• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries_lpar.c
4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
5  *
6  * pSeries LPAR support.
7  */
8 
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <asm/processor.h>
26 #include <asm/mmu.h>
27 #include <asm/page.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43 #include <asm/dtl.h>
44 
45 #include "pseries.h"
46 
47 /* Flag bits for H_BULK_REMOVE */
48 #define HBR_REQUEST	0x4000000000000000UL
49 #define HBR_RESPONSE	0x8000000000000000UL
50 #define HBR_END		0xc000000000000000UL
51 #define HBR_AVPN	0x0200000000000000UL
52 #define HBR_ANDCOND	0x0100000000000000UL
53 
54 
55 /* in hvCall.S */
56 EXPORT_SYMBOL(plpar_hcall);
57 EXPORT_SYMBOL(plpar_hcall9);
58 EXPORT_SYMBOL(plpar_hcall_norets);
59 
60 /*
61  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
62  * page size is that page size.
63  *
64  * The first index is the segment base page size, the second one is the actual
65  * page size.
66  */
67 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
68 
69 /*
70  * Due to the involved complexity, and that the current hypervisor is only
71  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
72  * buffer size to 8 size block.
73  */
74 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
75 
76 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
77 static u8 dtl_mask = DTL_LOG_PREEMPT;
78 #else
79 static u8 dtl_mask;
80 #endif
81 
alloc_dtl_buffers(unsigned long * time_limit)82 void alloc_dtl_buffers(unsigned long *time_limit)
83 {
84 	int cpu;
85 	struct paca_struct *pp;
86 	struct dtl_entry *dtl;
87 
88 	for_each_possible_cpu(cpu) {
89 		pp = paca_ptrs[cpu];
90 		if (pp->dispatch_log)
91 			continue;
92 		dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
93 		if (!dtl) {
94 			pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
95 				cpu);
96 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
97 			pr_warn("Stolen time statistics will be unreliable\n");
98 #endif
99 			break;
100 		}
101 
102 		pp->dtl_ridx = 0;
103 		pp->dispatch_log = dtl;
104 		pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
105 		pp->dtl_curr = dtl;
106 
107 		if (time_limit && time_after(jiffies, *time_limit)) {
108 			cond_resched();
109 			*time_limit = jiffies + HZ;
110 		}
111 	}
112 }
113 
register_dtl_buffer(int cpu)114 void register_dtl_buffer(int cpu)
115 {
116 	long ret;
117 	struct paca_struct *pp;
118 	struct dtl_entry *dtl;
119 	int hwcpu = get_hard_smp_processor_id(cpu);
120 
121 	pp = paca_ptrs[cpu];
122 	dtl = pp->dispatch_log;
123 	if (dtl && dtl_mask) {
124 		pp->dtl_ridx = 0;
125 		pp->dtl_curr = dtl;
126 		lppaca_of(cpu).dtl_idx = 0;
127 
128 		/* hypervisor reads buffer length from this field */
129 		dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
130 		ret = register_dtl(hwcpu, __pa(dtl));
131 		if (ret)
132 			pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
133 			       cpu, hwcpu, ret);
134 
135 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
136 	}
137 }
138 
139 #ifdef CONFIG_PPC_SPLPAR
140 struct dtl_worker {
141 	struct delayed_work work;
142 	int cpu;
143 };
144 
145 struct vcpu_dispatch_data {
146 	int last_disp_cpu;
147 
148 	int total_disp;
149 
150 	int same_cpu_disp;
151 	int same_chip_disp;
152 	int diff_chip_disp;
153 	int far_chip_disp;
154 
155 	int numa_home_disp;
156 	int numa_remote_disp;
157 	int numa_far_disp;
158 };
159 
160 /*
161  * This represents the number of cpus in the hypervisor. Since there is no
162  * architected way to discover the number of processors in the host, we
163  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
164  * is sufficient for our purposes. This will need to be tweaked if
165  * CONFIG_NR_CPUS is changed.
166  */
167 #define NR_CPUS_H	NR_CPUS
168 
169 DEFINE_RWLOCK(dtl_access_lock);
170 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
171 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
172 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
173 static enum cpuhp_state dtl_worker_state;
174 static DEFINE_MUTEX(dtl_enable_mutex);
175 static int vcpudispatch_stats_on __read_mostly;
176 static int vcpudispatch_stats_freq = 50;
177 static __be32 *vcpu_associativity, *pcpu_associativity;
178 
179 
free_dtl_buffers(unsigned long * time_limit)180 static void free_dtl_buffers(unsigned long *time_limit)
181 {
182 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
183 	int cpu;
184 	struct paca_struct *pp;
185 
186 	for_each_possible_cpu(cpu) {
187 		pp = paca_ptrs[cpu];
188 		if (!pp->dispatch_log)
189 			continue;
190 		kmem_cache_free(dtl_cache, pp->dispatch_log);
191 		pp->dtl_ridx = 0;
192 		pp->dispatch_log = 0;
193 		pp->dispatch_log_end = 0;
194 		pp->dtl_curr = 0;
195 
196 		if (time_limit && time_after(jiffies, *time_limit)) {
197 			cond_resched();
198 			*time_limit = jiffies + HZ;
199 		}
200 	}
201 #endif
202 }
203 
init_cpu_associativity(void)204 static int init_cpu_associativity(void)
205 {
206 	vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
207 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
208 	pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
209 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
210 
211 	if (!vcpu_associativity || !pcpu_associativity) {
212 		pr_err("error allocating memory for associativity information\n");
213 		return -ENOMEM;
214 	}
215 
216 	return 0;
217 }
218 
destroy_cpu_associativity(void)219 static void destroy_cpu_associativity(void)
220 {
221 	kfree(vcpu_associativity);
222 	kfree(pcpu_associativity);
223 	vcpu_associativity = pcpu_associativity = 0;
224 }
225 
__get_cpu_associativity(int cpu,__be32 * cpu_assoc,int flag)226 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
227 {
228 	__be32 *assoc;
229 	int rc = 0;
230 
231 	assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
232 	if (!assoc[0]) {
233 		rc = hcall_vphn(cpu, flag, &assoc[0]);
234 		if (rc)
235 			return NULL;
236 	}
237 
238 	return assoc;
239 }
240 
get_pcpu_associativity(int cpu)241 static __be32 *get_pcpu_associativity(int cpu)
242 {
243 	return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
244 }
245 
get_vcpu_associativity(int cpu)246 static __be32 *get_vcpu_associativity(int cpu)
247 {
248 	return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
249 }
250 
cpu_relative_dispatch_distance(int last_disp_cpu,int cur_disp_cpu)251 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
252 {
253 	__be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
254 
255 	if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
256 		return -EINVAL;
257 
258 	last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
259 	cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
260 
261 	if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
262 		return -EIO;
263 
264 	return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
265 }
266 
cpu_home_node_dispatch_distance(int disp_cpu)267 static int cpu_home_node_dispatch_distance(int disp_cpu)
268 {
269 	__be32 *disp_cpu_assoc, *vcpu_assoc;
270 	int vcpu_id = smp_processor_id();
271 
272 	if (disp_cpu >= NR_CPUS_H) {
273 		pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
274 						disp_cpu, NR_CPUS_H);
275 		return -EINVAL;
276 	}
277 
278 	disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
279 	vcpu_assoc = get_vcpu_associativity(vcpu_id);
280 
281 	if (!disp_cpu_assoc || !vcpu_assoc)
282 		return -EIO;
283 
284 	return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
