• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 #include <linux/uhid.h>
36 
37 #include "hid-ids.h"
38 
39 /*
40  * Version Information
41  */
42 
43 #define DRIVER_DESC "HID core driver"
44 
45 int hid_debug = 0;
46 module_param_named(debug, hid_debug, int, 0600);
47 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
48 EXPORT_SYMBOL_GPL(hid_debug);
49 
50 static int hid_ignore_special_drivers = 0;
51 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
52 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
53 
54 /*
55  * Register a new report for a device.
56  */
57 
hid_register_report(struct hid_device * device,unsigned int type,unsigned int id,unsigned int application)58 struct hid_report *hid_register_report(struct hid_device *device,
59 				       unsigned int type, unsigned int id,
60 				       unsigned int application)
61 {
62 	struct hid_report_enum *report_enum = device->report_enum + type;
63 	struct hid_report *report;
64 
65 	if (id >= HID_MAX_IDS)
66 		return NULL;
67 	if (report_enum->report_id_hash[id])
68 		return report_enum->report_id_hash[id];
69 
70 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
71 	if (!report)
72 		return NULL;
73 
74 	if (id != 0)
75 		report_enum->numbered = 1;
76 
77 	report->id = id;
78 	report->type = type;
79 	report->size = 0;
80 	report->device = device;
81 	report->application = application;
82 	report_enum->report_id_hash[id] = report;
83 
84 	list_add_tail(&report->list, &report_enum->report_list);
85 
86 	return report;
87 }
88 EXPORT_SYMBOL_GPL(hid_register_report);
89 
90 /*
91  * Register a new field for this report.
92  */
93 
hid_register_field(struct hid_report * report,unsigned usages)94 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
95 {
96 	struct hid_field *field;
97 
98 	if (report->maxfield == HID_MAX_FIELDS) {
99 		hid_err(report->device, "too many fields in report\n");
100 		return NULL;
101 	}
102 
103 	field = kzalloc((sizeof(struct hid_field) +
104 			 usages * sizeof(struct hid_usage) +
105 			 usages * sizeof(unsigned)), GFP_KERNEL);
106 	if (!field)
107 		return NULL;
108 
109 	field->index = report->maxfield++;
110 	report->field[field->index] = field;
111 	field->usage = (struct hid_usage *)(field + 1);
112 	field->value = (s32 *)(field->usage + usages);
113 	field->report = report;
114 
115 	return field;
116 }
117 
118 /*
119  * Open a collection. The type/usage is pushed on the stack.
120  */
121 
open_collection(struct hid_parser * parser,unsigned type)122 static int open_collection(struct hid_parser *parser, unsigned type)
123 {
124 	struct hid_collection *collection;
125 	unsigned usage;
126 	int collection_index;
127 
128 	usage = parser->local.usage[0];
129 
130 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
131 		unsigned int *collection_stack;
132 		unsigned int new_size = parser->collection_stack_size +
133 					HID_COLLECTION_STACK_SIZE;
134 
135 		collection_stack = krealloc(parser->collection_stack,
136 					    new_size * sizeof(unsigned int),
137 					    GFP_KERNEL);
138 		if (!collection_stack)
139 			return -ENOMEM;
140 
141 		parser->collection_stack = collection_stack;
142 		parser->collection_stack_size = new_size;
143 	}
144 
145 	if (parser->device->maxcollection == parser->device->collection_size) {
146 		collection = kmalloc(
147 				array3_size(sizeof(struct hid_collection),
148 					    parser->device->collection_size,
149 					    2),
150 				GFP_KERNEL);
151 		if (collection == NULL) {
152 			hid_err(parser->device, "failed to reallocate collection array\n");
153 			return -ENOMEM;
154 		}
155 		memcpy(collection, parser->device->collection,
156 			sizeof(struct hid_collection) *
157 			parser->device->collection_size);
158 		memset(collection + parser->device->collection_size, 0,
159 			sizeof(struct hid_collection) *
160 			parser->device->collection_size);
161 		kfree(parser->device->collection);
162 		parser->device->collection = collection;
163 		parser->device->collection_size *= 2;
164 	}
165 
166 	parser->collection_stack[parser->collection_stack_ptr++] =
167 		parser->device->maxcollection;
168 
169 	collection_index = parser->device->maxcollection++;
170 	collection = parser->device->collection + collection_index;
171 	collection->type = type;
172 	collection->usage = usage;
173 	collection->level = parser->collection_stack_ptr - 1;
174 	collection->parent_idx = (collection->level == 0) ? -1 :
175 		parser->collection_stack[collection->level - 1];
176 
177 	if (type == HID_COLLECTION_APPLICATION)
178 		parser->device->maxapplication++;
179 
180 	return 0;
181 }
182 
183 /*
184  * Close a collection.
185  */
186 
close_collection(struct hid_parser * parser)187 static int close_collection(struct hid_parser *parser)
188 {
189 	if (!parser->collection_stack_ptr) {
190 		hid_err(parser->device, "collection stack underflow\n");
191 		return -EINVAL;
192 	}
193 	parser->collection_stack_ptr--;
194 	return 0;
195 }
196 
197 /*
198  * Climb up the stack, search for the specified collection type
199  * and return the usage.
200  */
201 
hid_lookup_collection(struct hid_parser * parser,unsigned type)202 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
203 {
204 	struct hid_collection *collection = parser->device->collection;
205 	int n;
206 
207 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
208 		unsigned index = parser->collection_stack[n];
209 		if (collection[index].type == type)
210 			return collection[index].usage;
211 	}
212 	return 0; /* we know nothing about this usage type */
213 }
214 
215 /*
216  * Concatenate usage which defines 16 bits or less with the
217  * currently defined usage page to form a 32 bit usage
218  */
219 
complete_usage(struct hid_parser * parser,unsigned int index)220 static void complete_usage(struct hid_parser *parser, unsigned int index)
221 {
222 	parser->local.usage[index] &= 0xFFFF;
223 	parser->local.usage[index] |=
224 		(parser->global.usage_page & 0xFFFF) << 16;
225 }
226 
227 /*
228  * Add a usage to the temporary parser table.
229  */
230 
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)231 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
232 {
233 	if (parser->local.usage_index >= HID_MAX_USAGES) {
234 		hid_err(parser->device, "usage index exceeded\n");
235 		return -1;
236 	}
237 	parser->local.usage[parser->local.usage_index] = usage;
238 
239 	/*
240 	 * If Usage item only includes usage id, concatenate it with
241 	 * currently defined usage page
242 	 */
243 	if (size <= 2)
244 		complete_usage(parser, parser->local.usage_index);
245 
246 	parser->local.usage_size[parser->local.usage_index] = size;
247 	parser->local.collection_index[parser->local.usage_index] =
248 		parser->collection_stack_ptr ?
249 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
250 	parser->local.usage_index++;
251 	return 0;
252 }
253 
254 /*
255  * Register a new field for this report.
256  */
257 
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)258 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
259 {
260 	struct hid_report *report;
261 	struct hid_field *field;
262 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
263 	unsigned int usages;
264 	unsigned int offset;
265 	unsigned int i;
266 	unsigned int application;
267 
268 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
269 
270 	report = hid_register_report(parser->device, report_type,
271 				     parser->global.report_id, application);
272 	if (!report) {
273 		hid_err(parser->device, "hid_register_report failed\n");
274 		return -1;
275 	}
276 
277 	/* Handle both signed and unsigned cases properly */
278 	if ((parser->global.logical_minimum < 0 &&
279 		parser->global.logical_maximum <
280 		parser->global.logical_minimum) ||
281 		(parser->global.logical_minimum >= 0 &&
282 		(__u32)parser->global.logical_maximum <
283 		(__u32)parser->global.logical_minimum)) {
284 		dbg_hid("logical range invalid 0x%x 0x%x\n",
285 			parser->global.logical_minimum,
286 			parser->global.logical_maximum);
287 		return -1;
288 	}
289 
290 	offset = report->size;
291 	report->size += parser->global.report_size * parser->global.report_count;
292 
293 	if (IS_ENABLED(CONFIG_UHID) && parser->device->ll_driver == &uhid_hid_driver)
294 		max_buffer_size = UHID_DATA_MAX;
295 
296 	/* Total size check: Allow for possible report index byte */
297 	if (report->size > (max_buffer_size - 1) << 3) {
298 		hid_err(parser->device, "report is too long\n");
299 		return -1;
300 	}
301 
302 	if (!parser->local.usage_index) /* Ignore padding fields */
303 		return 0;
304 
305 	usages = max_t(unsigned, parser->local.usage_index,
306 				 parser->global.report_count);
307 
308 	field = hid_register_field(report, usages);
309 	if (!field)
310 		return 0;
311 
312 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
313 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
314 	field->application = application;
315 
316 	for (i = 0; i < usages; i++) {
317 		unsigned j = i;
318 		/* Duplicate the last usage we parsed if we have excess values */
319 		if (i >= parser->local.usage_index)
320 			j = parser->local.usage_index - 1;
321 		field->usage[i].hid = parser->local.usage[j];
322 		field->usage[i].collection_index =
323 			parser->local.collection_index[j];
324 		field->usage[i].usage_index = i;
325 		field->usage[i].resolution_multiplier = 1;
326 	}
327 
328 	field->maxusage = usages;
329 	field->flags = flags;
330 	field->report_offset = offset;
331 	field->report_type = report_type;
332 	field->report_size = parser->global.report_size;
333 	field->report_count = parser->global.report_count;
334 	field->logical_minimum = parser->global.logical_minimum;
335 	field->logical_maximum = parser->global.logical_maximum;
336 	field->physical_minimum = parser->global.physical_minimum;
337 	field->physical_maximum = parser->global.physical_maximum;
338 	field->unit_exponent = parser->global.unit_exponent;
339 	field->unit = parser->global.unit;
340 
341 	return 0;
342 }
343 
344 /*
345  * Read data value from item.
346  */
347 
item_udata(struct hid_item * item)348 static u32 item_udata(struct hid_item *item)
349 {
350 	switch (item->size) {
351 	case 1: return item->data.u8;
352 	case 2: return item->data.u16;
353 	case 4: return item->data.u32;
354 	}
355 	return 0;
356 }
357 
item_sdata(struct hid_item * item)358 static s32 item_sdata(struct hid_item *item)
359 {
360 	switch (item->size) {
361 	case 1: return item->data.s8;
362 	case 2: return item->data.s16;
363 	case 4: return item->data.s32;
364 	}
365 	return 0;
366 }
367 
368 /*
369  * Process a global item.
