• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { {
139 		.cpu_base = &migration_cpu_base,
140 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 						     &migration_cpu_base.lock),
142 	}, },
143 };
144 
145 #define migration_base	migration_cpu_base.clock_base[0]
146 
is_migration_base(struct hrtimer_clock_base * base)147 static inline bool is_migration_base(struct hrtimer_clock_base *base)
148 {
149 	return base == &migration_base;
150 }
151 
152 /*
153  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154  * means that all timers which are tied to this base via timer->base are
155  * locked, and the base itself is locked too.
156  *
157  * So __run_timers/migrate_timers can safely modify all timers which could
158  * be found on the lists/queues.
159  *
160  * When the timer's base is locked, and the timer removed from list, it is
161  * possible to set timer->base = &migration_base and drop the lock: the timer
162  * remains locked.
163  */
164 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 					     unsigned long *flags)
167 {
168 	struct hrtimer_clock_base *base;
169 
170 	for (;;) {
171 		base = READ_ONCE(timer->base);
172 		if (likely(base != &migration_base)) {
173 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
174 			if (likely(base == timer->base))
175 				return base;
176 			/* The timer has migrated to another CPU: */
177 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
178 		}
179 		cpu_relax();
180 	}
181 }
182 
183 /*
184  * We do not migrate the timer when it is expiring before the next
185  * event on the target cpu. When high resolution is enabled, we cannot
186  * reprogram the target cpu hardware and we would cause it to fire
187  * late. To keep it simple, we handle the high resolution enabled and
188  * disabled case similar.
189  *
190  * Called with cpu_base->lock of target cpu held.
191  */
192 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
194 {
195 	ktime_t expires;
196 
197 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
198 	return expires < new_base->cpu_base->expires_next;
199 }
200 
201 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
203 					 int pinned)
204 {
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
208 #endif
209 	return base;
210 }
211 
212 /*
213  * We switch the timer base to a power-optimized selected CPU target,
214  * if:
215  *	- NO_HZ_COMMON is enabled
216  *	- timer migration is enabled
217  *	- the timer callback is not running
218  *	- the timer is not the first expiring timer on the new target
219  *
220  * If one of the above requirements is not fulfilled we move the timer
221  * to the current CPU or leave it on the previously assigned CPU if
222  * the timer callback is currently running.
223  */
224 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
226 		    int pinned)
227 {
228 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
229 	struct hrtimer_clock_base *new_base;
230 	int basenum = base->index;
231 
232 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 	new_cpu_base = get_target_base(this_cpu_base, pinned);
234 again:
235 	new_base = &new_cpu_base->clock_base[basenum];
236 
237 	if (base != new_base) {
238 		/*
239 		 * We are trying to move timer to new_base.
240 		 * However we can't change timer's base while it is running,
241 		 * so we keep it on the same CPU. No hassle vs. reprogramming
242 		 * the event source in the high resolution case. The softirq
243 		 * code will take care of this when the timer function has
244 		 * completed. There is no conflict as we hold the lock until
245 		 * the timer is enqueued.
246 		 */
247 		if (unlikely(hrtimer_callback_running(timer)))
248 			return base;
249 
250 		/* See the comment in lock_hrtimer_base() */
251 		WRITE_ONCE(timer->base, &migration_base);
252 		raw_spin_unlock(&base->cpu_base->lock);
253 		raw_spin_lock(&new_base->cpu_base->lock);
254 
255 		if (new_cpu_base != this_cpu_base &&
256 		    hrtimer_check_target(timer, new_base)) {
257 			raw_spin_unlock(&new_base->cpu_base->lock);
258 			raw_spin_lock(&base->cpu_base->lock);
259 			new_cpu_base = this_cpu_base;
260 			WRITE_ONCE(timer->base, base);
261 			goto again;
262 		}
263 		WRITE_ONCE(timer->base, new_base);
264 	} else {
265 		if (new_cpu_base != this_cpu_base &&
266 		    hrtimer_check_target(timer, new_base)) {
267 			new_cpu_base = this_cpu_base;
268 			goto again;
269 		}
270 	}
271 	return new_base;
272 }
273 
274 #else /* CONFIG_SMP */
275 
is_migration_base(struct hrtimer_clock_base * base)276 static inline bool is_migration_base(struct hrtimer_clock_base *base)
277 {
278 	return false;
279 }
280 
281 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
283 {
284 	struct hrtimer_clock_base *base = timer->base;
285 
286 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
287 
288 	return base;
289 }
290 
291 # define switch_hrtimer_base(t, b, p)	(b)
292 
293 #endif	/* !CONFIG_SMP */
294 
295 /*
296  * Functions for the union type storage format of ktime_t which are
297  * too large for inlining:
298  */
299 #if BITS_PER_LONG < 64
300 /*
301  * Divide a ktime value by a nanosecond value
302  */
__ktime_divns(const ktime_t kt,s64 div)303 s64 __ktime_divns(const ktime_t kt, s64 div)
304 {
305 	int sft = 0;
306 	s64 dclc;
307 	u64 tmp;
308 
309 	dclc = ktime_to_ns(kt);
310 	tmp = dclc < 0 ? -dclc : dclc;
311 
312 	/* Make sure the divisor is less than 2^32: */
313 	while (div >> 32) {
314 		sft++;
315 		div >>= 1;
316 	}
317 	tmp >>= sft;
318 	do_div(tmp, (u32) div);
319 	return dclc < 0 ? -tmp : tmp;
320 }
321 EXPORT_SYMBOL_GPL(__ktime_divns);
322 #endif /* BITS_PER_LONG >= 64 */
323 
324 /*
325  * Add two ktime values and do a safety check for overflow:
326  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
328 {
329 	ktime_t res = ktime_add_unsafe(lhs, rhs);
330 
331 	/*
332 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 	 * return to user space in a timespec:
334 	 */
335 	if (res < 0 || res < lhs || res < rhs)
336 		res = ktime_set(KTIME_SEC_MAX, 0);
337 
338 	return res;
339 }
340 
341 EXPORT_SYMBOL_GPL(ktime_add_safe);
342 
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344 
345 static const struct debug_obj_descr hrtimer_debug_descr;
346 
hrtimer_debug_hint(void * addr)347 static void *hrtimer_debug_hint(void *addr)
348 {
349 	return ((struct hrtimer *) addr)->function;
350 }
351 
352 /*
353  * fixup_init is called when:
354  * - an active object is initialized
355  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 	struct hrtimer *timer = addr;
359 
360 	switch (state) {
361 	case ODEBUG_STATE_ACTIVE:
362 		hrtimer_cancel(timer);
363 		debug_object_init(timer, &hrtimer_debug_descr);
364 		return true;
365 	default:
366 		return false;
367 	}
368 }
369 
370 /*
371  * fixup_activate is called when:
372  * - an active object is activated
373  * - an unknown non-static object is activated
374  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 	switch (state) {
378 	case ODEBUG_STATE_ACTIVE:
379 		WARN_ON(1);
380 		fallthrough;
381 	default:
382 		return false;
383 	}
384 }
385 
386 /*
387  * fixup_free is called when:
388  * - an active object is freed
389  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
391 {
392 	struct hrtimer *timer = addr;
393 
394 	switch (state) {
395 	case ODEBUG_STATE_ACTIVE:
396 		hrtimer_cancel(timer);
397 		debug_object_free(timer, &hrtimer_debug_descr);
398 		return true;
399 	default:
400 		return false;
401 	}
402 }
403 
404 static const struct debug_obj_descr hrtimer_debug_descr = {
405 	.name		= "hrtimer",
406 	.debug_hint	= hrtimer_debug_hint,
407 	.fixup_init	= hrtimer_fixup_init,
408 	.fixup_activate	= hrtimer_fixup_activate,
409 	.fixup_free	= hrtimer_fixup_free,
410 };
411 
debug_hrtimer_init(struct hrtimer * timer)412 static inline void debug_hrtimer_init(struct hrtimer *timer)
413 {
414 	debug_object_init(timer, &hrtimer_debug_descr);
415 }
416 
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)417 static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 					  enum hrtimer_mode mode)
419 {
420 	debug_object_activate(timer, &hrtimer_debug_descr);
421 }
422 
debug_hrtimer_deactivate(struct hrtimer * timer)423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
424 {
425 	debug_object_deactivate(timer, &hrtimer_debug_descr);
426 }
427 
428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
429 			   enum hrtimer_mode mode);
430 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
432 			   enum hrtimer_mode mode)
433 {
434 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
