1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright 2011-2014 Autronica Fire and Security AS
3 *
4 * Author(s):
5 * 2011-2014 Arvid Brodin, arvid.brodin@alten.se
6 *
7 * The HSR spec says never to forward the same frame twice on the same
8 * interface. A frame is identified by its source MAC address and its HSR
9 * sequence number. This code keeps track of senders and their sequence numbers
10 * to allow filtering of duplicate frames, and to detect HSR ring errors.
11 * Same code handles filtering of duplicates for PRP as well.
12 */
13
14 #include <linux/if_ether.h>
15 #include <linux/etherdevice.h>
16 #include <linux/slab.h>
17 #include <linux/rculist.h>
18 #include "hsr_main.h"
19 #include "hsr_framereg.h"
20 #include "hsr_netlink.h"
21
22 /* TODO: use hash lists for mac addresses (linux/jhash.h)? */
23
24 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b,
25 * false otherwise.
26 */
seq_nr_after(u16 a,u16 b)27 static bool seq_nr_after(u16 a, u16 b)
28 {
29 /* Remove inconsistency where
30 * seq_nr_after(a, b) == seq_nr_before(a, b)
31 */
32 if ((int)b - a == 32768)
33 return false;
34
35 return (((s16)(b - a)) < 0);
36 }
37
38 #define seq_nr_before(a, b) seq_nr_after((b), (a))
39 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b)))
40
hsr_addr_is_self(struct hsr_priv * hsr,unsigned char * addr)41 bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr)
42 {
43 struct hsr_node *node;
44
45 node = list_first_or_null_rcu(&hsr->self_node_db, struct hsr_node,
46 mac_list);
47 if (!node) {
48 WARN_ONCE(1, "HSR: No self node\n");
49 return false;
50 }
51
52 if (ether_addr_equal(addr, node->macaddress_A))
53 return true;
54 if (ether_addr_equal(addr, node->macaddress_B))
55 return true;
56
57 return false;
58 }
59
60 /* Search for mac entry. Caller must hold rcu read lock.
61 */
find_node_by_addr_A(struct list_head * node_db,const unsigned char addr[ETH_ALEN])62 static struct hsr_node *find_node_by_addr_A(struct list_head *node_db,
63 const unsigned char addr[ETH_ALEN])
64 {
65 struct hsr_node *node;
66
67 list_for_each_entry_rcu(node, node_db, mac_list) {
68 if (ether_addr_equal(node->macaddress_A, addr))
69 return node;
70 }
71
72 return NULL;
73 }
74
75 /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize
76 * frames from self that's been looped over the HSR ring.
77 */
hsr_create_self_node(struct hsr_priv * hsr,unsigned char addr_a[ETH_ALEN],unsigned char addr_b[ETH_ALEN])78 int hsr_create_self_node(struct hsr_priv *hsr,
79 unsigned char addr_a[ETH_ALEN],
80 unsigned char addr_b[ETH_ALEN])
81 {
82 struct list_head *self_node_db = &hsr->self_node_db;
83 struct hsr_node *node, *oldnode;
84
85 node = kmalloc(sizeof(*node), GFP_KERNEL);
86 if (!node)
87 return -ENOMEM;
88
89 ether_addr_copy(node->macaddress_A, addr_a);
90 ether_addr_copy(node->macaddress_B, addr_b);
91
92 spin_lock_bh(&hsr->list_lock);
93 oldnode = list_first_or_null_rcu(self_node_db,
94 struct hsr_node, mac_list);
95 if (oldnode) {
96 list_replace_rcu(&oldnode->mac_list, &node->mac_list);
97 spin_unlock_bh(&hsr->list_lock);
98 kfree_rcu(oldnode, rcu_head);
99 } else {
100 list_add_tail_rcu(&node->mac_list, self_node_db);
101 spin_unlock_bh(&hsr->list_lock);
102 }
103
104 return 0;
105 }
106
hsr_del_self_node(struct hsr_priv * hsr)107 void hsr_del_self_node(struct hsr_priv *hsr)
108 {
109 struct list_head *self_node_db = &hsr->self_node_db;
110 struct hsr_node *node;
111
112 spin_lock_bh(&hsr->list_lock);
113 node = list_first_or_null_rcu(self_node_db, struct hsr_node, mac_list);
114 if (node) {
115 list_del_rcu(&node->mac_list);
116 kfree_rcu(node, rcu_head);
117 }
118 spin_unlock_bh(&hsr->list_lock);
119 }
120
hsr_del_nodes(struct list_head * node_db)121 void hsr_del_nodes(struct list_head *node_db)
122 {
123 struct hsr_node *node;
124 struct hsr_node *tmp;
125
126 list_for_each_entry_safe(node, tmp, node_db, mac_list)
127 kfree(node);
128 }
129
prp_handle_san_frame(bool san,enum hsr_port_type port,struct hsr_node * node)130 void prp_handle_san_frame(bool san, enum hsr_port_type port,
131 struct hsr_node *node)
132 {
133 /* Mark if the SAN node is over LAN_A or LAN_B */
134 if (port == HSR_PT_SLAVE_A) {
135 node->san_a = true;
136 return;
137 }
138
139 if (port == HSR_PT_SLAVE_B)
140 node->san_b = true;
141 }
142
143 /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A;
144 * seq_out is used to initialize filtering of outgoing duplicate frames
145 * originating from the newly added node.
