1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13 * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14 *
15 * @ptr: the current pi/ci value
16 * @val: the amount to add
17 *
18 * Add val to ptr. It can go until twice the queue length.
19 */
hl_hw_queue_add_ptr(u32 ptr,u16 val)20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22 ptr += val;
23 ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24 return ptr;
25 }
queue_ci_get(atomic_t * ci,u32 queue_len)26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28 return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30
queue_free_slots(struct hl_hw_queue * q,u32 queue_len)31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33 int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35 if (delta >= 0)
36 return (queue_len - delta);
37 else
38 return (abs(delta) - queue_len);
39 }
40
hl_int_hw_queue_update_ci(struct hl_cs * cs)41 void hl_int_hw_queue_update_ci(struct hl_cs *cs)
42 {
43 struct hl_device *hdev = cs->ctx->hdev;
44 struct hl_hw_queue *q;
45 int i;
46
47 if (hdev->disabled)
48 return;
49
50 q = &hdev->kernel_queues[0];
51 for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
52 if (q->queue_type == QUEUE_TYPE_INT)
53 atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
54 }
55 }
56
57 /*
58 * ext_and_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
59 * H/W queue.
60 * @hdev: pointer to habanalabs device structure
61 * @q: pointer to habanalabs queue structure
62 * @ctl: BD's control word
63 * @len: BD's length
64 * @ptr: BD's pointer
65 *
66 * This function assumes there is enough space on the queue to submit a new
67 * BD to it. It initializes the next BD and calls the device specific
68 * function to set the pi (and doorbell)
69 *
70 * This function must be called when the scheduler mutex is taken
71 *
72 */
ext_and_hw_queue_submit_bd(struct hl_device * hdev,struct hl_hw_queue * q,u32 ctl,u32 len,u64 ptr)73 static void ext_and_hw_queue_submit_bd(struct hl_device *hdev,
74 struct hl_hw_queue *q, u32 ctl, u32 len, u64 ptr)
75 {
76 struct hl_bd *bd;
77
78 bd = q->kernel_address;
79 bd += hl_pi_2_offset(q->pi);
80 bd->ctl = cpu_to_le32(ctl);
81 bd->len = cpu_to_le32(len);
82 bd->ptr = cpu_to_le64(ptr);
83
84 q->pi = hl_queue_inc_ptr(q->pi);
85 hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
86 }
87
88 /*
89 * ext_queue_sanity_checks - perform some sanity checks on external queue
90 *
91 * @hdev : pointer to hl_device structure
92 * @q : pointer to hl_hw_queue structure
93 * @num_of_entries : how many entries to check for space
94 * @reserve_cq_entry : whether to reserve an entry in the cq
95 *
96 * H/W queues spinlock should be taken before calling this function
97 *
98 * Perform the following:
99 * - Make sure we have enough space in the h/w queue
100 * - Make sure we have enough space in the completion queue
101 * - Reserve space in the completion queue (needs to be reversed if there
102 * is a failure down the road before the actual submission of work). Only
103 * do this action if reserve_cq_entry is true
104 *
105 */
ext_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries,bool reserve_cq_entry)106 static int ext_queue_sanity_checks(struct hl_device *hdev,
107 struct hl_hw_queue *q, int num_of_entries,
108 bool reserve_cq_entry)
109 {
110 atomic_t *free_slots =
111 &hdev->completion_queue[q->cq_id].free_slots_cnt;
112 int free_slots_cnt;
113
114 /* Check we have enough space in the queue */
115 free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
116
117 if (free_slots_cnt < num_of_entries) {
118 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
119 q->hw_queue_id, num_of_entries);
120 return -EAGAIN;
121 }
122
123 if (reserve_cq_entry) {
124 /*
125 * Check we have enough space in the completion queue