435 	__hrtimer_init(timer, clock_id, mode);
436 }
437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
438 
439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
440 				   clockid_t clock_id, enum hrtimer_mode mode);
441 
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
443 				   clockid_t clock_id, enum hrtimer_mode mode)
444 {
445 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
446 	__hrtimer_init_sleeper(sl, clock_id, mode);
447 }
448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
449 
destroy_hrtimer_on_stack(struct hrtimer * timer)450 void destroy_hrtimer_on_stack(struct hrtimer *timer)
451 {
452 	debug_object_free(timer, &hrtimer_debug_descr);
453 }
454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
455 
456 #else
457 
debug_hrtimer_init(struct hrtimer * timer)458 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)459 static inline void debug_hrtimer_activate(struct hrtimer *timer,
460 					  enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
462 #endif
463 
464 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)465 debug_init(struct hrtimer *timer, clockid_t clockid,
466 	   enum hrtimer_mode mode)
467 {
468 	debug_hrtimer_init(timer);
469 	trace_hrtimer_init(timer, clockid, mode);
470 }
471 
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)472 static inline void debug_activate(struct hrtimer *timer,
473 				  enum hrtimer_mode mode)
474 {
475 	debug_hrtimer_activate(timer, mode);
476 	trace_hrtimer_start(timer, mode);
477 }
478 
debug_deactivate(struct hrtimer * timer)479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481 	debug_hrtimer_deactivate(timer);
482 	trace_hrtimer_cancel(timer);
483 }
484 
485 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
487 {
488 	unsigned int idx;
489 
490 	if (!*active)
491 		return NULL;
492 
493 	idx = __ffs(*active);
494 	*active &= ~(1U << idx);
495 
496 	return &cpu_base->clock_base[idx];
497 }
498 
499 #define for_each_active_base(base, cpu_base, active)	\
500 	while ((base = __next_base((cpu_base), &(active))))
501 
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
503 					 const struct hrtimer *exclude,
504 					 unsigned int active,
505 					 ktime_t expires_next)
506 {
507 	struct hrtimer_clock_base *base;
508 	ktime_t expires;
509 
510 	for_each_active_base(base, cpu_base, active) {
511 		struct timerqueue_node *next;
512 		struct hrtimer *timer;
513 
514 		next = timerqueue_getnext(&base->active);
515 		timer = container_of(next, struct hrtimer, node);
516 		if (timer == exclude) {
517 			/* Get to the next timer in the queue. */
518 			next = timerqueue_iterate_next(next);
519 			if (!next)
520 				continue;
521 
522 			timer = container_of(next, struct hrtimer, node);
523 		}
524 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 		if (expires < expires_next) {
526 			expires_next = expires;
527 
528 			/* Skip cpu_base update if a timer is being excluded. */
529 			if (exclude)
530 				continue;
531 
532 			if (timer->is_soft)
533 				cpu_base->softirq_next_timer = timer;
534 			else
535 				cpu_base->next_timer = timer;
536 		}
537 	}
538 	/*
539 	 * clock_was_set() might have changed base->offset of any of
540 	 * the clock bases so the result might be negative. Fix it up
541 	 * to prevent a false positive in clockevents_program_event().
542 	 */
543 	if (expires_next < 0)
544 		expires_next = 0;
545 	return expires_next;
546 }
547 
548 /*
549  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
550  * but does not set cpu_base::*expires_next, that is done by
551  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
552  * cpu_base::*expires_next right away, reprogramming logic would no longer
553  * work.
554  *
555  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
556  * those timers will get run whenever the softirq gets handled, at the end of
557  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
558  *
559  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
560  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
561  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
562  *
563  * @active_mask must be one of:
564  *  - HRTIMER_ACTIVE_ALL,
565  *  - HRTIMER_ACTIVE_SOFT, or
566  *  - HRTIMER_ACTIVE_HARD.
567  */
568 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)569 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
570 {
571 	unsigned int active;
572 	struct hrtimer *next_timer = NULL;
573 	ktime_t expires_next = KTIME_MAX;
574 
575 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
576 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
577 		cpu_base->softirq_next_timer = NULL;
578 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
579 							 active, KTIME_MAX);
580 
581 		next_timer = cpu_base->softirq_next_timer;
582 	}
583 
584 	if (active_mask & HRTIMER_ACTIVE_HARD) {
585 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
586 		cpu_base->next_timer = next_timer;
587 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
588 							 expires_next);
589 	}
590 
591 	return expires_next;
592 }
593 
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)594 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
595 {
596 	ktime_t expires_next, soft = KTIME_MAX;
597 
598 	/*
599 	 * If the soft interrupt has already been activated, ignore the
600 	 * soft bases. They will be handled in the already raised soft
601 	 * interrupt.
602 	 */
603 	if (!cpu_base->softirq_activated) {
604 		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
605 		/*
606 		 * Update the soft expiry time. clock_settime() might have
607 		 * affected it.
608 		 */
609 		cpu_base->softirq_expires_next = soft;
610 	}
611 
612 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
613 	/*
614 	 * If a softirq timer is expiring first, update cpu_base->next_timer
615 	 * and program the hardware with the soft expiry time.
616 	 */
617 	if (expires_next > soft) {
618 		cpu_base->next_timer = cpu_base->softirq_next_timer;
619 		expires_next = soft;
620 	}
621 
622 	return expires_next;
623 }
624 
hrtimer_update_base(struct hrtimer_cpu_base * base)625 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
626 {
627 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
628 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
629 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
630 
631 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
632 					    offs_real, offs_boot, offs_tai);
633 
634 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
635 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
636 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
637 
638 	return now;
639 }
640 
641 /*
642  * Is the high resolution mode active ?
643  */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)644 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
645 {
646 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
647 		cpu_base->hres_active : 0;
648 }
649 
hrtimer_hres_active(void)650 static inline int hrtimer_hres_active(void)
651 {
652 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
653 }
654 
655 /*
656  * Reprogram the event source with checking both queues for the
657  * next event
658  * Called with interrupts disabled and base->lock held
659  */
660 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)661 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
662 {
663 	ktime_t expires_next;
664 
665 	expires_next = hrtimer_update_next_event(cpu_base);
666 
667 	if (skip_equal && expires_next == cpu_base->expires_next)
668 		return;
669 
670 	cpu_base->expires_next = expires_next;
671 
672 	/*
673 	 * If hres is not active, hardware does not have to be
674 	 * reprogrammed yet.
675 	 *
676 	 * If a hang was detected in the last timer interrupt then we
677 	 * leave the hang delay active in the hardware. We want the
678 	 * system to make progress. That also prevents the following
679 	 * scenario:
680 	 * T1 expires 50ms from now
681 	 * T2 expires 5s from now
682 	 *
683 	 * T1 is removed, so this code is called and would reprogram
684 	 * the hardware to 5s from now. Any hrtimer_start after that
685 	 * will not reprogram the hardware due to hang_detected being
686 	 * set. So we'd effectivly block all timers until the T2 event
687 	 * fires.
688 	 */
689 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
690 		return;
691 
692 	tick_program_event(cpu_base->expires_next, 1);
693 }
694 
695 /* High resolution timer related functions */
696 #ifdef CONFIG_HIGH_RES_TIMERS
697 
698 /*
699  * High resolution timer enabled ?
