1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 /*
40 * These routines are used by the resource group routines (rgrp.c)
41 * to keep track of block allocation. Each block is represented by two
42 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
43 *
44 * 0 = Free
45 * 1 = Used (not metadata)
46 * 2 = Unlinked (still in use) inode
47 * 3 = Used (metadata)
48 */
49
50 struct gfs2_extent {
51 struct gfs2_rbm rbm;
52 u32 len;
53 };
54
55 static const char valid_change[16] = {
56 /* current */
57 /* n */ 0, 1, 1, 1,
58 /* e */ 1, 0, 0, 0,
59 /* w */ 0, 0, 0, 1,
60 1, 0, 0, 0
61 };
62
63 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
64 const struct gfs2_inode *ip, bool nowrap);
65
66
67 /**
68 * gfs2_setbit - Set a bit in the bitmaps
69 * @rbm: The position of the bit to set
70 * @do_clone: Also set the clone bitmap, if it exists
71 * @new_state: the new state of the block
72 *
73 */
74
gfs2_setbit(const struct gfs2_rbm * rbm,bool do_clone,unsigned char new_state)75 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
76 unsigned char new_state)
77 {
78 unsigned char *byte1, *byte2, *end, cur_state;
79 struct gfs2_bitmap *bi = rbm_bi(rbm);
80 unsigned int buflen = bi->bi_bytes;
81 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
82
83 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
84 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
85
86 BUG_ON(byte1 >= end);
87
88 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
89
90 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
91 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
92
93 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
94 rbm->offset, cur_state, new_state);
95 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
96 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
97 (unsigned long long)bi->bi_bh->b_blocknr);
98 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
99 bi->bi_offset, bi->bi_bytes,
100 (unsigned long long)gfs2_rbm_to_block(rbm));
101 dump_stack();
102 gfs2_consist_rgrpd(rbm->rgd);
103 return;
104 }
105 *byte1 ^= (cur_state ^ new_state) << bit;
106
107 if (do_clone && bi->bi_clone) {
108 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
109 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
110 *byte2 ^= (cur_state ^ new_state) << bit;
111 }
112 }
113
114 /**
115 * gfs2_testbit - test a bit in the bitmaps
116 * @rbm: The bit to test
117 * @use_clone: If true, test the clone bitmap, not the official bitmap.
118 *
119 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
120 * not the "real" bitmaps, to avoid allocating recently freed blocks.
121 *
122 * Returns: The two bit block state of the requested bit
123 */
124
gfs2_testbit(const struct gfs2_rbm * rbm,bool use_clone)125 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
126 {
127 struct gfs2_bitmap *bi = rbm_bi(rbm);
128 const u8 *buffer;
129 const u8 *byte;
130 unsigned int bit;
131
132 if (use_clone && bi->bi_clone)
133 buffer = bi->bi_clone;
134 else
135 buffer = bi->bi_bh->b_data;
136 buffer += bi->bi_offset;
137 byte = buffer + (rbm->offset / GFS2_NBBY);
138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139
140 return (*byte >> bit) & GFS2_BIT_MASK;
141 }
142
143 /**
144 * gfs2_bit_search
145 * @ptr: Pointer to bitmap data
146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147 * @state: The state we are searching for
148 *
149 * We xor the bitmap data with a patter which is the bitwise opposite
150 * of what we are looking for, this gives rise to a pattern of ones
151 * wherever there is a match. Since we have two bits per entry, we
152 * take this pattern, shift it down by one place and then and it with
153 * the original. All the even bit positions (0,2,4, etc) then represent
154 * successful matches, so we mask with 0x55555..... to remove the unwanted
155 * odd bit positions.
156 *
157 * This allows searching of a whole u64 at once (32 blocks) with a
158 * single test (on 64 bit arches).
159 */
160
gfs2_bit_search(const __le64 * ptr,u64 mask,u8 state)161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162 {
163 u64 tmp;
164 static const u64 search[] = {
165 [0] = 0xffffffffffffffffULL,
166 [1] = 0xaaaaaaaaaaaaaaaaULL,
167 [2] = 0x5555555555555555ULL,
168 [3] = 0x0000000000000000ULL,
169 };
170 tmp = le64_to_cpu(*ptr) ^ search[state];
171 tmp &= (tmp >> 1);
172 tmp &= mask;
173 return tmp;
174 }
175
176 /**
177 * rs_cmp - multi-block reservation range compare
178 * @blk: absolute file system block number of the new reservation
179 * @len: number of blocks in the new reservation
180 * @rs: existing reservation to compare against
181 *
182 * returns: 1 if the block range is beyond the reach of the reservation
183 * -1 if the block range is before the start of the reservation
184 * 0 if the block range overlaps with the reservation
185 */
rs_cmp(u64 blk,u32 len,struct gfs2_blkreserv * rs)186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187 {
188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189
190 if (blk >= startblk + rs->rs_free)
191 return 1;
192 if (blk + len - 1 < startblk)
193 return -1;
194 return 0;
195 }
196
197 /**
198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199 * a block in a given allocation state.
200 * @buf: the buffer that holds the bitmaps
201 * @len: the length (in bytes) of the buffer
202 * @goal: start search at this block's bit-pair (within @buffer)
203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204 *
205 * Scope of @goal and returned block number is only within this bitmap buffer,
206 * not entire rgrp or filesystem. @buffer will be offset from the actual
207 * beginning of a bitmap block buffer, skipping any header structures, but
208 * headers are always a multiple of 64 bits long so that the buffer is
209 * always aligned to a 64 bit boundary.
210 *
211 * The size of the buffer is in bytes, but is it assumed that it is
212 * always ok to read a complete multiple of 64 bits at the end
213 * of the block in case the end is no aligned to a natural boundary.
214 *
215 * Return: the block number (bitmap buffer scope) that was found
216 */
217
gfs2_bitfit(const u8 * buf,const unsigned int len,u32 goal,u8 state)218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219 u32 goal, u8 state)
220 {
221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224 u64 tmp;
225 u64 mask = 0x5555555555555555ULL;
226 u32 bit;
227
228 /* Mask off bits we don't care about at the start of the search */
229 mask <<= spoint;
230 tmp = gfs2_bit_search(ptr, mask, state);
231 ptr++;
232 while(tmp == 0 && ptr < end) {
233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234 ptr++;
235 }
236 /* Mask off any bits which are more than len bytes from the start */
237 if (ptr == end && (len & (sizeof(u64) - 1)))
238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239 /* Didn't find anything, so return */
240 if (tmp == 0)
241 return BFITNOENT;
242 ptr--;
243 bit = __ffs64(tmp);
244 bit /= 2; /* two bits per entry in the bitmap */
245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246 }
247
248 /**
249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250 * @rbm: The rbm with rgd already set correctly
251 * @block: The block number (filesystem relative)
252 *
253 * This sets the bi and offset members of an rbm based on a
254 * resource group and a filesystem relative block number. The
255 * resource group must be set in the rbm on entry, the bi and
256 * offset members will be set by this function.
257 *
258 * Returns: 0 on success, or an error code
259 */
260
gfs2_rbm_from_block(struct gfs2_rbm * rbm,u64 block)261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262 {
263 if (!rgrp_contains_block(rbm->rgd, block))
264 return -E2BIG;
265 rbm->bii = 0;
266 rbm->offset = block - rbm->rgd->rd_data0;
267 /* Check if the block is within the first block */
268 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
269 return 0;
270
271 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
272 rbm->offset += (sizeof(struct gfs2_rgrp) -
273 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
274 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
275 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
276 return 0;
277 }
278
279 /**
280 * gfs2_rbm_incr - increment an rbm structure
281 * @rbm: The rbm with rgd already set correctly
282 *
283 * This function takes an existing rbm structure and increments it to the next
284 * viable block offset.
285 *
286 * Returns: If incrementing the offset would cause the rbm to go past the
287 * end of the rgrp, true is returned, otherwise false.