370  */
371 
hid_parser_global(struct hid_parser * parser,struct hid_item * item)372 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
373 {
374 	__s32 raw_value;
375 	switch (item->tag) {
376 	case HID_GLOBAL_ITEM_TAG_PUSH:
377 
378 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
379 			hid_err(parser->device, "global environment stack overflow\n");
380 			return -1;
381 		}
382 
383 		memcpy(parser->global_stack + parser->global_stack_ptr++,
384 			&parser->global, sizeof(struct hid_global));
385 		return 0;
386 
387 	case HID_GLOBAL_ITEM_TAG_POP:
388 
389 		if (!parser->global_stack_ptr) {
390 			hid_err(parser->device, "global environment stack underflow\n");
391 			return -1;
392 		}
393 
394 		memcpy(&parser->global, parser->global_stack +
395 			--parser->global_stack_ptr, sizeof(struct hid_global));
396 		return 0;
397 
398 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
399 		parser->global.usage_page = item_udata(item);
400 		return 0;
401 
402 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
403 		parser->global.logical_minimum = item_sdata(item);
404 		return 0;
405 
406 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
407 		if (parser->global.logical_minimum < 0)
408 			parser->global.logical_maximum = item_sdata(item);
409 		else
410 			parser->global.logical_maximum = item_udata(item);
411 		return 0;
412 
413 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
414 		parser->global.physical_minimum = item_sdata(item);
415 		return 0;
416 
417 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
418 		if (parser->global.physical_minimum < 0)
419 			parser->global.physical_maximum = item_sdata(item);
420 		else
421 			parser->global.physical_maximum = item_udata(item);
422 		return 0;
423 
424 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
425 		/* Many devices provide unit exponent as a two's complement
426 		 * nibble due to the common misunderstanding of HID
427 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
428 		 * both this and the standard encoding. */
429 		raw_value = item_sdata(item);
430 		if (!(raw_value & 0xfffffff0))
431 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
432 		else
433 			parser->global.unit_exponent = raw_value;
434 		return 0;
435 
436 	case HID_GLOBAL_ITEM_TAG_UNIT:
437 		parser->global.unit = item_udata(item);
438 		return 0;
439 
440 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
441 		parser->global.report_size = item_udata(item);
442 		if (parser->global.report_size > 256) {
443 			hid_err(parser->device, "invalid report_size %d\n",
444 					parser->global.report_size);
445 			return -1;
446 		}
447 		return 0;
448 
449 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
450 		parser->global.report_count = item_udata(item);
451 		if (parser->global.report_count > HID_MAX_USAGES) {
452 			hid_err(parser->device, "invalid report_count %d\n",
453 					parser->global.report_count);
454 			return -1;
455 		}
456 		return 0;
457 
458 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
459 		parser->global.report_id = item_udata(item);
460 		if (parser->global.report_id == 0 ||
461 		    parser->global.report_id >= HID_MAX_IDS) {
462 			hid_err(parser->device, "report_id %u is invalid\n",
463 				parser->global.report_id);
464 			return -1;
465 		}
466 		return 0;
467 
468 	default:
469 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
470 		return -1;
471 	}
472 }
473 
474 /*
475  * Process a local item.
476  */
477 
hid_parser_local(struct hid_parser * parser,struct hid_item * item)478 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
479 {
480 	__u32 data;
481 	unsigned n;
482 	__u32 count;
483 
484 	data = item_udata(item);
485 
486 	switch (item->tag) {
487 	case HID_LOCAL_ITEM_TAG_DELIMITER:
488 
489 		if (data) {
490 			/*
491 			 * We treat items before the first delimiter
492 			 * as global to all usage sets (branch 0).
493 			 * In the moment we process only these global
494 			 * items and the first delimiter set.
495 			 */
496 			if (parser->local.delimiter_depth != 0) {
497 				hid_err(parser->device, "nested delimiters\n");
498 				return -1;
499 			}
500 			parser->local.delimiter_depth++;
501 			parser->local.delimiter_branch++;
502 		} else {
503 			if (parser->local.delimiter_depth < 1) {
504 				hid_err(parser->device, "bogus close delimiter\n");
505 				return -1;
506 			}
507 			parser->local.delimiter_depth--;
508 		}
509 		return 0;
510 
511 	case HID_LOCAL_ITEM_TAG_USAGE:
512 
513 		if (parser->local.delimiter_branch > 1) {
514 			dbg_hid("alternative usage ignored\n");
515 			return 0;
516 		}
517 
518 		return hid_add_usage(parser, data, item->size);
519 
520 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
521 
522 		if (parser->local.delimiter_branch > 1) {
523 			dbg_hid("alternative usage ignored\n");
524 			return 0;
525 		}
526 
527 		parser->local.usage_minimum = data;
528 		return 0;
529 
530 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
531 
532 		if (parser->local.delimiter_branch > 1) {
533 			dbg_hid("alternative usage ignored\n");
534 			return 0;
535 		}
536 
537 		count = data - parser->local.usage_minimum;
538 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
539 			/*
540 			 * We do not warn if the name is not set, we are
541 			 * actually pre-scanning the device.
542 			 */
543 			if (dev_name(&parser->device->dev))
544 				hid_warn(parser->device,
545 					 "ignoring exceeding usage max\n");
546 			data = HID_MAX_USAGES - parser->local.usage_index +
547 				parser->local.usage_minimum - 1;
548 			if (data <= 0) {
549 				hid_err(parser->device,
550 					"no more usage index available\n");
551 				return -1;
552 			}
553 		}
554 
555 		for (n = parser->local.usage_minimum; n <= data; n++)
556 			if (hid_add_usage(parser, n, item->size)) {
557 				dbg_hid("hid_add_usage failed\n");
558 				return -1;
559 			}
560 		return 0;
561 
562 	default:
563 
564 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
565 		return 0;
566 	}
567 	return 0;
568 }
569 
570 /*
571  * Concatenate Usage Pages into Usages where relevant:
572  * As per specification, 6.2.2.8: "When the parser encounters a main item it
573  * concatenates the last declared Usage Page with a Usage to form a complete
574  * usage value."
575  */
576 
hid_concatenate_last_usage_page(struct hid_parser * parser)577 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
578 {
579 	int i;
580 	unsigned int usage_page;
581 	unsigned int current_page;
582 
583 	if (!parser->local.usage_index)
584 		return;
585 
586 	usage_page = parser->global.usage_page;
587 
588 	/*
589 	 * Concatenate usage page again only if last declared Usage Page
590 	 * has not been already used in previous usages concatenation
591 	 */
592 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
593 		if (parser->local.usage_size[i] > 2)
594 			/* Ignore extended usages */
595 			continue;
596 
597 		current_page = parser->local.usage[i] >> 16;
598 		if (current_page == usage_page)
599 			break;
600 
601 		complete_usage(parser, i);
602 	}
603 }
604 
605 /*
606  * Process a main item.
607  */
608 
hid_parser_main(struct hid_parser * parser,struct hid_item * item)609 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
610 {
611 	__u32 data;
612 	int ret;
613 
614 	hid_concatenate_last_usage_page(parser);
615 
616 	data = item_udata(item);
617 
618 	switch (item->tag) {
619 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
620 		ret = open_collection(parser, data & 0xff);
621 		break;
622 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
623 		ret = close_collection(parser);
624 		break;
625 	case HID_MAIN_ITEM_TAG_INPUT:
626 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
627 		break;
628 	case HID_MAIN_ITEM_TAG_OUTPUT:
629 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
630 		break;
631 	case HID_MAIN_ITEM_TAG_FEATURE:
632 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
633 		break;
634 	default:
635 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
636 		ret = 0;
637 	}
638 
639 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
640 
641 	return ret;
642 }
643 
644 /*
645  * Process a reserved item.
646  */
647 
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)648 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
649 {
650 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
651 	return 0;
652 }
653 
654 /*
655  * Free a report and all registered fields. The field->usage and
656  * field->value table's are allocated behind the field, so we need
657  * only to free(field) itself.
658  */
659 
hid_free_report(struct hid_report * report)660 static void hid_free_report(struct hid_report *report)
661 {
662 	unsigned n;
663 
664 	for (n = 0; n < report->maxfield; n++)
665 		kfree(report->field[n]);
666 	kfree(report);
667 }
668 
669 /*
670  * Close report. This function returns the device
671  * state to the point prior to hid_open_report().
672  */
hid_close_report(struct hid_device * device)673 static void hid_close_report(struct hid_device *device)
674 {
675 	unsigned i, j;
676 
677 	for (i = 0; i < HID_REPORT_TYPES; i++) {
678 		struct hid_report_enum *report_enum = device->report_enum + i;
679 
680 		for (j = 0; j < HID_MAX_IDS; j++) {
681 			struct hid_report *report = report_enum->report_id_hash[j];
682 			if (report)
683 				hid_free_report(report);
684 		}
685 		memset(report_enum, 0, sizeof(*report_enum));
686 		INIT_LIST_HEAD(&report_enum->report_list);
687 	}
688 
689 	kfree(device->rdesc);
690 	device->rdesc = NULL;
691 	device->rsize = 0;
692 
693 	kfree(device->collection);
694 	device->collection = NULL;
695 	device->collection_size = 0;
696 	device->maxcollection = 0;
697 	device->maxapplication = 0;
698 
699 	device->status &= ~HID_STAT_PARSED;
700 }
701 
702 /*
703  * Free a device structure, all reports, and all fields.
704  */
705 
hid_device_release(struct device * dev)706 static void hid_device_release(struct device *dev)
707 {
708 	struct hid_device *hid = to_hid_device(dev);
709 
710 	hid_close_report(hid);
711 	kfree(hid->dev_rdesc);
712 	kfree(hid);
713 }
714 
715 /*
716  * Fetch a report description item from the data stream. We support long
717  * items, though they are not used yet.