700  */
701 static bool hrtimer_hres_enabled __read_mostly  = true;
702 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
703 EXPORT_SYMBOL_GPL(hrtimer_resolution);
704 
705 /*
706  * Enable / Disable high resolution mode
707  */
setup_hrtimer_hres(char * str)708 static int __init setup_hrtimer_hres(char *str)
709 {
710 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
711 }
712 
713 __setup("highres=", setup_hrtimer_hres);
714 
715 /*
716  * hrtimer_high_res_enabled - query, if the highres mode is enabled
717  */
hrtimer_is_hres_enabled(void)718 static inline int hrtimer_is_hres_enabled(void)
719 {
720 	return hrtimer_hres_enabled;
721 }
722 
723 /*
724  * Retrigger next event is called after clock was set
725  *
726  * Called with interrupts disabled via on_each_cpu()
727  */
retrigger_next_event(void * arg)728 static void retrigger_next_event(void *arg)
729 {
730 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
731 
732 	if (!__hrtimer_hres_active(base))
733 		return;
734 
735 	raw_spin_lock(&base->lock);
736 	hrtimer_update_base(base);
737 	hrtimer_force_reprogram(base, 0);
738 	raw_spin_unlock(&base->lock);
739 }
740 
741 /*
742  * Switch to high resolution mode
743  */
hrtimer_switch_to_hres(void)744 static void hrtimer_switch_to_hres(void)
745 {
746 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
747 
748 	if (tick_init_highres()) {
749 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
750 			base->cpu);
751 		return;
752 	}
753 	base->hres_active = 1;
754 	hrtimer_resolution = HIGH_RES_NSEC;
755 
756 	tick_setup_sched_timer();
757 	/* "Retrigger" the interrupt to get things going */
758 	retrigger_next_event(NULL);
759 }
760 
761 #else
762 
hrtimer_is_hres_enabled(void)763 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)764 static inline void hrtimer_switch_to_hres(void) { }
retrigger_next_event(void * arg)765 static inline void retrigger_next_event(void *arg) { }
766 
767 #endif /* CONFIG_HIGH_RES_TIMERS */
768 
769 /*
770  * When a timer is enqueued and expires earlier than the already enqueued
771  * timers, we have to check, whether it expires earlier than the timer for
772  * which the clock event device was armed.
773  *
774  * Called with interrupts disabled and base->cpu_base.lock held
775  */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)776 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
777 {
778 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
779 	struct hrtimer_clock_base *base = timer->base;
780 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
781 
782 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
783 
784 	/*
785 	 * CLOCK_REALTIME timer might be requested with an absolute
786 	 * expiry time which is less than base->offset. Set it to 0.
787 	 */
788 	if (expires < 0)
789 		expires = 0;
790 
791 	if (timer->is_soft) {
792 		/*
793 		 * soft hrtimer could be started on a remote CPU. In this
794 		 * case softirq_expires_next needs to be updated on the
795 		 * remote CPU. The soft hrtimer will not expire before the
796 		 * first hard hrtimer on the remote CPU -
797 		 * hrtimer_check_target() prevents this case.
798 		 */
799 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
800 
801 		if (timer_cpu_base->softirq_activated)
802 			return;
803 
804 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
805 			return;
806 
807 		timer_cpu_base->softirq_next_timer = timer;
808 		timer_cpu_base->softirq_expires_next = expires;
809 
810 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
811 		    !reprogram)
812 			return;
813 	}
814 
815 	/*
816 	 * If the timer is not on the current cpu, we cannot reprogram
817 	 * the other cpus clock event device.
818 	 */
819 	if (base->cpu_base != cpu_base)
820 		return;
821 
822 	/*
823 	 * If the hrtimer interrupt is running, then it will
824 	 * reevaluate the clock bases and reprogram the clock event
825 	 * device. The callbacks are always executed in hard interrupt
826 	 * context so we don't need an extra check for a running
827 	 * callback.
828 	 */
829 	if (cpu_base->in_hrtirq)
830 		return;
831 
832 	if (expires >= cpu_base->expires_next)
833 		return;
834 
835 	/* Update the pointer to the next expiring timer */
836 	cpu_base->next_timer = timer;
837 	cpu_base->expires_next = expires;
838 
839 	/*
840 	 * If hres is not active, hardware does not have to be
841 	 * programmed yet.
842 	 *
843 	 * If a hang was detected in the last timer interrupt then we
844 	 * do not schedule a timer which is earlier than the expiry
845 	 * which we enforced in the hang detection. We want the system
846 	 * to make progress.
847 	 */
848 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
849 		return;
850 
851 	/*
852 	 * Program the timer hardware. We enforce the expiry for
853 	 * events which are already in the past.
854 	 */
855 	tick_program_event(expires, 1);
856 }
857 
858 /*
859  * Clock realtime was set
860  *
861  * Change the offset of the realtime clock vs. the monotonic
862  * clock.
863  *
864  * We might have to reprogram the high resolution timer interrupt. On
865  * SMP we call the architecture specific code to retrigger _all_ high
866  * resolution timer interrupts. On UP we just disable interrupts and
867  * call the high resolution interrupt code.
868  */
clock_was_set(void)869 void clock_was_set(void)
870 {
871 #ifdef CONFIG_HIGH_RES_TIMERS
872 	/* Retrigger the CPU local events everywhere */
873 	on_each_cpu(retrigger_next_event, NULL, 1);
874 #endif
875 	timerfd_clock_was_set();
876 }
877 
clock_was_set_work(struct work_struct * work)878 static void clock_was_set_work(struct work_struct *work)
879 {
880 	clock_was_set();
881 }
882 
883 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
884 
885 /*
886  * Called from timekeeping and resume code to reprogram the hrtimer
887  * interrupt device on all cpus and to notify timerfd.
888  */
clock_was_set_delayed(void)889 void clock_was_set_delayed(void)
890 {
891 	schedule_work(&hrtimer_work);
892 }
893 
894 /*
895  * During resume we might have to reprogram the high resolution timer
896  * interrupt on all online CPUs.  However, all other CPUs will be
897  * stopped with IRQs interrupts disabled so the clock_was_set() call
898  * must be deferred.
899  */
hrtimers_resume(void)900 void hrtimers_resume(void)
901 {
902 	lockdep_assert_irqs_disabled();
903 	/* Retrigger on the local CPU */
904 	retrigger_next_event(NULL);
905 	/* And schedule a retrigger for all others */
906 	clock_was_set_delayed();
907 }
908 
909 /*
910  * Counterpart to lock_hrtimer_base above:
911  */
912 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)913 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
914 {
915 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
916 }
917 
918 /**
919  * hrtimer_forward - forward the timer expiry
920  * @timer:	hrtimer to forward
921  * @now:	forward past this time
922  * @interval:	the interval to forward
923  *
924  * Forward the timer expiry so it will expire in the future.
925  * Returns the number of overruns.
926  *
927  * Can be safely called from the callback function of @timer. If
928  * called from other contexts @timer must neither be enqueued nor
929  * running the callback and the caller needs to take care of
930  * serialization.
931  *
932  * Note: This only updates the timer expiry value and does not requeue
933  * the timer.
934  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)935 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
936 {
937 	u64 orun = 1;
938 	ktime_t delta;
939 
940 	delta = ktime_sub(now, hrtimer_get_expires(timer));
941 
942 	if (delta < 0)
943 		return 0;
944 
945 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
946 		return 0;
947 
948 	if (interval < hrtimer_resolution)
949 		interval = hrtimer_resolution;
950 
951 	if (unlikely(delta >= interval)) {
952 		s64 incr = ktime_to_ns(interval);
953 
954 		orun = ktime_divns(delta, incr);
955 		hrtimer_add_expires_ns(timer, incr * orun);
956 		if (hrtimer_get_expires_tv64(timer) > now)
957 			return orun;
958 		/*
959 		 * This (and the ktime_add() below) is the
960 		 * correction for exact:
961 		 */
962 		orun++;
963 	}
964 	hrtimer_add_expires(timer, interval);
965 
966 	return orun;
967 }
968 EXPORT_SYMBOL_GPL(hrtimer_forward);
969 
970 /*
971  * enqueue_hrtimer - internal function to (re)start a timer
972  *
973  * The timer is inserted in expiry order. Insertion into the
974  * red black tree is O(log(n)). Must hold the base lock.
975  *
976  * Returns 1 when the new timer is the leftmost timer in the tree.
977  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)978 static int enqueue_hrtimer(struct hrtimer *timer,
979 			   struct hrtimer_clock_base *base,
980 			   enum hrtimer_mode mode)
981 {
982 	debug_activate(timer, mode);
983 
984 	base->cpu_base->active_bases |= 1 << base->index;
985 
986 	/* Pairs with the lockless read in hrtimer_is_queued() */
987 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
988 
989 	return timerqueue_add(&base->active, &timer->node);
990 }
991 
992 /*
993  * __remove_hrtimer - internal function to remove a timer
994  *
995  * Caller must hold the base lock.