285 }
286 
update_vcpu_disp_stat(int disp_cpu)287 static void update_vcpu_disp_stat(int disp_cpu)
288 {
289 	struct vcpu_dispatch_data *disp;
290 	int distance;
291 
292 	disp = this_cpu_ptr(&vcpu_disp_data);
293 	if (disp->last_disp_cpu == -1) {
294 		disp->last_disp_cpu = disp_cpu;
295 		return;
296 	}
297 
298 	disp->total_disp++;
299 
300 	if (disp->last_disp_cpu == disp_cpu ||
301 		(cpu_first_thread_sibling(disp->last_disp_cpu) ==
302 					cpu_first_thread_sibling(disp_cpu)))
303 		disp->same_cpu_disp++;
304 	else {
305 		distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
306 								disp_cpu);
307 		if (distance < 0)
308 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
309 					smp_processor_id());
310 		else {
311 			switch (distance) {
312 			case 0:
313 				disp->same_chip_disp++;
314 				break;
315 			case 1:
316 				disp->diff_chip_disp++;
317 				break;
318 			case 2:
319 				disp->far_chip_disp++;
320 				break;
321 			default:
322 				pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
323 						 smp_processor_id(),
324 						 disp->last_disp_cpu,
325 						 disp_cpu,
326 						 distance);
327 			}
328 		}
329 	}
330 
331 	distance = cpu_home_node_dispatch_distance(disp_cpu);
332 	if (distance < 0)
333 		pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
334 				smp_processor_id());
335 	else {
336 		switch (distance) {
337 		case 0:
338 			disp->numa_home_disp++;
339 			break;
340 		case 1:
341 			disp->numa_remote_disp++;
342 			break;
343 		case 2:
344 			disp->numa_far_disp++;
345 			break;
346 		default:
347 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
348 						 smp_processor_id(),
349 						 disp_cpu,
350 						 distance);
351 		}
352 	}
353 
354 	disp->last_disp_cpu = disp_cpu;
355 }
356 
process_dtl_buffer(struct work_struct * work)357 static void process_dtl_buffer(struct work_struct *work)
358 {
359 	struct dtl_entry dtle;
360 	u64 i = __this_cpu_read(dtl_entry_ridx);
361 	struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
362 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
363 	struct lppaca *vpa = local_paca->lppaca_ptr;
364 	struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
365 
366 	if (!local_paca->dispatch_log)
367 		return;
368 
369 	/* if we have been migrated away, we cancel ourself */
370 	if (d->cpu != smp_processor_id()) {
371 		pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
372 						smp_processor_id());
373 		return;
374 	}
375 
376 	if (i == be64_to_cpu(vpa->dtl_idx))
377 		goto out;
378 
379 	while (i < be64_to_cpu(vpa->dtl_idx)) {
380 		dtle = *dtl;
381 		barrier();
382 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
383 			/* buffer has overflowed */
384 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
385 				d->cpu,
386 				be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
387 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
388 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
389 			continue;
390 		}
391 		update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
392 		++i;
393 		++dtl;
394 		if (dtl == dtl_end)
395 			dtl = local_paca->dispatch_log;
396 	}
397 
398 	__this_cpu_write(dtl_entry_ridx, i);
399 
400 out:
401 	schedule_delayed_work_on(d->cpu, to_delayed_work(work),
402 					HZ / vcpudispatch_stats_freq);
403 }
404 
dtl_worker_online(unsigned int cpu)405 static int dtl_worker_online(unsigned int cpu)
406 {
407 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
408 
409 	memset(d, 0, sizeof(*d));
410 	INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
411 	d->cpu = cpu;
412 
413 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
414 	per_cpu(dtl_entry_ridx, cpu) = 0;
415 	register_dtl_buffer(cpu);
416 #else
417 	per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
418 #endif
419 
420 	schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
421 	return 0;
422 }
423 
dtl_worker_offline(unsigned int cpu)424 static int dtl_worker_offline(unsigned int cpu)
425 {
426 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
427 
428 	cancel_delayed_work_sync(&d->work);
429 
430 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
431 	unregister_dtl(get_hard_smp_processor_id(cpu));
432 #endif
433 
434 	return 0;
435 }
436 
set_global_dtl_mask(u8 mask)437 static void set_global_dtl_mask(u8 mask)
438 {
439 	int cpu;
440 
441 	dtl_mask = mask;
442 	for_each_present_cpu(cpu)
443 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
444 }
445 
reset_global_dtl_mask(void)446 static void reset_global_dtl_mask(void)
447 {
448 	int cpu;
449 
450 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
451 	dtl_mask = DTL_LOG_PREEMPT;
452 #else
453 	dtl_mask = 0;
454 #endif
455 	for_each_present_cpu(cpu)
456 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
457 }
458 
dtl_worker_enable(unsigned long * time_limit)459 static int dtl_worker_enable(unsigned long *time_limit)
460 {
461 	int rc = 0, state;
462 
463 	if (!write_trylock(&dtl_access_lock)) {
464 		rc = -EBUSY;
465 		goto out;
466 	}
467 
468 	set_global_dtl_mask(DTL_LOG_ALL);
469 
470 	/* Setup dtl buffers and register those */
471 	alloc_dtl_buffers(time_limit);
472 
473 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
474 					dtl_worker_online, dtl_worker_offline);
475 	if (state < 0) {
476 		pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
477 		free_dtl_buffers(time_limit);
478 		reset_global_dtl_mask();
479 		write_unlock(&dtl_access_lock);
480 		rc = -EINVAL;
481 		goto out;
482 	}
483 	dtl_worker_state = state;
484 
485 out:
486 	return rc;
487 }
488 
dtl_worker_disable(unsigned long * time_limit)489 static void dtl_worker_disable(unsigned long *time_limit)
490 {
491 	cpuhp_remove_state(dtl_worker_state);
492 	free_dtl_buffers(time_limit);
493 	reset_global_dtl_mask();
494 	write_unlock(&dtl_access_lock);
495 }
496 
vcpudispatch_stats_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)497 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
498 		size_t count, loff_t *ppos)
499 {
500 	unsigned long time_limit = jiffies + HZ;
501 	struct vcpu_dispatch_data *disp;
502 	int rc, cmd, cpu;
503 	char buf[16];
504 
505 	if (count > 15)
506 		return -EINVAL;
507 
508 	if (copy_from_user(buf, p, count))
509 		return -EFAULT;
510 
511 	buf[count] = 0;
512 	rc = kstrtoint(buf, 0, &cmd);
513 	if (rc || cmd < 0 || cmd > 1) {
514 		pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
515 		return rc ? rc : -EINVAL;
516 	}
517 
518 	mutex_lock(&dtl_enable_mutex);
519 
520 	if ((cmd == 0 && !vcpudispatch_stats_on) ||
521 			(cmd == 1 && vcpudispatch_stats_on))
522 		goto out;
523 
524 	if (cmd) {
525 		rc = init_cpu_associativity();
526 		if (rc) {
527 			destroy_cpu_associativity();
528 			goto out;
529 		}
530 
531 		for_each_possible_cpu(cpu) {
532 			disp = per_cpu_ptr(&vcpu_disp_data, cpu);
533 			memset(disp, 0, sizeof(*disp));
534 			disp->last_disp_cpu = -1;
535 		}
536 
537 		rc = dtl_worker_enable(&time_limit);
538 		if (rc) {
539 			destroy_cpu_associativity();
540 			goto out;
541 		}
542 	} else {
543 		dtl_worker_disable(&time_limit);
544 		destroy_cpu_associativity();
545 	}
546 
547 	vcpudispatch_stats_on = cmd;
548 
549 out:
550 	mutex_unlock(&dtl_enable_mutex);
551 	if (rc)
552 		return rc;
553 	return count;
554 }
555 
vcpudispatch_stats_display(struct seq_file * p,void * v)556 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
557 {
558 	int cpu;
559 	struct vcpu_dispatch_data *disp;
560 
561 	if (!vcpudispatch_stats_on) {
