• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44 
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48 
49 #ifdef CONFIG_CMA
50 static struct cma *hugetlb_cma[MAX_NUMNODES];
51 #endif
52 static unsigned long hugetlb_cma_size __initdata;
53 
54 /*
55  * Minimum page order among possible hugepage sizes, set to a proper value
56  * at boot time.
57  */
58 static unsigned int minimum_order __read_mostly = UINT_MAX;
59 
60 __initdata LIST_HEAD(huge_boot_pages);
61 
62 /* for command line parsing */
63 static struct hstate * __initdata parsed_hstate;
64 static unsigned long __initdata default_hstate_max_huge_pages;
65 static bool __initdata parsed_valid_hugepagesz = true;
66 static bool __initdata parsed_default_hugepagesz;
67 
68 /*
69  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70  * free_huge_pages, and surplus_huge_pages.
71  */
72 DEFINE_SPINLOCK(hugetlb_lock);
73 
74 /*
75  * Serializes faults on the same logical page.  This is used to
76  * prevent spurious OOMs when the hugepage pool is fully utilized.
77  */
78 static int num_fault_mutexes;
79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
80 
81 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
82 		unsigned long start, unsigned long end);
83 
PageHugeFreed(struct page * head)84 static inline bool PageHugeFreed(struct page *head)
85 {
86 	return page_private(head + 4) == -1UL;
87 }
88 
SetPageHugeFreed(struct page * head)89 static inline void SetPageHugeFreed(struct page *head)
90 {
91 	set_page_private(head + 4, -1UL);
92 }
93 
ClearPageHugeFreed(struct page * head)94 static inline void ClearPageHugeFreed(struct page *head)
95 {
96 	set_page_private(head + 4, 0);
97 }
98 
99 /* Forward declaration */
100 static int hugetlb_acct_memory(struct hstate *h, long delta);
101 
unlock_or_release_subpool(struct hugepage_subpool * spool)102 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
103 {
104 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
105 
106 	spin_unlock(&spool->lock);
107 
108 	/* If no pages are used, and no other handles to the subpool
109 	 * remain, give up any reservations based on minimum size and
110 	 * free the subpool */
111 	if (free) {
112 		if (spool->min_hpages != -1)
113 			hugetlb_acct_memory(spool->hstate,
114 						-spool->min_hpages);
115 		kfree(spool);
116 	}
117 }
118 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)119 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
120 						long min_hpages)
121 {
122 	struct hugepage_subpool *spool;
123 
124 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
125 	if (!spool)
126 		return NULL;
127 
128 	spin_lock_init(&spool->lock);
129 	spool->count = 1;
130 	spool->max_hpages = max_hpages;
131 	spool->hstate = h;
132 	spool->min_hpages = min_hpages;
133 
134 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
135 		kfree(spool);
136 		return NULL;
137 	}
138 	spool->rsv_hpages = min_hpages;
139 
140 	return spool;
141 }
142 
hugepage_put_subpool(struct hugepage_subpool * spool)143 void hugepage_put_subpool(struct hugepage_subpool *spool)
144 {
145 	spin_lock(&spool->lock);
146 	BUG_ON(!spool->count);
147 	spool->count--;
148 	unlock_or_release_subpool(spool);
149 }
150 
151 /*
152  * Subpool accounting for allocating and reserving pages.
153  * Return -ENOMEM if there are not enough resources to satisfy the
154  * request.  Otherwise, return the number of pages by which the
155  * global pools must be adjusted (upward).  The returned value may
156  * only be different than the passed value (delta) in the case where
157  * a subpool minimum size must be maintained.
158  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)159 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
160 				      long delta)
161 {
162 	long ret = delta;
163 
164 	if (!spool)
165 		return ret;
166 
167 	spin_lock(&spool->lock);
168 
169 	if (spool->max_hpages != -1) {		/* maximum size accounting */
170 		if ((spool->used_hpages + delta) <= spool->max_hpages)
171 			spool->used_hpages += delta;
172 		else {
173 			ret = -ENOMEM;
174 			goto unlock_ret;
175 		}
176 	}
177 
178 	/* minimum size accounting */
179 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
180 		if (delta > spool->rsv_hpages) {
181 			/*
182 			 * Asking for more reserves than those already taken on
183 			 * behalf of subpool.  Return difference.
184 			 */
185 			ret = delta - spool->rsv_hpages;
186 			spool->rsv_hpages = 0;
187 		} else {
188 			ret = 0;	/* reserves already accounted for */
189 			spool->rsv_hpages -= delta;
190 		}
191 	}
192 
193 unlock_ret:
194 	spin_unlock(&spool->lock);
195 	return ret;
196 }
197 
198 /*
199  * Subpool accounting for freeing and unreserving pages.
200  * Return the number of global page reservations that must be dropped.
201  * The return value may only be different than the passed value (delta)
202  * in the case where a subpool minimum size must be maintained.
203  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)204 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
205 				       long delta)
206 {
207 	long ret = delta;
208 
209 	if (!spool)
210 		return delta;
211 
212 	spin_lock(&spool->lock);
213 
214 	if (spool->max_hpages != -1)		/* maximum size accounting */
215 		spool->used_hpages -= delta;
216 
217 	 /* minimum size accounting */
218 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
219 		if (spool->rsv_hpages + delta <= spool->min_hpages)
220 			ret = 0;
221 		else
222 			ret = spool->rsv_hpages + delta - spool->min_hpages;
223 
224 		spool->rsv_hpages += delta;
225 		if (spool->rsv_hpages > spool->min_hpages)
226 			spool->rsv_hpages = spool->min_hpages;
227 	}
228 
229 	/*
230 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
231 	 * quota reference, free it now.
232 	 */
233 	unlock_or_release_subpool(spool);
234 
235 	return ret;
236 }
237 
subpool_inode(struct inode * inode)238 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
239 {
240 	return HUGETLBFS_SB(inode->i_sb)->spool;
241 }
242 
subpool_vma(struct vm_area_struct * vma)243 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
244 {
245 	return subpool_inode(file_inode(vma->vm_file));
246 }
247 
248 /* Helper that removes a struct file_region from the resv_map cache and returns
249  * it for use.
250  */
251 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)252 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
253 {
254 	struct file_region *nrg = NULL;
255 
256 	VM_BUG_ON(resv->region_cache_count <= 0);
257 
258 	resv->region_cache_count--;
259 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
260 	list_del(&nrg->link);
261 
262 	nrg->from = from;
263 	nrg->to = to;
264 
265 	return nrg;
266 }
267 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)268 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
269 					      struct file_region *rg)
270 {
271 #ifdef CONFIG_CGROUP_HUGETLB
272 	nrg->reservation_counter = rg->reservation_counter;
273 	nrg->css = rg->css;
274 	if (rg->css)
275 		css_get(rg->css);
276 #endif
277 }
278 
279 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)280 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
281 						struct hstate *h,
282 						struct resv_map *resv,
283 						struct file_region *nrg)
284 {
285 #ifdef CONFIG_CGROUP_HUGETLB
286 	if (h_cg) {
287 		nrg->reservation_counter =
288 			&h_cg->rsvd_hugepage[hstate_index(h)];
289 		nrg->css = &h_cg->css;
290 		/*
291 		 * The caller will hold exactly one h_cg->css reference for the
292 		 * whole contiguous reservation region. But this area might be
293 		 * scattered when there are already some file_regions reside in
294 		 * it. As a result, many file_regions may share only one css
295 		 * reference. In order to ensure that one file_region must hold
296 		 * exactly one h_cg->css reference, we should do css_get for
297 		 * each file_region and leave the reference held by caller
298 		 * untouched.
299 		 */
300 		css_get(&h_cg->css);
301 		if (!resv->pages_per_hpage)
302 			resv->pages_per_hpage = pages_per_huge_page(h);
303 		/* pages_per_hpage should be the same for all entries in
304 		 * a resv_map.
305 		 */
306 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
307 	} else {
308 		nrg->reservation_counter = NULL;
309 		nrg->css = NULL;
310 	}
311 #endif
312 }
313 
put_uncharge_info(struct file_region * rg)314 static void put_uncharge_info(struct file_region *rg)
315 {
316 #ifdef CONFIG_CGROUP_HUGETLB
317 	if (rg->css)
318 		css_put(rg->css);
319 #endif
320 }
321 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)322 static bool has_same_uncharge_info(struct file_region *rg,
323 				   struct file_region *org)
324 {
325 #ifdef CONFIG_CGROUP_HUGETLB
326 	return rg && org &&
327 	       rg->reservation_counter == org->reservation_counter &&
328 	       rg->css == org->css;
329 
330 #else
331 	return true;
332 #endif
333 }
334 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)335 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
336 {
337 	struct file_region *nrg = NULL, *prg = NULL;
338 
339 	prg = list_prev_entry(rg, link);
340 	if (&prg->link != &resv->regions && prg->to == rg->from &&
341 	    has_same_uncharge_info(prg, rg)) {
342 		prg->to = rg->to;
343 
344 		list_del(&rg->link);
345 		put_uncharge_info(rg);
346 		kfree(rg);
347 
348 		rg = prg;
349 	}
350 
351 	nrg = list_next_entry(rg, link);
352 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
353 	    has_same_uncharge_info(nrg, rg)) {
354 		nrg->from = rg->from;
355 
356 		list_del(&rg->link);
357 		put_uncharge_info(rg);
358 		kfree(rg);
359 	}
360 }
361 
362 /*
363  * Must be called with resv->lock held.
364  *
365  * Calling this with regions_needed != NULL will count the number of pages
366  * to be added but will not modify the linked list. And regions_needed will
367  * indicate the number of file_regions needed in the cache to carry out to add
368  * the regions for this range.
369  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)370 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
371 				     struct hugetlb_cgroup *h_cg,
372 				     struct hstate *h, long *regions_needed)
373 {
374 	long add = 0;
375 	struct list_head *head = &resv->regions;
376 	long last_accounted_offset = f;
377 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
378 
379 	if (regions_needed)
380 		*regions_needed = 0;
381 
382 	/* In this loop, we essentially handle an entry for the range
383 	 * [last_accounted_offset, rg->from), at every iteration, with some
384 	 * bounds checking.
385 	 */
386 	list_for_each_entry_safe(rg, trg, head, link) {
387 		/* Skip irrelevant regions that start before our range. */
388 		if (rg->from < f) {
389 			/* If this region ends after the last accounted offset,
390 			 * then we need to update last_accounted_offset.
391 			 */
392 			if (rg->to > last_accounted_offset)
393 				last_accounted_offset = rg->to;
394 			continue;
395 		}
396 
397 		/* When we find a region that starts beyond our range, we've
398 		 * finished.
399 		 */
400 		if (rg->from > t)
401 			break;
402 
403 		/* Add an entry for last_accounted_offset -> rg->from, and
404 		 * update last_accounted_offset.
405 		 */
406 		if (rg->from > last_accounted_offset) {
407 			add += rg->from - last_accounted_offset;
408 			if (!regions_needed) {
409 				nrg = get_file_region_entry_from_cache(
410 					resv, last_accounted_offset, rg->from);
411 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
412 								    resv, nrg);
413 				list_add(&nrg->link, rg->link.prev);
414 				coalesce_file_region(resv, nrg);
415 			} else
416 				*regions_needed += 1;
417 		}
418 
419 		last_accounted_offset = rg->to;
420 	}
421 
422 	/* Handle the case where our range extends beyond
423 	 * last_accounted_offset.
424 	 */
425 	if (last_accounted_offset < t) {
426 		add += t - last_accounted_offset;
427 		if (!regions_needed) {
428 			nrg = get_file_region_entry_from_cache(
429 				resv, last_accounted_offset, t);
430 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
431 			list_add(&nrg->link, rg->link.prev);
432 			coalesce_file_region(resv, nrg);
433 		} else
434 			*regions_needed += 1;
435 	}
436 
437 	VM_BUG_ON(add < 0);
438 	return add;
439 }
440 
441 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)443 static int allocate_file_region_entries(struct resv_map *resv,
444 					int regions_needed)
445 	__must_hold(&resv->lock)
446 {
447 	struct list_head allocated_regions;
448 	int to_allocate = 0, i = 0;
449 	struct file_region *trg = NULL, *rg = NULL;
450 
451 	VM_BUG_ON(regions_needed < 0);
452 
453 	INIT_LIST_HEAD(&allocated_regions);
454 
455 	/*
456 	 * Check for sufficient descriptors in the cache to accommodate
457 	 * the number of in progress add operations plus regions_needed.
458 	 *
459 	 * This is a while loop because when we drop the lock, some other call
460 	 * to region_add or region_del may have consumed some region_entries,
461 	 * so we keep looping here until we finally have enough entries for
462 	 * (adds_in_progress + regions_needed).
463 	 */
464 	while (resv->region_cache_count <
465 	       (resv->adds_in_progress + regions_needed)) {
466 		to_allocate = resv->adds_in_progress + regions_needed -
467 			      resv->region_cache_count;
468 
469 		/* At this point, we should have enough entries in the cache
470 		 * for all the existings adds_in_progress. We should only be
471 		 * needing to allocate for regions_needed.
