1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI connection handling. */
26
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37
38 struct sco_param {
39 u16 pkt_type;
40 u16 max_latency;
41 u8 retrans_effort;
42 };
43
44 static const struct sco_param esco_param_cvsd[] = {
45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */
46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */
47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */
48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */
49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */
50 };
51
52 static const struct sco_param sco_param_cvsd[] = {
53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */
54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */
55 };
56
57 static const struct sco_param esco_param_msbc[] = {
58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */
59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */
60 };
61
62 /* This function requires the caller holds hdev->lock */
hci_connect_le_scan_cleanup(struct hci_conn * conn)63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
64 {
65 struct hci_conn_params *params;
66 struct hci_dev *hdev = conn->hdev;
67 struct smp_irk *irk;
68 bdaddr_t *bdaddr;
69 u8 bdaddr_type;
70
71 bdaddr = &conn->dst;
72 bdaddr_type = conn->dst_type;
73
74 /* Check if we need to convert to identity address */
75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 if (irk) {
77 bdaddr = &irk->bdaddr;
78 bdaddr_type = irk->addr_type;
79 }
80
81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 bdaddr_type);
83 if (!params || !params->explicit_connect)
84 return;
85
86 /* The connection attempt was doing scan for new RPA, and is
87 * in scan phase. If params are not associated with any other
88 * autoconnect action, remove them completely. If they are, just unmark
89 * them as waiting for connection, by clearing explicit_connect field.
90 */
91 params->explicit_connect = false;
92
93 list_del_init(¶ms->action);
94
95 switch (params->auto_connect) {
96 case HCI_AUTO_CONN_EXPLICIT:
97 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 /* return instead of break to avoid duplicate scan update */
99 return;
100 case HCI_AUTO_CONN_DIRECT:
101 case HCI_AUTO_CONN_ALWAYS:
102 list_add(¶ms->action, &hdev->pend_le_conns);
103 break;
104 case HCI_AUTO_CONN_REPORT:
105 list_add(¶ms->action, &hdev->pend_le_reports);
106 break;
107 default:
108 break;
109 }
110
111 hci_update_background_scan(hdev);
112 }
113
hci_conn_cleanup(struct hci_conn * conn)114 static void hci_conn_cleanup(struct hci_conn *conn)
115 {
116 struct hci_dev *hdev = conn->hdev;
117
118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
120
121 hci_chan_list_flush(conn);
122
123 hci_conn_hash_del(hdev, conn);
124
125 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
126 switch (conn->setting & SCO_AIRMODE_MASK) {
127 case SCO_AIRMODE_CVSD:
128 case SCO_AIRMODE_TRANSP:
129 if (hdev->notify)
130 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
131 break;
132 }
133 } else {
134 if (hdev->notify)
135 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
136 }
137
138 debugfs_remove_recursive(conn->debugfs);
139
140 hci_conn_del_sysfs(conn);
141
142 hci_dev_put(hdev);
143 }
144
le_scan_cleanup(struct work_struct * work)145 static void le_scan_cleanup(struct work_struct *work)
146 {
147 struct hci_conn *conn = container_of(work, struct hci_conn,
148 le_scan_cleanup);
149 struct hci_dev *hdev = conn->hdev;
150 struct hci_conn *c = NULL;
151
152 BT_DBG("%s hcon %p", hdev->name, conn);
153
154 hci_dev_lock(hdev);
155
156 /* Check that the hci_conn is still around */
157 rcu_read_lock();
158 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
159 if (c == conn)
160 break;
161 }
162 rcu_read_unlock();
163
164 if (c == conn) {
165 hci_connect_le_scan_cleanup(conn);
166 hci_conn_cleanup(conn);
167 }
168
169 hci_dev_unlock(hdev);
170 hci_dev_put(hdev);
171 hci_conn_put(conn);
172 }
173
hci_connect_le_scan_remove(struct hci_conn * conn)174 static void hci_connect_le_scan_remove(struct hci_conn *conn)
175 {
176 BT_DBG("%s hcon %p", conn->hdev->name, conn);
177
178 /* We can't call hci_conn_del/hci_conn_cleanup here since that
179 * could deadlock with another hci_conn_del() call that's holding
180 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
181 * Instead, grab temporary extra references to the hci_dev and
182 * hci_conn and perform the necessary cleanup in a separate work
183 * callback.
184 */
185
186 hci_dev_hold(conn->hdev);
187 hci_conn_get(conn);
188
189 /* Even though we hold a reference to the hdev, many other
190 * things might get cleaned up meanwhile, including the hdev's
191 * own workqueue, so we can't use that for scheduling.
192 */
193 schedule_work(&conn->le_scan_cleanup);
194 }
195
hci_acl_create_connection(struct hci_conn * conn)196 static void hci_acl_create_connection(struct hci_conn *conn)
197 {
198 struct hci_dev *hdev = conn->hdev;
199 struct inquiry_entry *ie;
200 struct hci_cp_create_conn cp;
201
202 BT_DBG("hcon %p", conn);
203
204 conn->state = BT_CONNECT;
205 conn->out = true;
206 conn->role = HCI_ROLE_MASTER;
207
208 conn->attempt++;
209
210 conn->link_policy = hdev->link_policy;
211
212 memset(&cp, 0, sizeof(cp));
213 bacpy(&cp.bdaddr, &conn->dst);
214 cp.pscan_rep_mode = 0x02;
215
216 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
217 if (ie) {
218 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
219 cp.pscan_rep_mode = ie->data.pscan_rep_mode;
220 cp.pscan_mode = ie->data.pscan_mode;
221 cp.clock_offset = ie->data.clock_offset |
222 cpu_to_le16(0x8000);
223 }
224
225 memcpy(conn->dev_class, ie->data.dev_class, 3);
226 }
227
228 cp.pkt_type = cpu_to_le16(conn->pkt_type);
229 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
230 cp.role_switch = 0x01;
231 else
232 cp.role_switch = 0x00;
233
234 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
235 }
236
hci_disconnect(struct hci_conn * conn,__u8 reason)237 int hci_disconnect(struct hci_conn *conn, __u8 reason)
238 {
239 BT_DBG("hcon %p", conn);
240
241 /* When we are central of an established connection and it enters
242 * the disconnect timeout, then go ahead and try to read the
243 * current clock offset. Processing of the result is done
244 * within the event handling and hci_clock_offset_evt function.