996  *
997  * High resolution timer mode reprograms the clock event device when the
998  * timer is the one which expires next. The caller can disable this by setting
999  * reprogram to zero. This is useful, when the context does a reprogramming
1000  * anyway (e.g. timer interrupt)
1001  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1002 static void __remove_hrtimer(struct hrtimer *timer,
1003 			     struct hrtimer_clock_base *base,
1004 			     u8 newstate, int reprogram)
1005 {
1006 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1007 	u8 state = timer->state;
1008 
1009 	/* Pairs with the lockless read in hrtimer_is_queued() */
1010 	WRITE_ONCE(timer->state, newstate);
1011 	if (!(state & HRTIMER_STATE_ENQUEUED))
1012 		return;
1013 
1014 	if (!timerqueue_del(&base->active, &timer->node))
1015 		cpu_base->active_bases &= ~(1 << base->index);
1016 
1017 	/*
1018 	 * Note: If reprogram is false we do not update
1019 	 * cpu_base->next_timer. This happens when we remove the first
1020 	 * timer on a remote cpu. No harm as we never dereference
1021 	 * cpu_base->next_timer. So the worst thing what can happen is
1022 	 * an superflous call to hrtimer_force_reprogram() on the
1023 	 * remote cpu later on if the same timer gets enqueued again.
1024 	 */
1025 	if (reprogram && timer == cpu_base->next_timer)
1026 		hrtimer_force_reprogram(cpu_base, 1);
1027 }
1028 
1029 /*
1030  * remove hrtimer, called with base lock held
1031  */
1032 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1033 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1034 	       bool restart, bool keep_local)
1035 {
1036 	u8 state = timer->state;
1037 
1038 	if (state & HRTIMER_STATE_ENQUEUED) {
1039 		bool reprogram;
1040 
1041 		/*
1042 		 * Remove the timer and force reprogramming when high
1043 		 * resolution mode is active and the timer is on the current
1044 		 * CPU. If we remove a timer on another CPU, reprogramming is
1045 		 * skipped. The interrupt event on this CPU is fired and
1046 		 * reprogramming happens in the interrupt handler. This is a
1047 		 * rare case and less expensive than a smp call.
1048 		 */
1049 		debug_deactivate(timer);
1050 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1051 
1052 		/*
1053 		 * If the timer is not restarted then reprogramming is
1054 		 * required if the timer is local. If it is local and about
1055 		 * to be restarted, avoid programming it twice (on removal
1056 		 * and a moment later when it's requeued).
1057 		 */
1058 		if (!restart)
1059 			state = HRTIMER_STATE_INACTIVE;
1060 		else
1061 			reprogram &= !keep_local;
1062 
1063 		__remove_hrtimer(timer, base, state, reprogram);
1064 		return 1;
1065 	}
1066 	return 0;
1067 }
1068 
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1069 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1070 					    const enum hrtimer_mode mode)
1071 {
1072 #ifdef CONFIG_TIME_LOW_RES
1073 	/*
1074 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1075 	 * granular time values. For relative timers we add hrtimer_resolution
1076 	 * (i.e. one jiffie) to prevent short timeouts.
1077 	 */
1078 	timer->is_rel = mode & HRTIMER_MODE_REL;
1079 	if (timer->is_rel)
1080 		tim = ktime_add_safe(tim, hrtimer_resolution);
1081 #endif
1082 	return tim;
1083 }
1084 
1085 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1086 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1087 {
1088 	ktime_t expires;
1089 
1090 	/*
1091 	 * Find the next SOFT expiration.
1092 	 */
1093 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1094 
1095 	/*
1096 	 * reprogramming needs to be triggered, even if the next soft
1097 	 * hrtimer expires at the same time than the next hard
1098 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1099 	 */
1100 	if (expires == KTIME_MAX)
1101 		return;
1102 
1103 	/*
1104 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1105 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1106 	 */
1107 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1108 }
1109 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1110 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1111 				    u64 delta_ns, const enum hrtimer_mode mode,
1112 				    struct hrtimer_clock_base *base)
1113 {
1114 	struct hrtimer_clock_base *new_base;
1115 	bool force_local, first;
1116 
1117 	/*
1118 	 * If the timer is on the local cpu base and is the first expiring
1119 	 * timer then this might end up reprogramming the hardware twice
1120 	 * (on removal and on enqueue). To avoid that by prevent the
1121 	 * reprogram on removal, keep the timer local to the current CPU
1122 	 * and enforce reprogramming after it is queued no matter whether
1123 	 * it is the new first expiring timer again or not.
1124 	 */
1125 	force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1126 	force_local &= base->cpu_base->next_timer == timer;
1127 
1128 	/*
1129 	 * Remove an active timer from the queue. In case it is not queued
1130 	 * on the current CPU, make sure that remove_hrtimer() updates the
1131 	 * remote data correctly.
1132 	 *
1133 	 * If it's on the current CPU and the first expiring timer, then
1134 	 * skip reprogramming, keep the timer local and enforce
1135 	 * reprogramming later if it was the first expiring timer.  This
1136 	 * avoids programming the underlying clock event twice (once at
1137 	 * removal and once after enqueue).
1138 	 */
1139 	remove_hrtimer(timer, base, true, force_local);
1140 
1141 	if (mode & HRTIMER_MODE_REL)
1142 		tim = ktime_add_safe(tim, base->get_time());
1143 
1144 	tim = hrtimer_update_lowres(timer, tim, mode);
1145 
1146 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1147 
1148 	/* Switch the timer base, if necessary: */
1149 	if (!force_local) {
1150 		new_base = switch_hrtimer_base(timer, base,
1151 					       mode & HRTIMER_MODE_PINNED);
1152 	} else {
1153 		new_base = base;
1154 	}
1155 
1156 	first = enqueue_hrtimer(timer, new_base, mode);
1157 	if (!force_local)
1158 		return first;
1159 
1160 	/*
1161 	 * Timer was forced to stay on the current CPU to avoid
1162 	 * reprogramming on removal and enqueue. Force reprogram the
1163 	 * hardware by evaluating the new first expiring timer.
1164 	 */
1165 	hrtimer_force_reprogram(new_base->cpu_base, 1);
1166 	return 0;
1167 }
1168 
1169 /**
1170  * hrtimer_start_range_ns - (re)start an hrtimer
1171  * @timer:	the timer to be added
1172  * @tim:	expiry time
1173  * @delta_ns:	"slack" range for the timer
1174  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1175  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1176  *		softirq based mode is considered for debug purpose only!
1177  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1178 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1179 			    u64 delta_ns, const enum hrtimer_mode mode)
1180 {
1181 	struct hrtimer_clock_base *base;
1182 	unsigned long flags;
1183 
1184 	/*
1185 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1186 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1187 	 * expiry mode because unmarked timers are moved to softirq expiry.
1188 	 */
1189 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1190 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1191 	else
1192 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1193 
1194 	base = lock_hrtimer_base(timer, &flags);
1195 
1196 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1197 		hrtimer_reprogram(timer, true);
1198 
1199 	unlock_hrtimer_base(timer, &flags);
1200 }
1201 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1202 
1203 /**
1204  * hrtimer_try_to_cancel - try to deactivate a timer
1205  * @timer:	hrtimer to stop
1206  *
1207  * Returns:
1208  *
1209  *  *  0 when the timer was not active
1210  *  *  1 when the timer was active
1211  *  * -1 when the timer is currently executing the callback function and
1212  *    cannot be stopped
1213  */
hrtimer_try_to_cancel(struct hrtimer * timer)1214 int hrtimer_try_to_cancel(struct hrtimer *timer)
1215 {
1216 	struct hrtimer_clock_base *base;
1217 	unsigned long flags;
1218 	int ret = -1;
1219 
1220 	/*
1221 	 * Check lockless first. If the timer is not active (neither
1222 	 * enqueued nor running the callback, nothing to do here.  The
1223 	 * base lock does not serialize against a concurrent enqueue,
1224 	 * so we can avoid taking it.
1225 	 */
1226 	if (!hrtimer_active(timer))
1227 		return 0;
1228 
1229 	base = lock_hrtimer_base(timer, &flags);
1230 
1231 	if (!hrtimer_callback_running(timer))
1232 		ret = remove_hrtimer(timer, base, false, false);
1233 
1234 	unlock_hrtimer_base(timer, &flags);
1235 
1236 	return ret;
1237 
1238 }
1239 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1240 
1241 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1242 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1243 {
1244 	spin_lock_init(&base->softirq_expiry_lock);
1245 }
1246 
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1247 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1248 {
1249 	spin_lock(&base->softirq_expiry_lock);
1250 }
1251 
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1252 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1253 {
1254 	spin_unlock(&base->softirq_expiry_lock);
1255 }
1256 
1257 /*
1258  * The counterpart to hrtimer_cancel_wait_running().