472 		 */
473 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474 
475 		spin_unlock(&resv->lock);
476 		for (i = 0; i < to_allocate; i++) {
477 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478 			if (!trg)
479 				goto out_of_memory;
480 			list_add(&trg->link, &allocated_regions);
481 		}
482 
483 		spin_lock(&resv->lock);
484 
485 		list_splice(&allocated_regions, &resv->region_cache);
486 		resv->region_cache_count += to_allocate;
487 	}
488 
489 	return 0;
490 
491 out_of_memory:
492 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493 		list_del(&rg->link);
494 		kfree(rg);
495 	}
496 	return -ENOMEM;
497 }
498 
499 /*
500  * Add the huge page range represented by [f, t) to the reserve
501  * map.  Regions will be taken from the cache to fill in this range.
502  * Sufficient regions should exist in the cache due to the previous
503  * call to region_chg with the same range, but in some cases the cache will not
504  * have sufficient entries due to races with other code doing region_add or
505  * region_del.  The extra needed entries will be allocated.
506  *
507  * regions_needed is the out value provided by a previous call to region_chg.
508  *
509  * Return the number of new huge pages added to the map.  This number is greater
510  * than or equal to zero.  If file_region entries needed to be allocated for
511  * this operation and we were not able to allocate, it returns -ENOMEM.
512  * region_add of regions of length 1 never allocate file_regions and cannot
513  * fail; region_chg will always allocate at least 1 entry and a region_add for
514  * 1 page will only require at most 1 entry.
515  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)516 static long region_add(struct resv_map *resv, long f, long t,
517 		       long in_regions_needed, struct hstate *h,
518 		       struct hugetlb_cgroup *h_cg)
519 {
520 	long add = 0, actual_regions_needed = 0;
521 
522 	spin_lock(&resv->lock);
523 retry:
524 
525 	/* Count how many regions are actually needed to execute this add. */
526 	add_reservation_in_range(resv, f, t, NULL, NULL,
527 				 &actual_regions_needed);
528 
529 	/*
530 	 * Check for sufficient descriptors in the cache to accommodate
531 	 * this add operation. Note that actual_regions_needed may be greater
532 	 * than in_regions_needed, as the resv_map may have been modified since
533 	 * the region_chg call. In this case, we need to make sure that we
534 	 * allocate extra entries, such that we have enough for all the
535 	 * existing adds_in_progress, plus the excess needed for this
536 	 * operation.
537 	 */
538 	if (actual_regions_needed > in_regions_needed &&
539 	    resv->region_cache_count <
540 		    resv->adds_in_progress +
541 			    (actual_regions_needed - in_regions_needed)) {
542 		/* region_add operation of range 1 should never need to
543 		 * allocate file_region entries.
544 		 */
545 		VM_BUG_ON(t - f <= 1);
546 
547 		if (allocate_file_region_entries(
548 			    resv, actual_regions_needed - in_regions_needed)) {
549 			return -ENOMEM;
550 		}
551 
552 		goto retry;
553 	}
554 
555 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
556 
557 	resv->adds_in_progress -= in_regions_needed;
558 
559 	spin_unlock(&resv->lock);
560 	VM_BUG_ON(add < 0);
561 	return add;
562 }
563 
564 /*
565  * Examine the existing reserve map and determine how many
566  * huge pages in the specified range [f, t) are NOT currently
567  * represented.  This routine is called before a subsequent
568  * call to region_add that will actually modify the reserve
569  * map to add the specified range [f, t).  region_chg does
570  * not change the number of huge pages represented by the
571  * map.  A number of new file_region structures is added to the cache as a
572  * placeholder, for the subsequent region_add call to use. At least 1
573  * file_region structure is added.
574  *
575  * out_regions_needed is the number of regions added to the
576  * resv->adds_in_progress.  This value needs to be provided to a follow up call
577  * to region_add or region_abort for proper accounting.
578  *
579  * Returns the number of huge pages that need to be added to the existing
580  * reservation map for the range [f, t).  This number is greater or equal to
581  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
582  * is needed and can not be allocated.
583  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)584 static long region_chg(struct resv_map *resv, long f, long t,
585 		       long *out_regions_needed)
586 {
587 	long chg = 0;
588 
589 	spin_lock(&resv->lock);
590 
591 	/* Count how many hugepages in this range are NOT represented. */
592 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
593 				       out_regions_needed);
594 
595 	if (*out_regions_needed == 0)
596 		*out_regions_needed = 1;
597 
598 	if (allocate_file_region_entries(resv, *out_regions_needed))
599 		return -ENOMEM;
600 
601 	resv->adds_in_progress += *out_regions_needed;
602 
603 	spin_unlock(&resv->lock);
604 	return chg;
605 }
606 
607 /*
608  * Abort the in progress add operation.  The adds_in_progress field
609  * of the resv_map keeps track of the operations in progress between
610  * calls to region_chg and region_add.  Operations are sometimes
611  * aborted after the call to region_chg.  In such cases, region_abort
612  * is called to decrement the adds_in_progress counter. regions_needed
613  * is the value returned by the region_chg call, it is used to decrement
614  * the adds_in_progress counter.
615  *
616  * NOTE: The range arguments [f, t) are not needed or used in this
617  * routine.  They are kept to make reading the calling code easier as
618  * arguments will match the associated region_chg call.
619  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)620 static void region_abort(struct resv_map *resv, long f, long t,
621 			 long regions_needed)
622 {
623 	spin_lock(&resv->lock);
624 	VM_BUG_ON(!resv->region_cache_count);
625 	resv->adds_in_progress -= regions_needed;
626 	spin_unlock(&resv->lock);
627 }
628 
629 /*
630  * Delete the specified range [f, t) from the reserve map.  If the
631  * t parameter is LONG_MAX, this indicates that ALL regions after f
632  * should be deleted.  Locate the regions which intersect [f, t)
633  * and either trim, delete or split the existing regions.
634  *
635  * Returns the number of huge pages deleted from the reserve map.
636  * In the normal case, the return value is zero or more.  In the
637  * case where a region must be split, a new region descriptor must
638  * be allocated.  If the allocation fails, -ENOMEM will be returned.
639  * NOTE: If the parameter t == LONG_MAX, then we will never split
640  * a region and possibly return -ENOMEM.  Callers specifying
641  * t == LONG_MAX do not need to check for -ENOMEM error.
642  */
region_del(struct resv_map * resv,long f,long t)643 static long region_del(struct resv_map *resv, long f, long t)
644 {
645 	struct list_head *head = &resv->regions;
646 	struct file_region *rg, *trg;
647 	struct file_region *nrg = NULL;
648 	long del = 0;
649 
650 retry:
651 	spin_lock(&resv->lock);
652 	list_for_each_entry_safe(rg, trg, head, link) {
653 		/*
654 		 * Skip regions before the range to be deleted.  file_region
655 		 * ranges are normally of the form [from, to).  However, there
656 		 * may be a "placeholder" entry in the map which is of the form
657 		 * (from, to) with from == to.  Check for placeholder entries
658 		 * at the beginning of the range to be deleted.
659 		 */
660 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
661 			continue;
662 
663 		if (rg->from >= t)
664 			break;
665 
666 		if (f > rg->from && t < rg->to) { /* Must split region */
667 			/*
668 			 * Check for an entry in the cache before dropping
669 			 * lock and attempting allocation.
670 			 */
671 			if (!nrg &&
672 			    resv->region_cache_count > resv->adds_in_progress) {
673 				nrg = list_first_entry(&resv->region_cache,
674 							struct file_region,
675 							link);
676 				list_del(&nrg->link);
677 				resv->region_cache_count--;
678 			}
679 
680 			if (!nrg) {
681 				spin_unlock(&resv->lock);
682 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683 				if (!nrg)
684 					return -ENOMEM;
685 				goto retry;
686 			}
687 
688 			del += t - f;
689 			hugetlb_cgroup_uncharge_file_region(
690 				resv, rg, t - f, false);
691 
692 			/* New entry for end of split region */
693 			nrg->from = t;
694 			nrg->to = rg->to;
695 
696 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697 
698 			INIT_LIST_HEAD(&nrg->link);
699 
700 			/* Original entry is trimmed */
701 			rg->to = f;
702 
703 			list_add(&nrg->link, &rg->link);
704 			nrg = NULL;
705 			break;
706 		}
707 
708 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709 			del += rg->to - rg->from;
710 			hugetlb_cgroup_uncharge_file_region(resv, rg,
711 							    rg->to - rg->from, true);
712 			list_del(&rg->link);
713 			kfree(rg);
714 			continue;
715 		}
716 
717 		if (f <= rg->from) {	/* Trim beginning of region */
718 			hugetlb_cgroup_uncharge_file_region(resv, rg,
719 							    t - rg->from, false);
720 
721 			del += t - rg->from;
722 			rg->from = t;
723 		} else {		/* Trim end of region */
724 			hugetlb_cgroup_uncharge_file_region(resv, rg,
725 							    rg->to - f, false);
726 
727 			del += rg->to - f;
728 			rg->to = f;
729 		}
730 	}
731 
732 	spin_unlock(&resv->lock);
733 	kfree(nrg);
734 	return del;
735 }
736 
737 /*
738  * A rare out of memory error was encountered which prevented removal of
739  * the reserve map region for a page.  The huge page itself was free'ed
740  * and removed from the page cache.  This routine will adjust the subpool
741  * usage count, and the global reserve count if needed.  By incrementing
742  * these counts, the reserve map entry which could not be deleted will
743  * appear as a "reserved" entry instead of simply dangling with incorrect
744  * counts.
745  */
hugetlb_fix_reserve_counts(struct inode * inode)746 void hugetlb_fix_reserve_counts(struct inode *inode)
747 {
748 	struct hugepage_subpool *spool = subpool_inode(inode);
749 	long rsv_adjust;
750 	bool reserved = false;
751 
752 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
753 	if (rsv_adjust > 0) {
754 		struct hstate *h = hstate_inode(inode);
755 
756 		if (!hugetlb_acct_memory(h, 1))
757 			reserved = true;
758 	} else if (!rsv_adjust) {
759 		reserved = true;
760 	}
761 
762 	if (!reserved)
763 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
764 }
765 
766 /*
767  * Count and return the number of huge pages in the reserve map
768  * that intersect with the range [f, t).
769  */
region_count(struct resv_map * resv,long f,long t)770 static long region_count(struct resv_map *resv, long f, long t)
771 {
772 	struct list_head *head = &resv->regions;
773 	struct file_region *rg;
774 	long chg = 0;
775 
776 	spin_lock(&resv->lock);
777 	/* Locate each segment we overlap with, and count that overlap. */
778 	list_for_each_entry(rg, head, link) {
779 		long seg_from;
780 		long seg_to;
781 
782 		if (rg->to <= f)
783 			continue;
784 		if (rg->from >= t)
785 			break;
786 
787 		seg_from = max(rg->from, f);
788 		seg_to = min(rg->to, t);
789 
790 		chg += seg_to - seg_from;
791 	}
792 	spin_unlock(&resv->lock);
793 
794 	return chg;
795 }
796 
797 /*
798  * Convert the address within this vma to the page offset within
799  * the mapping, in pagecache page units; huge pages here.
800  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)801 static pgoff_t vma_hugecache_offset(struct hstate *h,
802 			struct vm_area_struct *vma, unsigned long address)
803 {
804 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
805 			(vma->vm_pgoff >> huge_page_order(h));
806 }
807 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)808 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809 				     unsigned long address)
810 {
811 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
812 }
813 EXPORT_SYMBOL_GPL(linear_hugepage_index);
814 
815 /*
816  * Return the size of the pages allocated when backing a VMA. In the majority
817  * cases this will be same size as used by the page table entries.
818  */
vma_kernel_pagesize(struct vm_area_struct * vma)819 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820 {
821 	if (vma->vm_ops && vma->vm_ops->pagesize)
822 		return vma->vm_ops->pagesize(vma);
823 	return PAGE_SIZE;
824 }
825 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
826 
827 /*
828  * Return the page size being used by the MMU to back a VMA. In the majority
829  * of cases, the page size used by the kernel matches the MMU size. On
830  * architectures where it differs, an architecture-specific 'strong'
831  * version of this symbol is required.
832  */
vma_mmu_pagesize(struct vm_area_struct * vma)833 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
834 {
835 	return vma_kernel_pagesize(vma);
836 }
837 
838 /*
839  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
840  * bits of the reservation map pointer, which are always clear due to
841  * alignment.
842  */
843 #define HPAGE_RESV_OWNER    (1UL << 0)
844 #define HPAGE_RESV_UNMAPPED (1UL << 1)
845 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
846 
847 /*
848  * These helpers are used to track how many pages are reserved for
849  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850  * is guaranteed to have their future faults succeed.
851  *
852  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853  * the reserve counters are updated with the hugetlb_lock held. It is safe
854  * to reset the VMA at fork() time as it is not in use yet and there is no
855  * chance of the global counters getting corrupted as a result of the values.
856  *
857  * The private mapping reservation is represented in a subtly different
858  * manner to a shared mapping.  A shared mapping has a region map associated
859  * with the underlying file, this region map represents the backing file
860  * pages which have ever had a reservation assigned which this persists even
861  * after the page is instantiated.  A private mapping has a region map
862  * associated with the original mmap which is attached to all VMAs which
863  * reference it, this region map represents those offsets which have consumed
864  * reservation ie. where pages have been instantiated.