562 		seq_puts(p, "off\n");
563 		return 0;
564 	}
565 
566 	for_each_online_cpu(cpu) {
567 		disp = per_cpu_ptr(&vcpu_disp_data, cpu);
568 		seq_printf(p, "cpu%d", cpu);
569 		seq_put_decimal_ull(p, " ", disp->total_disp);
570 		seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
571 		seq_put_decimal_ull(p, " ", disp->same_chip_disp);
572 		seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
573 		seq_put_decimal_ull(p, " ", disp->far_chip_disp);
574 		seq_put_decimal_ull(p, " ", disp->numa_home_disp);
575 		seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
576 		seq_put_decimal_ull(p, " ", disp->numa_far_disp);
577 		seq_puts(p, "\n");
578 	}
579 
580 	return 0;
581 }
582 
vcpudispatch_stats_open(struct inode * inode,struct file * file)583 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
584 {
585 	return single_open(file, vcpudispatch_stats_display, NULL);
586 }
587 
588 static const struct proc_ops vcpudispatch_stats_proc_ops = {
589 	.proc_open	= vcpudispatch_stats_open,
590 	.proc_read	= seq_read,
591 	.proc_write	= vcpudispatch_stats_write,
592 	.proc_lseek	= seq_lseek,
593 	.proc_release	= single_release,
594 };
595 
vcpudispatch_stats_freq_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)596 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
597 		const char __user *p, size_t count, loff_t *ppos)
598 {
599 	int rc, freq;
600 	char buf[16];
601 
602 	if (count > 15)
603 		return -EINVAL;
604 
605 	if (copy_from_user(buf, p, count))
606 		return -EFAULT;
607 
608 	buf[count] = 0;
609 	rc = kstrtoint(buf, 0, &freq);
610 	if (rc || freq < 1 || freq > HZ) {
611 		pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
612 				HZ);
613 		return rc ? rc : -EINVAL;
614 	}
615 
616 	vcpudispatch_stats_freq = freq;
617 
618 	return count;
619 }
620 
vcpudispatch_stats_freq_display(struct seq_file * p,void * v)621 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
622 {
623 	seq_printf(p, "%d\n", vcpudispatch_stats_freq);
624 	return 0;
625 }
626 
vcpudispatch_stats_freq_open(struct inode * inode,struct file * file)627 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
628 {
629 	return single_open(file, vcpudispatch_stats_freq_display, NULL);
630 }
631 
632 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
633 	.proc_open	= vcpudispatch_stats_freq_open,
634 	.proc_read	= seq_read,
635 	.proc_write	= vcpudispatch_stats_freq_write,
636 	.proc_lseek	= seq_lseek,
637 	.proc_release	= single_release,
638 };
639 
vcpudispatch_stats_procfs_init(void)640 static int __init vcpudispatch_stats_procfs_init(void)
641 {
642 	if (!lppaca_shared_proc())
643 		return 0;
644 
645 	if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
646 					&vcpudispatch_stats_proc_ops))
647 		pr_err("vcpudispatch_stats: error creating procfs file\n");
648 	else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
649 					&vcpudispatch_stats_freq_proc_ops))
650 		pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
651 
652 	return 0;
653 }
654 
655 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
656 #endif /* CONFIG_PPC_SPLPAR */
657 
vpa_init(int cpu)658 void vpa_init(int cpu)
659 {
660 	int hwcpu = get_hard_smp_processor_id(cpu);
661 	unsigned long addr;
662 	long ret;
663 
664 	/*
665 	 * The spec says it "may be problematic" if CPU x registers the VPA of
666 	 * CPU y. We should never do that, but wail if we ever do.
667 	 */
668 	WARN_ON(cpu != smp_processor_id());
669 
670 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
671 		lppaca_of(cpu).vmxregs_in_use = 1;
672 
673 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
674 		lppaca_of(cpu).ebb_regs_in_use = 1;
675 
676 	addr = __pa(&lppaca_of(cpu));
677 	ret = register_vpa(hwcpu, addr);
678 
679 	if (ret) {
680 		pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
681 		       "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
682 		return;
683 	}
684 
685 #ifdef CONFIG_PPC_BOOK3S_64
686 	/*
687 	 * PAPR says this feature is SLB-Buffer but firmware never
688 	 * reports that.  All SPLPAR support SLB shadow buffer.
689 	 */
690 	if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
691 		addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
692 		ret = register_slb_shadow(hwcpu, addr);
693 		if (ret)
694 			pr_err("WARNING: SLB shadow buffer registration for "
695 			       "cpu %d (hw %d) of area %lx failed with %ld\n",
696 			       cpu, hwcpu, addr, ret);
697 	}
698 #endif /* CONFIG_PPC_BOOK3S_64 */
699 
700 	/*
701 	 * Register dispatch trace log, if one has been allocated.
702 	 */
703 	register_dtl_buffer(cpu);
704 }
705 
706 #ifdef CONFIG_PPC_BOOK3S_64
707 
pSeries_lpar_hpte_insert(unsigned long hpte_group,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int apsize,int ssize)708 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
709 				     unsigned long vpn, unsigned long pa,
710 				     unsigned long rflags, unsigned long vflags,
711 				     int psize, int apsize, int ssize)
712 {
713 	unsigned long lpar_rc;
714 	unsigned long flags;
715 	unsigned long slot;
716 	unsigned long hpte_v, hpte_r;
717 
718 	if (!(vflags & HPTE_V_BOLTED))
719 		pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
720 			 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
721 			 hpte_group, vpn,  pa, rflags, vflags, psize);
722 
723 	hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
724 	hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
725 
726 	if (!(vflags & HPTE_V_BOLTED))
727 		pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
728 
729 	/* Now fill in the actual HPTE */
730 	/* Set CEC cookie to 0         */
731 	/* Zero page = 0               */
732 	/* I-cache Invalidate = 0      */
733 	/* I-cache synchronize = 0     */
734 	/* Exact = 0                   */
735 	flags = 0;
736 
737 	if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
738 		flags |= H_COALESCE_CAND;
739 
740 	lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
741 	if (unlikely(lpar_rc == H_PTEG_FULL)) {
742 		pr_devel("Hash table group is full\n");
743 		return -1;
744 	}
745 
746 	/*
747 	 * Since we try and ioremap PHBs we don't own, the pte insert
748 	 * will fail. However we must catch the failure in hash_page
749 	 * or we will loop forever, so return -2 in this case.
750 	 */
751 	if (unlikely(lpar_rc != H_SUCCESS)) {
752 		pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
753 		return -2;
754 	}
755 	if (!(vflags & HPTE_V_BOLTED))
756 		pr_devel(" -> slot: %lu\n", slot & 7);
757 
758 	/* Because of iSeries, we have to pass down the secondary
759 	 * bucket bit here as well
760 	 */
761 	return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
762 }
763 
764 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
765 
pSeries_lpar_hpte_remove(unsigned long hpte_group)766 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
767 {
768 	unsigned long slot_offset;
769 	unsigned long lpar_rc;
770 	int i;
771 	unsigned long dummy1, dummy2;
772 
773 	/* pick a random slot to start at */
774 	slot_offset = mftb() & 0x7;
775 
776 	for (i = 0; i < HPTES_PER_GROUP; i++) {
777 
778 		/* don't remove a bolted entry */
779 		lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
780 					   HPTE_V_BOLTED, &dummy1, &dummy2);
781 		if (lpar_rc == H_SUCCESS)
782 			return i;
783 
784 		/*
785 		 * The test for adjunct partition is performed before the
786 		 * ANDCOND test.  H_RESOURCE may be returned, so we need to
787 		 * check for that as well.