718  */
719 
fetch_item(__u8 * start,__u8 * end,struct hid_item * item)720 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
721 {
722 	u8 b;
723 
724 	if ((end - start) <= 0)
725 		return NULL;
726 
727 	b = *start++;
728 
729 	item->type = (b >> 2) & 3;
730 	item->tag  = (b >> 4) & 15;
731 
732 	if (item->tag == HID_ITEM_TAG_LONG) {
733 
734 		item->format = HID_ITEM_FORMAT_LONG;
735 
736 		if ((end - start) < 2)
737 			return NULL;
738 
739 		item->size = *start++;
740 		item->tag  = *start++;
741 
742 		if ((end - start) < item->size)
743 			return NULL;
744 
745 		item->data.longdata = start;
746 		start += item->size;
747 		return start;
748 	}
749 
750 	item->format = HID_ITEM_FORMAT_SHORT;
751 	item->size = b & 3;
752 
753 	switch (item->size) {
754 	case 0:
755 		return start;
756 
757 	case 1:
758 		if ((end - start) < 1)
759 			return NULL;
760 		item->data.u8 = *start++;
761 		return start;
762 
763 	case 2:
764 		if ((end - start) < 2)
765 			return NULL;
766 		item->data.u16 = get_unaligned_le16(start);
767 		start = (__u8 *)((__le16 *)start + 1);
768 		return start;
769 
770 	case 3:
771 		item->size++;
772 		if ((end - start) < 4)
773 			return NULL;
774 		item->data.u32 = get_unaligned_le32(start);
775 		start = (__u8 *)((__le32 *)start + 1);
776 		return start;
777 	}
778 
779 	return NULL;
780 }
781 
hid_scan_input_usage(struct hid_parser * parser,u32 usage)782 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
783 {
784 	struct hid_device *hid = parser->device;
785 
786 	if (usage == HID_DG_CONTACTID)
787 		hid->group = HID_GROUP_MULTITOUCH;
788 }
789 
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)790 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
791 {
792 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
793 	    parser->global.report_size == 8)
794 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
795 
796 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
797 	    parser->global.report_size == 8)
798 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
799 }
800 
hid_scan_collection(struct hid_parser * parser,unsigned type)801 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
802 {
803 	struct hid_device *hid = parser->device;
804 	int i;
805 
806 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
807 	    type == HID_COLLECTION_PHYSICAL)
808 		hid->group = HID_GROUP_SENSOR_HUB;
809 
810 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
811 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
812 	    hid->group == HID_GROUP_MULTITOUCH)
813 		hid->group = HID_GROUP_GENERIC;
814 
815 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
816 		for (i = 0; i < parser->local.usage_index; i++)
817 			if (parser->local.usage[i] == HID_GD_POINTER)
818 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
819 
820 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
821 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
822 
823 	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
824 		for (i = 0; i < parser->local.usage_index; i++)
825 			if (parser->local.usage[i] ==
826 					(HID_UP_GOOGLEVENDOR | 0x0001))
827 				parser->device->group =
828 					HID_GROUP_VIVALDI;
829 }
830 
hid_scan_main(struct hid_parser * parser,struct hid_item * item)831 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
832 {
833 	__u32 data;
834 	int i;
835 
836 	hid_concatenate_last_usage_page(parser);
837 
838 	data = item_udata(item);
839 
840 	switch (item->tag) {
841 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
842 		hid_scan_collection(parser, data & 0xff);
843 		break;
844 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
845 		break;
846 	case HID_MAIN_ITEM_TAG_INPUT:
847 		/* ignore constant inputs, they will be ignored by hid-input */
848 		if (data & HID_MAIN_ITEM_CONSTANT)
849 			break;
850 		for (i = 0; i < parser->local.usage_index; i++)
851 			hid_scan_input_usage(parser, parser->local.usage[i]);
852 		break;
853 	case HID_MAIN_ITEM_TAG_OUTPUT:
854 		break;
855 	case HID_MAIN_ITEM_TAG_FEATURE:
856 		for (i = 0; i < parser->local.usage_index; i++)
857 			hid_scan_feature_usage(parser, parser->local.usage[i]);
858 		break;
859 	}
860 
861 	/* Reset the local parser environment */
862 	memset(&parser->local, 0, sizeof(parser->local));
863 
864 	return 0;
865 }
866 
867 /*
868  * Scan a report descriptor before the device is added to the bus.
869  * Sets device groups and other properties that determine what driver
870  * to load.
871  */
hid_scan_report(struct hid_device * hid)872 static int hid_scan_report(struct hid_device *hid)
873 {
874 	struct hid_parser *parser;
875 	struct hid_item item;
876 	__u8 *start = hid->dev_rdesc;
877 	__u8 *end = start + hid->dev_rsize;
878 	static int (*dispatch_type[])(struct hid_parser *parser,
879 				      struct hid_item *item) = {
880 		hid_scan_main,
881 		hid_parser_global,
882 		hid_parser_local,
883 		hid_parser_reserved
884 	};
885 
886 	parser = vzalloc(sizeof(struct hid_parser));
887 	if (!parser)
888 		return -ENOMEM;
889 
890 	parser->device = hid;
891 	hid->group = HID_GROUP_GENERIC;
892 
893 	/*
894 	 * The parsing is simpler than the one in hid_open_report() as we should
895 	 * be robust against hid errors. Those errors will be raised by
896 	 * hid_open_report() anyway.
897 	 */
898 	while ((start = fetch_item(start, end, &item)) != NULL)
899 		dispatch_type[item.type](parser, &item);
900 
901 	/*
902 	 * Handle special flags set during scanning.
903 	 */
904 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
905 	    (hid->group == HID_GROUP_MULTITOUCH))
906 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
907 
908 	/*
909 	 * Vendor specific handlings
910 	 */
911 	switch (hid->vendor) {
912 	case USB_VENDOR_ID_WACOM:
913 		hid->group = HID_GROUP_WACOM;
914 		break;
915 	case USB_VENDOR_ID_SYNAPTICS:
916 		if (hid->group == HID_GROUP_GENERIC)
917 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
918 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
919 				/*
920 				 * hid-rmi should take care of them,
921 				 * not hid-generic
922 				 */
923 				hid->group = HID_GROUP_RMI;
924 		break;
925 	}
926 
927 	kfree(parser->collection_stack);
928 	vfree(parser);
929 	return 0;
930 }
931 
932 /**
933  * hid_parse_report - parse device report
934  *
935  * @hid: hid device
936  * @start: report start
937  * @size: report size
938  *
939  * Allocate the device report as read by the bus driver. This function should
940  * only be called from parse() in ll drivers.
941  */
hid_parse_report(struct hid_device * hid,__u8 * start,unsigned size)942 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
943 {
944 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
945 	if (!hid->dev_rdesc)
946 		return -ENOMEM;
947 	hid->dev_rsize = size;
948 	return 0;
949 }
950 EXPORT_SYMBOL_GPL(hid_parse_report);
951 
952 static const char * const hid_report_names[] = {
953 	"HID_INPUT_REPORT",
954 	"HID_OUTPUT_REPORT",
955 	"HID_FEATURE_REPORT",
956 };
957 /**
958  * hid_validate_values - validate existing device report's value indexes
959  *
960  * @hid: hid device
961  * @type: which report type to examine
962  * @id: which report ID to examine (0 for first)
963  * @field_index: which report field to examine
964  * @report_counts: expected number of values
965  *
966  * Validate the number of values in a given field of a given report, after
967  * parsing.
968  */
hid_validate_values(struct hid_device * hid,unsigned int type,unsigned int id,unsigned int field_index,unsigned int report_counts)969 struct hid_report *hid_validate_values(struct hid_device *hid,
970 				       unsigned int type, unsigned int id,
971 				       unsigned int field_index,
972 				       unsigned int report_counts)
973 {
974 	struct hid_report *report;
975 
976 	if (type > HID_FEATURE_REPORT) {
977 		hid_err(hid, "invalid HID report type %u\n", type);
978 		return NULL;
979 	}
980 
981 	if (id >= HID_MAX_IDS) {
982 		hid_err(hid, "invalid HID report id %u\n", id);
983 		return NULL;
984 	}
985 
986 	/*
987 	 * Explicitly not using hid_get_report() here since it depends on
988 	 * ->numbered being checked, which may not always be the case when
989 	 * drivers go to access report values.
990 	 */
991 	if (id == 0) {
992 		/*
993 		 * Validating on id 0 means we should examine the first
994 		 * report in the list.
995 		 */
996 		report = list_first_entry_or_null(
997 				&hid->report_enum[type].report_list,
998 				struct hid_report, list);
999 	} else {
1000 		report = hid->report_enum[type].report_id_hash[id];
1001 	}
1002 	if (!report) {
1003 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004 		return NULL;
1005 	}
1006 	if (report->maxfield <= field_index) {
1007 		hid_err(hid, "not enough fields in %s %u\n",
1008 			hid_report_names[type], id);
1009 		return NULL;
1010 	}
1011 	if (report->field[field_index]->report_count < report_counts) {
1012 		hid_err(hid, "not enough values in %s %u field %u\n",
1013 			hid_report_names[type], id, field_index);
1014 		return NULL;
1015 	}
1016 	return report;
1017 }
1018 EXPORT_SYMBOL_GPL(hid_validate_values);
1019 
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1020 static int hid_calculate_multiplier(struct hid_device *hid,
1021 				     struct hid_field *multiplier)
1022 {
1023 	int m;
1024 	__s32 v = *multiplier->value;
1025 	__s32 lmin = multiplier->logical_minimum;
1026 	__s32 lmax = multiplier->logical_maximum;
1027 	__s32 pmin = multiplier->physical_minimum;
1028 	__s32 pmax = multiplier->physical_maximum;
1029 
1030 	/*
1031 	 * "Because OS implementations will generally divide the control's
1032 	 * reported count by the Effective Resolution Multiplier, designers
1033 	 * should take care not to establish a potential Effective
1034 	 * Resolution Multiplier of zero."
1035 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1036 	 */
1037 	if (lmax - lmin == 0)
1038 		return 1;
1039 	/*
1040 	 * Handling the unit exponent is left as an exercise to whoever
1041 	 * finds a device where that exponent is not 0.
