/core-api/pin_user_pages.rst for
2194 * details.
2195 */
2196 if (flags & FOLL_PIN) {
2197 ret = arch_make_page_accessible(page);
2198 if (ret) {
2199 unpin_user_page(page);
2200 goto pte_unmap;
2201 }
2202 }
2203 SetPageReferenced(page);
2204 pages[*nr] = page;
2205 (*nr)++;
2206
2207 } while (ptep++, addr += PAGE_SIZE, addr != end);
2208
2209 ret = 1;
2210
2211 pte_unmap:
2212 if (pgmap)
2213 put_dev_pagemap(pgmap);
2214 pte_unmap(ptem);
2215 return ret;
2216 }
2217 #else
2218
2219 /*
2220 * If we can't determine whether or not a pte is special, then fail immediately
2221 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2222 * to be special.
2223 *
2224 * For a futex to be placed on a THP tail page, get_futex_key requires a
2225 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2226 * useful to have gup_huge_pmd even if we can't operate on ptes.
2227 */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2228 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2229 unsigned long end, unsigned int flags,
2230 struct page **pages, int *nr)
2231 {
2232 return 0;
2233 }
2234 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2235
2236 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2237 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2238 unsigned long end, unsigned int flags,
2239 struct page **pages, int *nr)
2240 {
2241 int nr_start = *nr;
2242 struct dev_pagemap *pgmap = NULL;
2243
2244 do {
2245 struct page *page = pfn_to_page(pfn);
2246
2247 pgmap = get_dev_pagemap(pfn, pgmap);
2248 if (unlikely(!pgmap)) {
2249 undo_dev_pagemap(nr, nr_start, flags, pages);
2250 return 0;
2251 }
2252 SetPageReferenced(page);
2253 pages[*nr] = page;
2254 if (unlikely(!try_grab_page(page, flags))) {
2255 undo_dev_pagemap(nr, nr_start, flags, pages);
2256 return 0;
2257 }
2258 (*nr)++;
2259 pfn++;
2260 } while (addr += PAGE_SIZE, addr != end);
2261
2262 if (pgmap)
2263 put_dev_pagemap(pgmap);
2264 return 1;
2265 }
2266
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2267 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2268 unsigned long end, unsigned int flags,
2269 struct page **pages, int *nr)
2270 {
2271 unsigned long fault_pfn;
2272 int nr_start = *nr;
2273
2274 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2275 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2276 return 0;
2277
2278 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2279 undo_dev_pagemap(nr, nr_start, flags, pages);
2280 return 0;
2281 }
2282 return 1;
2283 }
2284
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2285 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2286 unsigned long end, unsigned int flags,
2287 struct page **pages, int *nr)
2288 {
2289 unsigned long fault_pfn;
2290 int nr_start = *nr;
2291
2292 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2293 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2294 return 0;
2295
2296 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2297 undo_dev_pagemap(nr, nr_start, flags, pages);
2298 return 0;
2299 }
2300 return 1;
2301 }
2302 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2303 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2304 unsigned long end, unsigned int flags,
2305 struct page **pages, int *nr)
2306 {
2307 BUILD_BUG();
2308 return 0;
2309 }
2310
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2311 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2312 unsigned long end, unsigned int flags,
2313 struct page **pages, int *nr)
2314 {
2315 BUILD_BUG();
2316 return 0;
2317 }
2318 #endif
2319
record_subpages(struct page * page,unsigned long addr,unsigned long end,struct page ** pages)2320 static int record_subpages(struct page *page, unsigned long addr,
2321 unsigned long end, struct page **pages)
2322 {
2323 int nr;
2324
2325 for (nr = 0; addr != end; addr += PAGE_SIZE)
2326 pages[nr++] = page++;
2327
2328 return nr;
2329 }
2330
2331 #ifdef CONFIG_ARCH_HAS_HUGEPD
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)2332 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2333 unsigned long sz)
2334 {
2335 unsigned long __boundary = (addr + sz) & ~(sz-1);
2336 return (__boundary - 1 < end - 1) ? __boundary : end;
2337 }
2338
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2339 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2340 unsigned long end, unsigned int flags,
2341 struct page **pages, int *nr)
2342 {
2343 unsigned long pte_end;
2344 struct page *head, *page;
2345 pte_t pte;
2346 int refs;
2347
2348 pte_end = (addr + sz) & ~(sz-1);
2349 if (pte_end < end)
2350 end = pte_end;
2351
2352 pte = huge_ptep_get(ptep);
2353
2354 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2355 return 0;
2356