1259  *
1260  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1261  * the timer callback to finish. Drop expiry_lock and reaquire it. That
1262  * allows the waiter to acquire the lock and make progress.
1263  */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1264 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1265 				      unsigned long flags)
1266 {
1267 	if (atomic_read(&cpu_base->timer_waiters)) {
1268 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1269 		spin_unlock(&cpu_base->softirq_expiry_lock);
1270 		spin_lock(&cpu_base->softirq_expiry_lock);
1271 		raw_spin_lock_irq(&cpu_base->lock);
1272 	}
1273 }
1274 
1275 /*
1276  * This function is called on PREEMPT_RT kernels when the fast path
1277  * deletion of a timer failed because the timer callback function was
1278  * running.
1279  *
1280  * This prevents priority inversion: if the soft irq thread is preempted
1281  * in the middle of a timer callback, then calling del_timer_sync() can
1282  * lead to two issues:
1283  *
1284  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1285  *    handler to complete. This can result in unbound priority inversion.
1286  *
1287  *  - If the caller originates from the task which preempted the timer
1288  *    handler on the same CPU, then spin waiting for the timer handler to
1289  *    complete is never going to end.
1290  */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1291 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1292 {
1293 	/* Lockless read. Prevent the compiler from reloading it below */
1294 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1295 
1296 	/*
1297 	 * Just relax if the timer expires in hard interrupt context or if
1298 	 * it is currently on the migration base.
1299 	 */
1300 	if (!timer->is_soft || is_migration_base(base)) {
1301 		cpu_relax();
1302 		return;
1303 	}
1304 
1305 	/*
1306 	 * Mark the base as contended and grab the expiry lock, which is
1307 	 * held by the softirq across the timer callback. Drop the lock
1308 	 * immediately so the softirq can expire the next timer. In theory
1309 	 * the timer could already be running again, but that's more than
1310 	 * unlikely and just causes another wait loop.
1311 	 */
1312 	atomic_inc(&base->cpu_base->timer_waiters);
1313 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1314 	atomic_dec(&base->cpu_base->timer_waiters);
1315 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1316 }
1317 #else
1318 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1319 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1320 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1321 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1322 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1323 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1324 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1325 					     unsigned long flags) { }
1326 #endif
1327 
1328 /**
1329  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1330  * @timer:	the timer to be cancelled
1331  *
1332  * Returns:
1333  *  0 when the timer was not active
1334  *  1 when the timer was active
1335  */
hrtimer_cancel(struct hrtimer * timer)1336 int hrtimer_cancel(struct hrtimer *timer)
1337 {
1338 	int ret;
1339 
1340 	do {
1341 		ret = hrtimer_try_to_cancel(timer);
1342 
1343 		if (ret < 0)
1344 			hrtimer_cancel_wait_running(timer);
1345 	} while (ret < 0);
1346 	return ret;
1347 }
1348 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1349 
1350 /**
1351  * hrtimer_get_remaining - get remaining time for the timer
1352  * @timer:	the timer to read
1353  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1354  */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1355 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1356 {
1357 	unsigned long flags;
1358 	ktime_t rem;
1359 
1360 	lock_hrtimer_base(timer, &flags);
1361 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1362 		rem = hrtimer_expires_remaining_adjusted(timer);
1363 	else
1364 		rem = hrtimer_expires_remaining(timer);
1365 	unlock_hrtimer_base(timer, &flags);
1366 
1367 	return rem;
1368 }
1369 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1370 
1371 #ifdef CONFIG_NO_HZ_COMMON
1372 /**
1373  * hrtimer_get_next_event - get the time until next expiry event
1374  *
1375  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1376  */
hrtimer_get_next_event(void)1377 u64 hrtimer_get_next_event(void)
1378 {
1379 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1380 	u64 expires = KTIME_MAX;
1381 	unsigned long flags;
1382 
1383 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1384 
1385 	if (!__hrtimer_hres_active(cpu_base))
1386 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1387 
1388 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1389 
1390 	return expires;
1391 }
1392 
1393 /**
1394  * hrtimer_next_event_without - time until next expiry event w/o one timer
1395  * @exclude:	timer to exclude
1396  *
1397  * Returns the next expiry time over all timers except for the @exclude one or
1398  * KTIME_MAX if none of them is pending.
1399  */
hrtimer_next_event_without(const struct hrtimer * exclude)1400 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1401 {
1402 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1403 	u64 expires = KTIME_MAX;
1404 	unsigned long flags;
1405 
1406 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1407 
1408 	if (__hrtimer_hres_active(cpu_base)) {
1409 		unsigned int active;
1410 
1411 		if (!cpu_base->softirq_activated) {
1412 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1413 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1414 							    active, KTIME_MAX);
1415 		}
1416 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1417 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1418 						    expires);
1419 	}
1420 
1421 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1422 
1423 	return expires;
1424 }
1425 #endif
1426 
hrtimer_clockid_to_base(clockid_t clock_id)1427 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1428 {
1429 	if (likely(clock_id < MAX_CLOCKS)) {
1430 		int base = hrtimer_clock_to_base_table[clock_id];
1431 
1432 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1433 			return base;
1434 	}
1435 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1436 	return HRTIMER_BASE_MONOTONIC;
1437 }
1438 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1439 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1440 			   enum hrtimer_mode mode)
1441 {
1442 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1443 	struct hrtimer_cpu_base *cpu_base;
1444 	int base;
1445 
1446 	/*
1447 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1448 	 * marked for hard interrupt expiry mode are moved into soft
1449 	 * interrupt context for latency reasons and because the callbacks
1450 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1451 	 */
1452 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1453 		softtimer = true;
1454 
1455 	memset(timer, 0, sizeof(struct hrtimer));
1456 
1457 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1458 
1459 	/*
1460 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1461 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1462 	 * ensure POSIX compliance.
1463 	 */
1464 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1465 		clock_id = CLOCK_MONOTONIC;
1466 
1467 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1468 	base += hrtimer_clockid_to_base(clock_id);
1469 	timer->is_soft = softtimer;
1470 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1471 	timer->base = &cpu_base->clock_base[base];
1472 	timerqueue_init(&timer->node);
1473 }
1474 
1475 /**
1476  * hrtimer_init - initialize a timer to the given clock
1477  * @timer:	the timer to be initialized
1478  * @clock_id:	the clock to be used
1479  * @mode:       The modes which are relevant for intitialization:
1480  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1481  *              HRTIMER_MODE_REL_SOFT
1482  *
1483  *              The PINNED variants of the above can be handed in,
1484  *              but the PINNED bit is ignored as pinning happens
1485  *              when the hrtimer is started
1486  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1487 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1488 		  enum hrtimer_mode mode)
1489 {
1490 	debug_init(timer, clock_id, mode);
1491 	__hrtimer_init(timer, clock_id, mode);
1492 }
1493 EXPORT_SYMBOL_GPL(hrtimer_init);
1494 
1495 /*
1496  * A timer is active, when it is enqueued into the rbtree or the
1497  * callback function is running or it's in the state of being migrated
1498  * to another cpu.
1499  *
1500  * It is important for this function to not return a false negative.
1501  */
hrtimer_active(const struct hrtimer * timer)1502 bool hrtimer_active(const struct hrtimer *timer)
1503 {
1504 	struct hrtimer_clock_base *base;
1505 	unsigned int seq;
1506 
1507 	do {
1508 		base = READ_ONCE(timer->base);
1509 		seq = raw_read_seqcount_begin(&base->seq);
1510 
1511 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1512 		    base->running == timer)
1513 			return true;
1514 
1515 	} while (read_seqcount_retry(&base->seq, seq) ||
1516 		 base != READ_ONCE(timer->base));
1517 
1518 	return false;
1519 }
1520 EXPORT_SYMBOL_GPL(hrtimer_active);
1521 
1522 /*
1523  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1524  * distinct sections:
1525  *
1526  *  - queued:	the timer is queued
1527  *  - callback:	the timer is being ran
1528  *  - post:	the timer is inactive or (re)queued
1529  *
1530  * On the read side we ensure we observe timer->state and cpu_base->running
1531  * from the same section, if anything changed while we looked at it, we retry.