245 */
246 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
247 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
248 struct hci_dev *hdev = conn->hdev;
249 struct hci_cp_read_clock_offset clkoff_cp;
250
251 clkoff_cp.handle = cpu_to_le16(conn->handle);
252 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
253 &clkoff_cp);
254 }
255
256 return hci_abort_conn(conn, reason);
257 }
258
hci_add_sco(struct hci_conn * conn,__u16 handle)259 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
260 {
261 struct hci_dev *hdev = conn->hdev;
262 struct hci_cp_add_sco cp;
263
264 BT_DBG("hcon %p", conn);
265
266 conn->state = BT_CONNECT;
267 conn->out = true;
268
269 conn->attempt++;
270
271 cp.handle = cpu_to_le16(handle);
272 cp.pkt_type = cpu_to_le16(conn->pkt_type);
273
274 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
275 }
276
hci_setup_sync(struct hci_conn * conn,__u16 handle)277 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
278 {
279 struct hci_dev *hdev = conn->hdev;
280 struct hci_cp_setup_sync_conn cp;
281 const struct sco_param *param;
282
283 BT_DBG("hcon %p", conn);
284
285 conn->state = BT_CONNECT;
286 conn->out = true;
287
288 conn->attempt++;
289
290 cp.handle = cpu_to_le16(handle);
291
292 cp.tx_bandwidth = cpu_to_le32(0x00001f40);
293 cp.rx_bandwidth = cpu_to_le32(0x00001f40);
294 cp.voice_setting = cpu_to_le16(conn->setting);
295
296 switch (conn->setting & SCO_AIRMODE_MASK) {
297 case SCO_AIRMODE_TRANSP:
298 if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
299 return false;
300 param = &esco_param_msbc[conn->attempt - 1];
301 break;
302 case SCO_AIRMODE_CVSD:
303 if (lmp_esco_capable(conn->link)) {
304 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
305 return false;
306 param = &esco_param_cvsd[conn->attempt - 1];
307 } else {
308 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
309 return false;
310 param = &sco_param_cvsd[conn->attempt - 1];
311 }
312 break;
313 default:
314 return false;
315 }
316
317 cp.retrans_effort = param->retrans_effort;
318 cp.pkt_type = __cpu_to_le16(param->pkt_type);
319 cp.max_latency = __cpu_to_le16(param->max_latency);
320
321 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
322 return false;
323
324 return true;
325 }
326
hci_le_conn_update(struct hci_conn * conn,u16 min,u16 max,u16 latency,u16 to_multiplier)327 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
328 u16 to_multiplier)
329 {
330 struct hci_dev *hdev = conn->hdev;
331 struct hci_conn_params *params;
332 struct hci_cp_le_conn_update cp;
333
334 hci_dev_lock(hdev);
335
336 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
337 if (params) {
338 params->conn_min_interval = min;
339 params->conn_max_interval = max;
340 params->conn_latency = latency;
341 params->supervision_timeout = to_multiplier;
342 }
343
344 hci_dev_unlock(hdev);
345
346 memset(&cp, 0, sizeof(cp));
347 cp.handle = cpu_to_le16(conn->handle);
348 cp.conn_interval_min = cpu_to_le16(min);
349 cp.conn_interval_max = cpu_to_le16(max);
350 cp.conn_latency = cpu_to_le16(latency);
351 cp.supervision_timeout = cpu_to_le16(to_multiplier);
352 cp.min_ce_len = cpu_to_le16(0x0000);
353 cp.max_ce_len = cpu_to_le16(0x0000);
354
355 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
356
357 if (params)
358 return 0x01;
359
360 return 0x00;
361 }
362
hci_le_start_enc(struct hci_conn * conn,__le16 ediv,__le64 rand,__u8 ltk[16],__u8 key_size)363 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
364 __u8 ltk[16], __u8 key_size)
365 {
366 struct hci_dev *hdev = conn->hdev;
367 struct hci_cp_le_start_enc cp;
368
369 BT_DBG("hcon %p", conn);
370
371 memset(&cp, 0, sizeof(cp));
372
373 cp.handle = cpu_to_le16(conn->handle);
374 cp.rand = rand;
375 cp.ediv = ediv;
376 memcpy(cp.ltk, ltk, key_size);
377
378 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
379 }
380
381 /* Device _must_ be locked */
hci_sco_setup(struct hci_conn * conn,__u8 status)382 void hci_sco_setup(struct hci_conn *conn, __u8 status)
383 {
384 struct hci_conn *sco = conn->link;
385
386 if (!sco)
387 return;
388
389 BT_DBG("hcon %p", conn);
390
391 if (!status) {
392 if (lmp_esco_capable(conn->hdev))
393 hci_setup_sync(sco, conn->handle);
394 else
395 hci_add_sco(sco, conn->handle);
396 } else {
397 hci_connect_cfm(sco, status);
398 hci_conn_del(sco);
399 }
400 }
401
hci_conn_timeout(struct work_struct * work)402 static void hci_conn_timeout(struct work_struct *work)
403 {
404 struct hci_conn *conn = container_of(work, struct hci_conn,
405 disc_work.work);
406 int refcnt = atomic_read(&conn->refcnt);
407
408 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
409
410 WARN_ON(refcnt < 0);
411
412 /* FIXME: It was observed that in pairing failed scenario, refcnt
413 * drops below 0. Probably this is because l2cap_conn_del calls
414 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
415 * dropped. After that loop hci_chan_del is called which also drops
416 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
417 * otherwise drop it.
418 */
419 if (refcnt > 0)
420 return;
421
422 /* LE connections in scanning state need special handling */
423 if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
424 test_bit(HCI_CONN_SCANNING, &conn->flags)) {
425 hci_connect_le_scan_remove(conn);
426 return;
427 }
428
429 hci_abort_conn(conn, hci_proto_disconn_ind(conn));
430 }
431
432 /* Enter sniff mode */
hci_conn_idle(struct work_struct * work)433 static void hci_conn_idle(struct work_struct *work)
434 {
435 struct hci_conn *conn = container_of(work, struct hci_conn,
436 idle_work.work);
437 struct hci_dev *hdev = conn->hdev;
438
439 BT_DBG("hcon %p mode %d", conn, conn->mode);
440
441 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
442 return;
443
444 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
445 return;
446
447 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
448 struct hci_cp_sniff_subrate cp;
449 cp.handle = cpu_to_le16(conn->handle);
450 cp.max_latency = cpu_to_le16(0);
451 cp.min_remote_timeout = cpu_to_le16(0);
452 cp.min_local_timeout = cpu_to_le16(0);
453 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
454 }
455
456 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
457 struct hci_cp_sniff_mode cp;
458 cp.handle = cpu_to_le16(conn->handle);
459 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
460 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
461 cp.attempt = cpu_to_le16(4);
462 cp.timeout = cpu_to_le16(1);
463 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
464 }
465 }
466
hci_conn_auto_accept(struct work_struct * work)467 static void hci_conn_auto_accept(struct work_struct *work)
468 {
469 struct hci_conn *conn = container_of(work, struct hci_conn,
470 auto_accept_work.work);
471
472 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
473 &conn->dst);
474 }
475
le_disable_advertising(struct hci_dev * hdev)476 static void le_disable_advertising(struct hci_dev *hdev)
477 {
478 if (ext_adv_capable(hdev)) {
479 struct hci_cp_le_set_ext_adv_enable cp;
480
481 cp.enable = 0x00;
482 cp.num_of_sets = 0x00;
483
484 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
485 &cp);
486 } else {
487 u8 enable = 0x00;
488 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
489 &enable);
490 }
491 }
492
le_conn_timeout(struct work_struct * work)493 static void le_conn_timeout(struct work_struct *work)
494 {
495 struct hci_conn *conn = container_of(work, struct hci_conn,
496 le_conn_timeout.work);
497 struct hci_dev *hdev = conn->hdev;
498
499 BT_DBG("");
500
501 /* We could end up here due to having done directed advertising,
502 * so clean up the state if necessary. This should however only
503 * happen with broken hardware or if low duty cycle was used
504 * (which doesn't have a timeout of its own).