146 */
hsr_add_node(struct hsr_priv * hsr,struct list_head * node_db,unsigned char addr[],u16 seq_out,bool san,enum hsr_port_type rx_port)147 static struct hsr_node *hsr_add_node(struct hsr_priv *hsr,
148 struct list_head *node_db,
149 unsigned char addr[],
150 u16 seq_out, bool san,
151 enum hsr_port_type rx_port)
152 {
153 struct hsr_node *new_node, *node;
154 unsigned long now;
155 int i;
156
157 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
158 if (!new_node)
159 return NULL;
160
161 ether_addr_copy(new_node->macaddress_A, addr);
162 spin_lock_init(&new_node->seq_out_lock);
163
164 /* We are only interested in time diffs here, so use current jiffies
165 * as initialization. (0 could trigger an spurious ring error warning).
166 */
167 now = jiffies;
168 for (i = 0; i < HSR_PT_PORTS; i++) {
169 new_node->time_in[i] = now;
170 new_node->time_out[i] = now;
171 }
172 for (i = 0; i < HSR_PT_PORTS; i++)
173 new_node->seq_out[i] = seq_out;
174
175 if (san && hsr->proto_ops->handle_san_frame)
176 hsr->proto_ops->handle_san_frame(san, rx_port, new_node);
177
178 spin_lock_bh(&hsr->list_lock);
179 list_for_each_entry_rcu(node, node_db, mac_list,
180 lockdep_is_held(&hsr->list_lock)) {
181 if (ether_addr_equal(node->macaddress_A, addr))
182 goto out;
183 if (ether_addr_equal(node->macaddress_B, addr))
184 goto out;
185 }
186 list_add_tail_rcu(&new_node->mac_list, node_db);
187 spin_unlock_bh(&hsr->list_lock);
188 return new_node;
189 out:
190 spin_unlock_bh(&hsr->list_lock);
191 kfree(new_node);
192 return node;
193 }
194
prp_update_san_info(struct hsr_node * node,bool is_sup)195 void prp_update_san_info(struct hsr_node *node, bool is_sup)
196 {
197 if (!is_sup)
198 return;
199
200 node->san_a = false;
201 node->san_b = false;
202 }
203
204 /* Get the hsr_node from which 'skb' was sent.
205 */
hsr_get_node(struct hsr_port * port,struct list_head * node_db,struct sk_buff * skb,bool is_sup,enum hsr_port_type rx_port)206 struct hsr_node *hsr_get_node(struct hsr_port *port, struct list_head *node_db,
207 struct sk_buff *skb, bool is_sup,
208 enum hsr_port_type rx_port)
209 {
210 struct hsr_priv *hsr = port->hsr;
211 struct hsr_node *node;
212 struct ethhdr *ethhdr;
213 struct prp_rct *rct;
214 bool san = false;
215 u16 seq_out;
216
217 if (!skb_mac_header_was_set(skb))
218 return NULL;
219
220 ethhdr = (struct ethhdr *)skb_mac_header(skb);
221
222 list_for_each_entry_rcu(node, node_db, mac_list) {
223 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) {
224 if (hsr->proto_ops->update_san_info)
225 hsr->proto_ops->update_san_info(node, is_sup);
226 return node;
227 }
228 if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) {
229 if (hsr->proto_ops->update_san_info)
230 hsr->proto_ops->update_san_info(node, is_sup);
231 return node;
232 }
233 }
234
235 /* Everyone may create a node entry, connected node to a HSR/PRP
236 * device.
237 */
238 if (ethhdr->h_proto == htons(ETH_P_PRP) ||
239 ethhdr->h_proto == htons(ETH_P_HSR)) {
240 /* Use the existing sequence_nr from the tag as starting point
241 * for filtering duplicate frames.