126 * Add -1 to counter (decrement) unless counter was already 0
127 * In that case, CQ is full so we can't submit a new CB because
128 * we won't get ack on its completion
129 * atomic_add_unless will return 0 if counter was already 0
130 */
131 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
132 dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
133 num_of_entries, q->hw_queue_id);
134 atomic_add(num_of_entries, free_slots);
135 return -EAGAIN;
136 }
137 }
138
139 return 0;
140 }
141
142 /*
143 * int_queue_sanity_checks - perform some sanity checks on internal queue
144 *
145 * @hdev : pointer to hl_device structure
146 * @q : pointer to hl_hw_queue structure
147 * @num_of_entries : how many entries to check for space
148 *
149 * H/W queues spinlock should be taken before calling this function
150 *
151 * Perform the following:
152 * - Make sure we have enough space in the h/w queue
153 *
154 */
int_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries)155 static int int_queue_sanity_checks(struct hl_device *hdev,
156 struct hl_hw_queue *q,
157 int num_of_entries)
158 {
159 int free_slots_cnt;
160
161 if (num_of_entries > q->int_queue_len) {
162 dev_err(hdev->dev,
163 "Cannot populate queue %u with %u jobs\n",
164 q->hw_queue_id, num_of_entries);
165 return -ENOMEM;
166 }
167
168 /* Check we have enough space in the queue */
169 free_slots_cnt = queue_free_slots(q, q->int_queue_len);
170
171 if (free_slots_cnt < num_of_entries) {
172 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
173 q->hw_queue_id, num_of_entries);
174 return -EAGAIN;
175 }
176
177 return 0;
178 }
179
180 /*
181 * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
182 * @hdev: Pointer to hl_device structure.
183 * @q: Pointer to hl_hw_queue structure.
184 * @num_of_entries: How many entries to check for space.
185 *
186 * Notice: We do not reserve queue entries so this function mustn't be called
187 * more than once per CS for the same queue
188 *
189 */
hw_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries)190 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
191 int num_of_entries)
192 {
193 int free_slots_cnt;
194
195 /* Check we have enough space in the queue */
196 free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
197
198 if (free_slots_cnt < num_of_entries) {
199 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
200 q->hw_queue_id, num_of_entries);
201 return -EAGAIN;
202 }
203
204 return 0;
205 }
206
207 /*
208 * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
209 *
210 * @hdev: pointer to hl_device structure
211 * @hw_queue_id: Queue's type
212 * @cb_size: size of CB
213 * @cb_ptr: pointer to CB location
214 *
215 * This function sends a single CB, that must NOT generate a completion entry
216 *
217 */
hl_hw_queue_send_cb_no_cmpl(struct hl_device * hdev,u32 hw_queue_id,u32 cb_size,u64 cb_ptr)218 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
219 u32 cb_size, u64 cb_ptr)
220 {
221 struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
222 int rc = 0;
223
224 /*
225 * The CPU queue is a synchronous queue with an effective depth of
226 * a single entry (although it is allocated with room for multiple
227 * entries). Therefore, there is a different lock, called
228 * send_cpu_message_lock, that serializes accesses to the CPU queue.
229 * As a result, we don't need to lock the access to the entire H/W
230 * queues module when submitting a JOB to the CPU queue
231 */
232 if (q->queue_type != QUEUE_TYPE_CPU)
233 hdev->asic_funcs->hw_queues_lock(hdev);
234
235 if (hdev->disabled) {
236 rc = -EPERM;
237 goto out;
238 }
239
240 /*
241 * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
242 * type only on init phase, when the queues are empty and being tested,
243 * so there is no need for sanity checks.