505 */
506 if (conn->role == HCI_ROLE_SLAVE) {
507 /* Disable LE Advertising */
508 le_disable_advertising(hdev);
509 hci_dev_lock(hdev);
510 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
511 hci_dev_unlock(hdev);
512 return;
513 }
514
515 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
516 }
517
hci_conn_add(struct hci_dev * hdev,int type,bdaddr_t * dst,u8 role)518 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
519 u8 role)
520 {
521 struct hci_conn *conn;
522
523 BT_DBG("%s dst %pMR", hdev->name, dst);
524
525 conn = kzalloc(sizeof(*conn), GFP_KERNEL);
526 if (!conn)
527 return NULL;
528
529 bacpy(&conn->dst, dst);
530 bacpy(&conn->src, &hdev->bdaddr);
531 conn->hdev = hdev;
532 conn->type = type;
533 conn->role = role;
534 conn->mode = HCI_CM_ACTIVE;
535 conn->state = BT_OPEN;
536 conn->auth_type = HCI_AT_GENERAL_BONDING;
537 conn->io_capability = hdev->io_capability;
538 conn->remote_auth = 0xff;
539 conn->key_type = 0xff;
540 conn->rssi = HCI_RSSI_INVALID;
541 conn->tx_power = HCI_TX_POWER_INVALID;
542 conn->max_tx_power = HCI_TX_POWER_INVALID;
543
544 set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
545 conn->disc_timeout = HCI_DISCONN_TIMEOUT;
546
547 /* Set Default Authenticated payload timeout to 30s */
548 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
549
550 if (conn->role == HCI_ROLE_MASTER)
551 conn->out = true;
552
553 switch (type) {
554 case ACL_LINK:
555 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
556 break;
557 case LE_LINK:
558 /* conn->src should reflect the local identity address */
559 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
560 break;
561 case SCO_LINK:
562 if (lmp_esco_capable(hdev))
563 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
564 (hdev->esco_type & EDR_ESCO_MASK);
565 else
566 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
567 break;
568 case ESCO_LINK:
569 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
570 break;
571 }
572
573 skb_queue_head_init(&conn->data_q);
574
575 INIT_LIST_HEAD(&conn->chan_list);
576
577 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
578 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
579 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
580 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
581 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
582
583 atomic_set(&conn->refcnt, 0);
584
585 hci_dev_hold(hdev);
586
587 hci_conn_hash_add(hdev, conn);
588
589 /* The SCO and eSCO connections will only be notified when their
590 * setup has been completed. This is different to ACL links which
591 * can be notified right away.
592 */
593 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
594 if (hdev->notify)
595 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
596 }
597
598 hci_conn_init_sysfs(conn);
599
600 return conn;
601 }
602
hci_conn_del(struct hci_conn * conn)603 int hci_conn_del(struct hci_conn *conn)
604 {
605 struct hci_dev *hdev = conn->hdev;
606
607 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
608
609 cancel_delayed_work_sync(&conn->disc_work);
610 cancel_delayed_work_sync(&conn->auto_accept_work);
611 cancel_delayed_work_sync(&conn->idle_work);
612
613 if (conn->type == ACL_LINK) {
614 struct hci_conn *sco = conn->link;
615 if (sco)
616 sco->link = NULL;
617
618 /* Unacked frames */
619 hdev->acl_cnt += conn->sent;
620 } else if (conn->type == LE_LINK) {
621 cancel_delayed_work(&conn->le_conn_timeout);
622
623 if (hdev->le_pkts)
624 hdev->le_cnt += conn->sent;
625 else
626 hdev->acl_cnt += conn->sent;
627 } else {
628 struct hci_conn *acl = conn->link;
629 if (acl) {
630 acl->link = NULL;
631 hci_conn_drop(acl);
632 }
633 }
634
635 if (conn->amp_mgr)
636 amp_mgr_put(conn->amp_mgr);
637
638 skb_queue_purge(&conn->data_q);
639
640 /* Remove the connection from the list and cleanup its remaining
641 * state. This is a separate function since for some cases like
642 * BT_CONNECT_SCAN we *only* want the cleanup part without the
643 * rest of hci_conn_del.
644 */
645 hci_conn_cleanup(conn);
646
647 return 0;
648 }
649
hci_get_route(bdaddr_t * dst,bdaddr_t * src,uint8_t src_type)650 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
651 {
652 int use_src = bacmp(src, BDADDR_ANY);
653 struct hci_dev *hdev = NULL, *d;
654
655 BT_DBG("%pMR -> %pMR", src, dst);
656
657 read_lock(&hci_dev_list_lock);
658
659 list_for_each_entry(d, &hci_dev_list, list) {
660 if (!test_bit(HCI_UP, &d->flags) ||
661 hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
662 d->dev_type != HCI_PRIMARY)
663 continue;
664
665 /* Simple routing:
666 * No source address - find interface with bdaddr != dst
667 * Source address - find interface with bdaddr == src
668 */
669
670 if (use_src) {
671 bdaddr_t id_addr;
672 u8 id_addr_type;
673
674 if (src_type == BDADDR_BREDR) {
675 if (!lmp_bredr_capable(d))
676 continue;
677 bacpy(&id_addr, &d->bdaddr);
678 id_addr_type = BDADDR_BREDR;
679 } else {
680 if (!lmp_le_capable(d))
681 continue;
682
683 hci_copy_identity_address(d, &id_addr,
684 &id_addr_type);
685
686 /* Convert from HCI to three-value type */
687 if (id_addr_type == ADDR_LE_DEV_PUBLIC)
688 id_addr_type = BDADDR_LE_PUBLIC;
689 else
690 id_addr_type = BDADDR_LE_RANDOM;
691 }
692
693 if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
694 hdev = d; break;
695 }
696 } else {
697 if (bacmp(&d->bdaddr, dst)) {
698 hdev = d; break;
699 }
700 }
701 }
702
703 if (hdev)
704 hdev = hci_dev_hold(hdev);
705
706 read_unlock(&hci_dev_list_lock);
707 return hdev;
708 }
709 EXPORT_SYMBOL(hci_get_route);
710
711 /* This function requires the caller holds hdev->lock */
hci_le_conn_failed(struct hci_conn * conn,u8 status)712 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
713 {
714 struct hci_dev *hdev = conn->hdev;
715 struct hci_conn_params *params;
716
717 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
718 conn->dst_type);
719 if (params && params->conn) {
720 hci_conn_drop(params->conn);
721 hci_conn_put(params->conn);
722 params->conn = NULL;
723 }
724
725 conn->state = BT_CLOSED;
726
727 /* If the status indicates successful cancellation of
728 * the attempt (i.e. Unkown Connection Id) there's no point of
729 * notifying failure since we'll go back to keep trying to
730 * connect. The only exception is explicit connect requests
731 * where a timeout + cancel does indicate an actual failure.
732 */
733 if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
734 (params && params->explicit_connect))
735 mgmt_connect_failed(hdev, &conn->dst, conn->type,
736 conn->dst_type, status);
737
738 hci_connect_cfm(conn, status);
739
740 hci_conn_del(conn);
741
742 /* Since we may have temporarily stopped the background scanning in
743 * favor of connection establishment, we should restart it.
744 */
745 hci_update_background_scan(hdev);
746
747 /* Re-enable advertising in case this was a failed connection
748 * attempt as a peripheral.