242 */
243 seq_out = hsr_get_skb_sequence_nr(skb) - 1;
244 } else {
245 rct = skb_get_PRP_rct(skb);
246 if (rct && prp_check_lsdu_size(skb, rct, is_sup)) {
247 seq_out = prp_get_skb_sequence_nr(rct);
248 } else {
249 if (rx_port != HSR_PT_MASTER)
250 san = true;
251 seq_out = HSR_SEQNR_START;
252 }
253 }
254
255 return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out,
256 san, rx_port);
257 }
258
259 /* Use the Supervision frame's info about an eventual macaddress_B for merging
260 * nodes that has previously had their macaddress_B registered as a separate
261 * node.
262 */
hsr_handle_sup_frame(struct hsr_frame_info * frame)263 void hsr_handle_sup_frame(struct hsr_frame_info *frame)
264 {
265 struct hsr_node *node_curr = frame->node_src;
266 struct hsr_port *port_rcv = frame->port_rcv;
267 struct hsr_priv *hsr = port_rcv->hsr;
268 struct hsr_sup_payload *hsr_sp;
269 struct hsr_node *node_real;
270 struct sk_buff *skb = NULL;
271 struct list_head *node_db;
272 struct ethhdr *ethhdr;
273 int i;
274
275 /* Here either frame->skb_hsr or frame->skb_prp should be
276 * valid as supervision frame always will have protocol
277 * header info.
278 */
279 if (frame->skb_hsr)
280 skb = frame->skb_hsr;
281 else if (frame->skb_prp)
282 skb = frame->skb_prp;
283 if (!skb)
284 return;
285
286 ethhdr = (struct ethhdr *)skb_mac_header(skb);
287
288 /* Leave the ethernet header. */
289 skb_pull(skb, sizeof(struct ethhdr));
290
291 /* And leave the HSR tag. */
292 if (ethhdr->h_proto == htons(ETH_P_HSR))
293 skb_pull(skb, sizeof(struct hsr_tag));
294
295 /* And leave the HSR sup tag. */
296 skb_pull(skb, sizeof(struct hsr_sup_tag));
297
298 hsr_sp = (struct hsr_sup_payload *)skb->data;
299
300 /* Merge node_curr (registered on macaddress_B) into node_real */
301 node_db = &port_rcv->hsr->node_db;
302 node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A);
303 if (!node_real)
304 /* No frame received from AddrA of this node yet */
305 node_real = hsr_add_node(hsr, node_db, hsr_sp->macaddress_A,
306 HSR_SEQNR_START - 1, true,
307 port_rcv->type);
308 if (!node_real)
309 goto done; /* No mem */
310 if (node_real == node_curr)
311 /* Node has already been merged */
312 goto done;
313
314 ether_addr_copy(node_real->macaddress_B, ethhdr->h_source);
315 spin_lock_bh(&node_real->seq_out_lock);
316 for (i = 0; i < HSR_PT_PORTS; i++) {
317 if (!node_curr->time_in_stale[i] &&
318 time_after(node_curr->time_in[i], node_real->time_in[i])) {
319 node_real->time_in[i] = node_curr->time_in[i];
320 node_real->time_in_stale[i] =
321 node_curr->time_in_stale[i];
322 }
323 if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i]))
324 node_real->seq_out[i] = node_curr->seq_out[i];
325 }
326 spin_unlock_bh(&node_real->seq_out_lock);
327 node_real->addr_B_port = port_rcv->type;
328
329 spin_lock_bh(&hsr->list_lock);
330 if (!node_curr->removed) {
331 list_del_rcu(&node_curr->mac_list);
332 node_curr->removed = true;
333 kfree_rcu(node_curr, rcu_head);
334 }
335 spin_unlock_bh(&hsr->list_lock);
336
337 done:
338 /* PRP uses v0 header */
339 if (ethhdr->h_proto == htons(ETH_P_HSR))
340 skb_push(skb, sizeof(struct hsrv1_ethhdr_sp));
341 else
342 skb_push(skb, sizeof(struct hsrv0_ethhdr_sp));
343 }
344
345 /* 'skb' is a frame meant for this host, that is to be passed to upper layers.
346 *
347 * If the frame was sent by a node's B interface, replace the source
348 * address with that node's "official" address (macaddress_A) so that upper
349 * layers recognize where it came from.
350 */
hsr_addr_subst_source(struct hsr_node * node,struct sk_buff * skb)351 void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb)
352 {
353 if (!skb_mac_header_was_set(skb)) {
354 WARN_ONCE(1, "%s: Mac header not set\n", __func__);
355 return;
356 }
357
358 memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN);
359 }
360
361 /* 'skb' is a frame meant for another host.