288 *
289 */
290
gfs2_rbm_incr(struct gfs2_rbm * rbm)291 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
292 {
293 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
294 rbm->offset++;
295 return false;
296 }
297 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
298 return true;
299
300 rbm->offset = 0;
301 rbm->bii++;
302 return false;
303 }
304
305 /**
306 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
307 * @rbm: Position to search (value/result)
308 * @n_unaligned: Number of unaligned blocks to check
309 * @len: Decremented for each block found (terminate on zero)
310 *
311 * Returns: true if a non-free block is encountered
312 */
313
gfs2_unaligned_extlen(struct gfs2_rbm * rbm,u32 n_unaligned,u32 * len)314 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
315 {
316 u32 n;
317 u8 res;
318
319 for (n = 0; n < n_unaligned; n++) {
320 res = gfs2_testbit(rbm, true);
321 if (res != GFS2_BLKST_FREE)
322 return true;
323 (*len)--;
324 if (*len == 0)
325 return true;
326 if (gfs2_rbm_incr(rbm))
327 return true;
328 }
329
330 return false;
331 }
332
333 /**
334 * gfs2_free_extlen - Return extent length of free blocks
335 * @rrbm: Starting position
336 * @len: Max length to check
337 *
338 * Starting at the block specified by the rbm, see how many free blocks
339 * there are, not reading more than len blocks ahead. This can be done
340 * using memchr_inv when the blocks are byte aligned, but has to be done
341 * on a block by block basis in case of unaligned blocks. Also this
342 * function can cope with bitmap boundaries (although it must stop on
343 * a resource group boundary)
344 *
345 * Returns: Number of free blocks in the extent
346 */
347
gfs2_free_extlen(const struct gfs2_rbm * rrbm,u32 len)348 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
349 {
350 struct gfs2_rbm rbm = *rrbm;
351 u32 n_unaligned = rbm.offset & 3;
352 u32 size = len;
353 u32 bytes;
354 u32 chunk_size;
355 u8 *ptr, *start, *end;
356 u64 block;
357 struct gfs2_bitmap *bi;
358
359 if (n_unaligned &&
360 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
361 goto out;
362
363 n_unaligned = len & 3;
364 /* Start is now byte aligned */
365 while (len > 3) {
366 bi = rbm_bi(&rbm);
367 start = bi->bi_bh->b_data;
368 if (bi->bi_clone)
369 start = bi->bi_clone;
370 start += bi->bi_offset;
371 end = start + bi->bi_bytes;
372 BUG_ON(rbm.offset & 3);
373 start += (rbm.offset / GFS2_NBBY);
374 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
375 ptr = memchr_inv(start, 0, bytes);
376 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
377 chunk_size *= GFS2_NBBY;
378 BUG_ON(len < chunk_size);
379 len -= chunk_size;
380 block = gfs2_rbm_to_block(&rbm);
381 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
382 n_unaligned = 0;
383 break;
384 }
385 if (ptr) {
386 n_unaligned = 3;
387 break;
388 }
389 n_unaligned = len & 3;
390 }
391
392 /* Deal with any bits left over at the end */
393 if (n_unaligned)
394 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
395 out:
396 return size - len;
397 }
398
399 /**
400 * gfs2_bitcount - count the number of bits in a certain state
401 * @rgd: the resource group descriptor
402 * @buffer: the buffer that holds the bitmaps
403 * @buflen: the length (in bytes) of the buffer
404 * @state: the state of the block we're looking for
405 *
406 * Returns: The number of bits
407 */
408
gfs2_bitcount(struct gfs2_rgrpd * rgd,const u8 * buffer,unsigned int buflen,u8 state)409 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
410 unsigned int buflen, u8 state)
411 {
412 const u8 *byte = buffer;
413 const u8 *end = buffer + buflen;
414 const u8 state1 = state << 2;
415 const u8 state2 = state << 4;
416 const u8 state3 = state << 6;
417 u32 count = 0;
418
419 for (; byte < end; byte++) {
420 if (((*byte) & 0x03) == state)
421 count++;
422 if (((*byte) & 0x0C) == state1)
423 count++;
424 if (((*byte) & 0x30) == state2)
425 count++;
426 if (((*byte) & 0xC0) == state3)
427 count++;
428 }
429
430 return count;
431 }
432
433 /**
434 * gfs2_rgrp_verify - Verify that a resource group is consistent
435 * @rgd: the rgrp
436 *
437 */
438
gfs2_rgrp_verify(struct gfs2_rgrpd * rgd)439 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
440 {
441 struct gfs2_sbd *sdp = rgd->rd_sbd;
442 struct gfs2_bitmap *bi = NULL;
443 u32 length = rgd->rd_length;
444 u32 count[4], tmp;
445 int buf, x;
446
447 memset(count, 0, 4 * sizeof(u32));
448
449 /* Count # blocks in each of 4 possible allocation states */
450 for (buf = 0; buf < length; buf++) {
451 bi = rgd->rd_bits + buf;
452 for (x = 0; x < 4; x++)
453 count[x] += gfs2_bitcount(rgd,
454 bi->bi_bh->b_data +
455 bi->bi_offset,
456 bi->bi_bytes, x);
457 }
458
459 if (count[0] != rgd->rd_free) {
460 gfs2_lm(sdp, "free data mismatch: %u != %u\n",
461 count[0], rgd->rd_free);
462 gfs2_consist_rgrpd(rgd);
463 return;
464 }
465
466 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
467 if (count[1] != tmp) {
468 gfs2_lm(sdp, "used data mismatch: %u != %u\n",
469 count[1], tmp);
470 gfs2_consist_rgrpd(rgd);
471 return;
472 }
473
474 if (count[2] + count[3] != rgd->rd_dinodes) {
475 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n",
476 count[2] + count[3], rgd->rd_dinodes);
477 gfs2_consist_rgrpd(rgd);
478 return;
479 }
480 }
481
482 /**
483 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
484 * @sdp: The GFS2 superblock
485 * @blk: The data block number
486 * @exact: True if this needs to be an exact match
487 *
488 * The @exact argument should be set to true by most callers. The exception
489 * is when we need to match blocks which are not represented by the rgrp
490 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
491 * there for alignment purposes. Another way of looking at it is that @exact
492 * matches only valid data/metadata blocks, but with @exact false, it will
493 * match any block within the extent of the rgrp.
494 *
495 * Returns: The resource group, or NULL if not found
496 */
497
gfs2_blk2rgrpd(struct gfs2_sbd * sdp,u64 blk,bool exact)498 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
499 {
500 struct rb_node *n, *next;
501 struct gfs2_rgrpd *cur;
502
503 spin_lock(&sdp->sd_rindex_spin);
504 n = sdp->sd_rindex_tree.rb_node;
505 while (n) {
506 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
507 next = NULL;
508 if (blk < cur->rd_addr)
509 next = n->rb_left;
510 else if (blk >= cur->rd_data0 + cur->rd_data)
511 next = n->rb_right;
512 if (next == NULL) {
513 spin_unlock(&sdp->sd_rindex_spin);
514 if (exact) {
515 if (blk < cur->rd_addr)
516 return NULL;
517 if (blk >= cur->rd_data0 + cur->rd_data)
518 return NULL;
519 }
520 return cur;
521 }
522 n = next;
523 }
524 spin_unlock(&sdp->sd_rindex_spin);
525
526 return NULL;
527 }
528
529 /**
530 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
531 * @sdp: The GFS2 superblock
532 *
533 * Returns: The first rgrp in the filesystem
534 */
535
gfs2_rgrpd_get_first(struct gfs2_sbd * sdp)536 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
537 {
538 const struct rb_node *n;
539 struct gfs2_rgrpd *rgd;
540
541 spin_lock(&sdp->sd_rindex_spin);
542 n = rb_first(&sdp->sd_rindex_tree);
543 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
544 spin_unlock(&sdp->sd_rindex_spin);
545
546 return rgd;
547 }
548
549 /**
550 * gfs2_rgrpd_get_next - get the next RG
551 * @rgd: the resource group descriptor
552 *
553 * Returns: The next rgrp
554 */
555
gfs2_rgrpd_get_next(struct gfs2_rgrpd * rgd)556 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
557 {
558 struct gfs2_sbd *sdp = rgd->rd_sbd;
559 const struct rb_node *n;
560
561 spin_lock(&sdp->sd_rindex_spin);
562 n = rb_next(&rgd->rd_node);
563 if (n == NULL)
564 n = rb_first(&sdp->sd_rindex_tree);
565
566 if (unlikely(&rgd->rd_node == n)) {
567 spin_unlock(&sdp->sd_rindex_spin);
568 return NULL;
569 }
570 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
571 spin_unlock(&sdp->sd_rindex_spin);
572 return rgd;
573 }
574
check_and_update_goal(struct gfs2_inode * ip)575 void check_and_update_goal(struct gfs2_inode *ip)
576 {
577 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
578 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
579 ip->i_goal = ip->i_no_addr;
580 }
581
gfs2_free_clones(struct gfs2_rgrpd * rgd)582 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
583 {
584 int x;
585
586 for (x = 0; x < rgd->rd_length; x++) {
587 struct gfs2_bitmap *bi = rgd->rd_bits + x;
588 kfree(bi->bi_clone);
589 bi->bi_clone = NULL;
590 }
591 }
592
dump_rs(struct seq_file * seq,const struct gfs2_blkreserv * rs,const char * fs_id_buf)593 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
594 const char *fs_id_buf)
595 {
596 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
597
598 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
599 (unsigned long long)ip->i_no_addr,
600 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
601 rs->rs_rbm.offset, rs->rs_free);
602 }
603
604 /**
605 * __rs_deltree - remove a multi-block reservation from the rgd tree
606 * @rs: The reservation to remove
607 *
608 */
__rs_deltree(struct gfs2_blkreserv * rs)609 static void __rs_deltree(struct gfs2_blkreserv *rs)
610 {
611 struct gfs2_rgrpd *rgd;
612
613 if (!gfs2_rs_active(rs))
614 return;
615
616 rgd = rs->rs_rbm.rgd;
617 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
618 rb_erase(&rs->rs_node, &rgd->rd_rstree);
619 RB_CLEAR_NODE(&rs->rs_node);
620
621 if (rs->rs_free) {
622 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
623 rs->rs_free - 1;
624 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
625 struct gfs2_bitmap *start, *last;
626
627 /* return reserved blocks to the rgrp */
628 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
629 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
630 /* The rgrp extent failure point is likely not to increase;
631 it will only do so if the freed blocks are somehow
632 contiguous with a span of free blocks that follows. Still,
633 it will force the number to be recalculated later. */
634 rgd->rd_extfail_pt += rs->rs_free;
635 rs->rs_free = 0;
636 if (gfs2_rbm_from_block(&last_rbm, last_block))
637 return;
638 start = rbm_bi(&rs->rs_rbm);
639 last = rbm_bi(&last_rbm);
640 do
641 clear_bit(GBF_FULL, &start->bi_flags);
642 while (start++ != last);
643 }
644 }
645
646 /**
647 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
648 * @rs: The reservation to remove
649 *
650 */
gfs2_rs_deltree(struct gfs2_blkreserv * rs)651 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
652 {
653 struct gfs2_rgrpd *rgd;
654
655 rgd = rs->rs_rbm.rgd;
656 if (rgd) {
657 spin_lock(&rgd->rd_rsspin);
658 __rs_deltree(rs);
659 BUG_ON(rs->rs_free);
660 spin_unlock(&rgd->rd_rsspin);
661 }
662 }
663
664 /**
665 * gfs2_rs_delete - delete a multi-block reservation
666 * @ip: The inode for this reservation
667 *
668 */
gfs2_rs_delete(struct gfs2_inode * ip)669 void gfs2_rs_delete(struct gfs2_inode *ip)
670 {
671 struct inode *inode = &ip->i_inode;
672
673 down_write(&ip->i_rw_mutex);
674 if (atomic_read(&inode->i_writecount) <= 1)
675 gfs2_rs_deltree(&ip->i_res);
676 up_write(&ip->i_rw_mutex);
677 }
678
679 /**
680 * return_all_reservations - return all reserved blocks back to the rgrp.
681 * @rgd: the rgrp that needs its space back
682 *
683 * We previously reserved a bunch of blocks for allocation. Now we need to
684 * give them back. This leave the reservation structures in tact, but removes
685 * all of their corresponding "no-fly zones".