749 */
750 hci_req_reenable_advertising(hdev);
751 }
752
create_le_conn_complete(struct hci_dev * hdev,u8 status,u16 opcode)753 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
754 {
755 struct hci_conn *conn;
756
757 hci_dev_lock(hdev);
758
759 conn = hci_lookup_le_connect(hdev);
760
761 if (!status) {
762 hci_connect_le_scan_cleanup(conn);
763 goto done;
764 }
765
766 bt_dev_err(hdev, "request failed to create LE connection: "
767 "status 0x%2.2x", status);
768
769 if (!conn)
770 goto done;
771
772 hci_le_conn_failed(conn, status);
773
774 done:
775 hci_dev_unlock(hdev);
776 }
777
conn_use_rpa(struct hci_conn * conn)778 static bool conn_use_rpa(struct hci_conn *conn)
779 {
780 struct hci_dev *hdev = conn->hdev;
781
782 return hci_dev_test_flag(hdev, HCI_PRIVACY);
783 }
784
set_ext_conn_params(struct hci_conn * conn,struct hci_cp_le_ext_conn_param * p)785 static void set_ext_conn_params(struct hci_conn *conn,
786 struct hci_cp_le_ext_conn_param *p)
787 {
788 struct hci_dev *hdev = conn->hdev;
789
790 memset(p, 0, sizeof(*p));
791
792 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
793 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
794 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
795 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
796 p->conn_latency = cpu_to_le16(conn->le_conn_latency);
797 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
798 p->min_ce_len = cpu_to_le16(0x0000);
799 p->max_ce_len = cpu_to_le16(0x0000);
800 }
801
hci_req_add_le_create_conn(struct hci_request * req,struct hci_conn * conn,bdaddr_t * direct_rpa)802 static void hci_req_add_le_create_conn(struct hci_request *req,
803 struct hci_conn *conn,
804 bdaddr_t *direct_rpa)
805 {
806 struct hci_dev *hdev = conn->hdev;
807 u8 own_addr_type;
808
809 /* If direct address was provided we use it instead of current
810 * address.
811 */
812 if (direct_rpa) {
813 if (bacmp(&req->hdev->random_addr, direct_rpa))
814 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
815 direct_rpa);
816
817 /* direct address is always RPA */
818 own_addr_type = ADDR_LE_DEV_RANDOM;
819 } else {
820 /* Update random address, but set require_privacy to false so
821 * that we never connect with an non-resolvable address.
822 */
823 if (hci_update_random_address(req, false, conn_use_rpa(conn),
824 &own_addr_type))
825 return;
826 }
827
828 if (use_ext_conn(hdev)) {
829 struct hci_cp_le_ext_create_conn *cp;
830 struct hci_cp_le_ext_conn_param *p;
831 u8 data[sizeof(*cp) + sizeof(*p) * 3];
832 u32 plen;
833
834 cp = (void *) data;
835 p = (void *) cp->data;
836
837 memset(cp, 0, sizeof(*cp));
838
839 bacpy(&cp->peer_addr, &conn->dst);
840 cp->peer_addr_type = conn->dst_type;
841 cp->own_addr_type = own_addr_type;
842
843 plen = sizeof(*cp);
844
845 if (scan_1m(hdev)) {
846 cp->phys |= LE_SCAN_PHY_1M;
847 set_ext_conn_params(conn, p);
848
849 p++;
850 plen += sizeof(*p);
851 }
852
853 if (scan_2m(hdev)) {
854 cp->phys |= LE_SCAN_PHY_2M;
855 set_ext_conn_params(conn, p);
856
857 p++;
858 plen += sizeof(*p);
859 }
860
861 if (scan_coded(hdev)) {
862 cp->phys |= LE_SCAN_PHY_CODED;
863 set_ext_conn_params(conn, p);
864
865 plen += sizeof(*p);
866 }
867
868 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data);
869
870 } else {
871 struct hci_cp_le_create_conn cp;
872
873 memset(&cp, 0, sizeof(cp));
874
875 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
876 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
877
878 bacpy(&cp.peer_addr, &conn->dst);
879 cp.peer_addr_type = conn->dst_type;
880 cp.own_address_type = own_addr_type;
881 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
882 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
883 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
884 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
885 cp.min_ce_len = cpu_to_le16(0x0000);
886 cp.max_ce_len = cpu_to_le16(0x0000);
887
888 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
889 }
890
891 conn->state = BT_CONNECT;
892 clear_bit(HCI_CONN_SCANNING, &conn->flags);
893 }
894
hci_req_directed_advertising(struct hci_request * req,struct hci_conn * conn)895 static void hci_req_directed_advertising(struct hci_request *req,
896 struct hci_conn *conn)
897 {
898 struct hci_dev *hdev = req->hdev;
899 u8 own_addr_type;
900 u8 enable;
901
902 if (ext_adv_capable(hdev)) {
903 struct hci_cp_le_set_ext_adv_params cp;
904 bdaddr_t random_addr;
905
906 /* Set require_privacy to false so that the remote device has a
907 * chance of identifying us.
908 */
909 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
910 &own_addr_type, &random_addr) < 0)
911 return;
912
913 memset(&cp, 0, sizeof(cp));
914
915 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
916 cp.own_addr_type = own_addr_type;
917 cp.channel_map = hdev->le_adv_channel_map;
918 cp.tx_power = HCI_TX_POWER_INVALID;
919 cp.primary_phy = HCI_ADV_PHY_1M;
920 cp.secondary_phy = HCI_ADV_PHY_1M;
921 cp.handle = 0; /* Use instance 0 for directed adv */
922 cp.own_addr_type = own_addr_type;
923 cp.peer_addr_type = conn->dst_type;
924 bacpy(&cp.peer_addr, &conn->dst);
925
926 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
927 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
928 * does not supports advertising data when the advertising set already
929 * contains some, the controller shall return erroc code 'Invalid
930 * HCI Command Parameters(0x12).
931 * So it is required to remove adv set for handle 0x00. since we use
932 * instance 0 for directed adv.
933 */
934 __hci_req_remove_ext_adv_instance(req, cp.handle);
935
936 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
937
938 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
939 bacmp(&random_addr, BDADDR_ANY) &&
940 bacmp(&random_addr, &hdev->random_addr)) {
941 struct hci_cp_le_set_adv_set_rand_addr cp;
942
943 memset(&cp, 0, sizeof(cp));
944
945 cp.handle = 0;
946 bacpy(&cp.bdaddr, &random_addr);
947
948 hci_req_add(req,
949 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
950 sizeof(cp), &cp);
951 }
952
953 __hci_req_enable_ext_advertising(req, 0x00);
954 } else {
955 struct hci_cp_le_set_adv_param cp;
956
957 /* Clear the HCI_LE_ADV bit temporarily so that the
958 * hci_update_random_address knows that it's safe to go ahead
959 * and write a new random address. The flag will be set back on
960 * as soon as the SET_ADV_ENABLE HCI command completes.
961 */
962 hci_dev_clear_flag(hdev, HCI_LE_ADV);
963
964 /* Set require_privacy to false so that the remote device has a
965 * chance of identifying us.
966 */
967 if (hci_update_random_address(req, false, conn_use_rpa(conn),
968 &own_addr_type) < 0)
969 return;
970
971 memset(&cp, 0, sizeof(cp));
972
973 /* Some controllers might reject command if intervals are not
974 * within range for undirected advertising.
975 * BCM20702A0 is known to be affected by this.