865  */
get_vma_private_data(struct vm_area_struct * vma)866 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867 {
868 	return (unsigned long)vma->vm_private_data;
869 }
870 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)871 static void set_vma_private_data(struct vm_area_struct *vma,
872 							unsigned long value)
873 {
874 	vma->vm_private_data = (void *)value;
875 }
876 
877 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)878 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879 					  struct hugetlb_cgroup *h_cg,
880 					  struct hstate *h)
881 {
882 #ifdef CONFIG_CGROUP_HUGETLB
883 	if (!h_cg || !h) {
884 		resv_map->reservation_counter = NULL;
885 		resv_map->pages_per_hpage = 0;
886 		resv_map->css = NULL;
887 	} else {
888 		resv_map->reservation_counter =
889 			&h_cg->rsvd_hugepage[hstate_index(h)];
890 		resv_map->pages_per_hpage = pages_per_huge_page(h);
891 		resv_map->css = &h_cg->css;
892 	}
893 #endif
894 }
895 
resv_map_alloc(void)896 struct resv_map *resv_map_alloc(void)
897 {
898 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
899 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900 
901 	if (!resv_map || !rg) {
902 		kfree(resv_map);
903 		kfree(rg);
904 		return NULL;
905 	}
906 
907 	kref_init(&resv_map->refs);
908 	spin_lock_init(&resv_map->lock);
909 	INIT_LIST_HEAD(&resv_map->regions);
910 
911 	resv_map->adds_in_progress = 0;
912 	/*
913 	 * Initialize these to 0. On shared mappings, 0's here indicate these
914 	 * fields don't do cgroup accounting. On private mappings, these will be
915 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
916 	 * reservations are to be un-charged from here.
917 	 */
918 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
919 
920 	INIT_LIST_HEAD(&resv_map->region_cache);
921 	list_add(&rg->link, &resv_map->region_cache);
922 	resv_map->region_cache_count = 1;
923 
924 	return resv_map;
925 }
926 
resv_map_release(struct kref * ref)927 void resv_map_release(struct kref *ref)
928 {
929 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
930 	struct list_head *head = &resv_map->region_cache;
931 	struct file_region *rg, *trg;
932 
933 	/* Clear out any active regions before we release the map. */
934 	region_del(resv_map, 0, LONG_MAX);
935 
936 	/* ... and any entries left in the cache */
937 	list_for_each_entry_safe(rg, trg, head, link) {
938 		list_del(&rg->link);
939 		kfree(rg);
940 	}
941 
942 	VM_BUG_ON(resv_map->adds_in_progress);
943 
944 	kfree(resv_map);
945 }
946 
inode_resv_map(struct inode * inode)947 static inline struct resv_map *inode_resv_map(struct inode *inode)
948 {
949 	/*
950 	 * At inode evict time, i_mapping may not point to the original
951 	 * address space within the inode.  This original address space
952 	 * contains the pointer to the resv_map.  So, always use the
953 	 * address space embedded within the inode.
954 	 * The VERY common case is inode->mapping == &inode->i_data but,
955 	 * this may not be true for device special inodes.
956 	 */
957 	return (struct resv_map *)(&inode->i_data)->private_data;
958 }
959 
vma_resv_map(struct vm_area_struct * vma)960 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
961 {
962 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963 	if (vma->vm_flags & VM_MAYSHARE) {
964 		struct address_space *mapping = vma->vm_file->f_mapping;
965 		struct inode *inode = mapping->host;
966 
967 		return inode_resv_map(inode);
968 
969 	} else {
970 		return (struct resv_map *)(get_vma_private_data(vma) &
971 							~HPAGE_RESV_MASK);
972 	}
973 }
974 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)975 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
976 {
977 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
979 
980 	set_vma_private_data(vma, (get_vma_private_data(vma) &
981 				HPAGE_RESV_MASK) | (unsigned long)map);
982 }
983 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)984 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985 {
986 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988 
989 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
990 }
991 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)992 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993 {
994 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995 
996 	return (get_vma_private_data(vma) & flag) != 0;
997 }
998 
999 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)1000 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001 {
1002 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003 	if (!(vma->vm_flags & VM_MAYSHARE))
1004 		vma->vm_private_data = (void *)0;
1005 }
1006 
1007 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1008 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009 {
1010 	if (vma->vm_flags & VM_NORESERVE) {
1011 		/*
1012 		 * This address is already reserved by other process(chg == 0),
1013 		 * so, we should decrement reserved count. Without decrementing,
1014 		 * reserve count remains after releasing inode, because this
1015 		 * allocated page will go into page cache and is regarded as
1016 		 * coming from reserved pool in releasing step.  Currently, we
1017 		 * don't have any other solution to deal with this situation
1018 		 * properly, so add work-around here.
1019 		 */
1020 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021 			return true;
1022 		else
1023 			return false;
1024 	}
1025 
1026 	/* Shared mappings always use reserves */
1027 	if (vma->vm_flags & VM_MAYSHARE) {
1028 		/*
1029 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1030 		 * be a region map for all pages.  The only situation where
1031 		 * there is no region map is if a hole was punched via
1032 		 * fallocate.  In this case, there really are no reserves to
1033 		 * use.  This situation is indicated if chg != 0.
1034 		 */
1035 		if (chg)
1036 			return false;
1037 		else
1038 			return true;
1039 	}
1040 
1041 	/*
1042 	 * Only the process that called mmap() has reserves for
1043 	 * private mappings.
1044 	 */
1045 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046 		/*
1047 		 * Like the shared case above, a hole punch or truncate
1048 		 * could have been performed on the private mapping.
1049 		 * Examine the value of chg to determine if reserves
1050 		 * actually exist or were previously consumed.
1051 		 * Very Subtle - The value of chg comes from a previous
1052 		 * call to vma_needs_reserves().  The reserve map for
1053 		 * private mappings has different (opposite) semantics
1054 		 * than that of shared mappings.  vma_needs_reserves()
1055 		 * has already taken this difference in semantics into
1056 		 * account.  Therefore, the meaning of chg is the same
1057 		 * as in the shared case above.  Code could easily be
1058 		 * combined, but keeping it separate draws attention to
1059 		 * subtle differences.
1060 		 */
1061 		if (chg)
1062 			return false;
1063 		else
1064 			return true;
1065 	}
1066 
1067 	return false;
1068 }
1069 
enqueue_huge_page(struct hstate * h,struct page * page)1070 static void enqueue_huge_page(struct hstate *h, struct page *page)
1071 {
1072 	int nid = page_to_nid(page);
1073 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1074 	h->free_huge_pages++;
1075 	h->free_huge_pages_node[nid]++;
1076 	SetPageHugeFreed(page);
1077 }
1078 
dequeue_huge_page_node_exact(struct hstate * h,int nid)1079 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1080 {
1081 	struct page *page;
1082 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1083 
1084 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1085 		if (nocma && is_migrate_cma_page(page))
1086 			continue;
1087 
1088 		if (PageHWPoison(page))
1089 			continue;
1090 
1091 		list_move(&page->lru, &h->hugepage_activelist);
1092 		set_page_refcounted(page);
1093 		ClearPageHugeFreed(page);
1094 		h->free_huge_pages--;
1095 		h->free_huge_pages_node[nid]--;
1096 		return page;
1097 	}
1098 
1099 	return NULL;
1100 }
1101 
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1102 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1103 		nodemask_t *nmask)
1104 {
1105 	unsigned int cpuset_mems_cookie;
1106 	struct zonelist *zonelist;
1107 	struct zone *zone;
1108 	struct zoneref *z;
1109 	int node = NUMA_NO_NODE;
1110 
1111 	zonelist = node_zonelist(nid, gfp_mask);
1112 
1113 retry_cpuset:
1114 	cpuset_mems_cookie = read_mems_allowed_begin();
1115 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1116 		struct page *page;
1117 
1118 		if (!cpuset_zone_allowed(zone, gfp_mask))
1119 			continue;
1120 		/*
1121 		 * no need to ask again on the same node. Pool is node rather than
1122 		 * zone aware
1123 		 */
1124 		if (zone_to_nid(zone) == node)
1125 			continue;
1126 		node = zone_to_nid(zone);
1127 
1128 		page = dequeue_huge_page_node_exact(h, node);
1129 		if (page)
1130 			return page;
1131 	}
1132 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1133 		goto retry_cpuset;
1134 
1135 	return NULL;
1136 }
1137 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1138 static struct page *dequeue_huge_page_vma(struct hstate *h,
1139 				struct vm_area_struct *vma,
1140 				unsigned long address, int avoid_reserve,
1141 				long chg)
1142 {
1143 	struct page *page;
1144 	struct mempolicy *mpol;
1145 	gfp_t gfp_mask;
1146 	nodemask_t *nodemask;
1147 	int nid;
1148 
1149 	/*
1150 	 * A child process with MAP_PRIVATE mappings created by their parent
1151 	 * have no page reserves. This check ensures that reservations are
1152 	 * not "stolen". The child may still get SIGKILLed
1153 	 */
1154 	if (!vma_has_reserves(vma, chg) &&
1155 			h->free_huge_pages - h->resv_huge_pages == 0)
1156 		goto err;
1157 
1158 	/* If reserves cannot be used, ensure enough pages are in the pool */
1159 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1160 		goto err;
1161 
1162 	gfp_mask = htlb_alloc_mask(h);
1163 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1164 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1165 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1166 		SetPagePrivate(page);
1167 		h->resv_huge_pages--;
1168 	}
1169 
1170 	mpol_cond_put(mpol);
1171 	return page;
1172 
1173 err:
1174 	return NULL;
1175 }
1176 
1177 /*
1178  * common helper functions for hstate_next_node_to_{alloc|free}.
1179  * We may have allocated or freed a huge page based on a different
1180  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1181  * be outside of *nodes_allowed.  Ensure that we use an allowed
1182  * node for alloc or free.
1183  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1184 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1185 {
1186 	nid = next_node_in(nid, *nodes_allowed);
1187 	VM_BUG_ON(nid >= MAX_NUMNODES);
1188 
1189 	return nid;
1190 }
1191 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1192 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1193 {
1194 	if (!node_isset(nid, *nodes_allowed))
1195 		nid = next_node_allowed(nid, nodes_allowed);
1196 	return nid;
1197 }
1198 
1199 /*
1200  * returns the previously saved node ["this node"] from which to
1201  * allocate a persistent huge page for the pool and advance the
1202  * next node from which to allocate, handling wrap at end of node
1203  * mask.
1204  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1205 static int hstate_next_node_to_alloc(struct hstate *h,
1206 					nodemask_t *nodes_allowed)
1207 {
1208 	int nid;
1209 
1210 	VM_BUG_ON(!nodes_allowed);
1211 
1212 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1213 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1214 
1215 	return nid;
1216 }
1217 
1218 /*
1219  * helper for free_pool_huge_page() - return the previously saved
1220  * node ["this node"] from which to free a huge page.  Advance the
1221  * next node id whether or not we find a free huge page to free so
1222  * that the next attempt to free addresses the next node.
1223  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1224 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1225 {
1226 	int nid;
1227 
1228 	VM_BUG_ON(!nodes_allowed);
1229 
1230 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1231 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1232 
1233 	return nid;
1234 }
1235 
1236 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1237 	for (nr_nodes = nodes_weight(*mask);				\
1238 		nr_nodes > 0 &&						\
1239 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1240 		nr_nodes--)
1241 
1242 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1243 	for (nr_nodes = nodes_weight(*mask);				\
1244 		nr_nodes > 0 &&						\
1245 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1246 		nr_nodes--)
1247 
1248 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1249 static void destroy_compound_gigantic_page(struct page *page,
1250 					unsigned int order)
1251 {
1252 	int i;
1253 	int nr_pages = 1 << order;
1254 	struct page *p = page + 1;
1255 
1256 	atomic_set(compound_mapcount_ptr(page), 0);
1257 	atomic_set(compound_pincount_ptr(page), 0);
1258 
1259 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1260 		clear_compound_head(p);
1261 		set_page_refcounted(p);
1262 	}
1263 
1264 	set_compound_order(page, 0);
1265 	page[1].compound_nr = 0;
1266 	__ClearPageHead(page);
1267 }
1268 
free_gigantic_page(struct page * page,unsigned int order)1269 static void free_gigantic_page(struct page *page, unsigned int order)
1270 {
1271 	/*
1272 	 * If the page isn't allocated using the cma allocator,
1273 	 * cma_release() returns false.