788 		 */
789 		BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
790 
791 		slot_offset++;
792 		slot_offset &= 0x7;
793 	}
794 
795 	return -1;
796 }
797 
manual_hpte_clear_all(void)798 static void manual_hpte_clear_all(void)
799 {
800 	unsigned long size_bytes = 1UL << ppc64_pft_size;
801 	unsigned long hpte_count = size_bytes >> 4;
802 	struct {
803 		unsigned long pteh;
804 		unsigned long ptel;
805 	} ptes[4];
806 	long lpar_rc;
807 	unsigned long i, j;
808 
809 	/* Read in batches of 4,
810 	 * invalidate only valid entries not in the VRMA
811 	 * hpte_count will be a multiple of 4
812          */
813 	for (i = 0; i < hpte_count; i += 4) {
814 		lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
815 		if (lpar_rc != H_SUCCESS) {
816 			pr_info("Failed to read hash page table at %ld err %ld\n",
817 				i, lpar_rc);
818 			continue;
819 		}
820 		for (j = 0; j < 4; j++){
821 			if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
822 				HPTE_V_VRMA_MASK)
823 				continue;
824 			if (ptes[j].pteh & HPTE_V_VALID)
825 				plpar_pte_remove_raw(0, i + j, 0,
826 					&(ptes[j].pteh), &(ptes[j].ptel));
827 		}
828 	}
829 }
830 
hcall_hpte_clear_all(void)831 static int hcall_hpte_clear_all(void)
832 {
833 	int rc;
834 
835 	do {
836 		rc = plpar_hcall_norets(H_CLEAR_HPT);
837 	} while (rc == H_CONTINUE);
838 
839 	return rc;
840 }
841 
pseries_hpte_clear_all(void)842 static void pseries_hpte_clear_all(void)
843 {
844 	int rc;
845 
846 	rc = hcall_hpte_clear_all();
847 	if (rc != H_SUCCESS)
848 		manual_hpte_clear_all();
849 
850 #ifdef __LITTLE_ENDIAN__
851 	/*
852 	 * Reset exceptions to big endian.
853 	 *
854 	 * FIXME this is a hack for kexec, we need to reset the exception
855 	 * endian before starting the new kernel and this is a convenient place
856 	 * to do it.
857 	 *
858 	 * This is also called on boot when a fadump happens. In that case we
859 	 * must not change the exception endian mode.
860 	 */
861 	if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
862 		pseries_big_endian_exceptions();
863 #endif
864 }
865 
866 /*
867  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
868  * the low 3 bits of flags happen to line up.  So no transform is needed.
869  * We can probably optimize here and assume the high bits of newpp are
870  * already zero.  For now I am paranoid.
871  */
pSeries_lpar_hpte_updatepp(unsigned long slot,unsigned long newpp,unsigned long vpn,int psize,int apsize,int ssize,unsigned long inv_flags)872 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
873 				       unsigned long newpp,
874 				       unsigned long vpn,
875 				       int psize, int apsize,
876 				       int ssize, unsigned long inv_flags)
877 {
878 	unsigned long lpar_rc;
879 	unsigned long flags;
880 	unsigned long want_v;
881 
882 	want_v = hpte_encode_avpn(vpn, psize, ssize);
883 
884 	flags = (newpp & 7) | H_AVPN;
885 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
886 		/* Move pp0 into bit 8 (IBM 55) */
887 		flags |= (newpp & HPTE_R_PP0) >> 55;
888 
889 	pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
890 		 want_v, slot, flags, psize);
891 
892 	lpar_rc = plpar_pte_protect(flags, slot, want_v);
893 
894 	if (lpar_rc == H_NOT_FOUND) {
895 		pr_devel("not found !\n");
896 		return -1;
897 	}
898 
899 	pr_devel("ok\n");
900 
901 	BUG_ON(lpar_rc != H_SUCCESS);
902 
903 	return 0;
904 }
905 
__pSeries_lpar_hpte_find(unsigned long want_v,unsigned long hpte_group)906 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
907 {
908 	long lpar_rc;
909 	unsigned long i, j;
910 	struct {
911 		unsigned long pteh;
912 		unsigned long ptel;
913 	} ptes[4];
914 
915 	for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
916 
917 		lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
918 		if (lpar_rc != H_SUCCESS) {
919 			pr_info("Failed to read hash page table at %ld err %ld\n",
920 				hpte_group, lpar_rc);
921 			continue;
922 		}
923 
924 		for (j = 0; j < 4; j++) {
925 			if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
926 			    (ptes[j].pteh & HPTE_V_VALID))
927 				return i + j;
928 		}
929 	}
930 
931 	return -1;
932 }
933 
pSeries_lpar_hpte_find(unsigned long vpn,int psize,int ssize)934 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
935 {
936 	long slot;
937 	unsigned long hash;
938 	unsigned long want_v;
939 	unsigned long hpte_group;
940 
941 	hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
942 	want_v = hpte_encode_avpn(vpn, psize, ssize);
943 
944 	/*
945 	 * We try to keep bolted entries always in primary hash
946 	 * But in some case we can find them in secondary too.
947 	 */
948 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
949 	slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
950 	if (slot < 0) {
951 		/* Try in secondary */
952 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
953 		slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
954 		if (slot < 0)
955 			return -1;
956 	}
957 	return hpte_group + slot;
958 }
959 
pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,unsigned long ea,int psize,int ssize)960 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
961 					     unsigned long ea,
962 					     int psize, int ssize)
963 {
964 	unsigned long vpn;
965 	unsigned long lpar_rc, slot, vsid, flags;
966 
967 	vsid = get_kernel_vsid(ea, ssize);
968 	vpn = hpt_vpn(ea, vsid, ssize);
969 
970 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
971 	BUG_ON(slot == -1);
972 
973 	flags = newpp & 7;
974 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
975 		/* Move pp0 into bit 8 (IBM 55) */
976 		flags |= (newpp & HPTE_R_PP0) >> 55;
977 
978 	lpar_rc = plpar_pte_protect(flags, slot, 0);
979 
980 	BUG_ON(lpar_rc != H_SUCCESS);
981 }
982 
pSeries_lpar_hpte_invalidate(unsigned long slot,unsigned long vpn,int psize,int apsize,int ssize,int local)983 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
984 					 int psize, int apsize,
985 					 int ssize, int local)
986 {
987 	unsigned long want_v;
988 	unsigned long lpar_rc;
989 	unsigned long dummy1, dummy2;
990 
991 	pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
992 		 slot, vpn, psize, local);
993 
994 	want_v = hpte_encode_avpn(vpn, psize, ssize);
995 	lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
996 	if (lpar_rc == H_NOT_FOUND)
997 		return;
998 
999 	BUG_ON(lpar_rc != H_SUCCESS);
1000 }
1001 
1002 
1003 /*
1004  * As defined in the PAPR's section 14.5.4.1.8
1005  * The control mask doesn't include the returned reference and change bit from
1006  * the processed PTE.
1007  */
1008 #define HBLKR_AVPN		0x0100000000000000UL
1009 #define HBLKR_CTRL_MASK		0xf800000000000000UL
1010 #define HBLKR_CTRL_SUCCESS	0x8000000000000000UL
1011 #define HBLKR_CTRL_ERRNOTFOUND	0x8800000000000000UL
1012 #define HBLKR_CTRL_ERRBUSY	0xa000000000000000UL
1013 
1014 /*
1015  * Returned true if we are supporting this block size for the specified segment
1016  * base page size and actual page size.
1017  *
1018  * Currently, we only support 8 size block.
1019  */
is_supported_hlbkrm(int bpsize,int psize)1020 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1021 {
1022 	return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1023 }
1024 
1025 /**
1026  * H_BLOCK_REMOVE caller.
1027  * @idx should point to the latest @param entry set with a PTEX.
1028  * If PTE cannot be processed because another CPUs has already locked that
1029  * group, those entries are put back in @param starting at index 1.
1030  * If entries has to be retried and @retry_busy is set to true, these entries
1031  * are retried until success. If @retry_busy is set to false, the returned
1032  * is the number of entries yet to process.