976 */
977 cp.min_interval = cpu_to_le16(0x0020);
978 cp.max_interval = cpu_to_le16(0x0020);
979
980 cp.type = LE_ADV_DIRECT_IND;
981 cp.own_address_type = own_addr_type;
982 cp.direct_addr_type = conn->dst_type;
983 bacpy(&cp.direct_addr, &conn->dst);
984 cp.channel_map = hdev->le_adv_channel_map;
985
986 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
987
988 enable = 0x01;
989 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
990 &enable);
991 }
992
993 conn->state = BT_CONNECT;
994 }
995
hci_connect_le(struct hci_dev * hdev,bdaddr_t * dst,u8 dst_type,u8 sec_level,u16 conn_timeout,u8 role,bdaddr_t * direct_rpa)996 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
997 u8 dst_type, u8 sec_level, u16 conn_timeout,
998 u8 role, bdaddr_t *direct_rpa)
999 {
1000 struct hci_conn_params *params;
1001 struct hci_conn *conn;
1002 struct smp_irk *irk;
1003 struct hci_request req;
1004 int err;
1005
1006 /* This ensures that during disable le_scan address resolution
1007 * will not be disabled if it is followed by le_create_conn
1008 */
1009 bool rpa_le_conn = true;
1010
1011 /* Let's make sure that le is enabled.*/
1012 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1013 if (lmp_le_capable(hdev))
1014 return ERR_PTR(-ECONNREFUSED);
1015
1016 return ERR_PTR(-EOPNOTSUPP);
1017 }
1018
1019 /* Since the controller supports only one LE connection attempt at a
1020 * time, we return -EBUSY if there is any connection attempt running.
1021 */
1022 if (hci_lookup_le_connect(hdev))
1023 return ERR_PTR(-EBUSY);
1024
1025 /* If there's already a connection object but it's not in
1026 * scanning state it means it must already be established, in
1027 * which case we can't do anything else except report a failure
1028 * to connect.
1029 */
1030 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1031 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1032 return ERR_PTR(-EBUSY);
1033 }
1034
1035 /* When given an identity address with existing identity
1036 * resolving key, the connection needs to be established
1037 * to a resolvable random address.
1038 *
1039 * Storing the resolvable random address is required here
1040 * to handle connection failures. The address will later
1041 * be resolved back into the original identity address
1042 * from the connect request.
1043 */
1044 irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1045 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1046 dst = &irk->rpa;
1047 dst_type = ADDR_LE_DEV_RANDOM;
1048 }
1049
1050 if (conn) {
1051 bacpy(&conn->dst, dst);
1052 } else {
1053 conn = hci_conn_add(hdev, LE_LINK, dst, role);
1054 if (!conn)
1055 return ERR_PTR(-ENOMEM);
1056 hci_conn_hold(conn);
1057 conn->pending_sec_level = sec_level;
1058 }
1059
1060 conn->dst_type = dst_type;
1061 conn->sec_level = BT_SECURITY_LOW;
1062 conn->conn_timeout = conn_timeout;
1063
1064 hci_req_init(&req, hdev);
1065
1066 /* Disable advertising if we're active. For central role
1067 * connections most controllers will refuse to connect if
1068 * advertising is enabled, and for peripheral role connections we
1069 * anyway have to disable it in order to start directed
1070 * advertising.
1071 */
1072 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1073 __hci_req_disable_advertising(&req);
1074
1075 /* If requested to connect as peripheral use directed advertising */
1076 if (conn->role == HCI_ROLE_SLAVE) {
1077 /* If we're active scanning most controllers are unable
1078 * to initiate advertising. Simply reject the attempt.
1079 */
1080 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
1081 hdev->le_scan_type == LE_SCAN_ACTIVE) {
1082 hci_req_purge(&req);
1083 hci_conn_del(conn);
1084 return ERR_PTR(-EBUSY);
1085 }
1086
1087 hci_req_directed_advertising(&req, conn);
1088 goto create_conn;
1089 }
1090
1091 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
1092 if (params) {
1093 conn->le_conn_min_interval = params->conn_min_interval;
1094 conn->le_conn_max_interval = params->conn_max_interval;
1095 conn->le_conn_latency = params->conn_latency;
1096 conn->le_supv_timeout = params->supervision_timeout;
1097 } else {
1098 conn->le_conn_min_interval = hdev->le_conn_min_interval;
1099 conn->le_conn_max_interval = hdev->le_conn_max_interval;
1100 conn->le_conn_latency = hdev->le_conn_latency;
1101 conn->le_supv_timeout = hdev->le_supv_timeout;
1102 }
1103
1104 /* If controller is scanning, we stop it since some controllers are
1105 * not able to scan and connect at the same time. Also set the
1106 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
1107 * handler for scan disabling knows to set the correct discovery
1108 * state.
1109 */
1110 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
1111 hci_req_add_le_scan_disable(&req, rpa_le_conn);
1112 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
1113 }
1114
1115 hci_req_add_le_create_conn(&req, conn, direct_rpa);
1116
1117 create_conn:
1118 err = hci_req_run(&req, create_le_conn_complete);
1119 if (err) {
1120 hci_conn_del(conn);
1121 return ERR_PTR(err);
1122 }
1123
1124 return conn;
1125 }
1126
is_connected(struct hci_dev * hdev,bdaddr_t * addr,u8 type)1127 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1128 {
1129 struct hci_conn *conn;
1130
1131 conn = hci_conn_hash_lookup_le(hdev, addr, type);
1132 if (!conn)
1133 return false;
1134
1135 if (conn->state != BT_CONNECTED)
1136 return false;
1137
1138 return true;
1139 }
1140
1141 /* This function requires the caller holds hdev->lock */
hci_explicit_conn_params_set(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)1142 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1143 bdaddr_t *addr, u8 addr_type)
1144 {
1145 struct hci_conn_params *params;
1146
1147 if (is_connected(hdev, addr, addr_type))
1148 return -EISCONN;
1149
1150 params = hci_conn_params_lookup(hdev, addr, addr_type);
1151 if (!params) {
1152 params = hci_conn_params_add(hdev, addr, addr_type);
1153 if (!params)
1154 return -ENOMEM;
1155
1156 /* If we created new params, mark them to be deleted in
1157 * hci_connect_le_scan_cleanup. It's different case than
1158 * existing disabled params, those will stay after cleanup.
1159 */
1160 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1161 }
1162
1163 /* We're trying to connect, so make sure params are at pend_le_conns */
1164 if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1165 params->auto_connect == HCI_AUTO_CONN_REPORT ||
1166 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1167 list_del_init(¶ms->action);
1168 list_add(¶ms->action, &hdev->pend_le_conns);
1169 }
1170
1171 params->explicit_connect = true;
1172
1173 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1174 params->auto_connect);
1175
1176 return 0;
1177 }
1178
1179 /* This function requires the caller holds hdev->lock */
hci_connect_le_scan(struct hci_dev * hdev,bdaddr_t * dst,u8 dst_type,u8 sec_level,u16 conn_timeout,enum conn_reasons conn_reason)1180 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1181 u8 dst_type, u8 sec_level,
1182 u16 conn_timeout,
1183 enum conn_reasons conn_reason)
1184 {
1185 struct hci_conn *conn;
1186
1187 /* Let's make sure that le is enabled.*/
1188 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1189 if (lmp_le_capable(hdev))
1190 return ERR_PTR(-ECONNREFUSED);
1191
1192 return ERR_PTR(-EOPNOTSUPP);
1193 }
1194
1195 /* Some devices send ATT messages as soon as the physical link is
1196 * established. To be able to handle these ATT messages, the user-
1197 * space first establishes the connection and then starts the pairing
1198 * process.
1199 *
1200 * So if a hci_conn object already exists for the following connection
1201 * attempt, we simply update pending_sec_level and auth_type fields
1202 * and return the object found.