1274 	 */
1275 #ifdef CONFIG_CMA
1276 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1277 		return;
1278 #endif
1279 
1280 	free_contig_range(page_to_pfn(page), 1 << order);
1281 }
1282 
1283 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1284 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1285 		int nid, nodemask_t *nodemask)
1286 {
1287 	unsigned long nr_pages = 1UL << huge_page_order(h);
1288 	if (nid == NUMA_NO_NODE)
1289 		nid = numa_mem_id();
1290 
1291 #ifdef CONFIG_CMA
1292 	{
1293 		struct page *page;
1294 		int node;
1295 
1296 		if (hugetlb_cma[nid]) {
1297 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1298 					huge_page_order(h),
1299 					GFP_KERNEL | __GFP_NOWARN);
1300 			if (page)
1301 				return page;
1302 		}
1303 
1304 		if (!(gfp_mask & __GFP_THISNODE)) {
1305 			for_each_node_mask(node, *nodemask) {
1306 				if (node == nid || !hugetlb_cma[node])
1307 					continue;
1308 
1309 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1310 						huge_page_order(h),
1311 						GFP_KERNEL | __GFP_NOWARN);
1312 				if (page)
1313 					return page;
1314 			}
1315 		}
1316 	}
1317 #endif
1318 
1319 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1320 }
1321 
1322 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1323 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1324 					int nid, nodemask_t *nodemask)
1325 {
1326 	return NULL;
1327 }
1328 #endif /* CONFIG_CONTIG_ALLOC */
1329 
1330 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1331 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1332 					int nid, nodemask_t *nodemask)
1333 {
1334 	return NULL;
1335 }
free_gigantic_page(struct page * page,unsigned int order)1336 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1337 static inline void destroy_compound_gigantic_page(struct page *page,
1338 						unsigned int order) { }
1339 #endif
1340 
update_and_free_page(struct hstate * h,struct page * page)1341 static void update_and_free_page(struct hstate *h, struct page *page)
1342 {
1343 	int i;
1344 	struct page *subpage = page;
1345 
1346 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1347 		return;
1348 
1349 	h->nr_huge_pages--;
1350 	h->nr_huge_pages_node[page_to_nid(page)]--;
1351 	for (i = 0; i < pages_per_huge_page(h);
1352 	     i++, subpage = mem_map_next(subpage, page, i)) {
1353 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1354 				1 << PG_referenced | 1 << PG_dirty |
1355 				1 << PG_active | 1 << PG_private |
1356 				1 << PG_writeback);
1357 	}
1358 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1359 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1360 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1361 	set_page_refcounted(page);
1362 	if (hstate_is_gigantic(h)) {
1363 		/*
1364 		 * Temporarily drop the hugetlb_lock, because
1365 		 * we might block in free_gigantic_page().
1366 		 */
1367 		spin_unlock(&hugetlb_lock);
1368 		destroy_compound_gigantic_page(page, huge_page_order(h));
1369 		free_gigantic_page(page, huge_page_order(h));
1370 		spin_lock(&hugetlb_lock);
1371 	} else {
1372 		__free_pages(page, huge_page_order(h));
1373 	}
1374 }
1375 
size_to_hstate(unsigned long size)1376 struct hstate *size_to_hstate(unsigned long size)
1377 {
1378 	struct hstate *h;
1379 
1380 	for_each_hstate(h) {
1381 		if (huge_page_size(h) == size)
1382 			return h;
1383 	}
1384 	return NULL;
1385 }
1386 
1387 /*
1388  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1389  * to hstate->hugepage_activelist.)
1390  *
1391  * This function can be called for tail pages, but never returns true for them.
1392  */
page_huge_active(struct page * page)1393 bool page_huge_active(struct page *page)
1394 {
1395 	return PageHeadHuge(page) && PagePrivate(&page[1]);
1396 }
1397 
1398 /* never called for tail page */
set_page_huge_active(struct page * page)1399 void set_page_huge_active(struct page *page)
1400 {
1401 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1402 	SetPagePrivate(&page[1]);
1403 }
1404 
clear_page_huge_active(struct page * page)1405 static void clear_page_huge_active(struct page *page)
1406 {
1407 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1408 	ClearPagePrivate(&page[1]);
1409 }
1410 
1411 /*
1412  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1413  * code
1414  */
PageHugeTemporary(struct page * page)1415 static inline bool PageHugeTemporary(struct page *page)
1416 {
1417 	if (!PageHuge(page))
1418 		return false;
1419 
1420 	return (unsigned long)page[2].mapping == -1U;
1421 }
1422 
SetPageHugeTemporary(struct page * page)1423 static inline void SetPageHugeTemporary(struct page *page)
1424 {
1425 	page[2].mapping = (void *)-1U;
1426 }
1427 
ClearPageHugeTemporary(struct page * page)1428 static inline void ClearPageHugeTemporary(struct page *page)
1429 {
1430 	page[2].mapping = NULL;
1431 }
1432 
__free_huge_page(struct page * page)1433 static void __free_huge_page(struct page *page)
1434 {
1435 	/*
1436 	 * Can't pass hstate in here because it is called from the
1437 	 * compound page destructor.
1438 	 */
1439 	struct hstate *h = page_hstate(page);
1440 	int nid = page_to_nid(page);
1441 	struct hugepage_subpool *spool =
1442 		(struct hugepage_subpool *)page_private(page);
1443 	bool restore_reserve;
1444 
1445 	VM_BUG_ON_PAGE(page_count(page), page);
1446 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1447 
1448 	set_page_private(page, 0);
1449 	page->mapping = NULL;
1450 	restore_reserve = PagePrivate(page);
1451 	ClearPagePrivate(page);
1452 
1453 	/*
1454 	 * If PagePrivate() was set on page, page allocation consumed a
1455 	 * reservation.  If the page was associated with a subpool, there
1456 	 * would have been a page reserved in the subpool before allocation
1457 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1458 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1459 	 * remove the reserved page from the subpool.
1460 	 */
1461 	if (!restore_reserve) {
1462 		/*
1463 		 * A return code of zero implies that the subpool will be
1464 		 * under its minimum size if the reservation is not restored
1465 		 * after page is free.  Therefore, force restore_reserve
1466 		 * operation.
1467 		 */
1468 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1469 			restore_reserve = true;
1470 	}
1471 
1472 	spin_lock(&hugetlb_lock);
1473 	clear_page_huge_active(page);
1474 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1475 				     pages_per_huge_page(h), page);
1476 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1477 					  pages_per_huge_page(h), page);
1478 	if (restore_reserve)
1479 		h->resv_huge_pages++;
1480 
1481 	if (PageHugeTemporary(page)) {
1482 		list_del(&page->lru);
1483 		ClearPageHugeTemporary(page);
1484 		update_and_free_page(h, page);
1485 	} else if (h->surplus_huge_pages_node[nid]) {
1486 		/* remove the page from active list */
1487 		list_del(&page->lru);
1488 		update_and_free_page(h, page);
1489 		h->surplus_huge_pages--;
1490 		h->surplus_huge_pages_node[nid]--;
1491 	} else {
1492 		arch_clear_hugepage_flags(page);
1493 		enqueue_huge_page(h, page);
1494 	}
1495 	spin_unlock(&hugetlb_lock);
1496 }
1497 
1498 /*
1499  * As free_huge_page() can be called from a non-task context, we have
1500  * to defer the actual freeing in a workqueue to prevent potential
1501  * hugetlb_lock deadlock.
1502  *
1503  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1504  * be freed and frees them one-by-one. As the page->mapping pointer is
1505  * going to be cleared in __free_huge_page() anyway, it is reused as the
1506  * llist_node structure of a lockless linked list of huge pages to be freed.
1507  */
1508 static LLIST_HEAD(hpage_freelist);
1509 
free_hpage_workfn(struct work_struct * work)1510 static void free_hpage_workfn(struct work_struct *work)
1511 {
1512 	struct llist_node *node;
1513 	struct page *page;
1514 
1515 	node = llist_del_all(&hpage_freelist);
1516 
1517 	while (node) {
1518 		page = container_of((struct address_space **)node,
1519 				     struct page, mapping);
1520 		node = node->next;
1521 		__free_huge_page(page);
1522 	}
1523 }
1524 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1525 
free_huge_page(struct page * page)1526 void free_huge_page(struct page *page)
1527 {
1528 	/*
1529 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1530 	 */
1531 	if (!in_task()) {
1532 		/*
1533 		 * Only call schedule_work() if hpage_freelist is previously
1534 		 * empty. Otherwise, schedule_work() had been called but the
1535 		 * workfn hasn't retrieved the list yet.
1536 		 */
1537 		if (llist_add((struct llist_node *)&page->mapping,
1538 			      &hpage_freelist))
1539 			schedule_work(&free_hpage_work);
1540 		return;
1541 	}
1542 
1543 	__free_huge_page(page);
1544 }
1545 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1546 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1547 {
1548 	INIT_LIST_HEAD(&page->lru);
1549 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1550 	set_hugetlb_cgroup(page, NULL);
1551 	set_hugetlb_cgroup_rsvd(page, NULL);
1552 	spin_lock(&hugetlb_lock);
1553 	h->nr_huge_pages++;
1554 	h->nr_huge_pages_node[nid]++;
1555 	ClearPageHugeFreed(page);
1556 	spin_unlock(&hugetlb_lock);
1557 }
1558 
prep_compound_gigantic_page(struct page * page,unsigned int order)1559 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1560 {
1561 	int i;
1562 	int nr_pages = 1 << order;
1563 	struct page *p = page + 1;
1564 
1565 	/* we rely on prep_new_huge_page to set the destructor */
1566 	set_compound_order(page, order);
1567 	__ClearPageReserved(page);
1568 	__SetPageHead(page);
1569 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1570 		/*
1571 		 * For gigantic hugepages allocated through bootmem at
1572 		 * boot, it's safer to be consistent with the not-gigantic
1573 		 * hugepages and clear the PG_reserved bit from all tail pages
1574 		 * too.  Otherwise drivers using get_user_pages() to access tail
1575 		 * pages may get the reference counting wrong if they see
1576 		 * PG_reserved set on a tail page (despite the head page not
1577 		 * having PG_reserved set).  Enforcing this consistency between
1578 		 * head and tail pages allows drivers to optimize away a check
1579 		 * on the head page when they need know if put_page() is needed
1580 		 * after get_user_pages().
1581 		 */
1582 		__ClearPageReserved(p);
1583 		set_page_count(p, 0);
1584 		set_compound_head(p, page);
1585 	}
1586 	atomic_set(compound_mapcount_ptr(page), -1);
1587 	atomic_set(compound_pincount_ptr(page), 0);
1588 }
1589 
1590 /*
1591  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1592  * transparent huge pages.  See the PageTransHuge() documentation for more
1593  * details.
1594  */
PageHuge(struct page * page)1595 int PageHuge(struct page *page)
1596 {
1597 	if (!PageCompound(page))
1598 		return 0;
1599 
1600 	page = compound_head(page);
1601 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1602 }
1603 EXPORT_SYMBOL_GPL(PageHuge);
1604 
1605 /*
1606  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1607  * normal or transparent huge pages.
1608  */
PageHeadHuge(struct page * page_head)1609 int PageHeadHuge(struct page *page_head)
1610 {
1611 	if (!PageHead(page_head))
1612 		return 0;
1613 
1614 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1615 }
1616 
1617 /*
1618  * Find and lock address space (mapping) in write mode.
1619  *
1620  * Upon entry, the page is locked which means that page_mapping() is
1621  * stable.  Due to locking order, we can only trylock_write.  If we can
1622  * not get the lock, simply return NULL to caller.
1623  */
hugetlb_page_mapping_lock_write(struct page * hpage)1624 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1625 {
1626 	struct address_space *mapping = page_mapping(hpage);
1627 
1628 	if (!mapping)
1629 		return mapping;
1630 
1631 	if (i_mmap_trylock_write(mapping))
1632 		return mapping;
1633 
1634 	return NULL;
1635 }
1636 
hugetlb_basepage_index(struct page * page)1637 pgoff_t hugetlb_basepage_index(struct page *page)
1638 {
1639 	struct page *page_head = compound_head(page);
1640 	pgoff_t index = page_index(page_head);
1641 	unsigned long compound_idx;
1642 
1643 	if (compound_order(page_head) >= MAX_ORDER)
1644 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1645 	else
1646 		compound_idx = page - page_head;
1647 
1648 	return (index << compound_order(page_head)) + compound_idx;
1649 }
1650 
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1651 static struct page *alloc_buddy_huge_page(struct hstate *h,
1652 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1653 		nodemask_t *node_alloc_noretry)
1654 {
1655 	int order = huge_page_order(h);
1656 	struct page *page;
1657 	bool alloc_try_hard = true;
1658 
1659 	/*
1660 	 * By default we always try hard to allocate the page with
1661 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1662 	 * a loop (to adjust global huge page counts) and previous allocation
1663 	 * failed, do not continue to try hard on the same node.  Use the
1664 	 * node_alloc_noretry bitmap to manage this state information.
1665 	 */
1666 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1667 		alloc_try_hard = false;
1668 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1669 	if (alloc_try_hard)
1670 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1671 	if (nid == NUMA_NO_NODE)
1672 		nid = numa_mem_id();
1673 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1674 	if (page)
1675 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1676 	else
1677 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1678 
1679 	/*
1680 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1681 	 * indicates an overall state change.  Clear bit so that we resume
1682 	 * normal 'try hard' allocations.
1683 	 */
1684 	if (node_alloc_noretry && page && !alloc_try_hard)
1685 		node_clear(nid, *node_alloc_noretry);
1686 
1687 	/*
1688 	 * If we tried hard to get a page but failed, set bit so that
1689 	 * subsequent attempts will not try as hard until there is an
1690 	 * overall state change.
1691 	 */
1692 	if (node_alloc_noretry && !page && alloc_try_hard)
1693 		node_set(nid, *node_alloc_noretry);
1694 
1695 	return page;
1696 }
1697 
1698 /*
1699  * Common helper to allocate a fresh hugetlb page. All specific allocators
1700  * should use this function to get new hugetlb pages
1701  */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1702 static struct page *alloc_fresh_huge_page(struct hstate *h,
1703 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1704 		nodemask_t *node_alloc_noretry)
1705 {
1706 	struct page *page;
1707 
1708 	if (hstate_is_gigantic(h))
1709 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1710 	else
1711 		page = alloc_buddy_huge_page(h, gfp_mask,
1712 				nid, nmask, node_alloc_noretry);
1713 	if (!page)
1714 		return NULL;
1715 
1716 	if (hstate_is_gigantic(h))
1717 		prep_compound_gigantic_page(page, huge_page_order(h));
1718 	prep_new_huge_page(h, page, page_to_nid(page));
1719 
1720 	return page;
1721 }
1722 
1723 /*
1724  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1725  * manner.