1033  */
call_block_remove(unsigned long idx,unsigned long * param,bool retry_busy)1034 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1035 				       bool retry_busy)
1036 {
1037 	unsigned long i, rc, new_idx;
1038 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1039 
1040 	if (idx < 2) {
1041 		pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1042 		return 0;
1043 	}
1044 again:
1045 	new_idx = 0;
1046 	if (idx > PLPAR_HCALL9_BUFSIZE) {
1047 		pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1048 		idx = PLPAR_HCALL9_BUFSIZE;
1049 	} else if (idx < PLPAR_HCALL9_BUFSIZE)
1050 		param[idx] = HBR_END;
1051 
1052 	rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1053 			  param[0], /* AVA */
1054 			  param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1055 			  param[5],  param[6],  param[7],  param[8]);
1056 	if (rc == H_SUCCESS)
1057 		return 0;
1058 
1059 	BUG_ON(rc != H_PARTIAL);
1060 
1061 	/* Check that the unprocessed entries were 'not found' or 'busy' */
1062 	for (i = 0; i < idx-1; i++) {
1063 		unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1064 
1065 		if (ctrl == HBLKR_CTRL_ERRBUSY) {
1066 			param[++new_idx] = param[i+1];
1067 			continue;
1068 		}
1069 
1070 		BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1071 		       && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1072 	}
1073 
1074 	/*
1075 	 * If there were entries found busy, retry these entries if requested,
1076 	 * of if all the entries have to be retried.
1077 	 */
1078 	if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1079 		idx = new_idx + 1;
1080 		goto again;
1081 	}
1082 
1083 	return new_idx;
1084 }
1085 
1086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1087 /*
1088  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1089  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1090  */
1091 #define PPC64_HUGE_HPTE_BATCH 12
1092 
hugepage_block_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1093 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1094 				      int count, int psize, int ssize)
1095 {
1096 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1097 	unsigned long shift, current_vpgb, vpgb;
1098 	int i, pix = 0;
1099 
1100 	shift = mmu_psize_defs[psize].shift;
1101 
1102 	for (i = 0; i < count; i++) {
1103 		/*
1104 		 * Shifting 3 bits more on the right to get a
1105 		 * 8 pages aligned virtual addresse.
1106 		 */
1107 		vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1108 		if (!pix || vpgb != current_vpgb) {
1109 			/*
1110 			 * Need to start a new 8 pages block, flush
1111 			 * the current one if needed.
1112 			 */
1113 			if (pix)
1114 				(void)call_block_remove(pix, param, true);
1115 			current_vpgb = vpgb;
1116 			param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1117 			pix = 1;
1118 		}
1119 
1120 		param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1121 		if (pix == PLPAR_HCALL9_BUFSIZE) {
1122 			pix = call_block_remove(pix, param, false);
1123 			/*
1124 			 * pix = 0 means that all the entries were
1125 			 * removed, we can start a new block.
1126 			 * Otherwise, this means that there are entries
1127 			 * to retry, and pix points to latest one, so
1128 			 * we should increment it and try to continue
1129 			 * the same block.
1130 			 */
1131 			if (pix)
1132 				pix++;
1133 		}
1134 	}
1135 	if (pix)
1136 		(void)call_block_remove(pix, param, true);
1137 }
1138 
hugepage_bulk_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1139 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1140 				     int count, int psize, int ssize)
1141 {
1142 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1143 	int i = 0, pix = 0, rc;
1144 
1145 	for (i = 0; i < count; i++) {
1146 
1147 		if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1148 			pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1149 						     ssize, 0);
1150 		} else {
1151 			param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1152 			param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1153 			pix += 2;
1154 			if (pix == 8) {
1155 				rc = plpar_hcall9(H_BULK_REMOVE, param,
1156 						  param[0], param[1], param[2],
1157 						  param[3], param[4], param[5],
1158 						  param[6], param[7]);
1159 				BUG_ON(rc != H_SUCCESS);
1160 				pix = 0;
1161 			}
1162 		}
1163 	}
1164 	if (pix) {
1165 		param[pix] = HBR_END;
1166 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1167 				  param[2], param[3], param[4], param[5],
1168 				  param[6], param[7]);
1169 		BUG_ON(rc != H_SUCCESS);
1170 	}
1171 }
1172 
__pSeries_lpar_hugepage_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1173 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1174 						      unsigned long *vpn,
1175 						      int count, int psize,
1176 						      int ssize)
1177 {
1178 	unsigned long flags = 0;
1179 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1180 
1181 	if (lock_tlbie)
1182 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1183 
1184 	/* Assuming THP size is 16M */
1185 	if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1186 		hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1187 	else
1188 		hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1189 
1190 	if (lock_tlbie)
1191 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1192 }
1193 
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1194 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1195 					     unsigned long addr,
1196 					     unsigned char *hpte_slot_array,
1197 					     int psize, int ssize, int local)
1198 {
1199 	int i, index = 0;
1200 	unsigned long s_addr = addr;
1201 	unsigned int max_hpte_count, valid;
1202 	unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1203 	unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1204 	unsigned long shift, hidx, vpn = 0, hash, slot;
1205 
1206 	shift = mmu_psize_defs[psize].shift;
1207 	max_hpte_count = 1U << (PMD_SHIFT - shift);
1208 
1209 	for (i = 0; i < max_hpte_count; i++) {
1210 		valid = hpte_valid(hpte_slot_array, i);
1211 		if (!valid)
1212 			continue;
1213 		hidx =  hpte_hash_index(hpte_slot_array, i);
1214 
1215 		/* get the vpn */
1216 		addr = s_addr + (i * (1ul << shift));
1217 		vpn = hpt_vpn(addr, vsid, ssize);
1218 		hash = hpt_hash(vpn, shift, ssize);
1219 		if (hidx & _PTEIDX_SECONDARY)
1220 			hash = ~hash;
1221 
1222 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1223 		slot += hidx & _PTEIDX_GROUP_IX;
1224 
1225 		slot_array[index] = slot;
1226 		vpn_array[index] = vpn;
1227 		if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1228 			/*
1229 			 * Now do a bluk invalidate
1230 			 */
1231 			__pSeries_lpar_hugepage_invalidate(slot_array,
1232 							   vpn_array,
1233 							   PPC64_HUGE_HPTE_BATCH,
1234 							   psize, ssize);
1235 			index = 0;
1236 		} else
1237 			index++;
1238 	}
1239 	if (index)
1240 		__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1241 						   index, psize, ssize);
1242 }
1243 #else
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1244 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1245 					     unsigned long addr,
1246 					     unsigned char *hpte_slot_array,
1247 					     int psize, int ssize, int local)
1248 {
1249 	WARN(1, "%s called without THP support\n", __func__);
1250 }
1251 #endif
1252 
pSeries_lpar_hpte_removebolted(unsigned long ea,int psize,int ssize)1253 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1254 					  int psize, int ssize)
1255 {
1256 	unsigned long vpn;
1257 	unsigned long slot, vsid;
1258 
1259 	vsid = get_kernel_vsid(ea, ssize);
1260 	vpn = hpt_vpn(ea, vsid, ssize);
1261 
1262 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1263 	if (slot == -1)
1264 		return -ENOENT;
1265 
1266 	/*
1267 	 * lpar doesn't use the passed actual page size
1268 	 */
1269 	pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1270 	return 0;
1271 }
1272 
1273 
compute_slot(real_pte_t pte,unsigned long vpn,unsigned long index,unsigned long shift,int ssize)1274 static inline unsigned long compute_slot(real_pte_t pte,
1275 					 unsigned long vpn,
1276 					 unsigned long index,
1277 					 unsigned long shift,
1278 					 int ssize)
1279 {
1280 	unsigned long slot, hash, hidx;
1281 
1282 	hash = hpt_hash(vpn, shift, ssize);
1283 	hidx = __rpte_to_hidx(pte, index);
1284 	if (hidx & _PTEIDX_SECONDARY)
1285 		hash = ~hash;
1286 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1287 	slot += hidx & _PTEIDX_GROUP_IX;
1288 	return slot;
1289 }
1290 
1291 /**
1292  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1293  * "all within the same naturally aligned 8 page virtual address block".