1203 */
1204 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1205 if (conn) {
1206 if (conn->pending_sec_level < sec_level)
1207 conn->pending_sec_level = sec_level;
1208 goto done;
1209 }
1210
1211 BT_DBG("requesting refresh of dst_addr");
1212
1213 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1214 if (!conn)
1215 return ERR_PTR(-ENOMEM);
1216
1217 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1218 hci_conn_del(conn);
1219 return ERR_PTR(-EBUSY);
1220 }
1221
1222 conn->state = BT_CONNECT;
1223 set_bit(HCI_CONN_SCANNING, &conn->flags);
1224 conn->dst_type = dst_type;
1225 conn->sec_level = BT_SECURITY_LOW;
1226 conn->pending_sec_level = sec_level;
1227 conn->conn_timeout = conn_timeout;
1228 conn->conn_reason = conn_reason;
1229
1230 hci_update_background_scan(hdev);
1231
1232 done:
1233 hci_conn_hold(conn);
1234 return conn;
1235 }
1236
hci_connect_acl(struct hci_dev * hdev,bdaddr_t * dst,u8 sec_level,u8 auth_type,enum conn_reasons conn_reason)1237 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1238 u8 sec_level, u8 auth_type,
1239 enum conn_reasons conn_reason)
1240 {
1241 struct hci_conn *acl;
1242
1243 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1244 if (lmp_bredr_capable(hdev))
1245 return ERR_PTR(-ECONNREFUSED);
1246
1247 return ERR_PTR(-EOPNOTSUPP);
1248 }
1249
1250 /* Reject outgoing connection to device with same BD ADDR against
1251 * CVE-2020-26555
1252 */
1253 if (!bacmp(&hdev->bdaddr, dst)) {
1254 bt_dev_dbg(hdev, "Reject connection with same BD_ADDR %pMR\n",
1255 dst);
1256 return ERR_PTR(-ECONNREFUSED);
1257 }
1258
1259 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1260 if (!acl) {
1261 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1262 if (!acl)
1263 return ERR_PTR(-ENOMEM);
1264 }
1265
1266 hci_conn_hold(acl);
1267
1268 acl->conn_reason = conn_reason;
1269 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1270 acl->sec_level = BT_SECURITY_LOW;
1271 acl->pending_sec_level = sec_level;
1272 acl->auth_type = auth_type;
1273 hci_acl_create_connection(acl);
1274 }
1275
1276 return acl;
1277 }
1278
hci_connect_sco(struct hci_dev * hdev,int type,bdaddr_t * dst,__u16 setting)1279 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1280 __u16 setting)
1281 {
1282 struct hci_conn *acl;
1283 struct hci_conn *sco;
1284
1285 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1286 CONN_REASON_SCO_CONNECT);
1287 if (IS_ERR(acl))
1288 return acl;
1289
1290 sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1291 if (!sco) {
1292 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1293 if (!sco) {
1294 hci_conn_drop(acl);
1295 return ERR_PTR(-ENOMEM);
1296 }
1297 }
1298
1299 acl->link = sco;
1300 sco->link = acl;
1301
1302 hci_conn_hold(sco);
1303
1304 sco->setting = setting;
1305
1306 if (acl->state == BT_CONNECTED &&
1307 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1308 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1309 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1310
1311 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1312 /* defer SCO setup until mode change completed */
1313 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1314 return sco;
1315 }
1316
1317 hci_sco_setup(acl, 0x00);
1318 }
1319
1320 return sco;
1321 }
1322
1323 /* Check link security requirement */
hci_conn_check_link_mode(struct hci_conn * conn)1324 int hci_conn_check_link_mode(struct hci_conn *conn)
1325 {
1326 BT_DBG("hcon %p", conn);
1327
1328 /* In Secure Connections Only mode, it is required that Secure
1329 * Connections is used and the link is encrypted with AES-CCM
1330 * using a P-256 authenticated combination key.
1331 */
1332 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1333 if (!hci_conn_sc_enabled(conn) ||
1334 !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1335 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1336 return 0;
1337 }
1338
1339 /* AES encryption is required for Level 4:
1340 *
1341 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
1342 * page 1319:
1343 *
1344 * 128-bit equivalent strength for link and encryption keys
1345 * required using FIPS approved algorithms (E0 not allowed,
1346 * SAFER+ not allowed, and P-192 not allowed; encryption key
1347 * not shortened)
1348 */
1349 if (conn->sec_level == BT_SECURITY_FIPS &&
1350 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
1351 bt_dev_err(conn->hdev,
1352 "Invalid security: Missing AES-CCM usage");
1353 return 0;
1354 }
1355
1356 if (hci_conn_ssp_enabled(conn) &&
1357 !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1358 return 0;
1359
1360 return 1;
1361 }
1362
1363 /* Authenticate remote device */
hci_conn_auth(struct hci_conn * conn,__u8 sec_level,__u8 auth_type)1364 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1365 {
1366 BT_DBG("hcon %p", conn);
1367
1368 if (conn->pending_sec_level > sec_level)
1369 sec_level = conn->pending_sec_level;
1370
1371 if (sec_level > conn->sec_level)
1372 conn->pending_sec_level = sec_level;
1373 else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1374 return 1;
1375
1376 /* Make sure we preserve an existing MITM requirement*/
1377 auth_type |= (conn->auth_type & 0x01);
1378
1379 conn->auth_type = auth_type;
1380
1381 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1382 struct hci_cp_auth_requested cp;
1383
1384 cp.handle = cpu_to_le16(conn->handle);
1385 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1386 sizeof(cp), &cp);
1387
1388 /* Set the ENCRYPT_PEND to trigger encryption after
1389 * authentication.
1390 */
1391 if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1392 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1393 }
1394
1395 return 0;
1396 }
1397
1398 /* Encrypt the link */
hci_conn_encrypt(struct hci_conn * conn)1399 static void hci_conn_encrypt(struct hci_conn *conn)
1400 {
1401 BT_DBG("hcon %p", conn);
1402
1403 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1404 struct hci_cp_set_conn_encrypt cp;
1405 cp.handle = cpu_to_le16(conn->handle);
1406 cp.encrypt = 0x01;
1407 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1408 &cp);
1409 }
1410 }
1411
1412 /* Enable security */
hci_conn_security(struct hci_conn * conn,__u8 sec_level,__u8 auth_type,bool initiator)1413 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1414 bool initiator)
1415 {
1416 BT_DBG("hcon %p", conn);
1417
1418 if (conn->type == LE_LINK)
1419 return smp_conn_security(conn, sec_level);
1420
1421 /* For sdp we don't need the link key. */
1422 if (sec_level == BT_SECURITY_SDP)
1423 return 1;
1424
1425 /* For non 2.1 devices and low security level we don't need the link
1426 key. */
1427 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1428 return 1;
1429
1430 /* For other security levels we need the link key. */
1431 if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1432 goto auth;
1433
1434 switch (conn->key_type) {
1435 case HCI_LK_AUTH_COMBINATION_P256:
1436 /* An authenticated FIPS approved combination key has
1437 * sufficient security for security level 4 or lower.
1438 */
1439 if (sec_level <= BT_SECURITY_FIPS)
1440 goto encrypt;
1441 break;
1442 case HCI_LK_AUTH_COMBINATION_P192:
1443 /* An authenticated combination key has sufficient security for
1444 * security level 3 or lower.