2357 /* hugepages are never "special" */
2358 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2359
2360 head = pte_page(pte);
2361 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2362 refs = record_subpages(page, addr, end, pages + *nr);
2363
2364 head = try_grab_compound_head(head, refs, flags);
2365 if (!head)
2366 return 0;
2367
2368 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2369 put_compound_head(head, refs, flags);
2370 return 0;
2371 }
2372
2373 *nr += refs;
2374 SetPageReferenced(head);
2375 return 1;
2376 }
2377
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2378 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2379 unsigned int pdshift, unsigned long end, unsigned int flags,
2380 struct page **pages, int *nr)
2381 {
2382 pte_t *ptep;
2383 unsigned long sz = 1UL << hugepd_shift(hugepd);
2384 unsigned long next;
2385
2386 ptep = hugepte_offset(hugepd, addr, pdshift);
2387 do {
2388 next = hugepte_addr_end(addr, end, sz);
2389 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2390 return 0;
2391 } while (ptep++, addr = next, addr != end);
2392
2393 return 1;
2394 }
2395 #else
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2396 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2397 unsigned int pdshift, unsigned long end, unsigned int flags,
2398 struct page **pages, int *nr)
2399 {
2400 return 0;
2401 }
2402 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2403
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2404 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2405 unsigned long end, unsigned int flags,
2406 struct page **pages, int *nr)
2407 {
2408 struct page *head, *page;
2409 int refs;
2410
2411 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2412 return 0;
2413
2414 if (pmd_devmap(orig)) {
2415 if (unlikely(flags & FOLL_LONGTERM))
2416 return 0;
2417 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2418 pages, nr);
2419 }
2420
2421 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2422 refs = record_subpages(page, addr, end, pages + *nr);
2423
2424 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2425 if (!head)
2426 return 0;
2427
2428 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2429 put_compound_head(head, refs, flags);
2430 return 0;
2431 }
2432
2433 *nr += refs;
2434 SetPageReferenced(head);
2435 return 1;
2436 }
2437
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2438 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2439 unsigned long end, unsigned int flags,
2440 struct page **pages, int *nr)
2441 {
2442 struct page *head, *page;
2443 int refs;
2444
2445 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2446 return 0;
2447
2448 if (pud_devmap(orig)) {
2449 if (unlikely(flags & FOLL_LONGTERM))
2450 return 0;
2451 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2452 pages, nr);
2453 }
2454
2455 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2456 refs = record_subpages(page, addr, end, pages + *nr);
2457
2458 head = try_grab_compound_head(pud_page(orig), refs, flags);
2459 if (!head)
2460 return 0;
2461
2462 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2463 put_compound_head(head, refs, flags);
2464 return 0;
2465 }
2466
2467 *nr += refs;
2468 SetPageReferenced(head);
2469 return 1;
2470 }
2471
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2472 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2473 unsigned long end, unsigned int flags,
2474 struct page **pages, int *nr)
2475 {
2476 int refs;
2477 struct page *head, *page;
2478
2479 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2480 return 0;
2481
2482 BUILD_BUG_ON(pgd_devmap(orig));
2483
2484 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2485 refs = record_subpages(page, addr, end, pages + *nr);
2486
2487 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2488 if (!head)
2489 return 0;
2490
2491 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2492 put_compound_head(head, refs, flags);
2493 return 0;
2494 }
2495
2496 *nr += refs;
2497 SetPageReferenced(head);
2498 return 1;
2499 }
2500
gup_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2501 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2502 unsigned int flags, struct page **pages, int *nr)
2503 {
2504 unsigned long next;
2505 pmd_t *pmdp;
2506
2507 pmdp = pmd_offset_lockless(pudp, pud, addr);
2508 do {
2509 pmd_t pmd = READ_ONCE(*pmdp);
2510
2511 next = pmd_addr_end(addr, end);
2512 if (!pmd_present(pmd))
2513 return 0;
2514
2515 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2516 pmd_devmap(pmd))) {
2517 /*
2518 * NUMA hinting faults need to be handled in the GUP
2519 * slowpath for accounting purposes and so that they
2520 * can be serialised against THP migration.