244 */
245 if (q->queue_type != QUEUE_TYPE_HW) {
246 rc = ext_queue_sanity_checks(hdev, q, 1, false);
247 if (rc)
248 goto out;
249 }
250
251 ext_and_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
252
253 out:
254 if (q->queue_type != QUEUE_TYPE_CPU)
255 hdev->asic_funcs->hw_queues_unlock(hdev);
256
257 return rc;
258 }
259
260 /*
261 * ext_queue_schedule_job - submit a JOB to an external queue
262 *
263 * @job: pointer to the job that needs to be submitted to the queue
264 *
265 * This function must be called when the scheduler mutex is taken
266 *
267 */
ext_queue_schedule_job(struct hl_cs_job * job)268 static void ext_queue_schedule_job(struct hl_cs_job *job)
269 {
270 struct hl_device *hdev = job->cs->ctx->hdev;
271 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
272 struct hl_cq_entry cq_pkt;
273 struct hl_cq *cq;
274 u64 cq_addr;
275 struct hl_cb *cb;
276 u32 ctl;
277 u32 len;
278 u64 ptr;
279
280 /*
281 * Update the JOB ID inside the BD CTL so the device would know what
282 * to write in the completion queue
283 */
284 ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
285
286 cb = job->patched_cb;
287 len = job->job_cb_size;
288 ptr = cb->bus_address;
289
290 cq_pkt.data = cpu_to_le32(
291 ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
292 & CQ_ENTRY_SHADOW_INDEX_MASK) |
293 FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
294 FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
295
296 /*
297 * No need to protect pi_offset because scheduling to the
298 * H/W queues is done under the scheduler mutex
299 *
300 * No need to check if CQ is full because it was already
301 * checked in ext_queue_sanity_checks
302 */
303 cq = &hdev->completion_queue[q->cq_id];
304 cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
305
306 hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
307 cq_addr,
308 le32_to_cpu(cq_pkt.data),
309 q->msi_vec,
310 job->contains_dma_pkt);
311
312 q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
313
314 cq->pi = hl_cq_inc_ptr(cq->pi);
315
316 ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
317 }
318
319 /*
320 * int_queue_schedule_job - submit a JOB to an internal queue
321 *
322 * @job: pointer to the job that needs to be submitted to the queue
323 *
324 * This function must be called when the scheduler mutex is taken
325 *
326 */
int_queue_schedule_job(struct hl_cs_job * job)327 static void int_queue_schedule_job(struct hl_cs_job *job)
328 {
329 struct hl_device *hdev = job->cs->ctx->hdev;
330 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
331 struct hl_bd bd;
332 __le64 *pi;
333
334 bd.ctl = 0;
335 bd.len = cpu_to_le32(job->job_cb_size);
336 bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
337
338 pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
339
340 q->pi++;
341 q->pi &= ((q->int_queue_len << 1) - 1);
342
343 hdev->asic_funcs->pqe_write(hdev, pi, &bd);
344
345 hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
346 }
347
348 /*
349 * hw_queue_schedule_job - submit a JOB to a H/W queue
350 *
351 * @job: pointer to the job that needs to be submitted to the queue
352 *
353 * This function must be called when the scheduler mutex is taken
354 *
355 */
hw_queue_schedule_job(struct hl_cs_job * job)356 static void hw_queue_schedule_job(struct hl_cs_job *job)
357 {
358 struct hl_device *hdev = job->cs->ctx->hdev;
359 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
360 u64 ptr;
361 u32 offset, ctl, len;
362
363 /*
364 * Upon PQE completion, COMP_DATA is used as the write data to the
365 * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
366 * write address offset in the SM block (QMAN LBW message).
367 * The write address offset is calculated as "COMP_OFFSET << 2".
368 */
369 offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
370 ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
371 ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
372
373 len = job->job_cb_size;
374
375 /*
376 * A patched CB is created only if a user CB was allocated by driver and
377 * MMU is disabled. If MMU is enabled, the user CB should be used
378 * instead. If the user CB wasn't allocated by driver, assume that it
379 * holds an address.