1445 */
1446 if (sec_level <= BT_SECURITY_HIGH)
1447 goto encrypt;
1448 break;
1449 case HCI_LK_UNAUTH_COMBINATION_P192:
1450 case HCI_LK_UNAUTH_COMBINATION_P256:
1451 /* An unauthenticated combination key has sufficient security
1452 * for security level 2 or lower.
1453 */
1454 if (sec_level <= BT_SECURITY_MEDIUM)
1455 goto encrypt;
1456 break;
1457 case HCI_LK_COMBINATION:
1458 /* A combination key has always sufficient security for the
1459 * security levels 2 or lower. High security level requires the
1460 * combination key is generated using maximum PIN code length
1461 * (16). For pre 2.1 units.
1462 */
1463 if (sec_level <= BT_SECURITY_MEDIUM || conn->pin_length == 16)
1464 goto encrypt;
1465 break;
1466 default:
1467 break;
1468 }
1469
1470 auth:
1471 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1472 return 0;
1473
1474 if (initiator)
1475 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1476
1477 if (!hci_conn_auth(conn, sec_level, auth_type))
1478 return 0;
1479
1480 encrypt:
1481 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1482 /* Ensure that the encryption key size has been read,
1483 * otherwise stall the upper layer responses.
1484 */
1485 if (!conn->enc_key_size)
1486 return 0;
1487
1488 /* Nothing else needed, all requirements are met */
1489 return 1;
1490 }
1491
1492 hci_conn_encrypt(conn);
1493 return 0;
1494 }
1495 EXPORT_SYMBOL(hci_conn_security);
1496
1497 /* Check secure link requirement */
hci_conn_check_secure(struct hci_conn * conn,__u8 sec_level)1498 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1499 {
1500 BT_DBG("hcon %p", conn);
1501
1502 /* Accept if non-secure or higher security level is required */
1503 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1504 return 1;
1505
1506 /* Accept if secure or higher security level is already present */
1507 if (conn->sec_level == BT_SECURITY_HIGH ||
1508 conn->sec_level == BT_SECURITY_FIPS)
1509 return 1;
1510
1511 /* Reject not secure link */
1512 return 0;
1513 }
1514 EXPORT_SYMBOL(hci_conn_check_secure);
1515
1516 /* Switch role */
hci_conn_switch_role(struct hci_conn * conn,__u8 role)1517 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1518 {
1519 BT_DBG("hcon %p", conn);
1520
1521 if (role == conn->role)
1522 return 1;
1523
1524 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1525 struct hci_cp_switch_role cp;
1526 bacpy(&cp.bdaddr, &conn->dst);
1527 cp.role = role;
1528 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1529 }
1530
1531 return 0;
1532 }
1533 EXPORT_SYMBOL(hci_conn_switch_role);
1534
1535 /* Enter active mode */
hci_conn_enter_active_mode(struct hci_conn * conn,__u8 force_active)1536 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1537 {
1538 struct hci_dev *hdev = conn->hdev;
1539
1540 BT_DBG("hcon %p mode %d", conn, conn->mode);
1541
1542 if (conn->mode != HCI_CM_SNIFF)
1543 goto timer;
1544
1545 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1546 goto timer;
1547
1548 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1549 struct hci_cp_exit_sniff_mode cp;
1550 cp.handle = cpu_to_le16(conn->handle);
1551 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1552 }
1553
1554 timer:
1555 if (hdev->idle_timeout > 0)
1556 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1557 msecs_to_jiffies(hdev->idle_timeout));
1558 }
1559
1560 /* Drop all connection on the device */
hci_conn_hash_flush(struct hci_dev * hdev)1561 void hci_conn_hash_flush(struct hci_dev *hdev)
1562 {
1563 struct hci_conn_hash *h = &hdev->conn_hash;
1564 struct hci_conn *c, *n;
1565
1566 BT_DBG("hdev %s", hdev->name);
1567
1568 list_for_each_entry_safe(c, n, &h->list, list) {
1569 c->state = BT_CLOSED;
1570
1571 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1572 hci_conn_del(c);
1573 }
1574 }
1575
1576 /* Check pending connect attempts */
hci_conn_check_pending(struct hci_dev * hdev)1577 void hci_conn_check_pending(struct hci_dev *hdev)
1578 {
1579 struct hci_conn *conn;
1580
1581 BT_DBG("hdev %s", hdev->name);
1582
1583 hci_dev_lock(hdev);
1584
1585 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1586 if (conn)
1587 hci_acl_create_connection(conn);
1588
1589 hci_dev_unlock(hdev);
1590 }
1591
get_link_mode(struct hci_conn * conn)1592 static u32 get_link_mode(struct hci_conn *conn)
1593 {
1594 u32 link_mode = 0;
1595
1596 if (conn->role == HCI_ROLE_MASTER)
1597 link_mode |= HCI_LM_MASTER;
1598
1599 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1600 link_mode |= HCI_LM_ENCRYPT;
1601
1602 if (test_bit(HCI_CONN_AUTH, &conn->flags))
1603 link_mode |= HCI_LM_AUTH;
1604
1605 if (test_bit(HCI_CONN_SECURE, &conn->flags))
1606 link_mode |= HCI_LM_SECURE;
1607
1608 if (test_bit(HCI_CONN_FIPS, &conn->flags))
1609 link_mode |= HCI_LM_FIPS;
1610
1611 return link_mode;
1612 }
1613
hci_get_conn_list(void __user * arg)1614 int hci_get_conn_list(void __user *arg)
1615 {
1616 struct hci_conn *c;
1617 struct hci_conn_list_req req, *cl;
1618 struct hci_conn_info *ci;
1619 struct hci_dev *hdev;
1620 int n = 0, size, err;
1621
1622 if (copy_from_user(&req, arg, sizeof(req)))
1623 return -EFAULT;
1624
1625 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1626 return -EINVAL;
1627
1628 size = sizeof(req) + req.conn_num * sizeof(*ci);
1629
1630 cl = kmalloc(size, GFP_KERNEL);
1631 if (!cl)
1632 return -ENOMEM;
1633
1634 hdev = hci_dev_get(req.dev_id);
1635 if (!hdev) {
1636 kfree(cl);
1637 return -ENODEV;
1638 }
1639
1640 ci = cl->conn_info;
1641
1642 hci_dev_lock(hdev);
1643 list_for_each_entry(c, &hdev->conn_hash.list, list) {
1644 bacpy(&(ci + n)->bdaddr, &c->dst);
1645 (ci + n)->handle = c->handle;
1646 (ci + n)->type = c->type;
1647 (ci + n)->out = c->out;
1648 (ci + n)->state = c->state;
1649 (ci + n)->link_mode = get_link_mode(c);
1650 if (++n >= req.conn_num)
1651 break;
1652 }
1653 hci_dev_unlock(hdev);
1654
1655 cl->dev_id = hdev->id;
1656 cl->conn_num = n;
1657 size = sizeof(req) + n * sizeof(*ci);
1658
1659 hci_dev_put(hdev);
1660
1661 err = copy_to_user(arg, cl, size);
1662 kfree(cl);
1663
1664 return err ? -EFAULT : 0;
1665 }
1666
hci_get_conn_info(struct hci_dev * hdev,void __user * arg)1667 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1668 {