1042 	 */
1043 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044 	if (unlikely(multiplier->unit_exponent != 0)) {
1045 		hid_warn(hid,
1046 			 "unsupported Resolution Multiplier unit exponent %d\n",
1047 			 multiplier->unit_exponent);
1048 	}
1049 
1050 	/* There are no devices with an effective multiplier > 255 */
1051 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1052 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053 		m = 1;
1054 	}
1055 
1056 	return m;
1057 }
1058 
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1059 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060 					  struct hid_field *field,
1061 					  struct hid_collection *multiplier_collection,
1062 					  int effective_multiplier)
1063 {
1064 	struct hid_collection *collection;
1065 	struct hid_usage *usage;
1066 	int i;
1067 
1068 	/*
1069 	 * If multiplier_collection is NULL, the multiplier applies
1070 	 * to all fields in the report.
1071 	 * Otherwise, it is the Logical Collection the multiplier applies to
1072 	 * but our field may be in a subcollection of that collection.
1073 	 */
1074 	for (i = 0; i < field->maxusage; i++) {
1075 		usage = &field->usage[i];
1076 
1077 		collection = &hid->collection[usage->collection_index];
1078 		while (collection->parent_idx != -1 &&
1079 		       collection != multiplier_collection)
1080 			collection = &hid->collection[collection->parent_idx];
1081 
1082 		if (collection->parent_idx != -1 ||
1083 		    multiplier_collection == NULL)
1084 			usage->resolution_multiplier = effective_multiplier;
1085 
1086 	}
1087 }
1088 
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1089 static void hid_apply_multiplier(struct hid_device *hid,
1090 				 struct hid_field *multiplier)
1091 {
1092 	struct hid_report_enum *rep_enum;
1093 	struct hid_report *rep;
1094 	struct hid_field *field;
1095 	struct hid_collection *multiplier_collection;
1096 	int effective_multiplier;
1097 	int i;
1098 
1099 	/*
1100 	 * "The Resolution Multiplier control must be contained in the same
1101 	 * Logical Collection as the control(s) to which it is to be applied.
1102 	 * If no Resolution Multiplier is defined, then the Resolution
1103 	 * Multiplier defaults to 1.  If more than one control exists in a
1104 	 * Logical Collection, the Resolution Multiplier is associated with
1105 	 * all controls in the collection. If no Logical Collection is
1106 	 * defined, the Resolution Multiplier is associated with all
1107 	 * controls in the report."
1108 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1109 	 *
1110 	 * Thus, search from the current collection upwards until we find a
1111 	 * logical collection. Then search all fields for that same parent
1112 	 * collection. Those are the fields the multiplier applies to.
1113 	 *
1114 	 * If we have more than one multiplier, it will overwrite the
1115 	 * applicable fields later.
1116 	 */
1117 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118 	while (multiplier_collection->parent_idx != -1 &&
1119 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121 
1122 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123 
1124 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1126 		for (i = 0; i < rep->maxfield; i++) {
1127 			field = rep->field[i];
1128 			hid_apply_multiplier_to_field(hid, field,
1129 						      multiplier_collection,
1130 						      effective_multiplier);
1131 		}
1132 	}
1133 }
1134 
1135 /*
1136  * hid_setup_resolution_multiplier - set up all resolution multipliers
1137  *
1138  * @device: hid device
1139  *
1140  * Search for all Resolution Multiplier Feature Reports and apply their
1141  * value to all matching Input items. This only updates the internal struct
1142  * fields.
1143  *
1144  * The Resolution Multiplier is applied by the hardware. If the multiplier
1145  * is anything other than 1, the hardware will send pre-multiplied events
1146  * so that the same physical interaction generates an accumulated
1147  *	accumulated_value = value * * multiplier
1148  * This may be achieved by sending
1149  * - "value * multiplier" for each event, or
1150  * - "value" but "multiplier" times as frequently, or
1151  * - a combination of the above
1152  * The only guarantee is that the same physical interaction always generates
1153  * an accumulated 'value * multiplier'.
1154  *
1155  * This function must be called before any event processing and after
1156  * any SetRequest to the Resolution Multiplier.
1157  */
hid_setup_resolution_multiplier(struct hid_device * hid)1158 void hid_setup_resolution_multiplier(struct hid_device *hid)
1159 {
1160 	struct hid_report_enum *rep_enum;
1161 	struct hid_report *rep;
1162 	struct hid_usage *usage;
1163 	int i, j;
1164 
1165 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1167 		for (i = 0; i < rep->maxfield; i++) {
1168 			/* Ignore if report count is out of bounds. */
1169 			if (rep->field[i]->report_count < 1)
1170 				continue;
1171 
1172 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1173 				usage = &rep->field[i]->usage[j];
1174 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175 					hid_apply_multiplier(hid,
1176 							     rep->field[i]);
1177 			}
1178 		}
1179 	}
1180 }
1181 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182 
1183 /**
1184  * hid_open_report - open a driver-specific device report
1185  *
1186  * @device: hid device
1187  *
1188  * Parse a report description into a hid_device structure. Reports are
1189  * enumerated, fields are attached to these reports.
1190  * 0 returned on success, otherwise nonzero error value.
1191  *
1192  * This function (or the equivalent hid_parse() macro) should only be
1193  * called from probe() in drivers, before starting the device.
1194  */
hid_open_report(struct hid_device * device)1195 int hid_open_report(struct hid_device *device)
1196 {
1197 	struct hid_parser *parser;
1198 	struct hid_item item;
1199 	unsigned int size;
1200 	__u8 *start;
1201 	__u8 *buf;
1202 	__u8 *end;
1203 	__u8 *next;
1204 	int ret;
1205 	int i;
1206 	static int (*dispatch_type[])(struct hid_parser *parser,
1207 				      struct hid_item *item) = {
1208 		hid_parser_main,
1209 		hid_parser_global,
1210 		hid_parser_local,
1211 		hid_parser_reserved
1212 	};
1213 
1214 	if (WARN_ON(device->status & HID_STAT_PARSED))
1215 		return -EBUSY;
1216 
1217 	start = device->dev_rdesc;
1218 	if (WARN_ON(!start))
1219 		return -ENODEV;
1220 	size = device->dev_rsize;
1221 
1222 	buf = kmemdup(start, size, GFP_KERNEL);
1223 	if (buf == NULL)
1224 		return -ENOMEM;
1225 
1226 	if (device->driver->report_fixup)
1227 		start = device->driver->report_fixup(device, buf, &size);
1228 	else
1229 		start = buf;
1230 
1231 	start = kmemdup(start, size, GFP_KERNEL);
1232 	kfree(buf);
1233 	if (start == NULL)
1234 		return -ENOMEM;
1235 
1236 	device->rdesc = start;
1237 	device->rsize = size;
1238 
1239 	parser = vzalloc(sizeof(struct hid_parser));
1240 	if (!parser) {
1241 		ret = -ENOMEM;
1242 		goto alloc_err;
1243 	}
1244 
1245 	parser->device = device;
1246 
1247 	end = start + size;
1248 
1249 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1250 				     sizeof(struct hid_collection), GFP_KERNEL);
1251 	if (!device->collection) {
1252 		ret = -ENOMEM;
1253 		goto err;
1254 	}
1255 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1256 	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1257 		device->collection[i].parent_idx = -1;
1258 
1259 	ret = -EINVAL;
1260 	while ((next = fetch_item(start, end, &item)) != NULL) {
1261 		start = next;
1262 
1263 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1264 			hid_err(device, "unexpected long global item\n");
1265 			goto err;
1266 		}
1267 
1268 		if (dispatch_type[item.type](parser, &item)) {
1269 			hid_err(device, "item %u %u %u %u parsing failed\n",
1270 				item.format, (unsigned)item.size,
1271 				(unsigned)item.type, (unsigned)item.tag);
1272 			goto err;
1273 		}
1274 
1275 		if (start == end) {
1276 			if (parser->collection_stack_ptr) {
1277 				hid_err(device, "unbalanced collection at end of report description\n");
1278 				goto err;
1279 			}
1280 			if (parser->local.delimiter_depth) {
1281 				hid_err(device, "unbalanced delimiter at end of report description\n");
1282 				goto err;
1283 			}
1284 
1285 			/*
1286 			 * fetch initial values in case the device's
1287 			 * default multiplier isn't the recommended 1
1288 			 */
1289 			hid_setup_resolution_multiplier(device);
1290 
1291 			kfree(parser->collection_stack);
1292 			vfree(parser);
1293 			device->status |= HID_STAT_PARSED;
1294 
1295 			return 0;
1296 		}
1297 	}
1298 
1299 	hid_err(device, "item fetching failed at offset %u/%u\n",
1300 		size - (unsigned int)(end - start), size);
1301 err:
1302 	kfree(parser->collection_stack);
1303 alloc_err:
1304 	vfree(parser);
1305 	hid_close_report(device);
1306 	return ret;
1307 }
1308 EXPORT_SYMBOL_GPL(hid_open_report);
1309 
1310 /*
1311  * Convert a signed n-bit integer to signed 32-bit integer. Common
1312  * cases are done through the compiler, the screwed things has to be
1313  * done by hand.
1314  */
1315 
snto32(__u32 value,unsigned n)1316 static s32 snto32(__u32 value, unsigned n)
1317 {
1318 	if (!value || !n)
1319 		return 0;
1320 
1321 	if (n > 32)
1322 		n = 32;
1323 
1324 	switch (n) {
1325 	case 8:  return ((__s8)value);
1326 	case 16: return ((__s16)value);
1327 	case 32: return ((__s32)value);
1328 	}
1329 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1330 }
1331 
hid_snto32(__u32 value,unsigned n)1332 s32 hid_snto32(__u32 value, unsigned n)
1333 {
1334 	return snto32(value, n);
1335 }
1336 EXPORT_SYMBOL_GPL(hid_snto32);
1337 
1338 /*
1339  * Convert a signed 32-bit integer to a signed n-bit integer.
1340  */
1341 
s32ton(__s32 value,unsigned n)1342 static u32 s32ton(__s32 value, unsigned n)
1343 {
1344 	s32 a = value >> (n - 1);
1345 	if (a && a != -1)
1346 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1347 	return value & ((1 << n) - 1);
1348 }
1349 
1350 /*
1351  * Extract/implement a data field from/to a little endian report (bit array).
1352  *
1353  * Code sort-of follows HID spec:
1354  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1355  *
1356  * While the USB HID spec allows unlimited length bit fields in "report
1357  * descriptors", most devices never use more than 16 bits.