2521 */
2522 if (pmd_protnone(pmd))
2523 return 0;
2524
2525 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2526 pages, nr))
2527 return 0;
2528
2529 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2530 /*
2531 * architecture have different format for hugetlbfs
2532 * pmd format and THP pmd format
2533 */
2534 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2535 PMD_SHIFT, next, flags, pages, nr))
2536 return 0;
2537 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2538 return 0;
2539 } while (pmdp++, addr = next, addr != end);
2540
2541 return 1;
2542 }
2543
gup_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2544 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2545 unsigned int flags, struct page **pages, int *nr)
2546 {
2547 unsigned long next;
2548 pud_t *pudp;
2549
2550 pudp = pud_offset_lockless(p4dp, p4d, addr);
2551 do {
2552 pud_t pud = READ_ONCE(*pudp);
2553
2554 next = pud_addr_end(addr, end);
2555 if (unlikely(!pud_present(pud)))
2556 return 0;
2557 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2558 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2559 pages, nr))
2560 return 0;
2561 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2562 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2563 PUD_SHIFT, next, flags, pages, nr))
2564 return 0;
2565 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2566 return 0;
2567 } while (pudp++, addr = next, addr != end);
2568
2569 return 1;
2570 }
2571
gup_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2572 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2573 unsigned int flags, struct page **pages, int *nr)
2574 {
2575 unsigned long next;
2576 p4d_t *p4dp;
2577
2578 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2579 do {
2580 p4d_t p4d = READ_ONCE(*p4dp);
2581
2582 next = p4d_addr_end(addr, end);
2583 if (p4d_none(p4d))
2584 return 0;
2585 BUILD_BUG_ON(p4d_huge(p4d));
2586 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2587 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2588 P4D_SHIFT, next, flags, pages, nr))
2589 return 0;
2590 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2591 return 0;
2592 } while (p4dp++, addr = next, addr != end);
2593
2594 return 1;
2595 }
2596
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2597 static void gup_pgd_range(unsigned long addr, unsigned long end,
2598 unsigned int flags, struct page **pages, int *nr)
2599 {
2600 unsigned long next;
2601 pgd_t *pgdp;
2602
2603 pgdp = pgd_offset(current->mm, addr);
2604 do {
2605 pgd_t pgd = READ_ONCE(*pgdp);
2606
2607 next = pgd_addr_end(addr, end);
2608 if (pgd_none(pgd))
2609 return;
2610 if (unlikely(pgd_huge(pgd))) {
2611 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2612 pages, nr))
2613 return;
2614 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2615 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2616 PGDIR_SHIFT, next, flags, pages, nr))
2617 return;
2618 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2619 return;
2620 } while (pgdp++, addr = next, addr != end);
2621 }
2622 #else
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2623 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2624 unsigned int flags, struct page **pages, int *nr)
2625 {
2626 }
2627 #endif /* CONFIG_HAVE_FAST_GUP */
2628
2629 #ifndef gup_fast_permitted
2630 /*
2631 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2632 * we need to fall back to the slow version:
2633 */
gup_fast_permitted(unsigned long start,unsigned long end)2634 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2635 {
2636 return true;
2637 }
2638 #endif
2639
__gup_longterm_unlocked(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2640 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2641 unsigned int gup_flags, struct page **pages)
2642 {