1726  */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)1727 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1728 				nodemask_t *node_alloc_noretry)
1729 {
1730 	struct page *page;
1731 	int nr_nodes, node;
1732 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1733 
1734 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1735 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1736 						node_alloc_noretry);
1737 		if (page)
1738 			break;
1739 	}
1740 
1741 	if (!page)
1742 		return 0;
1743 
1744 	put_page(page); /* free it into the hugepage allocator */
1745 
1746 	return 1;
1747 }
1748 
1749 /*
1750  * Free huge page from pool from next node to free.
1751  * Attempt to keep persistent huge pages more or less
1752  * balanced over allowed nodes.
1753  * Called with hugetlb_lock locked.
1754  */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1755 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1756 							 bool acct_surplus)
1757 {
1758 	int nr_nodes, node;
1759 	int ret = 0;
1760 
1761 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1762 		/*
1763 		 * If we're returning unused surplus pages, only examine
1764 		 * nodes with surplus pages.
1765 		 */
1766 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1767 		    !list_empty(&h->hugepage_freelists[node])) {
1768 			struct page *page =
1769 				list_entry(h->hugepage_freelists[node].next,
1770 					  struct page, lru);
1771 			list_del(&page->lru);
1772 			h->free_huge_pages--;
1773 			h->free_huge_pages_node[node]--;
1774 			if (acct_surplus) {
1775 				h->surplus_huge_pages--;
1776 				h->surplus_huge_pages_node[node]--;
1777 			}
1778 			update_and_free_page(h, page);
1779 			ret = 1;
1780 			break;
1781 		}
1782 	}
1783 
1784 	return ret;
1785 }
1786 
1787 /*
1788  * Dissolve a given free hugepage into free buddy pages. This function does
1789  * nothing for in-use hugepages and non-hugepages.
1790  * This function returns values like below:
1791  *
1792  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1793  *          (allocated or reserved.)
1794  *       0: successfully dissolved free hugepages or the page is not a
1795  *          hugepage (considered as already dissolved)
1796  */
dissolve_free_huge_page(struct page * page)1797 int dissolve_free_huge_page(struct page *page)
1798 {
1799 	int rc = -EBUSY;
1800 
1801 retry:
1802 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1803 	if (!PageHuge(page))
1804 		return 0;
1805 
1806 	spin_lock(&hugetlb_lock);
1807 	if (!PageHuge(page)) {
1808 		rc = 0;
1809 		goto out;
1810 	}
1811 
1812 	if (!page_count(page)) {
1813 		struct page *head = compound_head(page);
1814 		struct hstate *h = page_hstate(head);
1815 		int nid = page_to_nid(head);
1816 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1817 			goto out;
1818 
1819 		/*
1820 		 * We should make sure that the page is already on the free list
1821 		 * when it is dissolved.
1822 		 */
1823 		if (unlikely(!PageHugeFreed(head))) {
1824 			spin_unlock(&hugetlb_lock);
1825 			cond_resched();
1826 
1827 			/*
1828 			 * Theoretically, we should return -EBUSY when we
1829 			 * encounter this race. In fact, we have a chance
1830 			 * to successfully dissolve the page if we do a
1831 			 * retry. Because the race window is quite small.
1832 			 * If we seize this opportunity, it is an optimization
1833 			 * for increasing the success rate of dissolving page.
1834 			 */
1835 			goto retry;
1836 		}
1837 
1838 		/*
1839 		 * Move PageHWPoison flag from head page to the raw error page,
1840 		 * which makes any subpages rather than the error page reusable.
1841 		 */
1842 		if (PageHWPoison(head) && page != head) {
1843 			SetPageHWPoison(page);
1844 			ClearPageHWPoison(head);
1845 		}
1846 		list_del(&head->lru);
1847 		h->free_huge_pages--;
1848 		h->free_huge_pages_node[nid]--;
1849 		h->max_huge_pages--;
1850 		update_and_free_page(h, head);
1851 		rc = 0;
1852 	}
1853 out:
1854 	spin_unlock(&hugetlb_lock);
1855 	return rc;
1856 }
1857 
1858 /*
1859  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1860  * make specified memory blocks removable from the system.
1861  * Note that this will dissolve a free gigantic hugepage completely, if any
1862  * part of it lies within the given range.
1863  * Also note that if dissolve_free_huge_page() returns with an error, all
1864  * free hugepages that were dissolved before that error are lost.
1865  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1866 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1867 {
1868 	unsigned long pfn;
1869 	struct page *page;
1870 	int rc = 0;
1871 
1872 	if (!hugepages_supported())
1873 		return rc;
1874 
1875 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1876 		page = pfn_to_page(pfn);
1877 		rc = dissolve_free_huge_page(page);
1878 		if (rc)
1879 			break;
1880 	}
1881 
1882 	return rc;
1883 }
1884 
1885 /*
1886  * Allocates a fresh surplus page from the page allocator.
1887  */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1888 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1889 		int nid, nodemask_t *nmask)
1890 {
1891 	struct page *page = NULL;
1892 
1893 	if (hstate_is_gigantic(h))
1894 		return NULL;
1895 
1896 	spin_lock(&hugetlb_lock);
1897 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1898 		goto out_unlock;
1899 	spin_unlock(&hugetlb_lock);
1900 
1901 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1902 	if (!page)
1903 		return NULL;
1904 
1905 	spin_lock(&hugetlb_lock);
1906 	/*
1907 	 * We could have raced with the pool size change.
1908 	 * Double check that and simply deallocate the new page
1909 	 * if we would end up overcommiting the surpluses. Abuse
1910 	 * temporary page to workaround the nasty free_huge_page
1911 	 * codeflow
1912 	 */
1913 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1914 		SetPageHugeTemporary(page);
1915 		spin_unlock(&hugetlb_lock);
1916 		put_page(page);
1917 		return NULL;
1918 	} else {
1919 		h->surplus_huge_pages++;
1920 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1921 	}
1922 
1923 out_unlock:
1924 	spin_unlock(&hugetlb_lock);
1925 
1926 	return page;
1927 }
1928 
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1929 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1930 				     int nid, nodemask_t *nmask)
1931 {
1932 	struct page *page;
1933 
1934 	if (hstate_is_gigantic(h))
1935 		return NULL;
1936 
1937 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1938 	if (!page)
1939 		return NULL;
1940 
1941 	/*
1942 	 * We do not account these pages as surplus because they are only
1943 	 * temporary and will be released properly on the last reference
1944 	 */
1945 	SetPageHugeTemporary(page);
1946 
1947 	return page;
1948 }
1949 
1950 /*
1951  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1952  */
1953 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1954 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1955 		struct vm_area_struct *vma, unsigned long addr)
1956 {
1957 	struct page *page;
1958 	struct mempolicy *mpol;
1959 	gfp_t gfp_mask = htlb_alloc_mask(h);
1960 	int nid;
1961 	nodemask_t *nodemask;
1962 
1963 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1964 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1965 	mpol_cond_put(mpol);
1966 
1967 	return page;
1968 }
1969 
1970 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)1971 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1972 		nodemask_t *nmask, gfp_t gfp_mask)
1973 {
1974 	spin_lock(&hugetlb_lock);
1975 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1976 		struct page *page;
1977 
1978 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1979 		if (page) {
1980 			spin_unlock(&hugetlb_lock);
1981 			return page;
1982 		}
1983 	}
1984 	spin_unlock(&hugetlb_lock);
1985 
1986 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1987 }
1988 
1989 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1990 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1991 		unsigned long address)
1992 {
1993 	struct mempolicy *mpol;
1994 	nodemask_t *nodemask;
1995 	struct page *page;
1996 	gfp_t gfp_mask;
1997 	int node;
1998 
1999 	gfp_mask = htlb_alloc_mask(h);
2000 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2001 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2002 	mpol_cond_put(mpol);
2003 
2004 	return page;
2005 }
2006 
2007 /*
2008  * Increase the hugetlb pool such that it can accommodate a reservation
2009  * of size 'delta'.
2010  */
gather_surplus_pages(struct hstate * h,int delta)2011 static int gather_surplus_pages(struct hstate *h, int delta)
2012 	__must_hold(&hugetlb_lock)
2013 {
2014 	struct list_head surplus_list;
2015 	struct page *page, *tmp;
2016 	int ret, i;
2017 	int needed, allocated;
2018 	bool alloc_ok = true;
2019 
2020 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2021 	if (needed <= 0) {
2022 		h->resv_huge_pages += delta;
2023 		return 0;
2024 	}
2025 
2026 	allocated = 0;
2027 	INIT_LIST_HEAD(&surplus_list);
2028 
2029 	ret = -ENOMEM;
2030 retry:
2031 	spin_unlock(&hugetlb_lock);
2032 	for (i = 0; i < needed; i++) {
2033 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2034 				NUMA_NO_NODE, NULL);
2035 		if (!page) {
2036 			alloc_ok = false;
2037 			break;
2038 		}
2039 		list_add(&page->lru, &surplus_list);
2040 		cond_resched();
2041 	}
2042 	allocated += i;
2043 
2044 	/*
2045 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2046 	 * because either resv_huge_pages or free_huge_pages may have changed.
2047 	 */
2048 	spin_lock(&hugetlb_lock);
2049 	needed = (h->resv_huge_pages + delta) -
2050 			(h->free_huge_pages + allocated);
2051 	if (needed > 0) {
2052 		if (alloc_ok)
2053 			goto retry;
2054 		/*
2055 		 * We were not able to allocate enough pages to
2056 		 * satisfy the entire reservation so we free what
2057 		 * we've allocated so far.
2058 		 */
2059 		goto free;
2060 	}
2061 	/*
2062 	 * The surplus_list now contains _at_least_ the number of extra pages
2063 	 * needed to accommodate the reservation.  Add the appropriate number
2064 	 * of pages to the hugetlb pool and free the extras back to the buddy
2065 	 * allocator.  Commit the entire reservation here to prevent another
2066 	 * process from stealing the pages as they are added to the pool but
2067 	 * before they are reserved.
2068 	 */
2069 	needed += allocated;
2070 	h->resv_huge_pages += delta;
2071 	ret = 0;
2072 
2073 	/* Free the needed pages to the hugetlb pool */
2074 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2075 		if ((--needed) < 0)
2076 			break;
2077 		/*
2078 		 * This page is now managed by the hugetlb allocator and has
2079 		 * no users -- drop the buddy allocator's reference.
2080 		 */
2081 		put_page_testzero(page);
2082 		VM_BUG_ON_PAGE(page_count(page), page);
2083 		enqueue_huge_page(h, page);
2084 	}
2085 free:
2086 	spin_unlock(&hugetlb_lock);
2087 
2088 	/* Free unnecessary surplus pages to the buddy allocator */
2089 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2090 		put_page(page);
2091 	spin_lock(&hugetlb_lock);
2092 
2093 	return ret;
2094 }
2095 
2096 /*
2097  * This routine has two main purposes:
2098  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2099  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2100  *    to the associated reservation map.
2101  * 2) Free any unused surplus pages that may have been allocated to satisfy
2102  *    the reservation.  As many as unused_resv_pages may be freed.
2103  *
2104  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2105  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2106  * we must make sure nobody else can claim pages we are in the process of
2107  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2108  * number of huge pages we plan to free when dropping the lock.
2109  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2110 static void return_unused_surplus_pages(struct hstate *h,
2111 					unsigned long unused_resv_pages)
2112 {
2113 	unsigned long nr_pages;
2114 
2115 	/* Cannot return gigantic pages currently */
2116 	if (hstate_is_gigantic(h))
2117 		goto out;
2118 
2119 	/*
2120 	 * Part (or even all) of the reservation could have been backed
2121 	 * by pre-allocated pages. Only free surplus pages.
2122 	 */
2123 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2124 
2125 	/*
2126 	 * We want to release as many surplus pages as possible, spread
2127 	 * evenly across all nodes with memory. Iterate across these nodes
2128 	 * until we can no longer free unreserved surplus pages. This occurs
2129 	 * when the nodes with surplus pages have no free pages.
2130 	 * free_pool_huge_page() will balance the freed pages across the
2131 	 * on-line nodes with memory and will handle the hstate accounting.
2132 	 *
2133 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2134 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2135 	 * to cover subsequent pages we may free.
2136 	 */
2137 	while (nr_pages--) {
2138 		h->resv_huge_pages--;
2139 		unused_resv_pages--;
2140 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2141 			goto out;
2142 		cond_resched_lock(&hugetlb_lock);
2143 	}
2144 
2145 out:
2146 	/* Fully uncommit the reservation */
2147 	h->resv_huge_pages -= unused_resv_pages;
2148 }
2149 
2150 
2151 /*
2152  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2153  * are used by the huge page allocation routines to manage reservations.