1358  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1359  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1360  */
1361 
__extract(u8 * report,unsigned offset,int n)1362 static u32 __extract(u8 *report, unsigned offset, int n)
1363 {
1364 	unsigned int idx = offset / 8;
1365 	unsigned int bit_nr = 0;
1366 	unsigned int bit_shift = offset % 8;
1367 	int bits_to_copy = 8 - bit_shift;
1368 	u32 value = 0;
1369 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1370 
1371 	while (n > 0) {
1372 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1373 		n -= bits_to_copy;
1374 		bit_nr += bits_to_copy;
1375 		bits_to_copy = 8;
1376 		bit_shift = 0;
1377 		idx++;
1378 	}
1379 
1380 	return value & mask;
1381 }
1382 
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1383 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1384 			unsigned offset, unsigned n)
1385 {
1386 	if (n > 32) {
1387 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1388 			      __func__, n, current->comm);
1389 		n = 32;
1390 	}
1391 
1392 	return __extract(report, offset, n);
1393 }
1394 EXPORT_SYMBOL_GPL(hid_field_extract);
1395 
1396 /*
1397  * "implement" : set bits in a little endian bit stream.
1398  * Same concepts as "extract" (see comments above).
1399  * The data mangled in the bit stream remains in little endian
1400  * order the whole time. It make more sense to talk about
1401  * endianness of register values by considering a register
1402  * a "cached" copy of the little endian bit stream.
1403  */
1404 
__implement(u8 * report,unsigned offset,int n,u32 value)1405 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1406 {
1407 	unsigned int idx = offset / 8;
1408 	unsigned int bit_shift = offset % 8;
1409 	int bits_to_set = 8 - bit_shift;
1410 
1411 	while (n - bits_to_set >= 0) {
1412 		report[idx] &= ~(0xff << bit_shift);
1413 		report[idx] |= value << bit_shift;
1414 		value >>= bits_to_set;
1415 		n -= bits_to_set;
1416 		bits_to_set = 8;
1417 		bit_shift = 0;
1418 		idx++;
1419 	}
1420 
1421 	/* last nibble */
1422 	if (n) {
1423 		u8 bit_mask = ((1U << n) - 1);
1424 		report[idx] &= ~(bit_mask << bit_shift);
1425 		report[idx] |= value << bit_shift;
1426 	}
1427 }
1428 
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1429 static void implement(const struct hid_device *hid, u8 *report,
1430 		      unsigned offset, unsigned n, u32 value)
1431 {
1432 	if (unlikely(n > 32)) {
1433 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1434 			 __func__, n, current->comm);
1435 		n = 32;
1436 	} else if (n < 32) {
1437 		u32 m = (1U << n) - 1;
1438 
1439 		if (unlikely(value > m)) {
1440 			hid_warn(hid,
1441 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1442 				 __func__, value, n, current->comm);
1443 			WARN_ON(1);
1444 			value &= m;
1445 		}
1446 	}
1447 
1448 	__implement(report, offset, n, value);
1449 }
1450 
1451 /*
1452  * Search an array for a value.
1453  */
1454 
search(__s32 * array,__s32 value,unsigned n)1455 static int search(__s32 *array, __s32 value, unsigned n)
1456 {
1457 	while (n--) {
1458 		if (*array++ == value)
1459 			return 0;
1460 	}
1461 	return -1;
1462 }
1463 
1464 /**
1465  * hid_match_report - check if driver's raw_event should be called
1466  *
1467  * @hid: hid device
1468  * @report: hid report to match against
1469  *
1470  * compare hid->driver->report_table->report_type to report->type
1471  */
hid_match_report(struct hid_device * hid,struct hid_report * report)1472 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1473 {
1474 	const struct hid_report_id *id = hid->driver->report_table;
1475 
1476 	if (!id) /* NULL means all */
1477 		return 1;
1478 
1479 	for (; id->report_type != HID_TERMINATOR; id++)
1480 		if (id->report_type == HID_ANY_ID ||
1481 				id->report_type == report->type)
1482 			return 1;
1483 	return 0;
1484 }
1485 
1486 /**
1487  * hid_match_usage - check if driver's event should be called
1488  *
1489  * @hid: hid device
1490  * @usage: usage to match against
1491  *
1492  * compare hid->driver->usage_table->usage_{type,code} to
1493  * usage->usage_{type,code}
1494  */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1495 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1496 {
1497 	const struct hid_usage_id *id = hid->driver->usage_table;
1498 
1499 	if (!id) /* NULL means all */
1500 		return 1;
1501 
1502 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1503 		if ((id->usage_hid == HID_ANY_ID ||
1504 				id->usage_hid == usage->hid) &&
1505 				(id->usage_type == HID_ANY_ID ||
1506 				id->usage_type == usage->type) &&
1507 				(id->usage_code == HID_ANY_ID ||
1508 				 id->usage_code == usage->code))
1509 			return 1;
1510 	return 0;
1511 }
1512 
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1513 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1514 		struct hid_usage *usage, __s32 value, int interrupt)
1515 {
1516 	struct hid_driver *hdrv = hid->driver;
1517 	int ret;
1518 
1519 	if (!list_empty(&hid->debug_list))
1520 		hid_dump_input(hid, usage, value);
1521 
1522 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1523 		ret = hdrv->event(hid, field, usage, value);
1524 		if (ret != 0) {
1525 			if (ret < 0)
1526 				hid_err(hid, "%s's event failed with %d\n",
1527 						hdrv->name, ret);
1528 			return;
1529 		}
1530 	}
1531 
1532 	if (hid->claimed & HID_CLAIMED_INPUT)
1533 		hidinput_hid_event(hid, field, usage, value);
1534 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1535 		hid->hiddev_hid_event(hid, field, usage, value);
1536 }
1537 
1538 /*
1539  * Analyse a received field, and fetch the data from it. The field
1540  * content is stored for next report processing (we do differential
1541  * reporting to the layer).
1542  */
1543 
hid_input_field(struct hid_device * hid,struct hid_field * field,__u8 * data,int interrupt)1544 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1545 			    __u8 *data, int interrupt)
1546 {
1547 	unsigned n;
1548 	unsigned count = field->report_count;
1549 	unsigned offset = field->report_offset;
1550 	unsigned size = field->report_size;
1551 	__s32 min = field->logical_minimum;
1552 	__s32 max = field->logical_maximum;
1553 	__s32 *value;
1554 
1555 	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1556 	if (!value)
1557 		return;
1558 
1559 	for (n = 0; n < count; n++) {
1560 
1561 		value[n] = min < 0 ?
1562 			snto32(hid_field_extract(hid, data, offset + n * size,
1563 			       size), size) :
1564 			hid_field_extract(hid, data, offset + n * size, size);
1565 
1566 		/* Ignore report if ErrorRollOver */
1567 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1568 		    value[n] >= min && value[n] <= max &&
1569 		    value[n] - min < field->maxusage &&
1570 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1571 			goto exit;
1572 	}
1573 
1574 	for (n = 0; n < count; n++) {
1575 
1576 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1577 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1578 			continue;
1579 		}
1580 
1581 		if (field->value[n] >= min && field->value[n] <= max
1582 			&& field->value[n] - min < field->maxusage
1583 			&& field->usage[field->value[n] - min].hid
1584 			&& search(value, field->value[n], count))
1585 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1586 
1587 		if (value[n] >= min && value[n] <= max
1588 			&& value[n] - min < field->maxusage
1589 			&& field->usage[value[n] - min].hid
1590 			&& search(field->value, value[n], count))
1591 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1592 	}
1593 
1594 	memcpy(field->value, value, count * sizeof(__s32));
1595 exit:
1596 	kfree(value);
1597 }
1598 
1599 /*
1600  * Output the field into the report.
1601  */
1602 
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1603 static void hid_output_field(const struct hid_device *hid,
1604 			     struct hid_field *field, __u8 *data)
1605 {
1606 	unsigned count = field->report_count;
1607 	unsigned offset = field->report_offset;
1608 	unsigned size = field->report_size;
1609 	unsigned n;
1610 
1611 	for (n = 0; n < count; n++) {
1612 		if (field->logical_minimum < 0)	/* signed values */
1613 			implement(hid, data, offset + n * size, size,
1614 				  s32ton(field->value[n], size));
1615 		else				/* unsigned values */
1616 			implement(hid, data, offset + n * size, size,
1617 				  field->value[n]);
1618 	}
1619 }
1620 
1621 /*
1622  * Compute the size of a report.
1623  */
hid_compute_report_size(struct hid_report * report)1624 static size_t hid_compute_report_size(struct hid_report *report)
1625 {
1626 	if (report->size)
1627 		return ((report->size - 1) >> 3) + 1;
1628 
1629 	return 0;
1630 }
1631 
1632 /*
1633  * Create a report. 'data' has to be allocated using
1634  * hid_alloc_report_buf() so that it has proper size.
1635  */
1636 
hid_output_report(struct hid_report * report,__u8 * data)1637 void hid_output_report(struct hid_report *report, __u8 *data)
1638 {
1639 	unsigned n;
1640 
1641 	if (report->id > 0)
1642 		*data++ = report->id;
1643 
1644 	memset(data, 0, hid_compute_report_size(report));
1645 	for (n = 0; n < report->maxfield; n++)
1646 		hid_output_field(report->device, report->field[n], data);
1647 }
1648 EXPORT_SYMBOL_GPL(hid_output_report);
1649 
1650 /*
1651  * Allocator for buffer that is going to be passed to hid_output_report()
1652  */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1653 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1654 {
1655 	/*
1656 	 * 7 extra bytes are necessary to achieve proper functionality
1657 	 * of implement() working on 8 byte chunks
1658 	 */
1659 
1660 	u32 len = hid_report_len(report) + 7;
1661 
1662 	return kmalloc(len, flags);
1663 }
1664 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1665 
1666 /*
1667  * Set a field value. The report this field belongs to has to be
1668  * created and transferred to the device, to set this value in the
1669  * device.