2643 int ret;
2644
2645 /*
2646 * FIXME: FOLL_LONGTERM does not work with
2647 * get_user_pages_unlocked() (see comments in that function)
2648 */
2649 if (gup_flags & FOLL_LONGTERM) {
2650 mmap_read_lock(current->mm);
2651 ret = __gup_longterm_locked(current->mm,
2652 start, nr_pages,
2653 pages, NULL, gup_flags);
2654 mmap_read_unlock(current->mm);
2655 } else {
2656 ret = get_user_pages_unlocked(start, nr_pages,
2657 pages, gup_flags);
2658 }
2659
2660 return ret;
2661 }
2662
lockless_pages_from_mm(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)2663 static unsigned long lockless_pages_from_mm(unsigned long start,
2664 unsigned long end,
2665 unsigned int gup_flags,
2666 struct page **pages)
2667 {
2668 unsigned long flags;
2669 int nr_pinned = 0;
2670 unsigned seq;
2671
2672 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2673 !gup_fast_permitted(start, end))
2674 return 0;
2675
2676 if (gup_flags & FOLL_PIN) {
2677 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2678 if (seq & 1)
2679 return 0;
2680 }
2681
2682 /*
2683 * Disable interrupts. The nested form is used, in order to allow full,
2684 * general purpose use of this routine.
2685 *
2686 * With interrupts disabled, we block page table pages from being freed
2687 * from under us. See struct mmu_table_batch comments in
2688 * include/asm-generic/tlb.h for more details.
2689 *
2690 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2691 * that come from THPs splitting.
2692 */
2693 local_irq_save(flags);
2694 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2695 local_irq_restore(flags);
2696
2697 /*
2698 * When pinning pages for DMA there could be a concurrent write protect
2699 * from fork() via copy_page_range(), in this case always fail fast GUP.
2700 */
2701 if (gup_flags & FOLL_PIN) {
2702 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2703 unpin_user_pages(pages, nr_pinned);
2704 return 0;
2705 }
2706 }
2707 return nr_pinned;
2708 }
2709
internal_get_user_pages_fast(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2710 static int internal_get_user_pages_fast(unsigned long start,
2711 unsigned long nr_pages,
2712 unsigned int gup_flags,
2713 struct page **pages)
2714 {
2715 unsigned long len, end;
2716 unsigned long nr_pinned;
2717 int ret;
2718
2719 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2720 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2721 FOLL_FAST_ONLY)))
2722 return -EINVAL;
2723
2724 if (gup_flags & FOLL_PIN)
2725 atomic_set(¤t->mm->has_pinned, 1);
2726
2727 if (!(gup_flags & FOLL_FAST_ONLY))
2728 might_lock_read(¤t->mm->mmap_lock);
2729
2730 start = untagged_addr(start) & PAGE_MASK;
2731 len = nr_pages << PAGE_SHIFT;
2732 if (check_add_overflow(start, len, &end))
2733 return 0;
2734 if (unlikely(!access_ok((void __user *)start, len)))
2735 return -EFAULT;
2736
2737 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2738 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2739 return nr_pinned;
2740
2741 /* Slow path: try to get the remaining pages with get_user_pages */
2742 start += nr_pinned << PAGE_SHIFT;
2743 pages += nr_pinned;
2744 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2745 pages);
2746 if (ret < 0) {
2747 /*
2748 * The caller has to unpin the pages we already pinned so
2749 * returning -errno is not an option
2750 */
2751 if (nr_pinned)
2752 return nr_pinned;
2753 return ret;
2754 }
2755 return ret + nr_pinned;
2756 }
2757
2758 /**
2759 * get_user_pages_fast_only() - pin user pages in memory
2760 * @start: starting user address
2761 * @nr_pages: number of pages from start to pin
2762 * @gup_flags: flags modifying pin behaviour
2763 * @pages: array that receives pointers to the pages pinned.