362 * 'port' is the outgoing interface
363 *
364 * Substitute the target (dest) MAC address if necessary, so the it matches the
365 * recipient interface MAC address, regardless of whether that is the
366 * recipient's A or B interface.
367 * This is needed to keep the packets flowing through switches that learn on
368 * which "side" the different interfaces are.
369 */
hsr_addr_subst_dest(struct hsr_node * node_src,struct sk_buff * skb,struct hsr_port * port)370 void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb,
371 struct hsr_port *port)
372 {
373 struct hsr_node *node_dst;
374
375 if (!skb_mac_header_was_set(skb)) {
376 WARN_ONCE(1, "%s: Mac header not set\n", __func__);
377 return;
378 }
379
380 if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest))
381 return;
382
383 node_dst = find_node_by_addr_A(&port->hsr->node_db,
384 eth_hdr(skb)->h_dest);
385 if (!node_dst) {
386 if (port->hsr->prot_version != PRP_V1 && net_ratelimit())
387 netdev_err(skb->dev, "%s: Unknown node\n", __func__);
388 return;
389 }
390 if (port->type != node_dst->addr_B_port)
391 return;
392
393 if (is_valid_ether_addr(node_dst->macaddress_B))
394 ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B);
395 }
396
hsr_register_frame_in(struct hsr_node * node,struct hsr_port * port,u16 sequence_nr)397 void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port,
398 u16 sequence_nr)
399 {
400 /* Don't register incoming frames without a valid sequence number. This
401 * ensures entries of restarted nodes gets pruned so that they can
402 * re-register and resume communications.
403 */
404 if (seq_nr_before(sequence_nr, node->seq_out[port->type]))
405 return;
406
407 node->time_in[port->type] = jiffies;
408 node->time_in_stale[port->type] = false;
409 }
410
411 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid
412 * ethhdr->h_source address and skb->mac_header set.
413 *
414 * Return:
415 * 1 if frame can be shown to have been sent recently on this interface,
416 * 0 otherwise, or
417 * negative error code on error
418 */
hsr_register_frame_out(struct hsr_port * port,struct hsr_node * node,u16 sequence_nr)419 int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node,
420 u16 sequence_nr)
421 {
422 spin_lock_bh(&node->seq_out_lock);
423 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type]) &&
424 time_is_after_jiffies(node->time_out[port->type] +
425 msecs_to_jiffies(HSR_ENTRY_FORGET_TIME))) {
426 spin_unlock_bh(&node->seq_out_lock);
427 return 1;
428 }
429
430 node->time_out[port->type] = jiffies;
431 node->seq_out[port->type] = sequence_nr;
432 spin_unlock_bh(&node->seq_out_lock);
433 return 0;
434 }
435
get_late_port(struct hsr_priv * hsr,struct hsr_node * node)436 static struct hsr_port *get_late_port(struct hsr_priv *hsr,
437 struct hsr_node *node)
438 {
439 if (node->time_in_stale[HSR_PT_SLAVE_A])
440 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A);
441 if (node->time_in_stale[HSR_PT_SLAVE_B])
442 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B);
443
444 if (time_after(node->time_in[HSR_PT_SLAVE_B],
445 node->time_in[HSR_PT_SLAVE_A] +
446 msecs_to_jiffies(MAX_SLAVE_DIFF)))
447 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A);
448 if (time_after(node->time_in[HSR_PT_SLAVE_A],
449 node->time_in[HSR_PT_SLAVE_B] +
450 msecs_to_jiffies(MAX_SLAVE_DIFF)))
451 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B);
452
453 return NULL;
454 }
455
456 /* Remove stale sequence_nr records. Called by timer every
457 * HSR_LIFE_CHECK_INTERVAL (two seconds or so).
458 */
hsr_prune_nodes(struct timer_list * t)459 void hsr_prune_nodes(struct timer_list *t)
460 {
461 struct hsr_priv *hsr = from_timer(hsr, t, prune_timer);
462 struct hsr_node *node;
463 struct hsr_node *tmp;
464 struct hsr_port *port;
465 unsigned long timestamp;
466 unsigned long time_a, time_b;
467
468 spin_lock_bh(&hsr->list_lock);
469 list_for_each_entry_safe(node, tmp, &hsr->node_db, mac_list) {
470 /* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A]
471 * nor time_in[HSR_PT_SLAVE_B], will ever be updated for
472 * the master port. Thus the master node will be repeatedly
473 * pruned leading to packet loss.