1294  */
do_block_remove(unsigned long number,struct ppc64_tlb_batch * batch,unsigned long * param)1295 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1296 			    unsigned long *param)
1297 {
1298 	unsigned long vpn;
1299 	unsigned long i, pix = 0;
1300 	unsigned long index, shift, slot, current_vpgb, vpgb;
1301 	real_pte_t pte;
1302 	int psize, ssize;
1303 
1304 	psize = batch->psize;
1305 	ssize = batch->ssize;
1306 
1307 	for (i = 0; i < number; i++) {
1308 		vpn = batch->vpn[i];
1309 		pte = batch->pte[i];
1310 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1311 			/*
1312 			 * Shifting 3 bits more on the right to get a
1313 			 * 8 pages aligned virtual addresse.
1314 			 */
1315 			vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1316 			if (!pix || vpgb != current_vpgb) {
1317 				/*
1318 				 * Need to start a new 8 pages block, flush
1319 				 * the current one if needed.
1320 				 */
1321 				if (pix)
1322 					(void)call_block_remove(pix, param,
1323 								true);
1324 				current_vpgb = vpgb;
1325 				param[0] = hpte_encode_avpn(vpn, psize,
1326 							    ssize);
1327 				pix = 1;
1328 			}
1329 
1330 			slot = compute_slot(pte, vpn, index, shift, ssize);
1331 			param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1332 
1333 			if (pix == PLPAR_HCALL9_BUFSIZE) {
1334 				pix = call_block_remove(pix, param, false);
1335 				/*
1336 				 * pix = 0 means that all the entries were
1337 				 * removed, we can start a new block.
1338 				 * Otherwise, this means that there are entries
1339 				 * to retry, and pix points to latest one, so
1340 				 * we should increment it and try to continue
1341 				 * the same block.
1342 				 */
1343 				if (pix)
1344 					pix++;
1345 			}
1346 		} pte_iterate_hashed_end();
1347 	}
1348 
1349 	if (pix)
1350 		(void)call_block_remove(pix, param, true);
1351 }
1352 
1353 /*
1354  * TLB Block Invalidate Characteristics
1355  *
1356  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1357  * is able to process for each couple segment base page size, actual page size.
1358  *
1359  * The ibm,get-system-parameter properties is returning a buffer with the
1360  * following layout:
1361  *
1362  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1363  * -----------------
1364  * TLB Block Invalidate Specifiers:
1365  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1366  * [ 1 byte Number of page sizes (N) that are supported for the specified
1367  *          TLB invalidate block size ]
1368  * [ 1 byte Encoded segment base page size and actual page size
1369  *          MSB=0 means 4k segment base page size and actual page size
1370  *          MSB=1 the penc value in mmu_psize_def ]
1371  * ...
1372  * -----------------
1373  * Next TLB Block Invalidate Specifiers...
1374  * -----------------
1375  * [ 0 ]
1376  */
set_hblkrm_bloc_size(int bpsize,int psize,unsigned int block_size)1377 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1378 					unsigned int block_size)
1379 {
1380 	if (block_size > hblkrm_size[bpsize][psize])
1381 		hblkrm_size[bpsize][psize] = block_size;
1382 }
1383 
1384 /*
1385  * Decode the Encoded segment base page size and actual page size.
1386  * PAPR specifies:
1387  *   - bit 7 is the L bit
1388  *   - bits 0-5 are the penc value
1389  * If the L bit is 0, this means 4K segment base page size and actual page size
1390  * otherwise the penc value should be read.
1391  */
1392 #define HBLKRM_L_MASK		0x80
1393 #define HBLKRM_PENC_MASK	0x3f
check_lp_set_hblkrm(unsigned int lp,unsigned int block_size)1394 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1395 					      unsigned int block_size)
1396 {
1397 	unsigned int bpsize, psize;
1398 
1399 	/* First, check the L bit, if not set, this means 4K */
1400 	if ((lp & HBLKRM_L_MASK) == 0) {
1401 		set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1402 		return;
1403 	}
1404 
1405 	lp &= HBLKRM_PENC_MASK;
1406 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1407 		struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1408 
1409 		for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1410 			if (def->penc[psize] == lp) {
1411 				set_hblkrm_bloc_size(bpsize, psize, block_size);
1412 				return;
1413 			}
1414 		}
1415 	}
1416 }
1417 
1418 #define SPLPAR_TLB_BIC_TOKEN		50
1419 
1420 /*
1421  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1422  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1423  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1424  * (128 bytes) for the buffer to get plenty of space.
1425  */
1426 #define SPLPAR_TLB_BIC_MAXLENGTH	128
1427 
pseries_lpar_read_hblkrm_characteristics(void)1428 void __init pseries_lpar_read_hblkrm_characteristics(void)
1429 {
1430 	const s32 token = rtas_token("ibm,get-system-parameter");
1431 	unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1432 	int call_status, len, idx, bpsize;
1433 
1434 	if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1435 		return;
1436 
1437 	do {
1438 		spin_lock(&rtas_data_buf_lock);
1439 		memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1440 		call_status = rtas_call(token, 3, 1, NULL, SPLPAR_TLB_BIC_TOKEN,
1441 					__pa(rtas_data_buf), RTAS_DATA_BUF_SIZE);
1442 		memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1443 		local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1444 		spin_unlock(&rtas_data_buf_lock);
1445 	} while (rtas_busy_delay(call_status));
1446 
1447 	if (call_status != 0) {
1448 		pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1449 			__FILE__, __func__, call_status);
1450 		return;
1451 	}
1452 
1453 	/*
1454 	 * The first two (2) bytes of the data in the buffer are the length of
1455 	 * the returned data, not counting these first two (2) bytes.
1456 	 */
1457 	len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1458 	if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1459 		pr_warn("%s too large returned buffer %d", __func__, len);
1460 		return;
1461 	}
1462 
1463 	idx = 2;
1464 	while (idx < len) {
1465 		u8 block_shift = local_buffer[idx++];
1466 		u32 block_size;
1467 		unsigned int npsize;
1468 
1469 		if (!block_shift)
1470 			break;
1471 
1472 		block_size = 1 << block_shift;
1473 
1474 		for (npsize = local_buffer[idx++];
1475 		     npsize > 0 && idx < len; npsize--)
1476 			check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1477 					    block_size);
1478 	}
1479 
1480 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1481 		for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1482 			if (hblkrm_size[bpsize][idx])
1483 				pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1484 					bpsize, idx, hblkrm_size[bpsize][idx]);
1485 }
1486 
1487 /*
1488  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1489  * lock.
1490  */
pSeries_lpar_flush_hash_range(unsigned long number,int local)1491 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1492 {
1493 	unsigned long vpn;
1494 	unsigned long i, pix, rc;
1495 	unsigned long flags = 0;
1496 	struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1497 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1498 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1499 	unsigned long index, shift, slot;
1500 	real_pte_t pte;
1501 	int psize, ssize;
1502 
1503 	if (lock_tlbie)
1504 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1505 
1506 	if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1507 		do_block_remove(number, batch, param);
1508 		goto out;
1509 	}
1510 
1511 	psize = batch->psize;
1512 	ssize = batch->ssize;
1513 	pix = 0;
1514 	for (i = 0; i < number; i++) {
1515 		vpn = batch->vpn[i];
1516 		pte = batch->pte[i];
1517 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1518 			slot = compute_slot(pte, vpn, index, shift, ssize);
1519 			if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1520 				/*
1521 				 * lpar doesn't use the passed actual page size
1522 				 */
1523 				pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1524 							     0, ssize, local);
1525 			} else {
1526 				param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1527 				param[pix+1] = hpte_encode_avpn(vpn, psize,
1528 								ssize);
1529 				pix += 2;
1530 				if (pix == 8) {
1531 					rc = plpar_hcall9(H_BULK_REMOVE, param,
1532 						param[0], param[1], param[2],
1533 						param[3], param[4], param[5],
1534 						param[6], param[7]);
1535 					BUG_ON(rc != H_SUCCESS);
1536 					pix = 0;
1537 				}
1538 			}
1539 		} pte_iterate_hashed_end();
1540 	}
1541 	if (pix) {
1542 		param[pix] = HBR_END;
1543 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1544 				  param[2], param[3], param[4], param[5],
1545 				  param[6], param[7]);
1546 		BUG_ON(rc != H_SUCCESS);
1547 	}
1548 
1549 out:
1550 	if (lock_tlbie)
1551 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1552 }
1553 
disable_bulk_remove(char * str)1554 static int __init disable_bulk_remove(char *str)
1555 {
1556 	if (strcmp(str, "off") == 0 &&
1557 	    firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1558 		pr_info("Disabling BULK_REMOVE firmware feature");
1559 		powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1560 	}
1561 	return 1;
1562 }
1563 
1564 __setup("bulk_remove=", disable_bulk_remove);
1565 
1566 #define HPT_RESIZE_TIMEOUT	10000 /* ms */
1567 
1568 struct hpt_resize_state {
1569 	unsigned long shift;
1570 	int commit_rc;
1571 };
1572 
pseries_lpar_resize_hpt_commit(void * data)1573 static int pseries_lpar_resize_hpt_commit(void *data)
1574 {
1575 	struct hpt_resize_state *state = data;
1576 
1577 	state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1578 	if (state->commit_rc != H_SUCCESS)
1579 		return -EIO;
1580 
1581 	/* Hypervisor has transitioned the HTAB, update our globals */
1582 	ppc64_pft_size = state->shift;
1583 	htab_size_bytes = 1UL << ppc64_pft_size;
1584 	htab_hash_mask = (htab_size_bytes >> 7) - 1;
1585 
1586 	return 0;
1587 }
1588 
1589 /*
1590  * Must be called in process context. The caller must hold the
1591  * cpus_lock.