1532  * This includes timer->base changing because sequence numbers alone are
1533  * insufficient for that.
1534  *
1535  * The sequence numbers are required because otherwise we could still observe
1536  * a false negative if the read side got smeared over multiple consequtive
1537  * __run_hrtimer() invocations.
1538  */
1539 
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1540 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1541 			  struct hrtimer_clock_base *base,
1542 			  struct hrtimer *timer, ktime_t *now,
1543 			  unsigned long flags) __must_hold(&cpu_base->lock)
1544 {
1545 	enum hrtimer_restart (*fn)(struct hrtimer *);
1546 	bool expires_in_hardirq;
1547 	int restart;
1548 
1549 	lockdep_assert_held(&cpu_base->lock);
1550 
1551 	debug_deactivate(timer);
1552 	base->running = timer;
1553 
1554 	/*
1555 	 * Separate the ->running assignment from the ->state assignment.
1556 	 *
1557 	 * As with a regular write barrier, this ensures the read side in
1558 	 * hrtimer_active() cannot observe base->running == NULL &&
1559 	 * timer->state == INACTIVE.
1560 	 */
1561 	raw_write_seqcount_barrier(&base->seq);
1562 
1563 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1564 	fn = timer->function;
1565 
1566 	/*
1567 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1568 	 * timer is restarted with a period then it becomes an absolute
1569 	 * timer. If its not restarted it does not matter.
1570 	 */
1571 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1572 		timer->is_rel = false;
1573 
1574 	/*
1575 	 * The timer is marked as running in the CPU base, so it is
1576 	 * protected against migration to a different CPU even if the lock
1577 	 * is dropped.
1578 	 */
1579 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1580 	trace_hrtimer_expire_entry(timer, now);
1581 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1582 
1583 	restart = fn(timer);
1584 
1585 	lockdep_hrtimer_exit(expires_in_hardirq);
1586 	trace_hrtimer_expire_exit(timer);
1587 	raw_spin_lock_irq(&cpu_base->lock);
1588 
1589 	/*
1590 	 * Note: We clear the running state after enqueue_hrtimer and
1591 	 * we do not reprogram the event hardware. Happens either in
1592 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1593 	 *
1594 	 * Note: Because we dropped the cpu_base->lock above,
1595 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1596 	 * for us already.
1597 	 */
1598 	if (restart != HRTIMER_NORESTART &&
1599 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1600 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1601 
1602 	/*
1603 	 * Separate the ->running assignment from the ->state assignment.
1604 	 *
1605 	 * As with a regular write barrier, this ensures the read side in
1606 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1607 	 * timer->state == INACTIVE.
1608 	 */
1609 	raw_write_seqcount_barrier(&base->seq);
1610 
1611 	WARN_ON_ONCE(base->running != timer);
1612 	base->running = NULL;
1613 }
1614 
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1615 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1616 				 unsigned long flags, unsigned int active_mask)
1617 {
1618 	struct hrtimer_clock_base *base;
1619 	unsigned int active = cpu_base->active_bases & active_mask;
1620 
1621 	for_each_active_base(base, cpu_base, active) {
1622 		struct timerqueue_node *node;
1623 		ktime_t basenow;
1624 
1625 		basenow = ktime_add(now, base->offset);
1626 
1627 		while ((node = timerqueue_getnext(&base->active))) {
1628 			struct hrtimer *timer;
1629 
1630 			timer = container_of(node, struct hrtimer, node);
1631 
1632 			/*
1633 			 * The immediate goal for using the softexpires is
1634 			 * minimizing wakeups, not running timers at the
1635 			 * earliest interrupt after their soft expiration.
1636 			 * This allows us to avoid using a Priority Search
1637 			 * Tree, which can answer a stabbing querry for
1638 			 * overlapping intervals and instead use the simple
1639 			 * BST we already have.
1640 			 * We don't add extra wakeups by delaying timers that
1641 			 * are right-of a not yet expired timer, because that
1642 			 * timer will have to trigger a wakeup anyway.
1643 			 */
1644 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1645 				break;
1646 
1647 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1648 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1649 				hrtimer_sync_wait_running(cpu_base, flags);
1650 		}
1651 	}
1652 }
1653 
hrtimer_run_softirq(struct softirq_action * h)1654 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1655 {
1656 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1657 	unsigned long flags;
1658 	ktime_t now;
1659 
1660 	hrtimer_cpu_base_lock_expiry(cpu_base);
1661 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1662 
1663 	now = hrtimer_update_base(cpu_base);
1664 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1665 
1666 	cpu_base->softirq_activated = 0;
1667 	hrtimer_update_softirq_timer(cpu_base, true);
1668 
1669 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1670 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1671 }
1672 
1673 #ifdef CONFIG_HIGH_RES_TIMERS
1674 
1675 /*
1676  * High resolution timer interrupt
1677  * Called with interrupts disabled
1678  */
hrtimer_interrupt(struct clock_event_device * dev)1679 void hrtimer_interrupt(struct clock_event_device *dev)
1680 {
1681 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1682 	ktime_t expires_next, now, entry_time, delta;
1683 	unsigned long flags;
1684 	int retries = 0;
1685 
1686 	BUG_ON(!cpu_base->hres_active);
1687 	cpu_base->nr_events++;
1688 	dev->next_event = KTIME_MAX;
1689 
1690 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1691 	entry_time = now = hrtimer_update_base(cpu_base);
1692 retry:
1693 	cpu_base->in_hrtirq = 1;
1694 	/*
1695 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1696 	 * held to prevent that a timer is enqueued in our queue via
1697 	 * the migration code. This does not affect enqueueing of
1698 	 * timers which run their callback and need to be requeued on
1699 	 * this CPU.
1700 	 */
1701 	cpu_base->expires_next = KTIME_MAX;
1702 
1703 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1704 		cpu_base->softirq_expires_next = KTIME_MAX;
1705 		cpu_base->softirq_activated = 1;
1706 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1707 	}
1708 
1709 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1710 
1711 	/* Reevaluate the clock bases for the [soft] next expiry */
1712 	expires_next = hrtimer_update_next_event(cpu_base);
1713 	/*
1714 	 * Store the new expiry value so the migration code can verify
1715 	 * against it.
1716 	 */
1717 	cpu_base->expires_next = expires_next;
1718 	cpu_base->in_hrtirq = 0;
1719 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1720 
1721 	/* Reprogramming necessary ? */
1722 	if (!tick_program_event(expires_next, 0)) {
1723 		cpu_base->hang_detected = 0;
1724 		return;
1725 	}
1726 
1727 	/*
1728 	 * The next timer was already expired due to:
1729 	 * - tracing
1730 	 * - long lasting callbacks
1731 	 * - being scheduled away when running in a VM
1732 	 *
1733 	 * We need to prevent that we loop forever in the hrtimer
1734 	 * interrupt routine. We give it 3 attempts to avoid
1735 	 * overreacting on some spurious event.
1736 	 *
1737 	 * Acquire base lock for updating the offsets and retrieving
1738 	 * the current time.
1739 	 */
1740 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1741 	now = hrtimer_update_base(cpu_base);
1742 	cpu_base->nr_retries++;
1743 	if (++retries < 3)
1744 		goto retry;
1745 	/*
1746 	 * Give the system a chance to do something else than looping
1747 	 * here. We stored the entry time, so we know exactly how long
1748 	 * we spent here. We schedule the next event this amount of
1749 	 * time away.
1750 	 */
1751 	cpu_base->nr_hangs++;
1752 	cpu_base->hang_detected = 1;
1753 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1754 
1755 	delta = ktime_sub(now, entry_time);
1756 	if ((unsigned int)delta > cpu_base->max_hang_time)
1757 		cpu_base->max_hang_time = (unsigned int) delta;
1758 	/*
1759 	 * Limit it to a sensible value as we enforce a longer
1760 	 * delay. Give the CPU at least 100ms to catch up.