2154  *
2155  * vma_needs_reservation is called to determine if the huge page at addr
2156  * within the vma has an associated reservation.  If a reservation is
2157  * needed, the value 1 is returned.  The caller is then responsible for
2158  * managing the global reservation and subpool usage counts.  After
2159  * the huge page has been allocated, vma_commit_reservation is called
2160  * to add the page to the reservation map.  If the page allocation fails,
2161  * the reservation must be ended instead of committed.  vma_end_reservation
2162  * is called in such cases.
2163  *
2164  * In the normal case, vma_commit_reservation returns the same value
2165  * as the preceding vma_needs_reservation call.  The only time this
2166  * is not the case is if a reserve map was changed between calls.  It
2167  * is the responsibility of the caller to notice the difference and
2168  * take appropriate action.
2169  *
2170  * vma_add_reservation is used in error paths where a reservation must
2171  * be restored when a newly allocated huge page must be freed.  It is
2172  * to be called after calling vma_needs_reservation to determine if a
2173  * reservation exists.
2174  */
2175 enum vma_resv_mode {
2176 	VMA_NEEDS_RESV,
2177 	VMA_COMMIT_RESV,
2178 	VMA_END_RESV,
2179 	VMA_ADD_RESV,
2180 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2181 static long __vma_reservation_common(struct hstate *h,
2182 				struct vm_area_struct *vma, unsigned long addr,
2183 				enum vma_resv_mode mode)
2184 {
2185 	struct resv_map *resv;
2186 	pgoff_t idx;
2187 	long ret;
2188 	long dummy_out_regions_needed;
2189 
2190 	resv = vma_resv_map(vma);
2191 	if (!resv)
2192 		return 1;
2193 
2194 	idx = vma_hugecache_offset(h, vma, addr);
2195 	switch (mode) {
2196 	case VMA_NEEDS_RESV:
2197 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2198 		/* We assume that vma_reservation_* routines always operate on
2199 		 * 1 page, and that adding to resv map a 1 page entry can only
2200 		 * ever require 1 region.
2201 		 */
2202 		VM_BUG_ON(dummy_out_regions_needed != 1);
2203 		break;
2204 	case VMA_COMMIT_RESV:
2205 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2206 		/* region_add calls of range 1 should never fail. */
2207 		VM_BUG_ON(ret < 0);
2208 		break;
2209 	case VMA_END_RESV:
2210 		region_abort(resv, idx, idx + 1, 1);
2211 		ret = 0;
2212 		break;
2213 	case VMA_ADD_RESV:
2214 		if (vma->vm_flags & VM_MAYSHARE) {
2215 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2216 			/* region_add calls of range 1 should never fail. */
2217 			VM_BUG_ON(ret < 0);
2218 		} else {
2219 			region_abort(resv, idx, idx + 1, 1);
2220 			ret = region_del(resv, idx, idx + 1);
2221 		}
2222 		break;
2223 	default:
2224 		BUG();
2225 	}
2226 
2227 	if (vma->vm_flags & VM_MAYSHARE)
2228 		return ret;
2229 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2230 		/*
2231 		 * In most cases, reserves always exist for private mappings.
2232 		 * However, a file associated with mapping could have been
2233 		 * hole punched or truncated after reserves were consumed.
2234 		 * As subsequent fault on such a range will not use reserves.
2235 		 * Subtle - The reserve map for private mappings has the
2236 		 * opposite meaning than that of shared mappings.  If NO
2237 		 * entry is in the reserve map, it means a reservation exists.
2238 		 * If an entry exists in the reserve map, it means the
2239 		 * reservation has already been consumed.  As a result, the
2240 		 * return value of this routine is the opposite of the
2241 		 * value returned from reserve map manipulation routines above.
2242 		 */
2243 		if (ret)
2244 			return 0;
2245 		else
2246 			return 1;
2247 	}
2248 	else
2249 		return ret < 0 ? ret : 0;
2250 }
2251 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2252 static long vma_needs_reservation(struct hstate *h,
2253 			struct vm_area_struct *vma, unsigned long addr)
2254 {
2255 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2256 }
2257 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2258 static long vma_commit_reservation(struct hstate *h,
2259 			struct vm_area_struct *vma, unsigned long addr)
2260 {
2261 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2262 }
2263 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2264 static void vma_end_reservation(struct hstate *h,
2265 			struct vm_area_struct *vma, unsigned long addr)
2266 {
2267 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2268 }
2269 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2270 static long vma_add_reservation(struct hstate *h,
2271 			struct vm_area_struct *vma, unsigned long addr)
2272 {
2273 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2274 }
2275 
2276 /*
2277  * This routine is called to restore a reservation on error paths.  In the
2278  * specific error paths, a huge page was allocated (via alloc_huge_page)
2279  * and is about to be freed.  If a reservation for the page existed,
2280  * alloc_huge_page would have consumed the reservation and set PagePrivate
2281  * in the newly allocated page.  When the page is freed via free_huge_page,
2282  * the global reservation count will be incremented if PagePrivate is set.
2283  * However, free_huge_page can not adjust the reserve map.  Adjust the
2284  * reserve map here to be consistent with global reserve count adjustments
2285  * to be made by free_huge_page.
2286  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2287 static void restore_reserve_on_error(struct hstate *h,
2288 			struct vm_area_struct *vma, unsigned long address,
2289 			struct page *page)
2290 {
2291 	if (unlikely(PagePrivate(page))) {
2292 		long rc = vma_needs_reservation(h, vma, address);
2293 
2294 		if (unlikely(rc < 0)) {
2295 			/*
2296 			 * Rare out of memory condition in reserve map
2297 			 * manipulation.  Clear PagePrivate so that
2298 			 * global reserve count will not be incremented
2299 			 * by free_huge_page.  This will make it appear
2300 			 * as though the reservation for this page was
2301 			 * consumed.  This may prevent the task from
2302 			 * faulting in the page at a later time.  This
2303 			 * is better than inconsistent global huge page
2304 			 * accounting of reserve counts.
2305 			 */
2306 			ClearPagePrivate(page);
2307 		} else if (rc) {
2308 			rc = vma_add_reservation(h, vma, address);
2309 			if (unlikely(rc < 0))
2310 				/*
2311 				 * See above comment about rare out of
2312 				 * memory condition.
2313 				 */
2314 				ClearPagePrivate(page);
2315 		} else
2316 			vma_end_reservation(h, vma, address);
2317 	}
2318 }
2319 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2320 struct page *alloc_huge_page(struct vm_area_struct *vma,
2321 				    unsigned long addr, int avoid_reserve)
2322 {
2323 	struct hugepage_subpool *spool = subpool_vma(vma);
2324 	struct hstate *h = hstate_vma(vma);
2325 	struct page *page;
2326 	long map_chg, map_commit;
2327 	long gbl_chg;
2328 	int ret, idx;
2329 	struct hugetlb_cgroup *h_cg;
2330 	bool deferred_reserve;
2331 
2332 	idx = hstate_index(h);
2333 	/*
2334 	 * Examine the region/reserve map to determine if the process
2335 	 * has a reservation for the page to be allocated.  A return
2336 	 * code of zero indicates a reservation exists (no change).
2337 	 */
2338 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2339 	if (map_chg < 0)
2340 		return ERR_PTR(-ENOMEM);
2341 
2342 	/*
2343 	 * Processes that did not create the mapping will have no
2344 	 * reserves as indicated by the region/reserve map. Check
2345 	 * that the allocation will not exceed the subpool limit.
2346 	 * Allocations for MAP_NORESERVE mappings also need to be
2347 	 * checked against any subpool limit.
2348 	 */
2349 	if (map_chg || avoid_reserve) {
2350 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2351 		if (gbl_chg < 0) {
2352 			vma_end_reservation(h, vma, addr);
2353 			return ERR_PTR(-ENOSPC);
2354 		}
2355 
2356 		/*
2357 		 * Even though there was no reservation in the region/reserve
2358 		 * map, there could be reservations associated with the
2359 		 * subpool that can be used.  This would be indicated if the
2360 		 * return value of hugepage_subpool_get_pages() is zero.
2361 		 * However, if avoid_reserve is specified we still avoid even
2362 		 * the subpool reservations.
2363 		 */
2364 		if (avoid_reserve)
2365 			gbl_chg = 1;
2366 	}
2367 
2368 	/* If this allocation is not consuming a reservation, charge it now.
2369 	 */
2370 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2371 	if (deferred_reserve) {
2372 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2373 			idx, pages_per_huge_page(h), &h_cg);
2374 		if (ret)
2375 			goto out_subpool_put;
2376 	}
2377 
2378 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2379 	if (ret)
2380 		goto out_uncharge_cgroup_reservation;
2381 
2382 	spin_lock(&hugetlb_lock);
2383 	/*
2384 	 * glb_chg is passed to indicate whether or not a page must be taken
2385 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2386 	 * a reservation exists for the allocation.
2387 	 */
2388 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2389 	if (!page) {
2390 		spin_unlock(&hugetlb_lock);
2391 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2392 		if (!page)
2393 			goto out_uncharge_cgroup;
2394 		spin_lock(&hugetlb_lock);
2395 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2396 			SetPagePrivate(page);
2397 			h->resv_huge_pages--;
2398 		}
2399 		list_add(&page->lru, &h->hugepage_activelist);
2400 		/* Fall through */
2401 	}
2402 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2403 	/* If allocation is not consuming a reservation, also store the
2404 	 * hugetlb_cgroup pointer on the page.
2405 	 */
2406 	if (deferred_reserve) {
2407 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2408 						  h_cg, page);
2409 	}
2410 
2411 	spin_unlock(&hugetlb_lock);
2412 
2413 	set_page_private(page, (unsigned long)spool);
2414 
2415 	map_commit = vma_commit_reservation(h, vma, addr);
2416 	if (unlikely(map_chg > map_commit)) {
2417 		/*
2418 		 * The page was added to the reservation map between
2419 		 * vma_needs_reservation and vma_commit_reservation.
2420 		 * This indicates a race with hugetlb_reserve_pages.
2421 		 * Adjust for the subpool count incremented above AND
2422 		 * in hugetlb_reserve_pages for the same page.  Also,
2423 		 * the reservation count added in hugetlb_reserve_pages
2424 		 * no longer applies.
2425 		 */
2426 		long rsv_adjust;
2427 
2428 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2429 		hugetlb_acct_memory(h, -rsv_adjust);
2430 		if (deferred_reserve)
2431 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2432 					pages_per_huge_page(h), page);
2433 	}
2434 	return page;
2435 
2436 out_uncharge_cgroup:
2437 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2438 out_uncharge_cgroup_reservation:
2439 	if (deferred_reserve)
2440 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2441 						    h_cg);
2442 out_subpool_put:
2443 	if (map_chg || avoid_reserve)
2444 		hugepage_subpool_put_pages(spool, 1);
2445 	vma_end_reservation(h, vma, addr);
2446 	return ERR_PTR(-ENOSPC);
2447 }
2448 
2449 int alloc_bootmem_huge_page(struct hstate *h)
2450 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h)2451 int __alloc_bootmem_huge_page(struct hstate *h)
2452 {
2453 	struct huge_bootmem_page *m;
2454 	int nr_nodes, node;
2455 
2456 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2457 		void *addr;
2458 
2459 		addr = memblock_alloc_try_nid_raw(
2460 				huge_page_size(h), huge_page_size(h),
2461 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2462 		if (addr) {
2463 			/*
2464 			 * Use the beginning of the huge page to store the
2465 			 * huge_bootmem_page struct (until gather_bootmem
2466 			 * puts them into the mem_map).
2467 			 */
2468 			m = addr;
2469 			goto found;
2470 		}
2471 	}
2472 	return 0;
2473 
2474 found:
2475 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2476 	/* Put them into a private list first because mem_map is not up yet */
2477 	INIT_LIST_HEAD(&m->list);
2478 	list_add(&m->list, &huge_boot_pages);
2479 	m->hstate = h;
2480 	return 1;
2481 }
2482 
2483 /*
2484  * Put bootmem huge pages into the standard lists after mem_map is up.
2485  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2486  */
gather_bootmem_prealloc(void)2487 static void __init gather_bootmem_prealloc(void)
2488 {
2489 	struct huge_bootmem_page *m;
2490 
2491 	list_for_each_entry(m, &huge_boot_pages, list) {
2492 		struct page *page = virt_to_page(m);
2493 		struct hstate *h = m->hstate;
2494 
2495 		VM_BUG_ON(!hstate_is_gigantic(h));
2496 		WARN_ON(page_count(page) != 1);
2497 		prep_compound_gigantic_page(page, huge_page_order(h));
2498 		WARN_ON(PageReserved(page));
2499 		prep_new_huge_page(h, page, page_to_nid(page));
2500 		put_page(page); /* free it into the hugepage allocator */
2501 
2502 		/*
2503 		 * We need to restore the 'stolen' pages to totalram_pages
2504 		 * in order to fix confusing memory reports from free(1) and
2505 		 * other side-effects, like CommitLimit going negative.
2506 		 */
2507 		adjust_managed_page_count(page, pages_per_huge_page(h));
2508 		cond_resched();
2509 	}
2510 }
2511 
hugetlb_hstate_alloc_pages(struct hstate * h)2512 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2513 {
2514 	unsigned long i;
2515 	nodemask_t *node_alloc_noretry;
2516 
2517 	if (!hstate_is_gigantic(h)) {
2518 		/*
2519 		 * Bit mask controlling how hard we retry per-node allocations.
2520 		 * Ignore errors as lower level routines can deal with
2521 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2522 		 * time, we are likely in bigger trouble.