686 */
return_all_reservations(struct gfs2_rgrpd * rgd)687 static void return_all_reservations(struct gfs2_rgrpd *rgd)
688 {
689 struct rb_node *n;
690 struct gfs2_blkreserv *rs;
691
692 spin_lock(&rgd->rd_rsspin);
693 while ((n = rb_first(&rgd->rd_rstree))) {
694 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
695 __rs_deltree(rs);
696 }
697 spin_unlock(&rgd->rd_rsspin);
698 }
699
gfs2_clear_rgrpd(struct gfs2_sbd * sdp)700 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
701 {
702 struct rb_node *n;
703 struct gfs2_rgrpd *rgd;
704 struct gfs2_glock *gl;
705
706 while ((n = rb_first(&sdp->sd_rindex_tree))) {
707 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
708 gl = rgd->rd_gl;
709
710 rb_erase(n, &sdp->sd_rindex_tree);
711
712 if (gl) {
713 if (gl->gl_state != LM_ST_UNLOCKED) {
714 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
715 flush_delayed_work(&gl->gl_work);
716 }
717 gfs2_rgrp_brelse(rgd);
718 glock_clear_object(gl, rgd);
719 gfs2_glock_put(gl);
720 }
721
722 gfs2_free_clones(rgd);
723 return_all_reservations(rgd);
724 kfree(rgd->rd_bits);
725 rgd->rd_bits = NULL;
726 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
727 }
728 }
729
730 /**
731 * gfs2_compute_bitstructs - Compute the bitmap sizes
732 * @rgd: The resource group descriptor
733 *
734 * Calculates bitmap descriptors, one for each block that contains bitmap data
735 *
736 * Returns: errno
737 */
738
compute_bitstructs(struct gfs2_rgrpd * rgd)739 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
740 {
741 struct gfs2_sbd *sdp = rgd->rd_sbd;
742 struct gfs2_bitmap *bi;
743 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
744 u32 bytes_left, bytes;
745 int x;
746
747 if (!length)
748 return -EINVAL;
749
750 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
751 if (!rgd->rd_bits)
752 return -ENOMEM;
753
754 bytes_left = rgd->rd_bitbytes;
755
756 for (x = 0; x < length; x++) {
757 bi = rgd->rd_bits + x;
758
759 bi->bi_flags = 0;
760 /* small rgrp; bitmap stored completely in header block */
761 if (length == 1) {
762 bytes = bytes_left;
763 bi->bi_offset = sizeof(struct gfs2_rgrp);
764 bi->bi_start = 0;
765 bi->bi_bytes = bytes;
766 bi->bi_blocks = bytes * GFS2_NBBY;
767 /* header block */
768 } else if (x == 0) {
769 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
770 bi->bi_offset = sizeof(struct gfs2_rgrp);
771 bi->bi_start = 0;
772 bi->bi_bytes = bytes;
773 bi->bi_blocks = bytes * GFS2_NBBY;
774 /* last block */
775 } else if (x + 1 == length) {
776 bytes = bytes_left;
777 bi->bi_offset = sizeof(struct gfs2_meta_header);
778 bi->bi_start = rgd->rd_bitbytes - bytes_left;
779 bi->bi_bytes = bytes;
780 bi->bi_blocks = bytes * GFS2_NBBY;
781 /* other blocks */
782 } else {
783 bytes = sdp->sd_sb.sb_bsize -
784 sizeof(struct gfs2_meta_header);
785 bi->bi_offset = sizeof(struct gfs2_meta_header);
786 bi->bi_start = rgd->rd_bitbytes - bytes_left;
787 bi->bi_bytes = bytes;
788 bi->bi_blocks = bytes * GFS2_NBBY;
789 }
790
791 bytes_left -= bytes;
792 }
793
794 if (bytes_left) {
795 gfs2_consist_rgrpd(rgd);
796 return -EIO;
797 }
798 bi = rgd->rd_bits + (length - 1);
799 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
800 gfs2_lm(sdp,
801 "ri_addr = %llu\n"
802 "ri_length = %u\n"
803 "ri_data0 = %llu\n"
804 "ri_data = %u\n"
805 "ri_bitbytes = %u\n"
806 "start=%u len=%u offset=%u\n",
807 (unsigned long long)rgd->rd_addr,
808 rgd->rd_length,
809 (unsigned long long)rgd->rd_data0,
810 rgd->rd_data,
811 rgd->rd_bitbytes,
812 bi->bi_start, bi->bi_bytes, bi->bi_offset);
813 gfs2_consist_rgrpd(rgd);
814 return -EIO;
815 }
816
817 return 0;
818 }
819
820 /**
821 * gfs2_ri_total - Total up the file system space, according to the rindex.
822 * @sdp: the filesystem
823 *
824 */
gfs2_ri_total(struct gfs2_sbd * sdp)825 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
826 {
827 u64 total_data = 0;
828 struct inode *inode = sdp->sd_rindex;
829 struct gfs2_inode *ip = GFS2_I(inode);
830 char buf[sizeof(struct gfs2_rindex)];
831 int error, rgrps;
832
833 for (rgrps = 0;; rgrps++) {
834 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
835
836 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
837 break;
838 error = gfs2_internal_read(ip, buf, &pos,
839 sizeof(struct gfs2_rindex));
840 if (error != sizeof(struct gfs2_rindex))
841 break;
842 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
843 }
844 return total_data;
845 }
846
rgd_insert(struct gfs2_rgrpd * rgd)847 static int rgd_insert(struct gfs2_rgrpd *rgd)
848 {
849 struct gfs2_sbd *sdp = rgd->rd_sbd;
850 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
851
852 /* Figure out where to put new node */
853 while (*newn) {
854 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
855 rd_node);
856
857 parent = *newn;
858 if (rgd->rd_addr < cur->rd_addr)
859 newn = &((*newn)->rb_left);
860 else if (rgd->rd_addr > cur->rd_addr)
861 newn = &((*newn)->rb_right);
862 else
863 return -EEXIST;
864 }
865
866 rb_link_node(&rgd->rd_node, parent, newn);
867 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
868 sdp->sd_rgrps++;
869 return 0;
870 }
871
872 /**
873 * read_rindex_entry - Pull in a new resource index entry from the disk
874 * @ip: Pointer to the rindex inode
875 *
876 * Returns: 0 on success, > 0 on EOF, error code otherwise
877 */
878
read_rindex_entry(struct gfs2_inode * ip)879 static int read_rindex_entry(struct gfs2_inode *ip)
880 {
881 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
882 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
883 struct gfs2_rindex buf;
884 int error;
885 struct gfs2_rgrpd *rgd;
886
887 if (pos >= i_size_read(&ip->i_inode))
888 return 1;
889
890 error = gfs2_internal_read(ip, (char *)&buf, &pos,
891 sizeof(struct gfs2_rindex));
892
893 if (error != sizeof(struct gfs2_rindex))
894 return (error == 0) ? 1 : error;
895
896 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
897 error = -ENOMEM;
898 if (!rgd)
899 return error;
900
901 rgd->rd_sbd = sdp;
902 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
903 rgd->rd_length = be32_to_cpu(buf.ri_length);
904 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
905 rgd->rd_data = be32_to_cpu(buf.ri_data);
906 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
907 spin_lock_init(&rgd->rd_rsspin);
908
909 error = gfs2_glock_get(sdp, rgd->rd_addr,
910 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
911 if (error)
912 goto fail;
913
914 error = compute_bitstructs(rgd);
915 if (error)
916 goto fail_glock;
917
918 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
919 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
920 if (rgd->rd_data > sdp->sd_max_rg_data)
921 sdp->sd_max_rg_data = rgd->rd_data;
922 spin_lock(&sdp->sd_rindex_spin);
923 error = rgd_insert(rgd);
924 spin_unlock(&sdp->sd_rindex_spin);
925 if (!error) {
926 glock_set_object(rgd->rd_gl, rgd);
927 return 0;
928 }
929
930 error = 0; /* someone else read in the rgrp; free it and ignore it */
931 fail_glock:
932 gfs2_glock_put(rgd->rd_gl);
933
934 fail:
935 kfree(rgd->rd_bits);
936 rgd->rd_bits = NULL;
937 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
938 return error;
939 }
940
941 /**
942 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
943 * @sdp: the GFS2 superblock
944 *
945 * The purpose of this function is to select a subset of the resource groups
946 * and mark them as PREFERRED. We do it in such a way that each node prefers
947 * to use a unique set of rgrps to minimize glock contention.
948 */
set_rgrp_preferences(struct gfs2_sbd * sdp)949 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
950 {
951 struct gfs2_rgrpd *rgd, *first;
952 int i;
953
954 /* Skip an initial number of rgrps, based on this node's journal ID.
955 That should start each node out on its own set. */
956 rgd = gfs2_rgrpd_get_first(sdp);
957 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
958 rgd = gfs2_rgrpd_get_next(rgd);
959 first = rgd;
960
961 do {
962 rgd->rd_flags |= GFS2_RDF_PREFERRED;
963 for (i = 0; i < sdp->sd_journals; i++) {
964 rgd = gfs2_rgrpd_get_next(rgd);
965 if (!rgd || rgd == first)
966 break;
967 }
968 } while (rgd && rgd != first);
969 }
970
971 /**
972 * gfs2_ri_update - Pull in a new resource index from the disk
973 * @ip: pointer to the rindex inode
974 *
975 * Returns: 0 on successful update, error code otherwise
976 */
977
gfs2_ri_update(struct gfs2_inode * ip)978 static int gfs2_ri_update(struct gfs2_inode *ip)
979 {
980 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
981 int error;
982
983 do {
984 error = read_rindex_entry(ip);
985 } while (error == 0);
986
987 if (error < 0)
988 return error;
989
990 if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
991 fs_err(sdp, "no resource groups found in the file system.\n");
992 return -ENOENT;
993 }
994 set_rgrp_preferences(sdp);
995
996 sdp->sd_rindex_uptodate = 1;
997 return 0;
998 }
999
1000 /**
1001 * gfs2_rindex_update - Update the rindex if required
1002 * @sdp: The GFS2 superblock
1003 *
1004 * We grab a lock on the rindex inode to make sure that it doesn't
1005 * change whilst we are performing an operation. We keep this lock
1006 * for quite long periods of time compared to other locks. This
1007 * doesn't matter, since it is shared and it is very, very rarely
1008 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1009 *
1010 * This makes sure that we're using the latest copy of the resource index
1011 * special file, which might have been updated if someone expanded the
1012 * filesystem (via gfs2_grow utility), which adds new resource groups.