1669 struct hci_conn_info_req req;
1670 struct hci_conn_info ci;
1671 struct hci_conn *conn;
1672 char __user *ptr = arg + sizeof(req);
1673
1674 if (copy_from_user(&req, arg, sizeof(req)))
1675 return -EFAULT;
1676
1677 hci_dev_lock(hdev);
1678 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1679 if (conn) {
1680 bacpy(&ci.bdaddr, &conn->dst);
1681 ci.handle = conn->handle;
1682 ci.type = conn->type;
1683 ci.out = conn->out;
1684 ci.state = conn->state;
1685 ci.link_mode = get_link_mode(conn);
1686 }
1687 hci_dev_unlock(hdev);
1688
1689 if (!conn)
1690 return -ENOENT;
1691
1692 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1693 }
1694
hci_get_auth_info(struct hci_dev * hdev,void __user * arg)1695 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1696 {
1697 struct hci_auth_info_req req;
1698 struct hci_conn *conn;
1699
1700 if (copy_from_user(&req, arg, sizeof(req)))
1701 return -EFAULT;
1702
1703 hci_dev_lock(hdev);
1704 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1705 if (conn)
1706 req.type = conn->auth_type;
1707 hci_dev_unlock(hdev);
1708
1709 if (!conn)
1710 return -ENOENT;
1711
1712 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1713 }
1714
hci_chan_create(struct hci_conn * conn)1715 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1716 {
1717 struct hci_dev *hdev = conn->hdev;
1718 struct hci_chan *chan;
1719
1720 BT_DBG("%s hcon %p", hdev->name, conn);
1721
1722 if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1723 BT_DBG("Refusing to create new hci_chan");
1724 return NULL;
1725 }
1726
1727 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1728 if (!chan)
1729 return NULL;
1730
1731 chan->conn = hci_conn_get(conn);
1732 skb_queue_head_init(&chan->data_q);
1733 chan->state = BT_CONNECTED;
1734
1735 list_add_rcu(&chan->list, &conn->chan_list);
1736
1737 return chan;
1738 }
1739
hci_chan_del(struct hci_chan * chan)1740 void hci_chan_del(struct hci_chan *chan)
1741 {
1742 struct hci_conn *conn = chan->conn;
1743 struct hci_dev *hdev = conn->hdev;
1744
1745 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1746
1747 list_del_rcu(&chan->list);
1748
1749 synchronize_rcu();
1750
1751 /* Prevent new hci_chan's to be created for this hci_conn */
1752 set_bit(HCI_CONN_DROP, &conn->flags);
1753
1754 hci_conn_put(conn);
1755
1756 skb_queue_purge(&chan->data_q);
1757 kfree(chan);
1758 }
1759
hci_chan_list_flush(struct hci_conn * conn)1760 void hci_chan_list_flush(struct hci_conn *conn)
1761 {
1762 struct hci_chan *chan, *n;
1763
1764 BT_DBG("hcon %p", conn);
1765
1766 list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1767 hci_chan_del(chan);
1768 }
1769
__hci_chan_lookup_handle(struct hci_conn * hcon,__u16 handle)1770 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1771 __u16 handle)
1772 {
1773 struct hci_chan *hchan;
1774
1775 list_for_each_entry(hchan, &hcon->chan_list, list) {
1776 if (hchan->handle == handle)
1777 return hchan;
1778 }
1779
1780 return NULL;
1781 }
1782
hci_chan_lookup_handle(struct hci_dev * hdev,__u16 handle)1783 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1784 {
1785 struct hci_conn_hash *h = &hdev->conn_hash;
1786 struct hci_conn *hcon;
1787 struct hci_chan *hchan = NULL;
1788
1789 rcu_read_lock();
1790
1791 list_for_each_entry_rcu(hcon, &h->list, list) {
1792 hchan = __hci_chan_lookup_handle(hcon, handle);
1793 if (hchan)
1794 break;
1795 }
1796
1797 rcu_read_unlock();
1798
1799 return hchan;
1800 }
1801
hci_conn_get_phy(struct hci_conn * conn)1802 u32 hci_conn_get_phy(struct hci_conn *conn)
1803 {
1804 u32 phys = 0;
1805
1806 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1807 * Table 6.2: Packets defined for synchronous, asynchronous, and
1808 * CSB logical transport types.
1809 */
1810 switch (conn->type) {
1811 case SCO_LINK:
1812 /* SCO logical transport (1 Mb/s):
1813 * HV1, HV2, HV3 and DV.
1814 */
1815 phys |= BT_PHY_BR_1M_1SLOT;
1816
1817 break;
1818
1819 case ACL_LINK:
1820 /* ACL logical transport (1 Mb/s) ptt=0:
1821 * DH1, DM3, DH3, DM5 and DH5.
1822 */
1823 phys |= BT_PHY_BR_1M_1SLOT;
1824
1825 if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1826 phys |= BT_PHY_BR_1M_3SLOT;
1827
1828 if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1829 phys |= BT_PHY_BR_1M_5SLOT;
1830
1831 /* ACL logical transport (2 Mb/s) ptt=1:
1832 * 2-DH1, 2-DH3 and 2-DH5.
1833 */
1834 if (!(conn->pkt_type & HCI_2DH1))
1835 phys |= BT_PHY_EDR_2M_1SLOT;
1836
1837 if (!(conn->pkt_type & HCI_2DH3))
1838 phys |= BT_PHY_EDR_2M_3SLOT;
1839
1840 if (!(conn->pkt_type & HCI_2DH5))
1841 phys |= BT_PHY_EDR_2M_5SLOT;
1842
1843 /* ACL logical transport (3 Mb/s) ptt=1:
1844 * 3-DH1, 3-DH3 and 3-DH5.
1845 */
1846 if (!(conn->pkt_type & HCI_3DH1))
1847 phys |= BT_PHY_EDR_3M_1SLOT;
1848
1849 if (!(conn->pkt_type & HCI_3DH3))
1850 phys |= BT_PHY_EDR_3M_3SLOT;
1851
1852 if (!(conn->pkt_type & HCI_3DH5))
1853 phys |= BT_PHY_EDR_3M_5SLOT;
1854
1855 break;
1856
1857 case ESCO_LINK:
1858 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
1859 phys |= BT_PHY_BR_1M_1SLOT;
1860
1861 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
1862 phys |= BT_PHY_BR_1M_3SLOT;
1863
1864 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
1865 if (!(conn->pkt_type & ESCO_2EV3))
1866 phys |= BT_PHY_EDR_2M_1SLOT;
1867
1868 if (!(conn->pkt_type & ESCO_2EV5))
1869 phys |= BT_PHY_EDR_2M_3SLOT;
1870
1871 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
1872 if (!(conn->pkt_type & ESCO_3EV3))
1873 phys |= BT_PHY_EDR_3M_1SLOT;
1874
1875 if (!(conn->pkt_type & ESCO_3EV5))
1876 phys |= BT_PHY_EDR_3M_3SLOT;
1877
1878 break;
1879
1880 case LE_LINK:
1881 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
1882 phys |= BT_PHY_LE_1M_TX;
1883
1884 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
1885 phys |= BT_PHY_LE_1M_RX;
1886
1887 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
1888 phys |= BT_PHY_LE_2M_TX;
1889
1890 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
1891 phys |= BT_PHY_LE_2M_RX;
1892
1893 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
1894 phys |= BT_PHY_LE_CODED_TX;
1895
1896 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
1897 phys |= BT_PHY_LE_CODED_RX;
1898
1899 break;
1900 }
1901
1902 return phys;
1903 }
1904