380 */
381 if (job->patched_cb)
382 ptr = job->patched_cb->bus_address;
383 else if (job->is_kernel_allocated_cb)
384 ptr = job->user_cb->bus_address;
385 else
386 ptr = (u64) (uintptr_t) job->user_cb;
387
388 ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
389 }
390
391 /*
392 * init_signal_wait_cs - initialize a signal/wait CS
393 * @cs: pointer to the signal/wait CS
394 *
395 * H/W queues spinlock should be taken before calling this function
396 */
init_signal_wait_cs(struct hl_cs * cs)397 static void init_signal_wait_cs(struct hl_cs *cs)
398 {
399 struct hl_ctx *ctx = cs->ctx;
400 struct hl_device *hdev = ctx->hdev;
401 struct hl_hw_queue *hw_queue;
402 struct hl_cs_compl *cs_cmpl =
403 container_of(cs->fence, struct hl_cs_compl, base_fence);
404
405 struct hl_hw_sob *hw_sob;
406 struct hl_cs_job *job;
407 u32 q_idx;
408
409 /* There is only one job in a signal/wait CS */
410 job = list_first_entry(&cs->job_list, struct hl_cs_job,
411 cs_node);
412 q_idx = job->hw_queue_id;
413 hw_queue = &hdev->kernel_queues[q_idx];
414
415 if (cs->type & CS_TYPE_SIGNAL) {
416 hw_sob = &hw_queue->hw_sob[hw_queue->curr_sob_offset];
417
418 cs_cmpl->hw_sob = hw_sob;
419 cs_cmpl->sob_val = hw_queue->next_sob_val++;
420
421 dev_dbg(hdev->dev,
422 "generate signal CB, sob_id: %d, sob val: 0x%x, q_idx: %d\n",
423 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx);
424
425 hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
426 cs_cmpl->hw_sob->sob_id);
427
428 kref_get(&hw_sob->kref);
429
430 /* check for wraparound */
431 if (hw_queue->next_sob_val == HL_MAX_SOB_VAL) {
432 /*
433 * Decrement as we reached the max value.
434 * The release function won't be called here as we've
435 * just incremented the refcount.
436 */
437 kref_put(&hw_sob->kref, hl_sob_reset_error);
438 hw_queue->next_sob_val = 1;
439 /* only two SOBs are currently in use */
440 hw_queue->curr_sob_offset =
441 (hw_queue->curr_sob_offset + 1) %
442 HL_RSVD_SOBS_IN_USE;
443
444 dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
445 hw_queue->curr_sob_offset, q_idx);
446 }
447 } else if (cs->type & CS_TYPE_WAIT) {
448 struct hl_cs_compl *signal_cs_cmpl;
449
450 signal_cs_cmpl = container_of(cs->signal_fence,
451 struct hl_cs_compl,
452 base_fence);
453
454 /* copy the the SOB id and value of the signal CS */
455 cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
456 cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
457
458 dev_dbg(hdev->dev,
459 "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d\n",
460 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
461 hw_queue->base_mon_id, q_idx);
462
463 hdev->asic_funcs->gen_wait_cb(hdev, job->patched_cb,
464 cs_cmpl->hw_sob->sob_id,
465 cs_cmpl->sob_val,
466 hw_queue->base_mon_id,
467 q_idx);
468
469 kref_get(&cs_cmpl->hw_sob->kref);
470 /*
471 * Must put the signal fence after the SOB refcnt increment so
472 * the SOB refcnt won't turn 0 and reset the SOB before the
473 * wait CS was submitted.
474 */
475 mb();
476 hl_fence_put(cs->signal_fence);
477 cs->signal_fence = NULL;
478 }
479 }
480
481 /*
482 * hl_hw_queue_schedule_cs - schedule a command submission
483 * @cs: pointer to the CS
484 */
hl_hw_queue_schedule_cs(struct hl_cs * cs)485 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
486 {
487 struct hl_ctx *ctx = cs->ctx;
488 struct hl_device *hdev = ctx->hdev;
489 struct hl_cs_job *job, *tmp;
490 struct hl_hw_queue *q;
491 u32 max_queues;
492 int rc = 0, i, cq_cnt;
493
494 hdev->asic_funcs->hw_queues_lock(hdev);
495
496 if (hl_device_disabled_or_in_reset(hdev)) {
497 ctx->cs_counters.device_in_reset_drop_cnt++;
498 dev_err(hdev->dev,
499 "device is disabled or in reset, CS rejected!\n");
500 rc = -EPERM;
501 goto out;
502 }
503
504 max_queues = hdev->asic_prop.max_queues;
505
506 q = &hdev->kernel_queues[0];
507 for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
508 if (cs->jobs_in_queue_cnt[i]) {
509 switch (q->queue_type) {
510 case QUEUE_TYPE_EXT:
511 rc = ext_queue_sanity_checks(hdev, q,
512 cs->jobs_in_queue_cnt[i], true);
513 break;
514 case QUEUE_TYPE_INT:
515 rc = int_queue_sanity_checks(hdev, q,
516 cs->jobs_in_queue_cnt[i]);
517 break;
518 case QUEUE_TYPE_HW:
519 rc = hw_queue_sanity_checks(hdev, q,
520 cs->jobs_in_queue_cnt[i]);
521 break;
522 default:
523 dev_err(hdev->dev, "Queue type %d is invalid\n",
524 q->queue_type);
525 rc = -EINVAL;
526 break;
527 }
528
529 if (rc) {
530 ctx->cs_counters.queue_full_drop_cnt++;
531 goto unroll_cq_resv;
532 }
533
534 if (q->queue_type == QUEUE_TYPE_EXT)
535 cq_cnt++;
536 }
537 }
538
539 if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT))
540 init_signal_wait_cs(cs);
541
542 spin_lock(&hdev->hw_queues_mirror_lock);
543 list_add_tail(&cs->mirror_node, &hdev->hw_queues_mirror_list);
544
545 /* Queue TDR if the CS is the first entry and if timeout is wanted */
546 if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
547 (list_first_entry(&hdev->hw_queues_mirror_list,
548 struct hl_cs, mirror_node) == cs)) {
549 cs->tdr_active = true;
550 schedule_delayed_work(&cs->work_tdr, hdev->timeout_jiffies);
551 spin_unlock(&hdev->hw_queues_mirror_lock);
552 } else {
553 spin_unlock(&hdev->hw_queues_mirror_lock);
554 }
555
556 if (!hdev->cs_active_cnt++) {
557 struct hl_device_idle_busy_ts *ts;
558
559 ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx];
560 ts->busy_to_idle_ts = ktime_set(0, 0);
561 ts->idle_to_busy_ts = ktime_get();
562 }
563
564 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
565 switch (job->queue_type) {
566 case QUEUE_TYPE_EXT:
567 ext_queue_schedule_job(job);
568 break;
569 case QUEUE_TYPE_INT:
570 int_queue_schedule_job(job);
571 break;
572 case QUEUE_TYPE_HW:
573 hw_queue_schedule_job(job);
574 break;
575 default:
576 break;
577 }
578
579 cs->submitted = true;
580
581 goto out;
582
583 unroll_cq_resv:
584 q = &hdev->kernel_queues[0];
585 for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
586 if ((q->queue_type == QUEUE_TYPE_EXT) &&
587 (cs->jobs_in_queue_cnt[i])) {
588 atomic_t *free_slots =
589 &hdev->completion_queue[i].free_slots_cnt;
590 atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
591 cq_cnt--;
592 }
593 }
594
595 out:
596 hdev->asic_funcs->hw_queues_unlock(hdev);
597
598 return rc;
599 }
600
601 /*
602 * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
603 *
604 * @hdev: pointer to hl_device structure
605 * @hw_queue_id: which queue to increment its ci
606 */
hl_hw_queue_inc_ci_kernel(struct hl_device * hdev,u32 hw_queue_id)607 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
608 {
609 struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
610
611 atomic_inc(&q->ci);
612 }
613
ext_and_cpu_queue_init(struct hl_device * hdev,struct hl_hw_queue * q,bool is_cpu_queue)614 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
615 bool is_cpu_queue)
616 {
617 void *p;
618 int rc;
619
620 if (is_cpu_queue)
621 p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
622 HL_QUEUE_SIZE_IN_BYTES,
623 &q->bus_address);
624 else
625 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
626 HL_QUEUE_SIZE_IN_BYTES,
627 &q->bus_address,
628 GFP_KERNEL | __GFP_ZERO);
629 if (!p)
630 return -ENOMEM;
631
632 q->kernel_address = p;
633
634 q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
635 sizeof(*q->shadow_queue),
636 GFP_KERNEL);
637 if (!q->shadow_queue) {
638 dev_err(hdev->dev,
639 "Failed to allocate shadow queue for H/W queue %d\n",
640 q->hw_queue_id);
641 rc = -ENOMEM;
642 goto free_queue;
643 }
644
645 /* Make sure read/write pointers are initialized to start of queue */
646 atomic_set(&q->ci, 0);
647 q->pi = 0;
648
649 return 0;
650
651 free_queue:
652 if (is_cpu_queue)
653 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
654 HL_QUEUE_SIZE_IN_BYTES,
655 q->kernel_address);
656 else
657 hdev->asic_funcs->asic_dma_free_coherent(hdev,
658 HL_QUEUE_SIZE_IN_BYTES,
659 q->kernel_address,
660 q->bus_address);
661
662 return rc;
663 }
664
int_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)665 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
666 {
667 void *p;
668
669 p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