1013 *
1014 * Returns: 0 on succeess, error code otherwise
1015 */
1016
gfs2_rindex_update(struct gfs2_sbd * sdp)1017 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1018 {
1019 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1020 struct gfs2_glock *gl = ip->i_gl;
1021 struct gfs2_holder ri_gh;
1022 int error = 0;
1023 int unlock_required = 0;
1024
1025 /* Read new copy from disk if we don't have the latest */
1026 if (!sdp->sd_rindex_uptodate) {
1027 if (!gfs2_glock_is_locked_by_me(gl)) {
1028 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1029 if (error)
1030 return error;
1031 unlock_required = 1;
1032 }
1033 if (!sdp->sd_rindex_uptodate)
1034 error = gfs2_ri_update(ip);
1035 if (unlock_required)
1036 gfs2_glock_dq_uninit(&ri_gh);
1037 }
1038
1039 return error;
1040 }
1041
gfs2_rgrp_in(struct gfs2_rgrpd * rgd,const void * buf)1042 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1043 {
1044 const struct gfs2_rgrp *str = buf;
1045 u32 rg_flags;
1046
1047 rg_flags = be32_to_cpu(str->rg_flags);
1048 rg_flags &= ~GFS2_RDF_MASK;
1049 rgd->rd_flags &= GFS2_RDF_MASK;
1050 rgd->rd_flags |= rg_flags;
1051 rgd->rd_free = be32_to_cpu(str->rg_free);
1052 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1053 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1054 /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1055 }
1056
gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb * rgl,const void * buf)1057 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1058 {
1059 const struct gfs2_rgrp *str = buf;
1060
1061 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1062 rgl->rl_flags = str->rg_flags;
1063 rgl->rl_free = str->rg_free;
1064 rgl->rl_dinodes = str->rg_dinodes;
1065 rgl->rl_igeneration = str->rg_igeneration;
1066 rgl->__pad = 0UL;
1067 }
1068
gfs2_rgrp_out(struct gfs2_rgrpd * rgd,void * buf)1069 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1070 {
1071 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1072 struct gfs2_rgrp *str = buf;
1073 u32 crc;
1074
1075 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1076 str->rg_free = cpu_to_be32(rgd->rd_free);
1077 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1078 if (next == NULL)
1079 str->rg_skip = 0;
1080 else if (next->rd_addr > rgd->rd_addr)
1081 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1082 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1083 str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1084 str->rg_data = cpu_to_be32(rgd->rd_data);
1085 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1086 str->rg_crc = 0;
1087 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1088 str->rg_crc = cpu_to_be32(crc);
1089
1090 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1091 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1092 }
1093
gfs2_rgrp_lvb_valid(struct gfs2_rgrpd * rgd)1094 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1095 {
1096 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1097 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1098 struct gfs2_sbd *sdp = rgd->rd_sbd;
1099 int valid = 1;
1100
1101 if (rgl->rl_flags != str->rg_flags) {
1102 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1103 (unsigned long long)rgd->rd_addr,
1104 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1105 valid = 0;
1106 }
1107 if (rgl->rl_free != str->rg_free) {
1108 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1109 (unsigned long long)rgd->rd_addr,
1110 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1111 valid = 0;
1112 }
1113 if (rgl->rl_dinodes != str->rg_dinodes) {
1114 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1115 (unsigned long long)rgd->rd_addr,
1116 be32_to_cpu(rgl->rl_dinodes),
1117 be32_to_cpu(str->rg_dinodes));
1118 valid = 0;
1119 }
1120 if (rgl->rl_igeneration != str->rg_igeneration) {
1121 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1122 (unsigned long long)rgd->rd_addr,
1123 (unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1124 (unsigned long long)be64_to_cpu(str->rg_igeneration));
1125 valid = 0;
1126 }
1127 return valid;
1128 }
1129
count_unlinked(struct gfs2_rgrpd * rgd)1130 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1131 {
1132 struct gfs2_bitmap *bi;
1133 const u32 length = rgd->rd_length;
1134 const u8 *buffer = NULL;
1135 u32 i, goal, count = 0;
1136
1137 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1138 goal = 0;
1139 buffer = bi->bi_bh->b_data + bi->bi_offset;
1140 WARN_ON(!buffer_uptodate(bi->bi_bh));
1141 while (goal < bi->bi_blocks) {
1142 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1143 GFS2_BLKST_UNLINKED);
1144 if (goal == BFITNOENT)
1145 break;
1146 count++;
1147 goal++;
1148 }
1149 }
1150
1151 return count;
1152 }
1153
1154
1155 /**
1156 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1157 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1158 *
1159 * Read in all of a Resource Group's header and bitmap blocks.
1160 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1161 *
1162 * Returns: errno
1163 */
1164
gfs2_rgrp_bh_get(struct gfs2_rgrpd * rgd)1165 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1166 {
1167 struct gfs2_sbd *sdp = rgd->rd_sbd;
1168 struct gfs2_glock *gl = rgd->rd_gl;
1169 unsigned int length = rgd->rd_length;
1170 struct gfs2_bitmap *bi;
1171 unsigned int x, y;
1172 int error;
1173
1174 if (rgd->rd_bits[0].bi_bh != NULL)
1175 return 0;
1176
1177 for (x = 0; x < length; x++) {
1178 bi = rgd->rd_bits + x;
1179 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1180 if (error)
1181 goto fail;
1182 }
1183
1184 for (y = length; y--;) {
1185 bi = rgd->rd_bits + y;
1186 error = gfs2_meta_wait(sdp, bi->bi_bh);
1187 if (error)
1188 goto fail;
1189 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1190 GFS2_METATYPE_RG)) {
1191 error = -EIO;
1192 goto fail;
1193 }
1194 }
1195
1196 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1197 for (x = 0; x < length; x++)
1198 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1199 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1200 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1201 rgd->rd_free_clone = rgd->rd_free;
1202 /* max out the rgrp allocation failure point */
1203 rgd->rd_extfail_pt = rgd->rd_free;
1204 }
1205 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1206 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1207 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1208 rgd->rd_bits[0].bi_bh->b_data);
1209 }
1210 else if (sdp->sd_args.ar_rgrplvb) {
1211 if (!gfs2_rgrp_lvb_valid(rgd)){
1212 gfs2_consist_rgrpd(rgd);
1213 error = -EIO;
1214 goto fail;
1215 }
1216 if (rgd->rd_rgl->rl_unlinked == 0)
1217 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1218 }
1219 return 0;
1220
1221 fail:
1222 while (x--) {
1223 bi = rgd->rd_bits + x;
1224 brelse(bi->bi_bh);
1225 bi->bi_bh = NULL;
1226 gfs2_assert_warn(sdp, !bi->bi_clone);
1227 }
1228
1229 return error;
1230 }
1231
update_rgrp_lvb(struct gfs2_rgrpd * rgd)1232 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1233 {
1234 u32 rl_flags;
1235
1236 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1237 return 0;
1238
1239 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1240 return gfs2_rgrp_bh_get(rgd);
1241
1242 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1243 rl_flags &= ~GFS2_RDF_MASK;
1244 rgd->rd_flags &= GFS2_RDF_MASK;
1245 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1246 if (rgd->rd_rgl->rl_unlinked == 0)
1247 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1248 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1249 rgd->rd_free_clone = rgd->rd_free;
1250 /* max out the rgrp allocation failure point */
1251 rgd->rd_extfail_pt = rgd->rd_free;
1252 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1253 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1254 return 0;
1255 }
1256
gfs2_rgrp_go_lock(struct gfs2_holder * gh)1257 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1258 {
1259 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1260 struct gfs2_sbd *sdp = rgd->rd_sbd;
1261
1262 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1263 return 0;
1264 return gfs2_rgrp_bh_get(rgd);
1265 }
1266
1267 /**
1268 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1269 * @rgd: The resource group
1270 *
1271 */
1272
gfs2_rgrp_brelse(struct gfs2_rgrpd * rgd)1273 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1274 {
1275 int x, length = rgd->rd_length;
1276
1277 for (x = 0; x < length; x++) {
1278 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1279 if (bi->bi_bh) {
1280 brelse(bi->bi_bh);
1281 bi->bi_bh = NULL;
1282 }
1283 }
1284 }
1285
gfs2_rgrp_send_discards(struct gfs2_sbd * sdp,u64 offset,struct buffer_head * bh,const struct gfs2_bitmap * bi,unsigned minlen,u64 * ptrimmed)1286 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1287 struct buffer_head *bh,
1288 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1289 {
1290 struct super_block *sb = sdp->sd_vfs;
1291 u64 blk;
1292 sector_t start = 0;
1293 sector_t nr_blks = 0;
1294 int rv;
1295 unsigned int x;
1296 u32 trimmed = 0;
1297 u8 diff;
1298
1299 for (x = 0; x < bi->bi_bytes; x++) {
1300 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1301 clone += bi->bi_offset;
1302 clone += x;
1303 if (bh) {
1304 const u8 *orig = bh->b_data + bi->bi_offset + x;
1305 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1306 } else {
1307 diff = ~(*clone | (*clone >> 1));
1308 }
1309 diff &= 0x55;
1310 if (diff == 0)
1311 continue;
1312 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1313 while(diff) {
1314 if (diff & 1) {
1315 if (nr_blks == 0)
1316 goto start_new_extent;
1317 if ((start + nr_blks) != blk) {
1318 if (nr_blks >= minlen) {
1319 rv = sb_issue_discard(sb,
1320 start, nr_blks,
1321 GFP_NOFS, 0);
1322 if (rv)
1323 goto fail;
1324 trimmed += nr_blks;
1325 }
1326 nr_blks = 0;
1327 start_new_extent:
1328 start = blk;
1329 }
1330 nr_blks++;
1331 }
1332 diff >>= 2;
1333 blk++;
1334 }
1335 }
1336 if (nr_blks >= minlen) {
1337 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1338 if (rv)
1339 goto fail;
1340 trimmed += nr_blks;
1341 }
1342 if (ptrimmed)
1343 *ptrimmed = trimmed;
1344 return 0;
1345
1346 fail:
1347 if (sdp->sd_args.ar_discard)
1348 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1349 sdp->sd_args.ar_discard = 0;
1350 return -EIO;
1351 }
1352
1353 /**
1354 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1355 * @filp: Any file on the filesystem