1592  */
pseries_lpar_resize_hpt(unsigned long shift)1593 static int pseries_lpar_resize_hpt(unsigned long shift)
1594 {
1595 	struct hpt_resize_state state = {
1596 		.shift = shift,
1597 		.commit_rc = H_FUNCTION,
1598 	};
1599 	unsigned int delay, total_delay = 0;
1600 	int rc;
1601 	ktime_t t0, t1, t2;
1602 
1603 	might_sleep();
1604 
1605 	if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1606 		return -ENODEV;
1607 
1608 	pr_info("Attempting to resize HPT to shift %lu\n", shift);
1609 
1610 	t0 = ktime_get();
1611 
1612 	rc = plpar_resize_hpt_prepare(0, shift);
1613 	while (H_IS_LONG_BUSY(rc)) {
1614 		delay = get_longbusy_msecs(rc);
1615 		total_delay += delay;
1616 		if (total_delay > HPT_RESIZE_TIMEOUT) {
1617 			/* prepare with shift==0 cancels an in-progress resize */
1618 			rc = plpar_resize_hpt_prepare(0, 0);
1619 			if (rc != H_SUCCESS)
1620 				pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1621 				       rc);
1622 			return -ETIMEDOUT;
1623 		}
1624 		msleep(delay);
1625 		rc = plpar_resize_hpt_prepare(0, shift);
1626 	};
1627 
1628 	switch (rc) {
1629 	case H_SUCCESS:
1630 		/* Continue on */
1631 		break;
1632 
1633 	case H_PARAMETER:
1634 		pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1635 		return -EINVAL;
1636 	case H_RESOURCE:
1637 		pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1638 		return -EPERM;
1639 	default:
1640 		pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1641 		return -EIO;
1642 	}
1643 
1644 	t1 = ktime_get();
1645 
1646 	rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1647 				     &state, NULL);
1648 
1649 	t2 = ktime_get();
1650 
1651 	if (rc != 0) {
1652 		switch (state.commit_rc) {
1653 		case H_PTEG_FULL:
1654 			return -ENOSPC;
1655 
1656 		default:
1657 			pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1658 				state.commit_rc);
1659 			return -EIO;
1660 		};
1661 	}
1662 
1663 	pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1664 		shift, (long long) ktime_ms_delta(t1, t0),
1665 		(long long) ktime_ms_delta(t2, t1));
1666 
1667 	return 0;
1668 }
1669 
pseries_lpar_register_process_table(unsigned long base,unsigned long page_size,unsigned long table_size)1670 static int pseries_lpar_register_process_table(unsigned long base,
1671 			unsigned long page_size, unsigned long table_size)
1672 {
1673 	long rc;
1674 	unsigned long flags = 0;
1675 
1676 	if (table_size)
1677 		flags |= PROC_TABLE_NEW;
1678 	if (radix_enabled()) {
1679 		flags |= PROC_TABLE_RADIX;
1680 		if (mmu_has_feature(MMU_FTR_GTSE))
1681 			flags |= PROC_TABLE_GTSE;
1682 	} else
1683 		flags |= PROC_TABLE_HPT_SLB;
1684 	for (;;) {
1685 		rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1686 					page_size, table_size);
1687 		if (!H_IS_LONG_BUSY(rc))
1688 			break;
1689 		mdelay(get_longbusy_msecs(rc));
1690 	}
1691 	if (rc != H_SUCCESS) {
1692 		pr_err("Failed to register process table (rc=%ld)\n", rc);
1693 		BUG();
1694 	}
1695 	return rc;
1696 }
1697 
hpte_init_pseries(void)1698 void __init hpte_init_pseries(void)
1699 {
1700 	mmu_hash_ops.hpte_invalidate	 = pSeries_lpar_hpte_invalidate;
1701 	mmu_hash_ops.hpte_updatepp	 = pSeries_lpar_hpte_updatepp;
1702 	mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1703 	mmu_hash_ops.hpte_insert	 = pSeries_lpar_hpte_insert;
1704 	mmu_hash_ops.hpte_remove	 = pSeries_lpar_hpte_remove;
1705 	mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1706 	mmu_hash_ops.flush_hash_range	 = pSeries_lpar_flush_hash_range;
1707 	mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1708 	mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1709 
1710 	if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1711 		mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1712 
1713 	/*
1714 	 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1715 	 * to inform the hypervisor that we wish to use the HPT.
1716 	 */
1717 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1718 		pseries_lpar_register_process_table(0, 0, 0);
1719 }
1720 
1721 #ifdef CONFIG_PPC_RADIX_MMU
radix_init_pseries(void)1722 void radix_init_pseries(void)
1723 {
1724 	pr_info("Using radix MMU under hypervisor\n");
1725 
1726 	pseries_lpar_register_process_table(__pa(process_tb),
1727 						0, PRTB_SIZE_SHIFT - 12);
1728 }
1729 #endif
1730 
1731 #ifdef CONFIG_PPC_SMLPAR
1732 #define CMO_FREE_HINT_DEFAULT 1
1733 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1734 
cmo_free_hint(char * str)1735 static int __init cmo_free_hint(char *str)
1736 {
1737 	char *parm;
1738 	parm = strstrip(str);
1739 
1740 	if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1741 		pr_info("%s: CMO free page hinting is not active.\n", __func__);
1742 		cmo_free_hint_flag = 0;
1743 		return 1;
1744 	}
1745 
1746 	cmo_free_hint_flag = 1;
1747 	pr_info("%s: CMO free page hinting is active.\n", __func__);
1748 
1749 	if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1750 		return 1;
1751 
1752 	return 0;
1753 }
1754 
1755 __setup("cmo_free_hint=", cmo_free_hint);
1756 
pSeries_set_page_state(struct page * page,int order,unsigned long state)1757 static void pSeries_set_page_state(struct page *page, int order,
1758 				   unsigned long state)
1759 {
1760 	int i, j;
1761 	unsigned long cmo_page_sz, addr;
1762 
1763 	cmo_page_sz = cmo_get_page_size();
1764 	addr = __pa((unsigned long)page_address(page));
1765 
1766 	for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1767 		for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1768 			plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1769 	}
1770 }
1771 
arch_free_page(struct page * page,int order)1772 void arch_free_page(struct page *page, int order)
1773 {
1774 	if (radix_enabled())
1775 		return;
1776 	if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1777 		return;
1778 
1779 	pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1780 }
1781 EXPORT_SYMBOL(arch_free_page);
1782 
1783 #endif /* CONFIG_PPC_SMLPAR */
1784 #endif /* CONFIG_PPC_BOOK3S_64 */
1785 
1786 #ifdef CONFIG_TRACEPOINTS
1787 #ifdef CONFIG_JUMP_LABEL
1788 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1789 
hcall_tracepoint_regfunc(void)1790 int hcall_tracepoint_regfunc(void)
1791 {
1792 	static_key_slow_inc(&hcall_tracepoint_key);
1793 	return 0;
1794 }
1795 
hcall_tracepoint_unregfunc(void)1796 void hcall_tracepoint_unregfunc(void)
1797 {
1798 	static_key_slow_dec(&hcall_tracepoint_key);
1799 }
1800 #else
1801 /*
1802  * We optimise our hcall path by placing hcall_tracepoint_refcount
1803  * directly in the TOC so we can check if the hcall tracepoints are
1804  * enabled via a single load.