670 &q->bus_address, &q->int_queue_len);
671 if (!p) {
672 dev_err(hdev->dev,
673 "Failed to get base address for internal queue %d\n",
674 q->hw_queue_id);
675 return -EFAULT;
676 }
677
678 q->kernel_address = p;
679 q->pi = 0;
680 atomic_set(&q->ci, 0);
681
682 return 0;
683 }
684
cpu_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)685 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
686 {
687 return ext_and_cpu_queue_init(hdev, q, true);
688 }
689
ext_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)690 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
691 {
692 return ext_and_cpu_queue_init(hdev, q, false);
693 }
694
hw_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)695 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
696 {
697 void *p;
698
699 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
700 HL_QUEUE_SIZE_IN_BYTES,
701 &q->bus_address,
702 GFP_KERNEL | __GFP_ZERO);
703 if (!p)
704 return -ENOMEM;
705
706 q->kernel_address = p;
707
708 /* Make sure read/write pointers are initialized to start of queue */
709 atomic_set(&q->ci, 0);
710 q->pi = 0;
711
712 return 0;
713 }
714
sync_stream_queue_init(struct hl_device * hdev,u32 q_idx)715 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
716 {
717 struct hl_hw_queue *hw_queue = &hdev->kernel_queues[q_idx];
718 struct asic_fixed_properties *prop = &hdev->asic_prop;
719 struct hl_hw_sob *hw_sob;
720 int sob, queue_idx = hdev->sync_stream_queue_idx++;
721
722 hw_queue->base_sob_id =
723 prop->sync_stream_first_sob + queue_idx * HL_RSVD_SOBS;
724 hw_queue->base_mon_id =
725 prop->sync_stream_first_mon + queue_idx * HL_RSVD_MONS;
726 hw_queue->next_sob_val = 1;
727 hw_queue->curr_sob_offset = 0;
728
729 for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
730 hw_sob = &hw_queue->hw_sob[sob];
731 hw_sob->hdev = hdev;
732 hw_sob->sob_id = hw_queue->base_sob_id + sob;
733 hw_sob->q_idx = q_idx;
734 kref_init(&hw_sob->kref);
735 }
736 }
737
sync_stream_queue_reset(struct hl_device * hdev,u32 q_idx)738 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
739 {
740 struct hl_hw_queue *hw_queue = &hdev->kernel_queues[q_idx];
741
742 /*
743 * In case we got here due to a stuck CS, the refcnt might be bigger
744 * than 1 and therefore we reset it.
745 */
746 kref_init(&hw_queue->hw_sob[hw_queue->curr_sob_offset].kref);
747 hw_queue->curr_sob_offset = 0;
748 hw_queue->next_sob_val = 1;
749 }
750
751 /*
752 * queue_init - main initialization function for H/W queue object
753 *
754 * @hdev: pointer to hl_device device structure
755 * @q: pointer to hl_hw_queue queue structure
756 * @hw_queue_id: The id of the H/W queue
757 *
758 * Allocate dma-able memory for the queue and initialize fields
759 * Returns 0 on success
760 */
queue_init(struct hl_device * hdev,struct hl_hw_queue * q,u32 hw_queue_id)761 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
762 u32 hw_queue_id)
763 {
764 int rc;
765
766 q->hw_queue_id = hw_queue_id;
767
768 switch (q->queue_type) {
769 case QUEUE_TYPE_EXT:
770 rc = ext_queue_init(hdev, q);
771 break;
772 case QUEUE_TYPE_INT:
773 rc = int_queue_init(hdev, q);
774 break;
775 case QUEUE_TYPE_CPU:
776 rc = cpu_queue_init(hdev, q);
777 break;
778 case QUEUE_TYPE_HW:
779 rc = hw_queue_init(hdev, q);
780 break;
781 case QUEUE_TYPE_NA:
782 q->valid = 0;
783 return 0;
784 default:
785 dev_crit(hdev->dev, "wrong queue type %d during init\n",
786 q->queue_type);
787 rc = -EINVAL;
788 break;
789 }
790
791 if (q->supports_sync_stream)
792 sync_stream_queue_init(hdev, q->hw_queue_id);
793
794 if (rc)
795 return rc;
796
797 q->valid = 1;
798
799 return 0;
800 }
801
802 /*
803 * hw_queue_fini - destroy queue
804 *
805 * @hdev: pointer to hl_device device structure
806 * @q: pointer to hl_hw_queue queue structure
807 *
808 * Free the queue memory
809 */
queue_fini(struct hl_device * hdev,struct hl_hw_queue * q)810 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
811 {
812 if (!q->valid)
813 return;
814
815 /*
816 * If we arrived here, there are no jobs waiting on this queue
817 * so we can safely remove it.