1356 * @argp: Pointer to the arguments (also used to pass result)
1357 *
1358 * Returns: 0 on success, otherwise error code
1359 */
1360
gfs2_fitrim(struct file * filp,void __user * argp)1361 int gfs2_fitrim(struct file *filp, void __user *argp)
1362 {
1363 struct inode *inode = file_inode(filp);
1364 struct gfs2_sbd *sdp = GFS2_SB(inode);
1365 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1366 struct buffer_head *bh;
1367 struct gfs2_rgrpd *rgd;
1368 struct gfs2_rgrpd *rgd_end;
1369 struct gfs2_holder gh;
1370 struct fstrim_range r;
1371 int ret = 0;
1372 u64 amt;
1373 u64 trimmed = 0;
1374 u64 start, end, minlen;
1375 unsigned int x;
1376 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1377
1378 if (!capable(CAP_SYS_ADMIN))
1379 return -EPERM;
1380
1381 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1382 return -EROFS;
1383
1384 if (!blk_queue_discard(q))
1385 return -EOPNOTSUPP;
1386
1387 if (copy_from_user(&r, argp, sizeof(r)))
1388 return -EFAULT;
1389
1390 ret = gfs2_rindex_update(sdp);
1391 if (ret)
1392 return ret;
1393
1394 start = r.start >> bs_shift;
1395 end = start + (r.len >> bs_shift);
1396 minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
1397 minlen = max_t(u64, minlen,
1398 q->limits.discard_granularity) >> bs_shift;
1399
1400 if (end <= start || minlen > sdp->sd_max_rg_data)
1401 return -EINVAL;
1402
1403 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1404 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1405
1406 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1407 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1408 return -EINVAL; /* start is beyond the end of the fs */
1409
1410 while (1) {
1411
1412 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1413 if (ret)
1414 goto out;
1415
1416 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1417 /* Trim each bitmap in the rgrp */
1418 for (x = 0; x < rgd->rd_length; x++) {
1419 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1420 ret = gfs2_rgrp_send_discards(sdp,
1421 rgd->rd_data0, NULL, bi, minlen,
1422 &amt);
1423 if (ret) {
1424 gfs2_glock_dq_uninit(&gh);
1425 goto out;
1426 }
1427 trimmed += amt;
1428 }
1429
1430 /* Mark rgrp as having been trimmed */
1431 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1432 if (ret == 0) {
1433 bh = rgd->rd_bits[0].bi_bh;
1434 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1435 gfs2_trans_add_meta(rgd->rd_gl, bh);
1436 gfs2_rgrp_out(rgd, bh->b_data);
1437 gfs2_trans_end(sdp);
1438 }
1439 }
1440 gfs2_glock_dq_uninit(&gh);
1441
1442 if (rgd == rgd_end)
1443 break;
1444
1445 rgd = gfs2_rgrpd_get_next(rgd);
1446 }
1447
1448 out:
1449 r.len = trimmed << bs_shift;
1450 if (copy_to_user(argp, &r, sizeof(r)))
1451 return -EFAULT;
1452
1453 return ret;
1454 }
1455
1456 /**
1457 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1458 * @ip: the inode structure
1459 *
1460 */
rs_insert(struct gfs2_inode * ip)1461 static void rs_insert(struct gfs2_inode *ip)
1462 {
1463 struct rb_node **newn, *parent = NULL;
1464 int rc;
1465 struct gfs2_blkreserv *rs = &ip->i_res;
1466 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1467 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1468
1469 BUG_ON(gfs2_rs_active(rs));
1470
1471 spin_lock(&rgd->rd_rsspin);
1472 newn = &rgd->rd_rstree.rb_node;
1473 while (*newn) {
1474 struct gfs2_blkreserv *cur =
1475 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1476
1477 parent = *newn;
1478 rc = rs_cmp(fsblock, rs->rs_free, cur);
1479 if (rc > 0)
1480 newn = &((*newn)->rb_right);
1481 else if (rc < 0)
1482 newn = &((*newn)->rb_left);
1483 else {
1484 spin_unlock(&rgd->rd_rsspin);
1485 WARN_ON(1);
1486 return;
1487 }
1488 }
1489
1490 rb_link_node(&rs->rs_node, parent, newn);
1491 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1492
1493 /* Do our rgrp accounting for the reservation */
1494 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1495 spin_unlock(&rgd->rd_rsspin);
1496 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1497 }
1498
1499 /**
1500 * rgd_free - return the number of free blocks we can allocate.
1501 * @rgd: the resource group
1502 *
1503 * This function returns the number of free blocks for an rgrp.
1504 * That's the clone-free blocks (blocks that are free, not including those
1505 * still being used for unlinked files that haven't been deleted.)
1506 *
1507 * It also subtracts any blocks reserved by someone else, but does not
1508 * include free blocks that are still part of our current reservation,
1509 * because obviously we can (and will) allocate them.
1510 */
rgd_free(struct gfs2_rgrpd * rgd,struct gfs2_blkreserv * rs)1511 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1512 {
1513 u32 tot_reserved, tot_free;
1514
1515 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1516 return 0;
1517 tot_reserved = rgd->rd_reserved - rs->rs_free;
1518
1519 if (rgd->rd_free_clone < tot_reserved)
1520 tot_reserved = 0;
1521
1522 tot_free = rgd->rd_free_clone - tot_reserved;
1523
1524 return tot_free;
1525 }
1526
1527 /**
1528 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1529 * @rgd: the resource group descriptor
1530 * @ip: pointer to the inode for which we're reserving blocks
1531 * @ap: the allocation parameters
1532 *
1533 */
1534
rg_mblk_search(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip,const struct gfs2_alloc_parms * ap)1535 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1536 const struct gfs2_alloc_parms *ap)
1537 {
1538 struct gfs2_rbm rbm = { .rgd = rgd, };
1539 u64 goal;
1540 struct gfs2_blkreserv *rs = &ip->i_res;
1541 u32 extlen;
1542 u32 free_blocks = rgd_free(rgd, rs);
1543 int ret;
1544 struct inode *inode = &ip->i_inode;
1545
1546 if (S_ISDIR(inode->i_mode))
1547 extlen = 1;
1548 else {
1549 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1550 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1551 }
1552 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1553 return;
1554
1555 /* Find bitmap block that contains bits for goal block */
1556 if (rgrp_contains_block(rgd, ip->i_goal))
1557 goal = ip->i_goal;
1558 else
1559 goal = rgd->rd_last_alloc + rgd->rd_data0;
1560
1561 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1562 return;
1563
1564 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1565 if (ret == 0) {
1566 rs->rs_rbm = rbm;
1567 rs->rs_free = extlen;
1568 rs_insert(ip);
1569 } else {
1570 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1571 rgd->rd_last_alloc = 0;
1572 }
1573 }
1574
1575 /**
1576 * gfs2_next_unreserved_block - Return next block that is not reserved
1577 * @rgd: The resource group
1578 * @block: The starting block
1579 * @length: The required length
1580 * @ip: Ignore any reservations for this inode
1581 *
1582 * If the block does not appear in any reservation, then return the
1583 * block number unchanged. If it does appear in the reservation, then
1584 * keep looking through the tree of reservations in order to find the
1585 * first block number which is not reserved.
1586 */
1587
gfs2_next_unreserved_block(struct gfs2_rgrpd * rgd,u64 block,u32 length,const struct gfs2_inode * ip)1588 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1589 u32 length,
1590 const struct gfs2_inode *ip)
1591 {
1592 struct gfs2_blkreserv *rs;
1593 struct rb_node *n;
1594 int rc;
1595
1596 spin_lock(&rgd->rd_rsspin);
1597 n = rgd->rd_rstree.rb_node;
1598 while (n) {
1599 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1600 rc = rs_cmp(block, length, rs);
1601 if (rc < 0)
1602 n = n->rb_left;
1603 else if (rc > 0)
1604 n = n->rb_right;
1605 else
1606 break;
1607 }
1608
1609 if (n) {
1610 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1611 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1612 n = n->rb_right;
1613 if (n == NULL)
1614 break;
1615 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1616 }
1617 }
1618
1619 spin_unlock(&rgd->rd_rsspin);
1620 return block;
1621 }
1622
1623 /**
1624 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1625 * @rbm: The current position in the resource group
1626 * @ip: The inode for which we are searching for blocks
1627 * @minext: The minimum extent length
1628 * @maxext: A pointer to the maximum extent structure
1629 *
1630 * This checks the current position in the rgrp to see whether there is
1631 * a reservation covering this block. If not then this function is a
1632 * no-op. If there is, then the position is moved to the end of the
1633 * contiguous reservation(s) so that we are pointing at the first
1634 * non-reserved block.
1635 *
1636 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1637 */
1638
gfs2_reservation_check_and_update(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,u32 minext,struct gfs2_extent * maxext)1639 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1640 const struct gfs2_inode *ip,
1641 u32 minext,
1642 struct gfs2_extent *maxext)
1643 {
1644 u64 block = gfs2_rbm_to_block(rbm);
1645 u32 extlen = 1;
1646 u64 nblock;
1647 int ret;
1648
1649 /*
1650 * If we have a minimum extent length, then skip over any extent
1651 * which is less than the min extent length in size.
1652 */
1653 if (minext > 1) {
1654 extlen = gfs2_free_extlen(rbm, minext);
1655 if (extlen <= maxext->len)
1656 goto fail;
1657 }
1658
1659 /*
1660 * Check the extent which has been found against the reservations
1661 * and skip if parts of it are already reserved
1662 */
1663 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1664 if (nblock == block) {
1665 if (!minext || extlen >= minext)
1666 return 0;
1667
1668 if (extlen > maxext->len) {
1669 maxext->len = extlen;
1670 maxext->rbm = *rbm;
1671 }
1672 fail:
1673 nblock = block + extlen;
1674 }
1675 ret = gfs2_rbm_from_block(rbm, nblock);
1676 if (ret < 0)
1677 return ret;
1678 return 1;
1679 }
1680
1681 /**
1682 * gfs2_rbm_find - Look for blocks of a particular state
1683 * @rbm: Value/result starting position and final position
1684 * @state: The state which we want to find
1685 * @minext: Pointer to the requested extent length
1686 * This is updated to be the actual reservation size.
1687 * @ip: If set, check for reservations
1688 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1689 * around until we've reached the starting point.
1690 *
1691 * Side effects:
1692 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1693 * has no free blocks in it.
1694 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1695 * has come up short on a free block search.