1805  */
1806 
1807 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1808 extern long hcall_tracepoint_refcount;
1809 
hcall_tracepoint_regfunc(void)1810 int hcall_tracepoint_regfunc(void)
1811 {
1812 	hcall_tracepoint_refcount++;
1813 	return 0;
1814 }
1815 
hcall_tracepoint_unregfunc(void)1816 void hcall_tracepoint_unregfunc(void)
1817 {
1818 	hcall_tracepoint_refcount--;
1819 }
1820 #endif
1821 
1822 /*
1823  * Since the tracing code might execute hcalls we need to guard against
1824  * recursion.
1825  */
1826 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1827 
1828 
__trace_hcall_entry(unsigned long opcode,unsigned long * args)1829 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1830 {
1831 	unsigned long flags;
1832 	unsigned int *depth;
1833 
1834 	/*
1835 	 * We cannot call tracepoints inside RCU idle regions which
1836 	 * means we must not trace H_CEDE.
1837 	 */
1838 	if (opcode == H_CEDE)
1839 		return;
1840 
1841 	local_irq_save(flags);
1842 
1843 	depth = this_cpu_ptr(&hcall_trace_depth);
1844 
1845 	if (*depth)
1846 		goto out;
1847 
1848 	(*depth)++;
1849 	preempt_disable();
1850 	trace_hcall_entry(opcode, args);
1851 	(*depth)--;
1852 
1853 out:
1854 	local_irq_restore(flags);
1855 }
1856 
__trace_hcall_exit(long opcode,long retval,unsigned long * retbuf)1857 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1858 {
1859 	unsigned long flags;
1860 	unsigned int *depth;
1861 
1862 	if (opcode == H_CEDE)
1863 		return;
1864 
1865 	local_irq_save(flags);
1866 
1867 	depth = this_cpu_ptr(&hcall_trace_depth);
1868 
1869 	if (*depth)
1870 		goto out;
1871 
1872 	(*depth)++;
1873 	trace_hcall_exit(opcode, retval, retbuf);
1874 	preempt_enable();
1875 	(*depth)--;
1876 
1877 out:
1878 	local_irq_restore(flags);
1879 }
1880 #endif
1881 
1882 /**
1883  * h_get_mpp
1884  * H_GET_MPP hcall returns info in 7 parms
1885  */
h_get_mpp(struct hvcall_mpp_data * mpp_data)1886 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1887 {
1888 	int rc;
1889 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1890 
1891 	rc = plpar_hcall9(H_GET_MPP, retbuf);
1892 
1893 	mpp_data->entitled_mem = retbuf[0];
1894 	mpp_data->mapped_mem = retbuf[1];
1895 
1896 	mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1897 	mpp_data->pool_num = retbuf[2] & 0xffff;
1898 
1899 	mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1900 	mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1901 	mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1902 
1903 	mpp_data->pool_size = retbuf[4];
1904 	mpp_data->loan_request = retbuf[5];
1905 	mpp_data->backing_mem = retbuf[6];
1906 
1907 	return rc;
1908 }
1909 EXPORT_SYMBOL(h_get_mpp);
1910 
h_get_mpp_x(struct hvcall_mpp_x_data * mpp_x_data)1911 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1912 {
1913 	int rc;
1914 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1915 
1916 	rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1917 
1918 	mpp_x_data->coalesced_bytes = retbuf[0];
1919 	mpp_x_data->pool_coalesced_bytes = retbuf[1];
1920 	mpp_x_data->pool_purr_cycles = retbuf[2];
1921 	mpp_x_data->pool_spurr_cycles = retbuf[3];
1922 
1923 	return rc;
1924 }
1925 
vsid_unscramble(unsigned long vsid,int ssize)1926 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1927 {
1928 	unsigned long protovsid;
1929 	unsigned long va_bits = VA_BITS;
1930 	unsigned long modinv, vsid_modulus;
1931 	unsigned long max_mod_inv, tmp_modinv;
1932 
1933 	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1934 		va_bits = 65;
1935 
1936 	if (ssize == MMU_SEGSIZE_256M) {
1937 		modinv = VSID_MULINV_256M;
1938 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1939 	} else {
1940 		modinv = VSID_MULINV_1T;
1941 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1942 	}
1943 
1944 	/*
1945 	 * vsid outside our range.
1946 	 */
1947 	if (vsid >= vsid_modulus)
1948 		return 0;
1949 
1950 	/*
1951 	 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1952 	 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1953 	 *   protovsid = (vsid * modinv) % vsid_modulus
1954 	 */
1955 
1956 	/* Check if (vsid * modinv) overflow (63 bits) */
1957 	max_mod_inv = 0x7fffffffffffffffull / vsid;
1958 	if (modinv < max_mod_inv)
1959 		return (vsid * modinv) % vsid_modulus;
1960 
1961 	tmp_modinv = modinv/max_mod_inv;
1962 	modinv %= max_mod_inv;
1963 
1964 	protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1965 	protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1966 
1967 	return protovsid;
1968 }
1969 
reserve_vrma_context_id(void)1970 static int __init reserve_vrma_context_id(void)
1971 {
1972 	unsigned long protovsid;
1973 
1974 	/*
1975 	 * Reserve context ids which map to reserved virtual addresses. For now
1976 	 * we only reserve the context id which maps to the VRMA VSID. We ignore
1977 	 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1978 	 * enable adjunct support via the "ibm,client-architecture-support"
1979 	 * interface.
1980 	 */
1981 	protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1982 	hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1983 	return 0;
1984 }
1985 machine_device_initcall(pseries, reserve_vrma_context_id);
1986 
1987 #ifdef CONFIG_DEBUG_FS
1988 /* debugfs file interface for vpa data */
vpa_file_read(struct file * filp,char __user * buf,size_t len,loff_t * pos)1989 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1990 			      loff_t *pos)
1991 {
1992 	int cpu = (long)filp->private_data;
1993 	struct lppaca *lppaca = &lppaca_of(cpu);
1994 
1995 	return simple_read_from_buffer(buf, len, pos, lppaca,
1996 				sizeof(struct lppaca));
1997 }
1998 
1999 static const struct file_operations vpa_fops = {
2000 	.open		= simple_open,
2001 	.read		= vpa_file_read,
2002 	.llseek		= default_llseek,
2003 };
2004 
vpa_debugfs_init(void)2005 static int __init vpa_debugfs_init(void)
2006 {
2007 	char name[16];
2008 	long i;
2009 	struct dentry *vpa_dir;
2010 
2011 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2012 		return 0;
2013 
2014 	vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
2015 
2016 	/* set up the per-cpu vpa file*/
2017 	for_each_possible_cpu(i) {
2018 		sprintf(name, "cpu-%ld", i);
2019 		debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2020 	}
2021 
2022 	return 0;
2023 }
2024 machine_arch_initcall(pseries, vpa_debugfs_init);
2025 #endif /* CONFIG_DEBUG_FS */
2026