1761 	 */
1762 	if (delta > 100 * NSEC_PER_MSEC)
1763 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1764 	else
1765 		expires_next = ktime_add(now, delta);
1766 	tick_program_event(expires_next, 1);
1767 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1768 }
1769 
1770 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1771 static inline void __hrtimer_peek_ahead_timers(void)
1772 {
1773 	struct tick_device *td;
1774 
1775 	if (!hrtimer_hres_active())
1776 		return;
1777 
1778 	td = this_cpu_ptr(&tick_cpu_device);
1779 	if (td && td->evtdev)
1780 		hrtimer_interrupt(td->evtdev);
1781 }
1782 
1783 #else /* CONFIG_HIGH_RES_TIMERS */
1784 
__hrtimer_peek_ahead_timers(void)1785 static inline void __hrtimer_peek_ahead_timers(void) { }
1786 
1787 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1788 
1789 /*
1790  * Called from run_local_timers in hardirq context every jiffy
1791  */
hrtimer_run_queues(void)1792 void hrtimer_run_queues(void)
1793 {
1794 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1795 	unsigned long flags;
1796 	ktime_t now;
1797 
1798 	if (__hrtimer_hres_active(cpu_base))
1799 		return;
1800 
1801 	/*
1802 	 * This _is_ ugly: We have to check periodically, whether we
1803 	 * can switch to highres and / or nohz mode. The clocksource
1804 	 * switch happens with xtime_lock held. Notification from
1805 	 * there only sets the check bit in the tick_oneshot code,
1806 	 * otherwise we might deadlock vs. xtime_lock.
1807 	 */
1808 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1809 		hrtimer_switch_to_hres();
1810 		return;
1811 	}
1812 
1813 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1814 	now = hrtimer_update_base(cpu_base);
1815 
1816 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1817 		cpu_base->softirq_expires_next = KTIME_MAX;
1818 		cpu_base->softirq_activated = 1;
1819 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1820 	}
1821 
1822 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1823 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1824 }
1825 
1826 /*
1827  * Sleep related functions:
1828  */
hrtimer_wakeup(struct hrtimer * timer)1829 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1830 {
1831 	struct hrtimer_sleeper *t =
1832 		container_of(timer, struct hrtimer_sleeper, timer);
1833 	struct task_struct *task = t->task;
1834 
1835 	t->task = NULL;
1836 	if (task)
1837 		wake_up_process(task);
1838 
1839 	return HRTIMER_NORESTART;
1840 }
1841 
1842 /**
1843  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1844  * @sl:		sleeper to be started
1845  * @mode:	timer mode abs/rel
1846  *
1847  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1848  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1849  */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1850 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1851 				   enum hrtimer_mode mode)
1852 {
1853 	/*
1854 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1855 	 * was initialized for hard interrupt delivery, force the mode bit.
1856 	 * This is a special case for hrtimer_sleepers because
1857 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1858 	 * fiddling with this decision is avoided at the call sites.
1859 	 */
1860 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1861 		mode |= HRTIMER_MODE_HARD;
1862 
1863 	hrtimer_start_expires(&sl->timer, mode);
1864 }
1865 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1866 
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1867 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1868 				   clockid_t clock_id, enum hrtimer_mode mode)
1869 {
1870 	/*
1871 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1872 	 * marked for hard interrupt expiry mode are moved into soft
1873 	 * interrupt context either for latency reasons or because the
1874 	 * hrtimer callback takes regular spinlocks or invokes other
1875 	 * functions which are not suitable for hard interrupt context on
1876 	 * PREEMPT_RT.
1877 	 *
1878 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1879 	 * context, but there is a latency concern: Untrusted userspace can
1880 	 * spawn many threads which arm timers for the same expiry time on
1881 	 * the same CPU. That causes a latency spike due to the wakeup of
1882 	 * a gazillion threads.
1883 	 *
1884 	 * OTOH, priviledged real-time user space applications rely on the
1885 	 * low latency of hard interrupt wakeups. If the current task is in
1886 	 * a real-time scheduling class, mark the mode for hard interrupt
1887 	 * expiry.
1888 	 */
1889 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1890 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1891 			mode |= HRTIMER_MODE_HARD;
1892 	}
1893 
1894 	__hrtimer_init(&sl->timer, clock_id, mode);
1895 	sl->timer.function = hrtimer_wakeup;
1896 	sl->task = current;
1897 }
1898 
1899 /**
1900  * hrtimer_init_sleeper - initialize sleeper to the given clock
1901  * @sl:		sleeper to be initialized
1902  * @clock_id:	the clock to be used
1903  * @mode:	timer mode abs/rel
1904  */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1905 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1906 			  enum hrtimer_mode mode)
1907 {
1908 	debug_init(&sl->timer, clock_id, mode);
1909 	__hrtimer_init_sleeper(sl, clock_id, mode);
1910 
1911 }
1912 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1913 
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)1914 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1915 {
1916 	switch(restart->nanosleep.type) {
1917 #ifdef CONFIG_COMPAT_32BIT_TIME
1918 	case TT_COMPAT:
1919 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1920 			return -EFAULT;
1921 		break;
1922 #endif
1923 	case TT_NATIVE:
1924 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1925 			return -EFAULT;
1926 		break;
1927 	default:
1928 		BUG();
1929 	}
1930 	return -ERESTART_RESTARTBLOCK;
1931 }
1932 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1933 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1934 {
1935 	struct restart_block *restart;
1936 
1937 	do {
1938 		set_current_state(TASK_INTERRUPTIBLE);
1939 		hrtimer_sleeper_start_expires(t, mode);
1940 
1941 		if (likely(t->task))
1942 			freezable_schedule();
1943 
1944 		hrtimer_cancel(&t->timer);
1945 		mode = HRTIMER_MODE_ABS;
1946 
1947 	} while (t->task && !signal_pending(current));
1948 
1949 	__set_current_state(TASK_RUNNING);
1950 
1951 	if (!t->task)
1952 		return 0;
1953 
1954 	restart = &current->restart_block;
1955 	if (restart->nanosleep.type != TT_NONE) {
1956 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1957 		struct timespec64 rmt;
1958 
1959 		if (rem <= 0)
1960 			return 0;
1961 		rmt = ktime_to_timespec64(rem);
1962 
1963 		return nanosleep_copyout(restart, &rmt);
1964 	}
1965 	return -ERESTART_RESTARTBLOCK;
1966 }
1967 
hrtimer_nanosleep_restart(struct restart_block * restart)1968 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1969 {
1970 	struct hrtimer_sleeper t;
1971 	int ret;
1972 
1973 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1974 				      HRTIMER_MODE_ABS);
1975 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1976 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1977 	destroy_hrtimer_on_stack(&t.timer);
1978 	return ret;
1979 }
1980 
hrtimer_nanosleep(ktime_t rqtp,const enum hrtimer_mode mode,const clockid_t clockid)1981 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1982 		       const clockid_t clockid)
1983 {
1984 	struct restart_block *restart;
1985 	struct hrtimer_sleeper t;
1986 	int ret = 0;
1987 	u64 slack;
1988 
1989 	slack = current->timer_slack_ns;
1990 	if (dl_task(current) || rt_task(current))
1991 		slack = 0;
1992 
1993 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1994 	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1995 	ret = do_nanosleep(&t, mode);
1996 	if (ret != -ERESTART_RESTARTBLOCK)
1997 		goto out;
1998 
1999 	/* Absolute timers do not update the rmtp value and restart: */
2000 	if (mode == HRTIMER_MODE_ABS) {
2001 		ret = -ERESTARTNOHAND;
2002 		goto out;
2003 	}
2004 
2005 	restart = &current->restart_block;
2006 	restart->nanosleep.clockid = t.timer.base->clockid;
2007 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2008 	set_restart_fn(restart, hrtimer_nanosleep_restart);
2009 out:
2010 	destroy_hrtimer_on_stack(&t.timer);
2011 	return ret;
2012 }
2013 
2014 #ifdef CONFIG_64BIT
2015 
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2016 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2017 		struct __kernel_timespec __user *, rmtp)
2018 {
2019 	struct timespec64 tu;
2020 
2021 	if (get_timespec64(&tu, rqtp))
2022 		return -EFAULT;
2023 
2024 	if (!timespec64_valid(&tu))
2025 		return -EINVAL;
2026 
2027 	current->restart_block.fn = do_no_restart_syscall;
2028 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2029 	current->restart_block.nanosleep.rmtp = rmtp;
2030 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2031 				 CLOCK_MONOTONIC);
2032 }
2033 
2034 #endif
2035 
2036 #ifdef CONFIG_COMPAT_32BIT_TIME
2037 
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2038 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2039 		       struct old_timespec32 __user *, rmtp)
2040 {
2041 	struct timespec64 tu;
2042 
2043 	if (get_old_timespec32(&tu, rqtp))
2044 		return -EFAULT;
2045 
2046 	if (!timespec64_valid(&tu))
2047 		return -EINVAL;
2048 
2049 	current->restart_block.fn = do_no_restart_syscall;
2050 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2051 	current->restart_block.nanosleep.compat_rmtp = rmtp;
2052 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2053 				 CLOCK_MONOTONIC);
2054 }
2055 #endif
2056 
2057 /*
2058  * Functions related to boot-time initialization:
2059  */
hrtimers_prepare_cpu(unsigned int cpu)2060 int hrtimers_prepare_cpu(unsigned int cpu)
2061 {
2062 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2063 	int i;
2064 
2065 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2066 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2067 
2068 		clock_b->cpu_base = cpu_base;
2069 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2070 		timerqueue_init_head(&clock_b->active);
2071 	}
2072 
2073 	cpu_base->cpu = cpu;
2074 	cpu_base->active_bases = 0;
2075 	cpu_base->hres_active = 0;
2076 	cpu_base->hang_detected = 0;
2077 	cpu_base->next_timer = NULL;
2078 	cpu_base->softirq_next_timer = NULL;
2079 	cpu_base->expires_next = KTIME_MAX;
2080 	cpu_base->softirq_expires_next = KTIME_MAX;
2081 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2082 	return 0;
2083 }
2084 
2085 #ifdef CONFIG_HOTPLUG_CPU
2086 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2087 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2088 				struct hrtimer_clock_base *new_base)
2089 {
2090 	struct hrtimer *timer;
2091 	struct timerqueue_node *node;
2092 
2093 	while ((node = timerqueue_getnext(&old_base->active))) {
2094 		timer = container_of(node, struct hrtimer, node);
2095 		BUG_ON(hrtimer_callback_running(timer));
2096 		debug_deactivate(timer);
2097 
2098 		/*
2099 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2100 		 * timer could be seen as !active and just vanish away
2101 		 * under us on another CPU
2102 		 */
2103 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2104 		timer->base = new_base;
2105 		/*
2106 		 * Enqueue the timers on the new cpu. This does not
2107 		 * reprogram the event device in case the timer
2108 		 * expires before the earliest on this CPU, but we run
2109 		 * hrtimer_interrupt after we migrated everything to
2110 		 * sort out already expired timers and reprogram the
2111 		 * event device.