474 */
475 if (hsr_addr_is_self(hsr, node->macaddress_A))
476 continue;
477
478 /* Shorthand */
479 time_a = node->time_in[HSR_PT_SLAVE_A];
480 time_b = node->time_in[HSR_PT_SLAVE_B];
481
482 /* Check for timestamps old enough to risk wrap-around */
483 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2))
484 node->time_in_stale[HSR_PT_SLAVE_A] = true;
485 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2))
486 node->time_in_stale[HSR_PT_SLAVE_B] = true;
487
488 /* Get age of newest frame from node.
489 * At least one time_in is OK here; nodes get pruned long
490 * before both time_ins can get stale
491 */
492 timestamp = time_a;
493 if (node->time_in_stale[HSR_PT_SLAVE_A] ||
494 (!node->time_in_stale[HSR_PT_SLAVE_B] &&
495 time_after(time_b, time_a)))
496 timestamp = time_b;
497
498 /* Warn of ring error only as long as we get frames at all */
499 if (time_is_after_jiffies(timestamp +
500 msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) {
501 rcu_read_lock();
502 port = get_late_port(hsr, node);
503 if (port)
504 hsr_nl_ringerror(hsr, node->macaddress_A, port);
505 rcu_read_unlock();
506 }
507
508 /* Prune old entries */
509 if (time_is_before_jiffies(timestamp +
510 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) {
511 hsr_nl_nodedown(hsr, node->macaddress_A);
512 if (!node->removed) {
513 list_del_rcu(&node->mac_list);
514 node->removed = true;
515 /* Note that we need to free this entry later: */
516 kfree_rcu(node, rcu_head);
517 }
518 }
519 }
520 spin_unlock_bh(&hsr->list_lock);
521
522 /* Restart timer */
523 mod_timer(&hsr->prune_timer,
524 jiffies + msecs_to_jiffies(PRUNE_PERIOD));
525 }
526
hsr_get_next_node(struct hsr_priv * hsr,void * _pos,unsigned char addr[ETH_ALEN])527 void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos,
528 unsigned char addr[ETH_ALEN])
529 {
530 struct hsr_node *node;
531
532 if (!_pos) {
533 node = list_first_or_null_rcu(&hsr->node_db,
534 struct hsr_node, mac_list);
535 if (node)
536 ether_addr_copy(addr, node->macaddress_A);
537 return node;
538 }
539
540 node = _pos;
541 list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) {
542 ether_addr_copy(addr, node->macaddress_A);
543 return node;
544 }
545
546 return NULL;
547 }
548
hsr_get_node_data(struct hsr_priv * hsr,const unsigned char * addr,unsigned char addr_b[ETH_ALEN],unsigned int * addr_b_ifindex,int * if1_age,u16 * if1_seq,int * if2_age,u16 * if2_seq)549 int hsr_get_node_data(struct hsr_priv *hsr,
550 const unsigned char *addr,
551 unsigned char addr_b[ETH_ALEN],
552 unsigned int *addr_b_ifindex,
553 int *if1_age,
554 u16 *if1_seq,
555 int *if2_age,
556 u16 *if2_seq)
557 {
558 struct hsr_node *node;
559 struct hsr_port *port;
560 unsigned long tdiff;
561
562 node = find_node_by_addr_A(&hsr->node_db, addr);
563 if (!node)
564 return -ENOENT;
565
566 ether_addr_copy(addr_b, node->macaddress_B);
567
568 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A];
569 if (node->time_in_stale[HSR_PT_SLAVE_A])
570 *if1_age = INT_MAX;
571 #if HZ <= MSEC_PER_SEC
572 else if (tdiff > msecs_to_jiffies(INT_MAX))
573 *if1_age = INT_MAX;
574 #endif
575 else
576 *if1_age = jiffies_to_msecs(tdiff);
577
578 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B];
579 if (node->time_in_stale[HSR_PT_SLAVE_B])
580 *if2_age = INT_MAX;
581 #if HZ <= MSEC_PER_SEC
582 else if (tdiff > msecs_to_jiffies(INT_MAX))
583 *if2_age = INT_MAX;
584 #endif
585 else
586 *if2_age = jiffies_to_msecs(tdiff);
587
588 /* Present sequence numbers as if they were incoming on interface */
589 *if1_seq = node->seq_out[HSR_PT_SLAVE_B];
590 *if2_seq = node->seq_out[HSR_PT_SLAVE_A];
591
592 if (node->addr_B_port != HSR_PT_NONE) {
593 port = hsr_port_get_hsr(hsr, node->addr_B_port);
594 *addr_b_ifindex = port->dev->ifindex;
595 } else {
596 *addr_b_ifindex = -1;
597 }
598
599 return 0;
600 }
601