1670  */
1671 
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1672 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1673 {
1674 	unsigned size;
1675 
1676 	if (!field)
1677 		return -1;
1678 
1679 	size = field->report_size;
1680 
1681 	hid_dump_input(field->report->device, field->usage + offset, value);
1682 
1683 	if (offset >= field->report_count) {
1684 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1685 				offset, field->report_count);
1686 		return -1;
1687 	}
1688 	if (field->logical_minimum < 0) {
1689 		if (value != snto32(s32ton(value, size), size)) {
1690 			hid_err(field->report->device, "value %d is out of range\n", value);
1691 			return -1;
1692 		}
1693 	}
1694 	field->value[offset] = value;
1695 	return 0;
1696 }
1697 EXPORT_SYMBOL_GPL(hid_set_field);
1698 
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1699 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1700 		const u8 *data)
1701 {
1702 	struct hid_report *report;
1703 	unsigned int n = 0;	/* Normally report number is 0 */
1704 
1705 	/* Device uses numbered reports, data[0] is report number */
1706 	if (report_enum->numbered)
1707 		n = *data;
1708 
1709 	report = report_enum->report_id_hash[n];
1710 	if (report == NULL)
1711 		dbg_hid("undefined report_id %u received\n", n);
1712 
1713 	return report;
1714 }
1715 
1716 /*
1717  * Implement a generic .request() callback, using .raw_request()
1718  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1719  */
__hid_request(struct hid_device * hid,struct hid_report * report,int reqtype)1720 int __hid_request(struct hid_device *hid, struct hid_report *report,
1721 		int reqtype)
1722 {
1723 	char *buf;
1724 	int ret;
1725 	u32 len;
1726 
1727 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1728 	if (!buf)
1729 		return -ENOMEM;
1730 
1731 	len = hid_report_len(report);
1732 
1733 	if (reqtype == HID_REQ_SET_REPORT)
1734 		hid_output_report(report, buf);
1735 
1736 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1737 					  report->type, reqtype);
1738 	if (ret < 0) {
1739 		dbg_hid("unable to complete request: %d\n", ret);
1740 		goto out;
1741 	}
1742 
1743 	if (reqtype == HID_REQ_GET_REPORT)
1744 		hid_input_report(hid, report->type, buf, ret, 0);
1745 
1746 	ret = 0;
1747 
1748 out:
1749 	kfree(buf);
1750 	return ret;
1751 }
1752 EXPORT_SYMBOL_GPL(__hid_request);
1753 
hid_report_raw_event(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)1754 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1755 		int interrupt)
1756 {
1757 	struct hid_report_enum *report_enum = hid->report_enum + type;
1758 	struct hid_report *report;
1759 	struct hid_driver *hdrv;
1760 	int max_buffer_size = HID_MAX_BUFFER_SIZE;
1761 	unsigned int a;
1762 	u32 rsize, csize = size;
1763 	u8 *cdata = data;
1764 	int ret = 0;
1765 
1766 	report = hid_get_report(report_enum, data);
1767 	if (!report)
1768 		goto out;
1769 
1770 	if (report_enum->numbered) {
1771 		cdata++;
1772 		csize--;
1773 	}
1774 
1775 	rsize = hid_compute_report_size(report);
1776 
1777 	if (IS_ENABLED(CONFIG_UHID) && hid->ll_driver == &uhid_hid_driver)
1778 		max_buffer_size = UHID_DATA_MAX;
1779 
1780 	if (report_enum->numbered && rsize >= max_buffer_size)
1781 		rsize = max_buffer_size - 1;
1782 	else if (rsize > max_buffer_size)
1783 		rsize = max_buffer_size;
1784 
1785 	if (csize < rsize) {
1786 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1787 				csize, rsize);
1788 		memset(cdata + csize, 0, rsize - csize);
1789 	}
1790 
1791 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1792 		hid->hiddev_report_event(hid, report);
1793 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1794 		ret = hidraw_report_event(hid, data, size);
1795 		if (ret)
1796 			goto out;
1797 	}
1798 
1799 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1800 		for (a = 0; a < report->maxfield; a++)
1801 			hid_input_field(hid, report->field[a], cdata, interrupt);
1802 		hdrv = hid->driver;
1803 		if (hdrv && hdrv->report)
1804 			hdrv->report(hid, report);
1805 	}
1806 
1807 	if (hid->claimed & HID_CLAIMED_INPUT)
1808 		hidinput_report_event(hid, report);
1809 out:
1810 	return ret;
1811 }
1812 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1813 
1814 /**
1815  * hid_input_report - report data from lower layer (usb, bt...)
1816  *
1817  * @hid: hid device
1818  * @type: HID report type (HID_*_REPORT)
1819  * @data: report contents
1820  * @size: size of data parameter
1821  * @interrupt: distinguish between interrupt and control transfers
1822  *
1823  * This is data entry for lower layers.
1824  */
hid_input_report(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)1825 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1826 {
1827 	struct hid_report_enum *report_enum;
1828 	struct hid_driver *hdrv;
1829 	struct hid_report *report;
1830 	int ret = 0;
1831 
1832 	if (!hid)
1833 		return -ENODEV;
1834 
1835 	if (down_trylock(&hid->driver_input_lock))
1836 		return -EBUSY;
1837 
1838 	if (!hid->driver) {
1839 		ret = -ENODEV;
1840 		goto unlock;
1841 	}
1842 	report_enum = hid->report_enum + type;
1843 	hdrv = hid->driver;
1844 
1845 	if (!size) {
1846 		dbg_hid("empty report\n");
1847 		ret = -1;
1848 		goto unlock;
1849 	}
1850 
1851 	/* Avoid unnecessary overhead if debugfs is disabled */
1852 	if (!list_empty(&hid->debug_list))
1853 		hid_dump_report(hid, type, data, size);
1854 
1855 	report = hid_get_report(report_enum, data);
1856 
1857 	if (!report) {
1858 		ret = -1;
1859 		goto unlock;
1860 	}
1861 
1862 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1863 		ret = hdrv->raw_event(hid, report, data, size);
1864 		if (ret < 0)
1865 			goto unlock;
1866 	}
1867 
1868 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1869 
1870 unlock:
1871 	up(&hid->driver_input_lock);
1872 	return ret;
1873 }
1874 EXPORT_SYMBOL_GPL(hid_input_report);
1875 
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)1876 bool hid_match_one_id(const struct hid_device *hdev,
1877 		      const struct hid_device_id *id)
1878 {
1879 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1880 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1881 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1882 		(id->product == HID_ANY_ID || id->product == hdev->product);
1883 }
1884 
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)1885 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1886 		const struct hid_device_id *id)
1887 {
1888 	for (; id->bus; id++)
1889 		if (hid_match_one_id(hdev, id))
1890 			return id;
1891 
1892 	return NULL;
1893 }
1894 
1895 static const struct hid_device_id hid_hiddev_list[] = {
1896 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1897 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1898 	{ }
1899 };
1900 
hid_hiddev(struct hid_device * hdev)1901 static bool hid_hiddev(struct hid_device *hdev)
1902 {
1903 	return !!hid_match_id(hdev, hid_hiddev_list);
1904 }
1905 
1906 
1907 static ssize_t
read_report_descriptor(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)1908 read_report_descriptor(struct file *filp, struct kobject *kobj,
1909 		struct bin_attribute *attr,
1910 		char *buf, loff_t off, size_t count)
1911 {
1912 	struct device *dev = kobj_to_dev(kobj);
1913 	struct hid_device *hdev = to_hid_device(dev);
1914 
1915 	if (off >= hdev->rsize)
1916 		return 0;
1917 
1918 	if (off + count > hdev->rsize)
1919 		count = hdev->rsize - off;
1920 
1921 	memcpy(buf, hdev->rdesc + off, count);
1922 
1923 	return count;
1924 }
1925 
1926 static ssize_t
show_country(struct device * dev,struct device_attribute * attr,char * buf)1927 show_country(struct device *dev, struct device_attribute *attr,
1928 		char *buf)
1929 {
1930 	struct hid_device *hdev = to_hid_device(dev);
1931 
1932 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1933 }
1934 
1935 static struct bin_attribute dev_bin_attr_report_desc = {
1936 	.attr = { .name = "report_descriptor", .mode = 0444 },
1937 	.read = read_report_descriptor,
1938 	.size = HID_MAX_DESCRIPTOR_SIZE,
1939 };
1940 
1941 static const struct device_attribute dev_attr_country = {
1942 	.attr = { .name = "country", .mode = 0444 },
1943 	.show = show_country,
1944 };
1945 
hid_connect(struct hid_device * hdev,unsigned int connect_mask)1946 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1947 {
1948 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1949 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1950 		"Multi-Axis Controller"
1951 	};
1952 	const char *type, *bus;
1953 	char buf[64] = "";
1954 	unsigned int i;
1955 	int len;
1956 	int ret;
1957 
1958 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1959 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1960 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1961 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1962 	if (hdev->bus != BUS_USB)
1963 		connect_mask &= ~HID_CONNECT_HIDDEV;
1964 	if (hid_hiddev(hdev))
1965 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1966 
1967 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1968 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1969 		hdev->claimed |= HID_CLAIMED_INPUT;
1970 
1971 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1972 			!hdev->hiddev_connect(hdev,
1973 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1974 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1975 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1976 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1977 
1978 	if (connect_mask & HID_CONNECT_DRIVER)
1979 		hdev->claimed |= HID_CLAIMED_DRIVER;
1980 
1981 	/* Drivers with the ->raw_event callback set are not required to connect
1982 	 * to any other listener. */
1983 	if (!hdev->claimed && !hdev->driver->raw_event) {
1984 		hid_err(hdev, "device has no listeners, quitting\n");
1985 		return -ENODEV;
1986 	}
1987 
1988 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1989 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1990 		hdev->ff_init(hdev);
1991 
1992 	len = 0;
1993 	if (hdev->claimed & HID_CLAIMED_INPUT)
1994 		len += sprintf(buf + len, "input");
1995 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1996 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1997 				((struct hiddev *)hdev->hiddev)->minor);
1998 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1999 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2000 				((struct hidraw *)hdev->hidraw)->minor);
2001 
2002 	type = "Device";
2003 	for (i = 0; i < hdev->maxcollection; i++) {
2004 		struct hid_collection *col = &hdev->collection[i];
2005 		if (col->type == HID_COLLECTION_APPLICATION &&
2006 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2007 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2008 			type = types[col->usage & 0xffff];
2009 			break;
2010 		}
2011 	}
2012 
2013 	switch (hdev->bus) {
2014 	case BUS_USB:
2015 		bus = "USB";
2016 		break;
2017 	case BUS_BLUETOOTH:
2018 		bus = "BLUETOOTH";
2019 		break;
2020 	case BUS_I2C:
2021 		bus = "I2C";
2022 		break;
2023 	case BUS_VIRTUAL:
2024 		bus = "VIRTUAL";
2025 		break;
2026 	default:
2027 		bus = "<UNKNOWN>";
2028 	}
2029 
2030 	ret = device_create_file(&hdev->dev, &dev_attr_country);
2031 	if (ret)
2032 		hid_warn(hdev,
2033 			 "can't create sysfs country code attribute err: %d\n", ret);
2034 
2035 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2036 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2037 		 type, hdev->name, hdev->phys);
2038 
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(hid_connect);
2042 
hid_disconnect(struct hid_device * hdev)2043 void hid_disconnect(struct hid_device *hdev)
2044 {
2045 	device_remove_file(&hdev->dev, &dev_attr_country);
2046 	if (hdev->claimed & HID_CLAIMED_INPUT)
2047 		hidinput_disconnect(hdev);
2048 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2049 		hdev->hiddev_disconnect(hdev);
2050 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2051 		hidraw_disconnect(hdev);
2052 	hdev->claimed = 0;
2053 }
2054 EXPORT_SYMBOL_GPL(hid_disconnect);
2055 
2056 /**
2057  * hid_hw_start - start underlying HW
2058  * @hdev: hid device
2059  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2060  *
2061  * Call this in probe function *after* hid_parse. This will setup HW
2062  * buffers and start the device (if not defeirred to device open).