1696 *
1697 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1698 */
1699
gfs2_rbm_find(struct gfs2_rbm * rbm,u8 state,u32 * minext,const struct gfs2_inode * ip,bool nowrap)1700 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1701 const struct gfs2_inode *ip, bool nowrap)
1702 {
1703 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1704 struct buffer_head *bh;
1705 int last_bii;
1706 u32 offset;
1707 u8 *buffer;
1708 bool wrapped = false;
1709 int ret;
1710 struct gfs2_bitmap *bi;
1711 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1712
1713 /*
1714 * Determine the last bitmap to search. If we're not starting at the
1715 * beginning of a bitmap, we need to search that bitmap twice to scan
1716 * the entire resource group.
1717 */
1718 last_bii = rbm->bii - (rbm->offset == 0);
1719
1720 while(1) {
1721 bi = rbm_bi(rbm);
1722 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1723 (state == GFS2_BLKST_FREE))
1724 goto next_bitmap;
1725
1726 bh = bi->bi_bh;
1727 buffer = bh->b_data + bi->bi_offset;
1728 WARN_ON(!buffer_uptodate(bh));
1729 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1730 buffer = bi->bi_clone + bi->bi_offset;
1731 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1732 if (offset == BFITNOENT) {
1733 if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1734 set_bit(GBF_FULL, &bi->bi_flags);
1735 goto next_bitmap;
1736 }
1737 rbm->offset = offset;
1738 if (ip == NULL)
1739 return 0;
1740
1741 ret = gfs2_reservation_check_and_update(rbm, ip, *minext,
1742 &maxext);
1743 if (ret == 0)
1744 return 0;
1745 if (ret > 0)
1746 goto next_iter;
1747 if (ret == -E2BIG) {
1748 rbm->bii = 0;
1749 rbm->offset = 0;
1750 goto res_covered_end_of_rgrp;
1751 }
1752 return ret;
1753
1754 next_bitmap: /* Find next bitmap in the rgrp */
1755 rbm->offset = 0;
1756 rbm->bii++;
1757 if (rbm->bii == rbm->rgd->rd_length)
1758 rbm->bii = 0;
1759 res_covered_end_of_rgrp:
1760 if (rbm->bii == 0) {
1761 if (wrapped)
1762 break;
1763 wrapped = true;
1764 if (nowrap)
1765 break;
1766 }
1767 next_iter:
1768 /* Have we scanned the entire resource group? */
1769 if (wrapped && rbm->bii > last_bii)
1770 break;
1771 }
1772
1773 if (state != GFS2_BLKST_FREE)
1774 return -ENOSPC;
1775
1776 /* If the extent was too small, and it's smaller than the smallest
1777 to have failed before, remember for future reference that it's
1778 useless to search this rgrp again for this amount or more. */
1779 if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1780 *minext < rbm->rgd->rd_extfail_pt)
1781 rbm->rgd->rd_extfail_pt = *minext - 1;
1782
1783 /* If the maximum extent we found is big enough to fulfill the
1784 minimum requirements, use it anyway. */
1785 if (maxext.len) {
1786 *rbm = maxext.rbm;
1787 *minext = maxext.len;
1788 return 0;
1789 }
1790
1791 return -ENOSPC;
1792 }
1793
1794 /**
1795 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1796 * @rgd: The rgrp
1797 * @last_unlinked: block address of the last dinode we unlinked
1798 * @skip: block address we should explicitly not unlink
1799 *
1800 * Returns: 0 if no error
1801 * The inode, if one has been found, in inode.
1802 */
1803
try_rgrp_unlink(struct gfs2_rgrpd * rgd,u64 * last_unlinked,u64 skip)1804 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1805 {
1806 u64 block;
1807 struct gfs2_sbd *sdp = rgd->rd_sbd;
1808 struct gfs2_glock *gl;
1809 struct gfs2_inode *ip;
1810 int error;
1811 int found = 0;
1812 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1813
1814 while (1) {
1815 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1816 true);
1817 if (error == -ENOSPC)
1818 break;
1819 if (WARN_ON_ONCE(error))
1820 break;
1821
1822 block = gfs2_rbm_to_block(&rbm);
1823 if (gfs2_rbm_from_block(&rbm, block + 1))
1824 break;
1825 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1826 continue;
1827 if (block == skip)
1828 continue;
1829 *last_unlinked = block;
1830
1831 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1832 if (error)
1833 continue;
1834
1835 /* If the inode is already in cache, we can ignore it here
1836 * because the existing inode disposal code will deal with
1837 * it when all refs have gone away. Accessing gl_object like
1838 * this is not safe in general. Here it is ok because we do
1839 * not dereference the pointer, and we only need an approx
1840 * answer to whether it is NULL or not.
1841 */
1842 ip = gl->gl_object;
1843
1844 if (ip || !gfs2_queue_delete_work(gl, 0))
1845 gfs2_glock_put(gl);
1846 else
1847 found++;
1848
1849 /* Limit reclaim to sensible number of tasks */
1850 if (found > NR_CPUS)
1851 return;
1852 }
1853
1854 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1855 return;
1856 }
1857
1858 /**
1859 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1860 * @rgd: The rgrp in question
1861 * @loops: An indication of how picky we can be (0=very, 1=less so)
1862 *
1863 * This function uses the recently added glock statistics in order to
1864 * figure out whether a parciular resource group is suffering from
1865 * contention from multiple nodes. This is done purely on the basis
1866 * of timings, since this is the only data we have to work with and
1867 * our aim here is to reject a resource group which is highly contended
1868 * but (very important) not to do this too often in order to ensure that
1869 * we do not land up introducing fragmentation by changing resource
1870 * groups when not actually required.
1871 *
1872 * The calculation is fairly simple, we want to know whether the SRTTB
1873 * (i.e. smoothed round trip time for blocking operations) to acquire
1874 * the lock for this rgrp's glock is significantly greater than the
1875 * time taken for resource groups on average. We introduce a margin in
1876 * the form of the variable @var which is computed as the sum of the two
1877 * respective variences, and multiplied by a factor depending on @loops
1878 * and whether we have a lot of data to base the decision on. This is
1879 * then tested against the square difference of the means in order to
1880 * decide whether the result is statistically significant or not.
1881 *
1882 * Returns: A boolean verdict on the congestion status
1883 */
1884
gfs2_rgrp_congested(const struct gfs2_rgrpd * rgd,int loops)1885 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1886 {
1887 const struct gfs2_glock *gl = rgd->rd_gl;
1888 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1889 struct gfs2_lkstats *st;
1890 u64 r_dcount, l_dcount;
1891 u64 l_srttb, a_srttb = 0;
1892 s64 srttb_diff;
1893 u64 sqr_diff;
1894 u64 var;
1895 int cpu, nonzero = 0;
1896
1897 preempt_disable();
1898 for_each_present_cpu(cpu) {
1899 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1900 if (st->stats[GFS2_LKS_SRTTB]) {
1901 a_srttb += st->stats[GFS2_LKS_SRTTB];
1902 nonzero++;
1903 }
1904 }
1905 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1906 if (nonzero)
1907 do_div(a_srttb, nonzero);
1908 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1909 var = st->stats[GFS2_LKS_SRTTVARB] +
1910 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1911 preempt_enable();
1912
1913 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1914 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1915
1916 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1917 return false;
1918
1919 srttb_diff = a_srttb - l_srttb;
1920 sqr_diff = srttb_diff * srttb_diff;
1921
1922 var *= 2;
1923 if (l_dcount < 8 || r_dcount < 8)
1924 var *= 2;
1925 if (loops == 1)
1926 var *= 2;
1927
1928 return ((srttb_diff < 0) && (sqr_diff > var));
1929 }
1930
1931 /**
1932 * gfs2_rgrp_used_recently
1933 * @rs: The block reservation with the rgrp to test
1934 * @msecs: The time limit in milliseconds
1935 *
1936 * Returns: True if the rgrp glock has been used within the time limit
1937 */
gfs2_rgrp_used_recently(const struct gfs2_blkreserv * rs,u64 msecs)1938 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1939 u64 msecs)
1940 {
1941 u64 tdiff;
1942
1943 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1944 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1945
1946 return tdiff > (msecs * 1000 * 1000);
1947 }
1948
gfs2_orlov_skip(const struct gfs2_inode * ip)1949 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1950 {
1951 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1952 u32 skip;
1953
1954 get_random_bytes(&skip, sizeof(skip));
1955 return skip % sdp->sd_rgrps;
1956 }
1957
gfs2_select_rgrp(struct gfs2_rgrpd ** pos,const struct gfs2_rgrpd * begin)1958 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1959 {
1960 struct gfs2_rgrpd *rgd = *pos;
1961 struct gfs2_sbd *sdp = rgd->rd_sbd;
1962
1963 rgd = gfs2_rgrpd_get_next(rgd);
1964 if (rgd == NULL)
1965 rgd = gfs2_rgrpd_get_first(sdp);
1966 *pos = rgd;
1967 if (rgd != begin) /* If we didn't wrap */
1968 return true;
1969 return false;
1970 }
1971
1972 /**
1973 * fast_to_acquire - determine if a resource group will be fast to acquire
1974 *
1975 * If this is one of our preferred rgrps, it should be quicker to acquire,
1976 * because we tried to set ourselves up as dlm lock master.
1977 */
fast_to_acquire(struct gfs2_rgrpd * rgd)1978 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1979 {
1980 struct gfs2_glock *gl = rgd->rd_gl;
1981
1982 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1983 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1984 !test_bit(GLF_DEMOTE, &gl->gl_flags))
1985 return 1;
1986 if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1987 return 1;
1988 return 0;
1989 }
1990
1991 /**
1992 * gfs2_inplace_reserve - Reserve space in the filesystem
1993 * @ip: the inode to reserve space for
1994 * @ap: the allocation parameters
1995 *
1996 * We try our best to find an rgrp that has at least ap->target blocks
1997 * available. After a couple of passes (loops == 2), the prospects of finding
1998 * such an rgrp diminish. At this stage, we return the first rgrp that has
1999 * at least ap->min_target blocks available. Either way, we set ap->allowed to
2000 * the number of blocks available in the chosen rgrp.