2523 		 */
2524 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2525 						GFP_KERNEL);
2526 	} else {
2527 		/* allocations done at boot time */
2528 		node_alloc_noretry = NULL;
2529 	}
2530 
2531 	/* bit mask controlling how hard we retry per-node allocations */
2532 	if (node_alloc_noretry)
2533 		nodes_clear(*node_alloc_noretry);
2534 
2535 	for (i = 0; i < h->max_huge_pages; ++i) {
2536 		if (hstate_is_gigantic(h)) {
2537 			if (hugetlb_cma_size) {
2538 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2539 				goto free;
2540 			}
2541 			if (!alloc_bootmem_huge_page(h))
2542 				break;
2543 		} else if (!alloc_pool_huge_page(h,
2544 					 &node_states[N_MEMORY],
2545 					 node_alloc_noretry))
2546 			break;
2547 		cond_resched();
2548 	}
2549 	if (i < h->max_huge_pages) {
2550 		char buf[32];
2551 
2552 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2553 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2554 			h->max_huge_pages, buf, i);
2555 		h->max_huge_pages = i;
2556 	}
2557 free:
2558 	kfree(node_alloc_noretry);
2559 }
2560 
hugetlb_init_hstates(void)2561 static void __init hugetlb_init_hstates(void)
2562 {
2563 	struct hstate *h;
2564 
2565 	for_each_hstate(h) {
2566 		if (minimum_order > huge_page_order(h))
2567 			minimum_order = huge_page_order(h);
2568 
2569 		/* oversize hugepages were init'ed in early boot */
2570 		if (!hstate_is_gigantic(h))
2571 			hugetlb_hstate_alloc_pages(h);
2572 	}
2573 	VM_BUG_ON(minimum_order == UINT_MAX);
2574 }
2575 
report_hugepages(void)2576 static void __init report_hugepages(void)
2577 {
2578 	struct hstate *h;
2579 
2580 	for_each_hstate(h) {
2581 		char buf[32];
2582 
2583 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2584 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2585 			buf, h->free_huge_pages);
2586 	}
2587 }
2588 
2589 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2590 static void try_to_free_low(struct hstate *h, unsigned long count,
2591 						nodemask_t *nodes_allowed)
2592 {
2593 	int i;
2594 
2595 	if (hstate_is_gigantic(h))
2596 		return;
2597 
2598 	for_each_node_mask(i, *nodes_allowed) {
2599 		struct page *page, *next;
2600 		struct list_head *freel = &h->hugepage_freelists[i];
2601 		list_for_each_entry_safe(page, next, freel, lru) {
2602 			if (count >= h->nr_huge_pages)
2603 				return;
2604 			if (PageHighMem(page))
2605 				continue;
2606 			list_del(&page->lru);
2607 			update_and_free_page(h, page);
2608 			h->free_huge_pages--;
2609 			h->free_huge_pages_node[page_to_nid(page)]--;
2610 		}
2611 	}
2612 }
2613 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2614 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2615 						nodemask_t *nodes_allowed)
2616 {
2617 }
2618 #endif
2619 
2620 /*
2621  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2622  * balanced by operating on them in a round-robin fashion.
2623  * Returns 1 if an adjustment was made.
2624  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)2625 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2626 				int delta)
2627 {
2628 	int nr_nodes, node;
2629 
2630 	VM_BUG_ON(delta != -1 && delta != 1);
2631 
2632 	if (delta < 0) {
2633 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2634 			if (h->surplus_huge_pages_node[node])
2635 				goto found;
2636 		}
2637 	} else {
2638 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2639 			if (h->surplus_huge_pages_node[node] <
2640 					h->nr_huge_pages_node[node])
2641 				goto found;
2642 		}
2643 	}
2644 	return 0;
2645 
2646 found:
2647 	h->surplus_huge_pages += delta;
2648 	h->surplus_huge_pages_node[node] += delta;
2649 	return 1;
2650 }
2651 
2652 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)2653 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2654 			      nodemask_t *nodes_allowed)
2655 {
2656 	unsigned long min_count, ret;
2657 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2658 
2659 	/*
2660 	 * Bit mask controlling how hard we retry per-node allocations.
2661 	 * If we can not allocate the bit mask, do not attempt to allocate
2662 	 * the requested huge pages.
2663 	 */
2664 	if (node_alloc_noretry)
2665 		nodes_clear(*node_alloc_noretry);
2666 	else
2667 		return -ENOMEM;
2668 
2669 	spin_lock(&hugetlb_lock);
2670 
2671 	/*
2672 	 * Check for a node specific request.
2673 	 * Changing node specific huge page count may require a corresponding
2674 	 * change to the global count.  In any case, the passed node mask
2675 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2676 	 */
2677 	if (nid != NUMA_NO_NODE) {
2678 		unsigned long old_count = count;
2679 
2680 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2681 		/*
2682 		 * User may have specified a large count value which caused the
2683 		 * above calculation to overflow.  In this case, they wanted
2684 		 * to allocate as many huge pages as possible.  Set count to
2685 		 * largest possible value to align with their intention.
2686 		 */
2687 		if (count < old_count)
2688 			count = ULONG_MAX;
2689 	}
2690 
2691 	/*
2692 	 * Gigantic pages runtime allocation depend on the capability for large
2693 	 * page range allocation.
2694 	 * If the system does not provide this feature, return an error when
2695 	 * the user tries to allocate gigantic pages but let the user free the
2696 	 * boottime allocated gigantic pages.
2697 	 */
2698 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2699 		if (count > persistent_huge_pages(h)) {
2700 			spin_unlock(&hugetlb_lock);
2701 			NODEMASK_FREE(node_alloc_noretry);
2702 			return -EINVAL;
2703 		}
2704 		/* Fall through to decrease pool */
2705 	}
2706 
2707 	/*
2708 	 * Increase the pool size
2709 	 * First take pages out of surplus state.  Then make up the
2710 	 * remaining difference by allocating fresh huge pages.
2711 	 *
2712 	 * We might race with alloc_surplus_huge_page() here and be unable
2713 	 * to convert a surplus huge page to a normal huge page. That is
2714 	 * not critical, though, it just means the overall size of the
2715 	 * pool might be one hugepage larger than it needs to be, but
2716 	 * within all the constraints specified by the sysctls.
2717 	 */
2718 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2719 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2720 			break;
2721 	}
2722 
2723 	while (count > persistent_huge_pages(h)) {
2724 		/*
2725 		 * If this allocation races such that we no longer need the
2726 		 * page, free_huge_page will handle it by freeing the page
2727 		 * and reducing the surplus.
2728 		 */
2729 		spin_unlock(&hugetlb_lock);
2730 
2731 		/* yield cpu to avoid soft lockup */
2732 		cond_resched();
2733 
2734 		ret = alloc_pool_huge_page(h, nodes_allowed,
2735 						node_alloc_noretry);
2736 		spin_lock(&hugetlb_lock);
2737 		if (!ret)
2738 			goto out;
2739 
2740 		/* Bail for signals. Probably ctrl-c from user */
2741 		if (signal_pending(current))
2742 			goto out;
2743 	}
2744 
2745 	/*
2746 	 * Decrease the pool size
2747 	 * First return free pages to the buddy allocator (being careful
2748 	 * to keep enough around to satisfy reservations).  Then place
2749 	 * pages into surplus state as needed so the pool will shrink
2750 	 * to the desired size as pages become free.
2751 	 *
2752 	 * By placing pages into the surplus state independent of the
2753 	 * overcommit value, we are allowing the surplus pool size to
2754 	 * exceed overcommit. There are few sane options here. Since
2755 	 * alloc_surplus_huge_page() is checking the global counter,
2756 	 * though, we'll note that we're not allowed to exceed surplus
2757 	 * and won't grow the pool anywhere else. Not until one of the
2758 	 * sysctls are changed, or the surplus pages go out of use.
2759 	 */
2760 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2761 	min_count = max(count, min_count);
2762 	try_to_free_low(h, min_count, nodes_allowed);
2763 	while (min_count < persistent_huge_pages(h)) {
2764 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2765 			break;
2766 		cond_resched_lock(&hugetlb_lock);
2767 	}
2768 	while (count < persistent_huge_pages(h)) {
2769 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2770 			break;
2771 	}
2772 out:
2773 	h->max_huge_pages = persistent_huge_pages(h);
2774 	spin_unlock(&hugetlb_lock);
2775 
2776 	NODEMASK_FREE(node_alloc_noretry);
2777 
2778 	return 0;
2779 }
2780 
2781 #define HSTATE_ATTR_RO(_name) \
2782 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2783 
2784 #define HSTATE_ATTR(_name) \
2785 	static struct kobj_attribute _name##_attr = \
2786 		__ATTR(_name, 0644, _name##_show, _name##_store)
2787 
2788 static struct kobject *hugepages_kobj;
2789 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2790 
2791 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2792 
kobj_to_hstate(struct kobject * kobj,int * nidp)2793 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2794 {
2795 	int i;
2796 
2797 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2798 		if (hstate_kobjs[i] == kobj) {
2799 			if (nidp)
2800 				*nidp = NUMA_NO_NODE;
2801 			return &hstates[i];
2802 		}
2803 
2804 	return kobj_to_node_hstate(kobj, nidp);
2805 }
2806 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2807 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2808 					struct kobj_attribute *attr, char *buf)
2809 {
2810 	struct hstate *h;
2811 	unsigned long nr_huge_pages;
2812 	int nid;
2813 
2814 	h = kobj_to_hstate(kobj, &nid);
2815 	if (nid == NUMA_NO_NODE)
2816 		nr_huge_pages = h->nr_huge_pages;
2817 	else
2818 		nr_huge_pages = h->nr_huge_pages_node[nid];
2819 
2820 	return sprintf(buf, "%lu\n", nr_huge_pages);
2821 }
2822 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)2823 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2824 					   struct hstate *h, int nid,
2825 					   unsigned long count, size_t len)
2826 {
2827 	int err;
2828 	nodemask_t nodes_allowed, *n_mask;
2829 
2830 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2831 		return -EINVAL;
2832 
2833 	if (nid == NUMA_NO_NODE) {
2834 		/*
2835 		 * global hstate attribute
2836 		 */
2837 		if (!(obey_mempolicy &&
2838 				init_nodemask_of_mempolicy(&nodes_allowed)))
2839 			n_mask = &node_states[N_MEMORY];
2840 		else
2841 			n_mask = &nodes_allowed;
2842 	} else {
2843 		/*
2844 		 * Node specific request.  count adjustment happens in
2845 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2846 		 */
2847 		init_nodemask_of_node(&nodes_allowed, nid);
2848 		n_mask = &nodes_allowed;
2849 	}
2850 
2851 	err = set_max_huge_pages(h, count, nid, n_mask);
2852 
2853 	return err ? err : len;
2854 }
2855 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)2856 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2857 					 struct kobject *kobj, const char *buf,
2858 					 size_t len)
2859 {
2860 	struct hstate *h;
2861 	unsigned long count;
2862 	int nid;
2863 	int err;
2864 
2865 	err = kstrtoul(buf, 10, &count);
2866 	if (err)
2867 		return err;
2868 
2869 	h = kobj_to_hstate(kobj, &nid);
2870 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2871 }
2872 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2873 static ssize_t nr_hugepages_show(struct kobject *kobj,
2874 				       struct kobj_attribute *attr, char *buf)
2875 {
2876 	return nr_hugepages_show_common(kobj, attr, buf);
2877 }
2878 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2879 static ssize_t nr_hugepages_store(struct kobject *kobj,
2880 	       struct kobj_attribute *attr, const char *buf, size_t len)
2881 {
2882 	return nr_hugepages_store_common(false, kobj, buf, len);
2883 }
2884 HSTATE_ATTR(nr_hugepages);
2885 
2886 #ifdef CONFIG_NUMA
2887 
2888 /*
2889  * hstate attribute for optionally mempolicy-based constraint on persistent
2890  * huge page alloc/free.