2063  * hid_hw_stop must be called if this was successful.
2064  */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2065 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2066 {
2067 	int error;
2068 
2069 	error = hdev->ll_driver->start(hdev);
2070 	if (error)
2071 		return error;
2072 
2073 	if (connect_mask) {
2074 		error = hid_connect(hdev, connect_mask);
2075 		if (error) {
2076 			hdev->ll_driver->stop(hdev);
2077 			return error;
2078 		}
2079 	}
2080 
2081 	return 0;
2082 }
2083 EXPORT_SYMBOL_GPL(hid_hw_start);
2084 
2085 /**
2086  * hid_hw_stop - stop underlying HW
2087  * @hdev: hid device
2088  *
2089  * This is usually called from remove function or from probe when something
2090  * failed and hid_hw_start was called already.
2091  */
hid_hw_stop(struct hid_device * hdev)2092 void hid_hw_stop(struct hid_device *hdev)
2093 {
2094 	hid_disconnect(hdev);
2095 	hdev->ll_driver->stop(hdev);
2096 }
2097 EXPORT_SYMBOL_GPL(hid_hw_stop);
2098 
2099 /**
2100  * hid_hw_open - signal underlying HW to start delivering events
2101  * @hdev: hid device
2102  *
2103  * Tell underlying HW to start delivering events from the device.
2104  * This function should be called sometime after successful call
2105  * to hid_hw_start().
2106  */
hid_hw_open(struct hid_device * hdev)2107 int hid_hw_open(struct hid_device *hdev)
2108 {
2109 	int ret;
2110 
2111 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2112 	if (ret)
2113 		return ret;
2114 
2115 	if (!hdev->ll_open_count++) {
2116 		ret = hdev->ll_driver->open(hdev);
2117 		if (ret)
2118 			hdev->ll_open_count--;
2119 	}
2120 
2121 	mutex_unlock(&hdev->ll_open_lock);
2122 	return ret;
2123 }
2124 EXPORT_SYMBOL_GPL(hid_hw_open);
2125 
2126 /**
2127  * hid_hw_close - signal underlaying HW to stop delivering events
2128  *
2129  * @hdev: hid device
2130  *
2131  * This function indicates that we are not interested in the events
2132  * from this device anymore. Delivery of events may or may not stop,
2133  * depending on the number of users still outstanding.
2134  */
hid_hw_close(struct hid_device * hdev)2135 void hid_hw_close(struct hid_device *hdev)
2136 {
2137 	mutex_lock(&hdev->ll_open_lock);
2138 	if (!--hdev->ll_open_count)
2139 		hdev->ll_driver->close(hdev);
2140 	mutex_unlock(&hdev->ll_open_lock);
2141 }
2142 EXPORT_SYMBOL_GPL(hid_hw_close);
2143 
2144 struct hid_dynid {
2145 	struct list_head list;
2146 	struct hid_device_id id;
2147 };
2148 
2149 /**
2150  * store_new_id - add a new HID device ID to this driver and re-probe devices
2151  * @drv: target device driver
2152  * @buf: buffer for scanning device ID data
2153  * @count: input size
2154  *
2155  * Adds a new dynamic hid device ID to this driver,
2156  * and causes the driver to probe for all devices again.
2157  */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2158 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2159 		size_t count)
2160 {
2161 	struct hid_driver *hdrv = to_hid_driver(drv);
2162 	struct hid_dynid *dynid;
2163 	__u32 bus, vendor, product;
2164 	unsigned long driver_data = 0;
2165 	int ret;
2166 
2167 	ret = sscanf(buf, "%x %x %x %lx",
2168 			&bus, &vendor, &product, &driver_data);
2169 	if (ret < 3)
2170 		return -EINVAL;
2171 
2172 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2173 	if (!dynid)
2174 		return -ENOMEM;
2175 
2176 	dynid->id.bus = bus;
2177 	dynid->id.group = HID_GROUP_ANY;
2178 	dynid->id.vendor = vendor;
2179 	dynid->id.product = product;
2180 	dynid->id.driver_data = driver_data;
2181 
2182 	spin_lock(&hdrv->dyn_lock);
2183 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2184 	spin_unlock(&hdrv->dyn_lock);
2185 
2186 	ret = driver_attach(&hdrv->driver);
2187 
2188 	return ret ? : count;
2189 }
2190 static DRIVER_ATTR_WO(new_id);
2191 
2192 static struct attribute *hid_drv_attrs[] = {
2193 	&driver_attr_new_id.attr,
2194 	NULL,
2195 };
2196 ATTRIBUTE_GROUPS(hid_drv);
2197 
hid_free_dynids(struct hid_driver * hdrv)2198 static void hid_free_dynids(struct hid_driver *hdrv)
2199 {
2200 	struct hid_dynid *dynid, *n;
2201 
2202 	spin_lock(&hdrv->dyn_lock);
2203 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2204 		list_del(&dynid->list);
2205 		kfree(dynid);
2206 	}
2207 	spin_unlock(&hdrv->dyn_lock);
2208 }
2209 
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2210 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2211 					     struct hid_driver *hdrv)
2212 {
2213 	struct hid_dynid *dynid;
2214 
2215 	spin_lock(&hdrv->dyn_lock);
2216 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2217 		if (hid_match_one_id(hdev, &dynid->id)) {
2218 			spin_unlock(&hdrv->dyn_lock);
2219 			return &dynid->id;
2220 		}
2221 	}
2222 	spin_unlock(&hdrv->dyn_lock);
2223 
2224 	return hid_match_id(hdev, hdrv->id_table);
2225 }
2226 EXPORT_SYMBOL_GPL(hid_match_device);
2227 
hid_bus_match(struct device * dev,struct device_driver * drv)2228 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2229 {
2230 	struct hid_driver *hdrv = to_hid_driver(drv);
2231 	struct hid_device *hdev = to_hid_device(dev);
2232 
2233 	return hid_match_device(hdev, hdrv) != NULL;
2234 }
2235 
2236 /**
2237  * hid_compare_device_paths - check if both devices share the same path
2238  * @hdev_a: hid device
2239  * @hdev_b: hid device
2240  * @separator: char to use as separator
2241  *
2242  * Check if two devices share the same path up to the last occurrence of
2243  * the separator char. Both paths must exist (i.e., zero-length paths
2244  * don't match).
2245  */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2246 bool hid_compare_device_paths(struct hid_device *hdev_a,
2247 			      struct hid_device *hdev_b, char separator)
2248 {
2249 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2250 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2251 
2252 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2253 		return false;
2254 
2255 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2256 }
2257 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2258 
hid_device_probe(struct device * dev)2259 static int hid_device_probe(struct device *dev)
2260 {
2261 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2262 	struct hid_device *hdev = to_hid_device(dev);
2263 	const struct hid_device_id *id;
2264 	int ret = 0;
2265 
2266 	if (down_interruptible(&hdev->driver_input_lock)) {
2267 		ret = -EINTR;
2268 		goto end;
2269 	}
2270 	hdev->io_started = false;
2271 
2272 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2273 
2274 	if (!hdev->driver) {
2275 		id = hid_match_device(hdev, hdrv);
2276 		if (id == NULL) {
2277 			ret = -ENODEV;
2278 			goto unlock;
2279 		}
2280 
2281 		if (hdrv->match) {
2282 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2283 				ret = -ENODEV;
2284 				goto unlock;
2285 			}
2286 		} else {
2287 			/*
2288 			 * hid-generic implements .match(), so if
2289 			 * hid_ignore_special_drivers is set, we can safely
2290 			 * return.