2764 * Should be at least nr_pages long.
2765 *
2766 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2767 * the regular GUP.
2768 * Note a difference with get_user_pages_fast: this always returns the
2769 * number of pages pinned, 0 if no pages were pinned.
2770 *
2771 * If the architecture does not support this function, simply return with no
2772 * pages pinned.
2773 *
2774 * Careful, careful! COW breaking can go either way, so a non-write
2775 * access can get ambiguous page results. If you call this function without
2776 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2777 */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2778 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2779 unsigned int gup_flags, struct page **pages)
2780 {
2781 int nr_pinned;
2782 /*
2783 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2784 * because gup fast is always a "pin with a +1 page refcount" request.
2785 *
2786 * FOLL_FAST_ONLY is required in order to match the API description of
2787 * this routine: no fall back to regular ("slow") GUP.
2788 */
2789 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2790
2791 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2792 pages);
2793
2794 /*
2795 * As specified in the API description above, this routine is not
2796 * allowed to return negative values. However, the common core
2797 * routine internal_get_user_pages_fast() *can* return -errno.
2798 * Therefore, correct for that here:
2799 */
2800 if (nr_pinned < 0)
2801 nr_pinned = 0;
2802
2803 return nr_pinned;
2804 }
2805 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2806
2807 /**
2808 * get_user_pages_fast() - pin user pages in memory
2809 * @start: starting user address
2810 * @nr_pages: number of pages from start to pin
2811 * @gup_flags: flags modifying pin behaviour
2812 * @pages: array that receives pointers to the pages pinned.
2813 * Should be at least nr_pages long.
2814 *
2815 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2816 * If not successful, it will fall back to taking the lock and
2817 * calling get_user_pages().
2818 *
2819 * Returns number of pages pinned. This may be fewer than the number requested.
2820 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2821 * -errno.
2822 */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2823 int get_user_pages_fast(unsigned long start, int nr_pages,
2824 unsigned int gup_flags, struct page **pages)
2825 {
2826 if (!is_valid_gup_flags(gup_flags))
2827 return -EINVAL;
2828
2829 /*
2830 * The caller may or may not have explicitly set FOLL_GET; either way is
2831 * OK. However, internally (within mm/gup.c), gup fast variants must set
2832 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2833 * request.
2834 */
2835 gup_flags |= FOLL_GET;
2836 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2837 }
2838 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2839
2840 /**
2841 * pin_user_pages_fast() - pin user pages in memory without taking locks
2842 *
2843 * @start: starting user address
2844 * @nr_pages: number of pages from start to pin
2845 * @gup_flags: flags modifying pin behaviour
2846 * @pages: array that receives pointers to the pages pinned.
2847 * Should be at least nr_pages long.
2848 *
2849 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2850 * get_user_pages_fast() for documentation on the function arguments, because
2851 * the arguments here are identical.
2852 *
2853 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2854 * see Documentation/core-api/pin_user_pages.rst for further details.
2855 */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2856 int pin_user_pages_fast(unsigned long start, int nr_pages,
2857 unsigned int gup_flags, struct page **pages)
2858 {
2859 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2860 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2861 return -EINVAL;
2862
2863 gup_flags |= FOLL_PIN;
2864 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2865 }
2866 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2867
2868 /*
2869 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2870 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2871 *
2872 * The API rules are the same, too: no negative values may be returned.
2873 */
pin_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2874 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2875 unsigned int gup_flags, struct page **pages)
2876 {
2877 int nr_pinned;
2878
2879 /*
2880 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2881 * rules require returning 0, rather than -errno:
2882 */
2883 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2884 return 0;
2885 /*
2886 * FOLL_FAST_ONLY is required in order to match the API description of
2887 * this routine: no fall back to regular ("slow") GUP.