2001 *
2002 * Returns: 0 on success,
2003 * -ENOMEM if a suitable rgrp can't be found
2004 * errno otherwise
2005 */
2006
gfs2_inplace_reserve(struct gfs2_inode * ip,struct gfs2_alloc_parms * ap)2007 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2008 {
2009 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2010 struct gfs2_rgrpd *begin = NULL;
2011 struct gfs2_blkreserv *rs = &ip->i_res;
2012 int error = 0, rg_locked, flags = 0;
2013 u64 last_unlinked = NO_BLOCK;
2014 int loops = 0;
2015 u32 free_blocks, skip = 0;
2016
2017 if (sdp->sd_args.ar_rgrplvb)
2018 flags |= GL_SKIP;
2019 if (gfs2_assert_warn(sdp, ap->target))
2020 return -EINVAL;
2021 if (gfs2_rs_active(rs)) {
2022 begin = rs->rs_rbm.rgd;
2023 } else if (rs->rs_rbm.rgd &&
2024 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2025 begin = rs->rs_rbm.rgd;
2026 } else {
2027 check_and_update_goal(ip);
2028 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2029 }
2030 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2031 skip = gfs2_orlov_skip(ip);
2032 if (rs->rs_rbm.rgd == NULL)
2033 return -EBADSLT;
2034
2035 while (loops < 3) {
2036 rg_locked = 1;
2037
2038 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2039 rg_locked = 0;
2040 if (skip && skip--)
2041 goto next_rgrp;
2042 if (!gfs2_rs_active(rs)) {
2043 if (loops == 0 &&
2044 !fast_to_acquire(rs->rs_rbm.rgd))
2045 goto next_rgrp;
2046 if ((loops < 2) &&
2047 gfs2_rgrp_used_recently(rs, 1000) &&
2048 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2049 goto next_rgrp;
2050 }
2051 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2052 LM_ST_EXCLUSIVE, flags,
2053 &ip->i_rgd_gh);
2054 if (unlikely(error))
2055 return error;
2056 if (!gfs2_rs_active(rs) && (loops < 2) &&
2057 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2058 goto skip_rgrp;
2059 if (sdp->sd_args.ar_rgrplvb) {
2060 error = update_rgrp_lvb(rs->rs_rbm.rgd);
2061 if (unlikely(error)) {
2062 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2063 return error;
2064 }
2065 }
2066 }
2067
2068 /* Skip unusable resource groups */
2069 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2070 GFS2_RDF_ERROR)) ||
2071 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2072 goto skip_rgrp;
2073
2074 if (sdp->sd_args.ar_rgrplvb)
2075 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2076
2077 /* Get a reservation if we don't already have one */
2078 if (!gfs2_rs_active(rs))
2079 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2080
2081 /* Skip rgrps when we can't get a reservation on first pass */
2082 if (!gfs2_rs_active(rs) && (loops < 1))
2083 goto check_rgrp;
2084
2085 /* If rgrp has enough free space, use it */
2086 free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2087 if (free_blocks >= ap->target ||
2088 (loops == 2 && ap->min_target &&
2089 free_blocks >= ap->min_target)) {
2090 ap->allowed = free_blocks;
2091 return 0;
2092 }
2093 check_rgrp:
2094 /* Check for unlinked inodes which can be reclaimed */
2095 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2096 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2097 ip->i_no_addr);
2098 skip_rgrp:
2099 /* Drop reservation, if we couldn't use reserved rgrp */
2100 if (gfs2_rs_active(rs))
2101 gfs2_rs_deltree(rs);
2102
2103 /* Unlock rgrp if required */
2104 if (!rg_locked)
2105 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2106 next_rgrp:
2107 /* Find the next rgrp, and continue looking */
2108 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2109 continue;
2110 if (skip)
2111 continue;
2112
2113 /* If we've scanned all the rgrps, but found no free blocks
2114 * then this checks for some less likely conditions before
2115 * trying again.
2116 */
2117 loops++;
2118 /* Check that fs hasn't grown if writing to rindex */
2119 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2120 error = gfs2_ri_update(ip);
2121 if (error)
2122 return error;
2123 }
2124 /* Flushing the log may release space */
2125 if (loops == 2)
2126 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2127 GFS2_LFC_INPLACE_RESERVE);
2128 }
2129
2130 return -ENOSPC;
2131 }
2132
2133 /**
2134 * gfs2_inplace_release - release an inplace reservation
2135 * @ip: the inode the reservation was taken out on
2136 *
2137 * Release a reservation made by gfs2_inplace_reserve().
2138 */
2139
gfs2_inplace_release(struct gfs2_inode * ip)2140 void gfs2_inplace_release(struct gfs2_inode *ip)
2141 {
2142 if (gfs2_holder_initialized(&ip->i_rgd_gh))
2143 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2144 }
2145
2146 /**
2147 * gfs2_alloc_extent - allocate an extent from a given bitmap
2148 * @rbm: the resource group information
2149 * @dinode: TRUE if the first block we allocate is for a dinode
2150 * @n: The extent length (value/result)
2151 *
2152 * Add the bitmap buffer to the transaction.
2153 * Set the found bits to @new_state to change block's allocation state.
2154 */
gfs2_alloc_extent(const struct gfs2_rbm * rbm,bool dinode,unsigned int * n)2155 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2156 unsigned int *n)
2157 {
2158 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2159 const unsigned int elen = *n;
2160 u64 block;
2161 int ret;
2162
2163 *n = 1;
2164 block = gfs2_rbm_to_block(rbm);
2165 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2166 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2167 block++;
2168 while (*n < elen) {
2169 ret = gfs2_rbm_from_block(&pos, block);
2170 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2171 break;
2172 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2173 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2174 (*n)++;
2175 block++;
2176 }
2177 }
2178
2179 /**
2180 * rgblk_free - Change alloc state of given block(s)
2181 * @sdp: the filesystem
2182 * @rgd: the resource group the blocks are in
2183 * @bstart: the start of a run of blocks to free
2184 * @blen: the length of the block run (all must lie within ONE RG!)
2185 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2186 */
2187
rgblk_free(struct gfs2_sbd * sdp,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,unsigned char new_state)2188 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2189 u64 bstart, u32 blen, unsigned char new_state)
2190 {
2191 struct gfs2_rbm rbm;
2192 struct gfs2_bitmap *bi, *bi_prev = NULL;
2193
2194 rbm.rgd = rgd;
2195 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2196 return;
2197 while (blen--) {
2198 bi = rbm_bi(&rbm);
2199 if (bi != bi_prev) {
2200 if (!bi->bi_clone) {
2201 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2202 GFP_NOFS | __GFP_NOFAIL);
2203 memcpy(bi->bi_clone + bi->bi_offset,
2204 bi->bi_bh->b_data + bi->bi_offset,
2205 bi->bi_bytes);
2206 }
2207 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2208 bi_prev = bi;
2209 }
2210 gfs2_setbit(&rbm, false, new_state);
2211 gfs2_rbm_incr(&rbm);
2212 }
2213 }
2214
2215 /**
2216 * gfs2_rgrp_dump - print out an rgrp
2217 * @seq: The iterator
2218 * @rgd: The rgrp in question
2219 * @fs_id_buf: pointer to file system id (if requested)
2220 *
2221 */
2222
gfs2_rgrp_dump(struct seq_file * seq,struct gfs2_rgrpd * rgd,const char * fs_id_buf)2223 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2224 const char *fs_id_buf)
2225 {
2226 struct gfs2_blkreserv *trs;
2227 const struct rb_node *n;
2228
2229 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2230 fs_id_buf,
2231 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2232 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2233 rgd->rd_reserved, rgd->rd_extfail_pt);
2234 if (rgd->rd_sbd->sd_args.ar_rgrplvb && rgd->rd_rgl) {
2235 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2236
2237 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf,
2238 be32_to_cpu(rgl->rl_flags),
2239 be32_to_cpu(rgl->rl_free),
2240 be32_to_cpu(rgl->rl_dinodes));
2241 }
2242 spin_lock(&rgd->rd_rsspin);
2243 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2244 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2245 dump_rs(seq, trs, fs_id_buf);
2246 }
2247 spin_unlock(&rgd->rd_rsspin);
2248 }
2249
gfs2_rgrp_error(struct gfs2_rgrpd * rgd)2250 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2251 {
2252 struct gfs2_sbd *sdp = rgd->rd_sbd;
2253 char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2254
2255 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2256 (unsigned long long)rgd->rd_addr);
2257 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2258 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2259 gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2260 rgd->rd_flags |= GFS2_RDF_ERROR;
2261 }
2262
2263 /**
2264 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2265 * @ip: The inode we have just allocated blocks for
2266 * @rbm: The start of the allocated blocks
2267 * @len: The extent length
2268 *
2269 * Adjusts a reservation after an allocation has taken place. If the
2270 * reservation does not match the allocation, or if it is now empty
2271 * then it is removed.
2272 */
2273
gfs2_adjust_reservation(struct gfs2_inode * ip,const struct gfs2_rbm * rbm,unsigned len)2274 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2275 const struct gfs2_rbm *rbm, unsigned len)
2276 {
2277 struct gfs2_blkreserv *rs = &ip->i_res;
2278 struct gfs2_rgrpd *rgd = rbm->rgd;
2279 unsigned rlen;
2280 u64 block;
2281 int ret;
2282
2283 spin_lock(&rgd->rd_rsspin);
2284 if (gfs2_rs_active(rs)) {
2285 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2286 block = gfs2_rbm_to_block(rbm);
2287 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2288 rlen = min(rs->rs_free, len);
2289 rs->rs_free -= rlen;
2290 rgd->rd_reserved -= rlen;
2291 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2292 if (rs->rs_free && !ret)
2293 goto out;
2294 /* We used up our block reservation, so we should
2295 reserve more blocks next time. */
2296 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2297 }
2298 __rs_deltree(rs);
2299 }
2300 out:
2301 spin_unlock(&rgd->rd_rsspin);
2302 }
2303
2304 /**
2305 * gfs2_set_alloc_start - Set starting point for block allocation
2306 * @rbm: The rbm which will be set to the required location
2307 * @ip: The gfs2 inode
2308 * @dinode: Flag to say if allocation includes a new inode
2309 *
2310 * This sets the starting point from the reservation if one is active
2311 * otherwise it falls back to guessing a start point based on the
2312 * inode's goal block or the last allocation point in the rgrp.