818 * This is because this function can only called when:
819 * 1. Either a context is deleted, which only can occur if all its
820 * jobs were finished
821 * 2. A context wasn't able to be created due to failure or timeout,
822 * which means there are no jobs on the queue yet
823 *
824 * The only exception are the queues of the kernel context, but
825 * if they are being destroyed, it means that the entire module is
826 * being removed. If the module is removed, it means there is no open
827 * user context. It also means that if a job was submitted by
828 * the kernel driver (e.g. context creation), the job itself was
829 * released by the kernel driver when a timeout occurred on its
830 * Completion. Thus, we don't need to release it again.
831 */
832
833 if (q->queue_type == QUEUE_TYPE_INT)
834 return;
835
836 kfree(q->shadow_queue);
837
838 if (q->queue_type == QUEUE_TYPE_CPU)
839 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
840 HL_QUEUE_SIZE_IN_BYTES,
841 q->kernel_address);
842 else
843 hdev->asic_funcs->asic_dma_free_coherent(hdev,
844 HL_QUEUE_SIZE_IN_BYTES,
845 q->kernel_address,
846 q->bus_address);
847 }
848
hl_hw_queues_create(struct hl_device * hdev)849 int hl_hw_queues_create(struct hl_device *hdev)
850 {
851 struct asic_fixed_properties *asic = &hdev->asic_prop;
852 struct hl_hw_queue *q;
853 int i, rc, q_ready_cnt;
854
855 hdev->kernel_queues = kcalloc(asic->max_queues,
856 sizeof(*hdev->kernel_queues), GFP_KERNEL);
857
858 if (!hdev->kernel_queues) {
859 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
860 return -ENOMEM;
861 }
862
863 /* Initialize the H/W queues */
864 for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
865 i < asic->max_queues ; i++, q_ready_cnt++, q++) {
866
867 q->queue_type = asic->hw_queues_props[i].type;
868 q->supports_sync_stream =
869 asic->hw_queues_props[i].supports_sync_stream;
870 rc = queue_init(hdev, q, i);
871 if (rc) {
872 dev_err(hdev->dev,
873 "failed to initialize queue %d\n", i);
874 goto release_queues;
875 }
876 }
877
878 return 0;
879
880 release_queues:
881 for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
882 queue_fini(hdev, q);
883
884 kfree(hdev->kernel_queues);
885
886 return rc;
887 }
888
hl_hw_queues_destroy(struct hl_device * hdev)889 void hl_hw_queues_destroy(struct hl_device *hdev)
890 {
891 struct hl_hw_queue *q;
892 u32 max_queues = hdev->asic_prop.max_queues;
893 int i;
894
895 for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
896 queue_fini(hdev, q);
897
898 kfree(hdev->kernel_queues);
899 }
900
hl_hw_queue_reset(struct hl_device * hdev,bool hard_reset)901 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
902 {
903 struct hl_hw_queue *q;
904 u32 max_queues = hdev->asic_prop.max_queues;
905 int i;
906
907 for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
908 if ((!q->valid) ||
909 ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
910 continue;
911 q->pi = 0;
912 atomic_set(&q->ci, 0);
913
914 if (q->supports_sync_stream)
915 sync_stream_queue_reset(hdev, q->hw_queue_id);
916 }
917 }
918