2888 */
2889 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2890 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2891 pages);
2892 /*
2893 * This routine is not allowed to return negative values. However,
2894 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2895 * correct for that here:
2896 */
2897 if (nr_pinned < 0)
2898 nr_pinned = 0;
2899
2900 return nr_pinned;
2901 }
2902 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2903
2904 /**
2905 * pin_user_pages_remote() - pin pages of a remote process
2906 *
2907 * @mm: mm_struct of target mm
2908 * @start: starting user address
2909 * @nr_pages: number of pages from start to pin
2910 * @gup_flags: flags modifying lookup behaviour
2911 * @pages: array that receives pointers to the pages pinned.
2912 * Should be at least nr_pages long. Or NULL, if caller
2913 * only intends to ensure the pages are faulted in.
2914 * @vmas: array of pointers to vmas corresponding to each page.
2915 * Or NULL if the caller does not require them.
2916 * @locked: pointer to lock flag indicating whether lock is held and
2917 * subsequently whether VM_FAULT_RETRY functionality can be
2918 * utilised. Lock must initially be held.
2919 *
2920 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2921 * get_user_pages_remote() for documentation on the function arguments, because
2922 * the arguments here are identical.
2923 *
2924 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2925 * see Documentation/core-api/pin_user_pages.rst for details.
2926 */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2927 long pin_user_pages_remote(struct mm_struct *mm,
2928 unsigned long start, unsigned long nr_pages,
2929 unsigned int gup_flags, struct page **pages,
2930 struct vm_area_struct **vmas, int *locked)
2931 {
2932 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2933 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2934 return -EINVAL;
2935
2936 gup_flags |= FOLL_PIN;
2937 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2938 pages, vmas, locked);
2939 }
2940 EXPORT_SYMBOL(pin_user_pages_remote);
2941
2942 /**
2943 * pin_user_pages() - pin user pages in memory for use by other devices
2944 *
2945 * @start: starting user address
2946 * @nr_pages: number of pages from start to pin
2947 * @gup_flags: flags modifying lookup behaviour
2948 * @pages: array that receives pointers to the pages pinned.
2949 * Should be at least nr_pages long. Or NULL, if caller
2950 * only intends to ensure the pages are faulted in.
2951 * @vmas: array of pointers to vmas corresponding to each page.
2952 * Or NULL if the caller does not require them.
2953 *
2954 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2955 * FOLL_PIN is set.
2956 *
2957 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2958 * see Documentation/core-api/pin_user_pages.rst for details.
2959 */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)2960 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2961 unsigned int gup_flags, struct page **pages,
2962 struct vm_area_struct **vmas)
2963 {
2964 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2965 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2966 return -EINVAL;
2967
2968 gup_flags |= FOLL_PIN;
2969 return __gup_longterm_locked(current->mm, start, nr_pages,
2970 pages, vmas, gup_flags);
2971 }
2972 EXPORT_SYMBOL(pin_user_pages);
2973
2974 /*
2975 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2976 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2977 * FOLL_PIN and rejects FOLL_GET.
2978 */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2979 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2980 struct page **pages, unsigned int gup_flags)
2981 {
2982 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2983 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2984 return -EINVAL;
2985
2986 gup_flags |= FOLL_PIN;
2987 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2988 }
2989 EXPORT_SYMBOL(pin_user_pages_unlocked);
2990
2991 /*
2992 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2993 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2994 * FOLL_GET.
2995 */
pin_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2996 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2997 unsigned int gup_flags, struct page **pages,
2998 int *locked)
2999 {
3000 /*
3001 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3002 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3003 * vmas. As there are no users of this flag in this call we simply
3004 * disallow this option for now.
3005 */
3006 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3007 return -EINVAL;
3008
3009 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3010 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3011 return -EINVAL;
3012
3013 gup_flags |= FOLL_PIN;
3014 return __get_user_pages_locked(current->mm, start, nr_pages,
3015 pages, NULL, locked,
3016 gup_flags | FOLL_TOUCH);
3017 }
3018 EXPORT_SYMBOL(pin_user_pages_locked);
3019