2112 		 */
2113 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2114 	}
2115 }
2116 
hrtimers_dead_cpu(unsigned int scpu)2117 int hrtimers_dead_cpu(unsigned int scpu)
2118 {
2119 	struct hrtimer_cpu_base *old_base, *new_base;
2120 	int i;
2121 
2122 	BUG_ON(cpu_online(scpu));
2123 	tick_cancel_sched_timer(scpu);
2124 
2125 	/*
2126 	 * this BH disable ensures that raise_softirq_irqoff() does
2127 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2128 	 * holding the cpu_base lock
2129 	 */
2130 	local_bh_disable();
2131 	local_irq_disable();
2132 	old_base = &per_cpu(hrtimer_bases, scpu);
2133 	new_base = this_cpu_ptr(&hrtimer_bases);
2134 	/*
2135 	 * The caller is globally serialized and nobody else
2136 	 * takes two locks at once, deadlock is not possible.
2137 	 */
2138 	raw_spin_lock(&new_base->lock);
2139 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2140 
2141 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2142 		migrate_hrtimer_list(&old_base->clock_base[i],
2143 				     &new_base->clock_base[i]);
2144 	}
2145 
2146 	/*
2147 	 * The migration might have changed the first expiring softirq
2148 	 * timer on this CPU. Update it.
2149 	 */
2150 	hrtimer_update_softirq_timer(new_base, false);
2151 
2152 	raw_spin_unlock(&old_base->lock);
2153 	raw_spin_unlock(&new_base->lock);
2154 
2155 	/* Check, if we got expired work to do */
2156 	__hrtimer_peek_ahead_timers();
2157 	local_irq_enable();
2158 	local_bh_enable();
2159 	return 0;
2160 }
2161 
2162 #endif /* CONFIG_HOTPLUG_CPU */
2163 
hrtimers_init(void)2164 void __init hrtimers_init(void)
2165 {
2166 	hrtimers_prepare_cpu(smp_processor_id());
2167 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2168 }
2169 
2170 /**
2171  * schedule_hrtimeout_range_clock - sleep until timeout
2172  * @expires:	timeout value (ktime_t)
2173  * @delta:	slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2174  * @mode:	timer mode
2175  * @clock_id:	timer clock to be used
2176  */
2177 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2178 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2179 			       const enum hrtimer_mode mode, clockid_t clock_id)
2180 {
2181 	struct hrtimer_sleeper t;
2182 
2183 	/*
2184 	 * Optimize when a zero timeout value is given. It does not
2185 	 * matter whether this is an absolute or a relative time.
2186 	 */
2187 	if (expires && *expires == 0) {
2188 		__set_current_state(TASK_RUNNING);
2189 		return 0;
2190 	}
2191 
2192 	/*
2193 	 * A NULL parameter means "infinite"
2194 	 */
2195 	if (!expires) {
2196 		schedule();
2197 		return -EINTR;
2198 	}
2199 
2200 	/*
2201 	 * Override any slack passed by the user if under
2202 	 * rt contraints.
2203 	 */
2204 	if (rt_task(current))
2205 		delta = 0;
2206 
2207 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2208 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2209 	hrtimer_sleeper_start_expires(&t, mode);
2210 
2211 	if (likely(t.task))
2212 		schedule();
2213 
2214 	hrtimer_cancel(&t.timer);
2215 	destroy_hrtimer_on_stack(&t.timer);
2216 
2217 	__set_current_state(TASK_RUNNING);
2218 
2219 	return !t.task ? 0 : -EINTR;
2220 }
2221 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2222 
2223 /**
2224  * schedule_hrtimeout_range - sleep until timeout
2225  * @expires:	timeout value (ktime_t)
2226  * @delta:	slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2227  * @mode:	timer mode
2228  *
2229  * Make the current task sleep until the given expiry time has
2230  * elapsed. The routine will return immediately unless
2231  * the current task state has been set (see set_current_state()).
2232  *
2233  * The @delta argument gives the kernel the freedom to schedule the
2234  * actual wakeup to a time that is both power and performance friendly
2235  * for regular (non RT/DL) tasks.
2236  * The kernel give the normal best effort behavior for "@expires+@delta",
2237  * but may decide to fire the timer earlier, but no earlier than @expires.
2238  *
2239  * You can set the task state as follows -
2240  *
2241  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2242  * pass before the routine returns unless the current task is explicitly
2243  * woken up, (e.g. by wake_up_process()).
2244  *
2245  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2246  * delivered to the current task or the current task is explicitly woken
2247  * up.
2248  *
2249  * The current task state is guaranteed to be TASK_RUNNING when this
2250  * routine returns.
2251  *
2252  * Returns 0 when the timer has expired. If the task was woken before the
2253  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2254  * by an explicit wakeup, it returns -EINTR.
2255  */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2256 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2257 				     const enum hrtimer_mode mode)
2258 {
2259 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2260 					      CLOCK_MONOTONIC);
2261 }
2262 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2263 
2264 /**
2265  * schedule_hrtimeout - sleep until timeout
2266  * @expires:	timeout value (ktime_t)
2267  * @mode:	timer mode
2268  *
2269  * Make the current task sleep until the given expiry time has
2270  * elapsed. The routine will return immediately unless
2271  * the current task state has been set (see set_current_state()).
2272  *
2273  * You can set the task state as follows -
2274  *
2275  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2276  * pass before the routine returns unless the current task is explicitly
2277  * woken up, (e.g. by wake_up_process()).
2278  *
2279  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2280  * delivered to the current task or the current task is explicitly woken
2281  * up.
2282  *
2283  * The current task state is guaranteed to be TASK_RUNNING when this
2284  * routine returns.
2285  *
2286  * Returns 0 when the timer has expired. If the task was woken before the
2287  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2288  * by an explicit wakeup, it returns -EINTR.
2289  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2290 int __sched schedule_hrtimeout(ktime_t *expires,
2291 			       const enum hrtimer_mode mode)
2292 {
2293 	return schedule_hrtimeout_range(expires, 0, mode);
2294 }
2295 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2296