2313 */
2314
gfs2_set_alloc_start(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,bool dinode)2315 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2316 const struct gfs2_inode *ip, bool dinode)
2317 {
2318 u64 goal;
2319
2320 if (gfs2_rs_active(&ip->i_res)) {
2321 *rbm = ip->i_res.rs_rbm;
2322 return;
2323 }
2324
2325 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2326 goal = ip->i_goal;
2327 else
2328 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2329
2330 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2331 rbm->bii = 0;
2332 rbm->offset = 0;
2333 }
2334 }
2335
2336 /**
2337 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2338 * @ip: the inode to allocate the block for
2339 * @bn: Used to return the starting block number
2340 * @nblocks: requested number of blocks/extent length (value/result)
2341 * @dinode: 1 if we're allocating a dinode block, else 0
2342 * @generation: the generation number of the inode
2343 *
2344 * Returns: 0 or error
2345 */
2346
gfs2_alloc_blocks(struct gfs2_inode * ip,u64 * bn,unsigned int * nblocks,bool dinode,u64 * generation)2347 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2348 bool dinode, u64 *generation)
2349 {
2350 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2351 struct buffer_head *dibh;
2352 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2353 unsigned int ndata;
2354 u64 block; /* block, within the file system scope */
2355 u32 minext = 1;
2356 int error;
2357
2358 gfs2_set_alloc_start(&rbm, ip, dinode);
2359 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, ip, false);
2360
2361 if (error == -ENOSPC) {
2362 gfs2_set_alloc_start(&rbm, ip, dinode);
2363 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2364 }
2365
2366 /* Since all blocks are reserved in advance, this shouldn't happen */
2367 if (error) {
2368 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2369 (unsigned long long)ip->i_no_addr, error, *nblocks,
2370 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2371 rbm.rgd->rd_extfail_pt);
2372 goto rgrp_error;
2373 }
2374
2375 gfs2_alloc_extent(&rbm, dinode, nblocks);
2376 block = gfs2_rbm_to_block(&rbm);
2377 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2378 if (gfs2_rs_active(&ip->i_res))
2379 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2380 ndata = *nblocks;
2381 if (dinode)
2382 ndata--;
2383
2384 if (!dinode) {
2385 ip->i_goal = block + ndata - 1;
2386 error = gfs2_meta_inode_buffer(ip, &dibh);
2387 if (error == 0) {
2388 struct gfs2_dinode *di =
2389 (struct gfs2_dinode *)dibh->b_data;
2390 gfs2_trans_add_meta(ip->i_gl, dibh);
2391 di->di_goal_meta = di->di_goal_data =
2392 cpu_to_be64(ip->i_goal);
2393 brelse(dibh);
2394 }
2395 }
2396 if (rbm.rgd->rd_free < *nblocks) {
2397 fs_warn(sdp, "nblocks=%u\n", *nblocks);
2398 goto rgrp_error;
2399 }
2400
2401 rbm.rgd->rd_free -= *nblocks;
2402 if (dinode) {
2403 rbm.rgd->rd_dinodes++;
2404 *generation = rbm.rgd->rd_igeneration++;
2405 if (*generation == 0)
2406 *generation = rbm.rgd->rd_igeneration++;
2407 }
2408
2409 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2410 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2411
2412 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2413 if (dinode)
2414 gfs2_trans_remove_revoke(sdp, block, *nblocks);
2415
2416 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2417
2418 rbm.rgd->rd_free_clone -= *nblocks;
2419 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2420 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2421 *bn = block;
2422 return 0;
2423
2424 rgrp_error:
2425 gfs2_rgrp_error(rbm.rgd);
2426 return -EIO;
2427 }
2428
2429 /**
2430 * __gfs2_free_blocks - free a contiguous run of block(s)
2431 * @ip: the inode these blocks are being freed from
2432 * @rgd: the resource group the blocks are in
2433 * @bstart: first block of a run of contiguous blocks
2434 * @blen: the length of the block run
2435 * @meta: 1 if the blocks represent metadata
2436 *
2437 */
2438
__gfs2_free_blocks(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,int meta)2439 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2440 u64 bstart, u32 blen, int meta)
2441 {
2442 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2443
2444 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2445 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2446 rgd->rd_free += blen;
2447 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2448 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2449 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2450
2451 /* Directories keep their data in the metadata address space */
2452 if (meta || ip->i_depth || gfs2_is_jdata(ip))
2453 gfs2_journal_wipe(ip, bstart, blen);
2454 }
2455
2456 /**
2457 * gfs2_free_meta - free a contiguous run of data block(s)
2458 * @ip: the inode these blocks are being freed from
2459 * @rgd: the resource group the blocks are in
2460 * @bstart: first block of a run of contiguous blocks
2461 * @blen: the length of the block run
2462 *
2463 */
2464
gfs2_free_meta(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen)2465 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2466 u64 bstart, u32 blen)
2467 {
2468 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2469
2470 __gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2471 gfs2_statfs_change(sdp, 0, +blen, 0);
2472 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2473 }
2474
gfs2_unlink_di(struct inode * inode)2475 void gfs2_unlink_di(struct inode *inode)
2476 {
2477 struct gfs2_inode *ip = GFS2_I(inode);
2478 struct gfs2_sbd *sdp = GFS2_SB(inode);
2479 struct gfs2_rgrpd *rgd;
2480 u64 blkno = ip->i_no_addr;
2481
2482 rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2483 if (!rgd)
2484 return;
2485 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2486 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2487 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2488 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2489 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2490 }
2491
gfs2_free_di(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip)2492 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2493 {
2494 struct gfs2_sbd *sdp = rgd->rd_sbd;
2495
2496 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2497 if (!rgd->rd_dinodes)
2498 gfs2_consist_rgrpd(rgd);
2499 rgd->rd_dinodes--;
2500 rgd->rd_free++;
2501
2502 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2503 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2504 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2505
2506 gfs2_statfs_change(sdp, 0, +1, -1);
2507 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2508 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2509 gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2510 }
2511
2512 /**
2513 * gfs2_check_blk_type - Check the type of a block
2514 * @sdp: The superblock
2515 * @no_addr: The block number to check
2516 * @type: The block type we are looking for
2517 *
2518 * Returns: 0 if the block type matches the expected type
2519 * -ESTALE if it doesn't match
2520 * or -ve errno if something went wrong while checking
2521 */
2522
gfs2_check_blk_type(struct gfs2_sbd * sdp,u64 no_addr,unsigned int type)2523 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2524 {
2525 struct gfs2_rgrpd *rgd;
2526 struct gfs2_holder rgd_gh;
2527 struct gfs2_rbm rbm;
2528 int error = -EINVAL;
2529
2530 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2531 if (!rgd)
2532 goto fail;
2533
2534 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2535 if (error)
2536 goto fail;
2537
2538 rbm.rgd = rgd;
2539 error = gfs2_rbm_from_block(&rbm, no_addr);
2540 if (!WARN_ON_ONCE(error)) {
2541 if (gfs2_testbit(&rbm, false) != type)
2542 error = -ESTALE;
2543 }
2544
2545 gfs2_glock_dq_uninit(&rgd_gh);
2546
2547 fail:
2548 return error;
2549 }
2550
2551 /**
2552 * gfs2_rlist_add - add a RG to a list of RGs
2553 * @ip: the inode
2554 * @rlist: the list of resource groups
2555 * @block: the block
2556 *
2557 * Figure out what RG a block belongs to and add that RG to the list
2558 *
2559 * FIXME: Don't use NOFAIL
2560 *
2561 */
2562
gfs2_rlist_add(struct gfs2_inode * ip,struct gfs2_rgrp_list * rlist,u64 block)2563 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2564 u64 block)
2565 {
2566 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2567 struct gfs2_rgrpd *rgd;
2568 struct gfs2_rgrpd **tmp;
2569 unsigned int new_space;
2570 unsigned int x;
2571
2572 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2573 return;
2574
2575 /*
2576 * The resource group last accessed is kept in the last position.
2577 */
2578
2579 if (rlist->rl_rgrps) {
2580 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2581 if (rgrp_contains_block(rgd, block))
2582 return;
2583 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2584 } else {
2585 rgd = ip->i_res.rs_rbm.rgd;
2586 if (!rgd || !rgrp_contains_block(rgd, block))
2587 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2588 }
2589
2590 if (!rgd) {
2591 fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2592 (unsigned long long)block);
2593 return;
2594 }
2595
2596 for (x = 0; x < rlist->rl_rgrps; x++) {
2597 if (rlist->rl_rgd[x] == rgd) {
2598 swap(rlist->rl_rgd[x],
2599 rlist->rl_rgd[rlist->rl_rgrps - 1]);
2600 return;
2601 }
2602 }
2603
2604 if (rlist->rl_rgrps == rlist->rl_space) {
2605 new_space = rlist->rl_space + 10;
2606
2607 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2608 GFP_NOFS | __GFP_NOFAIL);
2609
2610 if (rlist->rl_rgd) {
2611 memcpy(tmp, rlist->rl_rgd,
2612 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2613 kfree(rlist->rl_rgd);
2614 }
2615
2616 rlist->rl_space = new_space;
2617 rlist->rl_rgd = tmp;
2618 }
2619
2620 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2621 }
2622
2623 /**
2624 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2625 * and initialize an array of glock holders for them
2626 * @rlist: the list of resource groups
2627 *
2628 * FIXME: Don't use NOFAIL
2629 *
2630 */
2631
gfs2_rlist_alloc(struct gfs2_rgrp_list * rlist)2632 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2633 {
2634 unsigned int x;
2635
2636 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2637 sizeof(struct gfs2_holder),
2638 GFP_NOFS | __GFP_NOFAIL);
2639 for (x = 0; x < rlist->rl_rgrps; x++)
2640 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2641 LM_ST_EXCLUSIVE, 0,
2642 &rlist->rl_ghs[x]);
2643 }
2644
2645 /**
2646 * gfs2_rlist_free - free a resource group list
2647 * @rlist: the list of resource groups
2648 *
2649 */
2650
gfs2_rlist_free(struct gfs2_rgrp_list * rlist)2651 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2652 {
2653 unsigned int x;
2654
2655 kfree(rlist->rl_rgd);
2656
2657 if (rlist->rl_ghs) {
2658 for (x = 0; x < rlist->rl_rgrps; x++)
2659 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2660 kfree(rlist->rl_ghs);
2661 rlist->rl_ghs = NULL;
2662 }
2663 }
2664
2665