2291 			 */
2292 			if (hid_ignore_special_drivers) {
2293 				ret = -ENODEV;
2294 				goto unlock;
2295 			}
2296 		}
2297 
2298 		/* reset the quirks that has been previously set */
2299 		hdev->quirks = hid_lookup_quirk(hdev);
2300 		hdev->driver = hdrv;
2301 		if (hdrv->probe) {
2302 			ret = hdrv->probe(hdev, id);
2303 		} else { /* default probe */
2304 			ret = hid_open_report(hdev);
2305 			if (!ret)
2306 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2307 		}
2308 		if (ret) {
2309 			hid_close_report(hdev);
2310 			hdev->driver = NULL;
2311 		}
2312 	}
2313 unlock:
2314 	if (!hdev->io_started)
2315 		up(&hdev->driver_input_lock);
2316 end:
2317 	return ret;
2318 }
2319 
hid_device_remove(struct device * dev)2320 static int hid_device_remove(struct device *dev)
2321 {
2322 	struct hid_device *hdev = to_hid_device(dev);
2323 	struct hid_driver *hdrv;
2324 
2325 	down(&hdev->driver_input_lock);
2326 	hdev->io_started = false;
2327 
2328 	hdrv = hdev->driver;
2329 	if (hdrv) {
2330 		if (hdrv->remove)
2331 			hdrv->remove(hdev);
2332 		else /* default remove */
2333 			hid_hw_stop(hdev);
2334 		hid_close_report(hdev);
2335 		hdev->driver = NULL;
2336 	}
2337 
2338 	if (!hdev->io_started)
2339 		up(&hdev->driver_input_lock);
2340 
2341 	return 0;
2342 }
2343 
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2344 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2345 			     char *buf)
2346 {
2347 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2348 
2349 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2350 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2351 }
2352 static DEVICE_ATTR_RO(modalias);
2353 
2354 static struct attribute *hid_dev_attrs[] = {
2355 	&dev_attr_modalias.attr,
2356 	NULL,
2357 };
2358 static struct bin_attribute *hid_dev_bin_attrs[] = {
2359 	&dev_bin_attr_report_desc,
2360 	NULL
2361 };
2362 static const struct attribute_group hid_dev_group = {
2363 	.attrs = hid_dev_attrs,
2364 	.bin_attrs = hid_dev_bin_attrs,
2365 };
2366 __ATTRIBUTE_GROUPS(hid_dev);
2367 
hid_uevent(struct device * dev,struct kobj_uevent_env * env)2368 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2369 {
2370 	struct hid_device *hdev = to_hid_device(dev);
2371 
2372 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2373 			hdev->bus, hdev->vendor, hdev->product))
2374 		return -ENOMEM;
2375 
2376 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2377 		return -ENOMEM;
2378 
2379 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2380 		return -ENOMEM;
2381 
2382 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2383 		return -ENOMEM;
2384 
2385 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2386 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2387 		return -ENOMEM;
2388 
2389 	return 0;
2390 }
2391 
2392 struct bus_type hid_bus_type = {
2393 	.name		= "hid",
2394 	.dev_groups	= hid_dev_groups,
2395 	.drv_groups	= hid_drv_groups,
2396 	.match		= hid_bus_match,
2397 	.probe		= hid_device_probe,
2398 	.remove		= hid_device_remove,
2399 	.uevent		= hid_uevent,
2400 };
2401 EXPORT_SYMBOL(hid_bus_type);
2402 
hid_add_device(struct hid_device * hdev)2403 int hid_add_device(struct hid_device *hdev)
2404 {
2405 	static atomic_t id = ATOMIC_INIT(0);
2406 	int ret;
2407 
2408 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2409 		return -EBUSY;
2410 
2411 	hdev->quirks = hid_lookup_quirk(hdev);
2412 
2413 	/* we need to kill them here, otherwise they will stay allocated to
2414 	 * wait for coming driver */
2415 	if (hid_ignore(hdev))
2416 		return -ENODEV;
2417 
2418 	/*
2419 	 * Check for the mandatory transport channel.
2420 	 */
2421 	 if (!hdev->ll_driver->raw_request) {
2422 		hid_err(hdev, "transport driver missing .raw_request()\n");
2423 		return -EINVAL;
2424 	 }
2425 
2426 	/*
2427 	 * Read the device report descriptor once and use as template
2428 	 * for the driver-specific modifications.
2429 	 */
2430 	ret = hdev->ll_driver->parse(hdev);
2431 	if (ret)
2432 		return ret;
2433 	if (!hdev->dev_rdesc)
2434 		return -ENODEV;
2435 
2436 	/*
2437 	 * Scan generic devices for group information
2438 	 */
2439 	if (hid_ignore_special_drivers) {
2440 		hdev->group = HID_GROUP_GENERIC;
2441 	} else if (!hdev->group &&
2442 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2443 		ret = hid_scan_report(hdev);
2444 		if (ret)
2445 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2446 	}
2447 
2448 	/* XXX hack, any other cleaner solution after the driver core
2449 	 * is converted to allow more than 20 bytes as the device name? */
2450 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2451 		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2452 
2453 	hid_debug_register(hdev, dev_name(&hdev->dev));
2454 	ret = device_add(&hdev->dev);
2455 	if (!ret)
2456 		hdev->status |= HID_STAT_ADDED;
2457 	else
2458 		hid_debug_unregister(hdev);
2459 
2460 	return ret;
2461 }
2462 EXPORT_SYMBOL_GPL(hid_add_device);
2463 
2464 /**
2465  * hid_allocate_device - allocate new hid device descriptor
2466  *
2467  * Allocate and initialize hid device, so that hid_destroy_device might be
2468  * used to free it.
2469  *
2470  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2471  * error value.
2472  */
hid_allocate_device(void)2473 struct hid_device *hid_allocate_device(void)
2474 {
2475 	struct hid_device *hdev;
2476 	int ret = -ENOMEM;
2477 
2478 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2479 	if (hdev == NULL)
2480 		return ERR_PTR(ret);
2481 
2482 	device_initialize(&hdev->dev);
2483 	hdev->dev.release = hid_device_release;
2484 	hdev->dev.bus = &hid_bus_type;
2485 	device_enable_async_suspend(&hdev->dev);
2486 
2487 	hid_close_report(hdev);
2488 
2489 	init_waitqueue_head(&hdev->debug_wait);
2490 	INIT_LIST_HEAD(&hdev->debug_list);
2491 	spin_lock_init(&hdev->debug_list_lock);
2492 	sema_init(&hdev->driver_input_lock, 1);
2493 	mutex_init(&hdev->ll_open_lock);
2494 
2495 	return hdev;
2496 }
2497 EXPORT_SYMBOL_GPL(hid_allocate_device);
2498 
hid_remove_device(struct hid_device * hdev)2499 static void hid_remove_device(struct hid_device *hdev)
2500 {
2501 	if (hdev->status & HID_STAT_ADDED) {
2502 		device_del(&hdev->dev);
2503 		hid_debug_unregister(hdev);
2504 		hdev->status &= ~HID_STAT_ADDED;
2505 	}
2506 	kfree(hdev->dev_rdesc);
2507 	hdev->dev_rdesc = NULL;
2508 	hdev->dev_rsize = 0;
2509 }
2510 
2511 /**
2512  * hid_destroy_device - free previously allocated device
2513  *
2514  * @hdev: hid device
2515  *
2516  * If you allocate hid_device through hid_allocate_device, you should ever
2517  * free by this function.
2518  */
hid_destroy_device(struct hid_device * hdev)2519 void hid_destroy_device(struct hid_device *hdev)
2520 {
2521 	hid_remove_device(hdev);
2522 	put_device(&hdev->dev);
2523 }
2524 EXPORT_SYMBOL_GPL(hid_destroy_device);
2525 
2526 
__hid_bus_reprobe_drivers(struct device * dev,void * data)2527 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2528 {
2529 	struct hid_driver *hdrv = data;
2530 	struct hid_device *hdev = to_hid_device(dev);
2531 
2532 	if (hdev->driver == hdrv &&
2533 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2534 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2535 		return device_reprobe(dev);
2536 
2537 	return 0;
2538 }
2539 
__hid_bus_driver_added(struct device_driver * drv,void * data)2540 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2541 {
2542 	struct hid_driver *hdrv = to_hid_driver(drv);
2543 
2544 	if (hdrv->match) {
2545 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2546 				 __hid_bus_reprobe_drivers);
2547 	}
2548 
2549 	return 0;
2550 }
2551 
__bus_removed_driver(struct device_driver * drv,void * data)2552 static int __bus_removed_driver(struct device_driver *drv, void *data)
2553 {
2554 	return bus_rescan_devices(&hid_bus_type);
2555 }
2556 
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)2557 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2558 		const char *mod_name)
2559 {
2560 	int ret;
2561 
2562 	hdrv->driver.name = hdrv->name;
2563 	hdrv->driver.bus = &hid_bus_type;
2564 	hdrv->driver.owner = owner;
2565 	hdrv->driver.mod_name = mod_name;
2566 
2567 	INIT_LIST_HEAD(&hdrv->dyn_list);
2568 	spin_lock_init(&hdrv->dyn_lock);
2569 
2570 	ret = driver_register(&hdrv->driver);
2571 
2572 	if (ret == 0)
2573 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2574 				 __hid_bus_driver_added);
2575 
2576 	return ret;
2577 }
2578 EXPORT_SYMBOL_GPL(__hid_register_driver);
2579 
hid_unregister_driver(struct hid_driver * hdrv)2580 void hid_unregister_driver(struct hid_driver *hdrv)
2581 {
2582 	driver_unregister(&hdrv->driver);
2583 	hid_free_dynids(hdrv);
2584 
2585 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2586 }
2587 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2588 
hid_check_keys_pressed(struct hid_device * hid)2589 int hid_check_keys_pressed(struct hid_device *hid)
2590 {
2591 	struct hid_input *hidinput;
2592 	int i;
2593 
2594 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2595 		return 0;
2596 
2597 	list_for_each_entry(hidinput, &hid->inputs, list) {
2598 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2599 			if (hidinput->input->key[i])
2600 				return 1;
2601 	}
2602 
2603 	return 0;
2604 }
2605 
2606 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2607 
hid_init(void)2608 static int __init hid_init(void)
2609 {
2610 	int ret;
2611 
2612 	if (hid_debug)
2613 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2614 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2615 
2616 	ret = bus_register(&hid_bus_type);
2617 	if (ret) {
2618 		pr_err("can't register hid bus\n");
2619 		goto err;
2620 	}
2621 
2622 	ret = hidraw_init();
2623 	if (ret)
2624 		goto err_bus;
2625 
2626 	hid_debug_init();
2627 
2628 	return 0;
2629 err_bus:
2630 	bus_unregister(&hid_bus_type);
2631 err:
2632 	return ret;
2633 }
2634 
hid_exit(void)2635 static void __exit hid_exit(void)
2636 {
2637 	hid_debug_exit();
2638 	hidraw_exit();
2639 	bus_unregister(&hid_bus_type);
2640 	hid_quirks_exit(HID_BUS_ANY);
2641 }
2642 
2643 module_init(hid_init);
2644 module_exit(hid_exit);
2645 
2646 MODULE_AUTHOR("Andreas Gal");
2647 MODULE_AUTHOR("Vojtech Pavlik");
2648 MODULE_AUTHOR("Jiri Kosina");
2649 MODULE_LICENSE("GPL");
2650