2891  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2892 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2893 				       struct kobj_attribute *attr, char *buf)
2894 {
2895 	return nr_hugepages_show_common(kobj, attr, buf);
2896 }
2897 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2898 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2899 	       struct kobj_attribute *attr, const char *buf, size_t len)
2900 {
2901 	return nr_hugepages_store_common(true, kobj, buf, len);
2902 }
2903 HSTATE_ATTR(nr_hugepages_mempolicy);
2904 #endif
2905 
2906 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2907 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2908 					struct kobj_attribute *attr, char *buf)
2909 {
2910 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2911 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2912 }
2913 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2914 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2915 		struct kobj_attribute *attr, const char *buf, size_t count)
2916 {
2917 	int err;
2918 	unsigned long input;
2919 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2920 
2921 	if (hstate_is_gigantic(h))
2922 		return -EINVAL;
2923 
2924 	err = kstrtoul(buf, 10, &input);
2925 	if (err)
2926 		return err;
2927 
2928 	spin_lock(&hugetlb_lock);
2929 	h->nr_overcommit_huge_pages = input;
2930 	spin_unlock(&hugetlb_lock);
2931 
2932 	return count;
2933 }
2934 HSTATE_ATTR(nr_overcommit_hugepages);
2935 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2936 static ssize_t free_hugepages_show(struct kobject *kobj,
2937 					struct kobj_attribute *attr, char *buf)
2938 {
2939 	struct hstate *h;
2940 	unsigned long free_huge_pages;
2941 	int nid;
2942 
2943 	h = kobj_to_hstate(kobj, &nid);
2944 	if (nid == NUMA_NO_NODE)
2945 		free_huge_pages = h->free_huge_pages;
2946 	else
2947 		free_huge_pages = h->free_huge_pages_node[nid];
2948 
2949 	return sprintf(buf, "%lu\n", free_huge_pages);
2950 }
2951 HSTATE_ATTR_RO(free_hugepages);
2952 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2953 static ssize_t resv_hugepages_show(struct kobject *kobj,
2954 					struct kobj_attribute *attr, char *buf)
2955 {
2956 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2957 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2958 }
2959 HSTATE_ATTR_RO(resv_hugepages);
2960 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2961 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2962 					struct kobj_attribute *attr, char *buf)
2963 {
2964 	struct hstate *h;
2965 	unsigned long surplus_huge_pages;
2966 	int nid;
2967 
2968 	h = kobj_to_hstate(kobj, &nid);
2969 	if (nid == NUMA_NO_NODE)
2970 		surplus_huge_pages = h->surplus_huge_pages;
2971 	else
2972 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2973 
2974 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2975 }
2976 HSTATE_ATTR_RO(surplus_hugepages);
2977 
2978 static struct attribute *hstate_attrs[] = {
2979 	&nr_hugepages_attr.attr,
2980 	&nr_overcommit_hugepages_attr.attr,
2981 	&free_hugepages_attr.attr,
2982 	&resv_hugepages_attr.attr,
2983 	&surplus_hugepages_attr.attr,
2984 #ifdef CONFIG_NUMA
2985 	&nr_hugepages_mempolicy_attr.attr,
2986 #endif
2987 	NULL,
2988 };
2989 
2990 static const struct attribute_group hstate_attr_group = {
2991 	.attrs = hstate_attrs,
2992 };
2993 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)2994 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2995 				    struct kobject **hstate_kobjs,
2996 				    const struct attribute_group *hstate_attr_group)
2997 {
2998 	int retval;
2999 	int hi = hstate_index(h);
3000 
3001 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3002 	if (!hstate_kobjs[hi])
3003 		return -ENOMEM;
3004 
3005 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3006 	if (retval) {
3007 		kobject_put(hstate_kobjs[hi]);
3008 		hstate_kobjs[hi] = NULL;
3009 	}
3010 
3011 	return retval;
3012 }
3013 
hugetlb_sysfs_init(void)3014 static void __init hugetlb_sysfs_init(void)
3015 {
3016 	struct hstate *h;
3017 	int err;
3018 
3019 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3020 	if (!hugepages_kobj)
3021 		return;
3022 
3023 	for_each_hstate(h) {
3024 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3025 					 hstate_kobjs, &hstate_attr_group);
3026 		if (err)
3027 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3028 	}
3029 }
3030 
3031 #ifdef CONFIG_NUMA
3032 
3033 /*
3034  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3035  * with node devices in node_devices[] using a parallel array.  The array
3036  * index of a node device or _hstate == node id.
3037  * This is here to avoid any static dependency of the node device driver, in
3038  * the base kernel, on the hugetlb module.
3039  */
3040 struct node_hstate {
3041 	struct kobject		*hugepages_kobj;
3042 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3043 };
3044 static struct node_hstate node_hstates[MAX_NUMNODES];
3045 
3046 /*
3047  * A subset of global hstate attributes for node devices
3048  */
3049 static struct attribute *per_node_hstate_attrs[] = {
3050 	&nr_hugepages_attr.attr,
3051 	&free_hugepages_attr.attr,
3052 	&surplus_hugepages_attr.attr,
3053 	NULL,
3054 };
3055 
3056 static const struct attribute_group per_node_hstate_attr_group = {
3057 	.attrs = per_node_hstate_attrs,
3058 };
3059 
3060 /*
3061  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3062  * Returns node id via non-NULL nidp.
3063  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3064 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3065 {
3066 	int nid;
3067 
3068 	for (nid = 0; nid < nr_node_ids; nid++) {
3069 		struct node_hstate *nhs = &node_hstates[nid];
3070 		int i;
3071 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3072 			if (nhs->hstate_kobjs[i] == kobj) {
3073 				if (nidp)
3074 					*nidp = nid;
3075 				return &hstates[i];
3076 			}
3077 	}
3078 
3079 	BUG();
3080 	return NULL;
3081 }
3082 
3083 /*
3084  * Unregister hstate attributes from a single node device.
3085  * No-op if no hstate attributes attached.
3086  */
hugetlb_unregister_node(struct node * node)3087 static void hugetlb_unregister_node(struct node *node)
3088 {
3089 	struct hstate *h;
3090 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3091 
3092 	if (!nhs->hugepages_kobj)
3093 		return;		/* no hstate attributes */
3094 
3095 	for_each_hstate(h) {
3096 		int idx = hstate_index(h);
3097 		if (nhs->hstate_kobjs[idx]) {
3098 			kobject_put(nhs->hstate_kobjs[idx]);
3099 			nhs->hstate_kobjs[idx] = NULL;
3100 		}
3101 	}
3102 
3103 	kobject_put(nhs->hugepages_kobj);
3104 	nhs->hugepages_kobj = NULL;
3105 }
3106 
3107 
3108 /*
3109  * Register hstate attributes for a single node device.
3110  * No-op if attributes already registered.
3111  */
hugetlb_register_node(struct node * node)3112 static void hugetlb_register_node(struct node *node)
3113 {
3114 	struct hstate *h;
3115 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3116 	int err;
3117 
3118 	if (nhs->hugepages_kobj)
3119 		return;		/* already allocated */
3120 
3121 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3122 							&node->dev.kobj);
3123 	if (!nhs->hugepages_kobj)
3124 		return;
3125 
3126 	for_each_hstate(h) {
3127 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3128 						nhs->hstate_kobjs,
3129 						&per_node_hstate_attr_group);
3130 		if (err) {
3131 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3132 				h->name, node->dev.id);
3133 			hugetlb_unregister_node(node);
3134 			break;
3135 		}
3136 	}
3137 }
3138 
3139 /*
3140  * hugetlb init time:  register hstate attributes for all registered node
3141  * devices of nodes that have memory.  All on-line nodes should have
3142  * registered their associated device by this time.
3143  */
hugetlb_register_all_nodes(void)3144 static void __init hugetlb_register_all_nodes(void)
3145 {
3146 	int nid;
3147 
3148 	for_each_node_state(nid, N_MEMORY) {
3149 		struct node *node = node_devices[nid];
3150 		if (node->dev.id == nid)
3151 			hugetlb_register_node(node);
3152 	}
3153 
3154 	/*
3155 	 * Let the node device driver know we're here so it can
3156 	 * [un]register hstate attributes on node hotplug.
3157 	 */
3158 	register_hugetlbfs_with_node(hugetlb_register_node,
3159 				     hugetlb_unregister_node);
3160 }
3161 #else	/* !CONFIG_NUMA */
3162 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3163 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3164 {
3165 	BUG();
3166 	if (nidp)
3167 		*nidp = -1;
3168 	return NULL;
3169 }
3170 
hugetlb_register_all_nodes(void)3171 static void hugetlb_register_all_nodes(void) { }
3172 
3173 #endif
3174 
hugetlb_init(void)3175 static int __init hugetlb_init(void)
3176 {
3177 	int i;
3178 
3179 	if (!hugepages_supported()) {
3180 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3181 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3182 		return 0;
3183 	}
3184 
3185 	/*
3186 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3187 	 * architectures depend on setup being done here.
3188 	 */
3189 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3190 	if (!parsed_default_hugepagesz) {
3191 		/*
3192 		 * If we did not parse a default huge page size, set
3193 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3194 		 * number of huge pages for this default size was implicitly
3195 		 * specified, set that here as well.
3196 		 * Note that the implicit setting will overwrite an explicit
3197 		 * setting.  A warning will be printed in this case.
3198 		 */
3199 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3200 		if (default_hstate_max_huge_pages) {
3201 			if (default_hstate.max_huge_pages) {
3202 				char buf[32];
3203 
3204 				string_get_size(huge_page_size(&default_hstate),
3205 					1, STRING_UNITS_2, buf, 32);
3206 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3207 					default_hstate.max_huge_pages, buf);
3208 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3209 					default_hstate_max_huge_pages);
3210 			}
3211 			default_hstate.max_huge_pages =
3212 				default_hstate_max_huge_pages;
3213 		}
3214 	}
3215 
3216 	hugetlb_cma_check();
3217 	hugetlb_init_hstates();
3218 	gather_bootmem_prealloc();
3219 	report_hugepages();
3220 
3221 	hugetlb_sysfs_init();
3222 	hugetlb_register_all_nodes();
3223 	hugetlb_cgroup_file_init();
3224 
3225 #ifdef CONFIG_SMP
3226 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3227 #else
3228 	num_fault_mutexes = 1;
3229 #endif
3230 	hugetlb_fault_mutex_table =
3231 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3232 			      GFP_KERNEL);
3233 	BUG_ON(!hugetlb_fault_mutex_table);
3234 
3235 	for (i = 0; i < num_fault_mutexes; i++)
3236 		mutex_init(&hugetlb_fault_mutex_table[i]);
3237 	return 0;
3238 }
3239 subsys_initcall(hugetlb_init);
3240 
3241 /* Overwritten by architectures with more huge page sizes */
__init(weak)3242 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3243 {
3244 	return size == HPAGE_SIZE;
3245 }
3246 
hugetlb_add_hstate(unsigned int order)3247 void __init hugetlb_add_hstate(unsigned int order)
3248 {
3249 	struct hstate *h;
3250 	unsigned long i;
3251 
3252 	if (size_to_hstate(PAGE_SIZE << order)) {
3253 		return;
3254 	}
3255 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3256 	BUG_ON(order == 0);
3257 	h = &hstates[hugetlb_max_hstate++];
3258 	h->order = order;
3259 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3260 	h->nr_huge_pages = 0;
3261 	h->free_huge_pages = 0;
3262 	for (i = 0; i < MAX_NUMNODES; ++i)
3263 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3264 	INIT_LIST_HEAD(&h->hugepage_activelist);
3265 	h->next_nid_to_alloc = first_memory_node;
3266 	h->next_nid_to_free = first_memory_node;
3267 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3268 					huge_page_size(h)/1024);
3269 
3270 	parsed_hstate = h;
3271 }
3272 
3273 /*
3274  * hugepages command line processing
3275  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3276  * specification.  If not, ignore the hugepages value.  hugepages can also
3277  * be the first huge page command line  option in which case it implicitly
3278  * specifies the number of huge pages for the default size.
3279  */
hugepages_setup(char * s)3280 static int __init hugepages_setup(char *s)
3281 {
3282 	unsigned long *mhp;
3283 	static unsigned long *last_mhp;
3284 
3285 	if (!parsed_valid_hugepagesz) {
3286 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3287 		parsed_valid_hugepagesz = true;
3288 		return 0;
3289 	}
3290 
3291 	/*
3292 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3293 	 * yet, so this hugepages= parameter goes to the "default hstate".
3294 	 * Otherwise, it goes with the previously parsed hugepagesz or
3295 	 * default_hugepagesz.
3296 	 */
3297 	else if (!hugetlb_max_hstate)
3298 		mhp = &default_hstate_max_huge_pages;
3299 	else
3300 		mhp = &parsed_hstate->max_huge_pages;
3301 
3302 	if (mhp == last_mhp) {
3303 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3304 		return 0;
3305 	}
3306 
3307 	if (sscanf(s, "%lu", mhp) <= 0)
3308 		*mhp = 0;
3309 
3310 	/*
3311 	 * Global state is always initialized later in hugetlb_init.
3312 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3313 	 * use the bootmem allocator.
3314 	 */
3315 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3316 		hugetlb_hstate_alloc_pages(parsed_hstate);
3317 
3318 	last_mhp = mhp;
3319 
3320 	return 1;
3321 }
3322 __setup("hugepages=", hugepages_setup);
3323 
3324 /*
3325  * hugepagesz command line processing
3326  * A specific huge page size can only be specified once with hugepagesz.
3327  * hugepagesz is followed by hugepages on the command line.  The global
3328  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3329  * hugepagesz argument was valid.
3330  */
hugepagesz_setup(char * s)3331 static int __init hugepagesz_setup(char *s)
3332 {
3333 	unsigned long size;
3334 	struct hstate *h;
3335 
3336 	parsed_valid_hugepagesz = false;
3337 	size = (unsigned long)memparse(s, NULL);
3338 
3339 	if (!arch_hugetlb_valid_size(size)) {
3340 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3341 		return 0;
3342 	}
3343 
3344 	h = size_to_hstate(size);
3345 	if (h) {
3346 		/*
3347 		 * hstate for this size already exists.  This is normally
3348 		 * an error, but is allowed if the existing hstate is the
3349 		 * default hstate.  More specifically, it is only allowed if
3350 		 * the number of huge pages for the default hstate was not
3351 		 * previously specified.
3352 		 */
3353 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3354 		    default_hstate.max_huge_pages) {
3355 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3356 			return 0;
3357 		}
3358 
3359 		/*
3360 		 * No need to call hugetlb_add_hstate() as hstate already
3361 		 * exists.  But, do set parsed_hstate so that a following
3362 		 * hugepages= parameter will be applied to this hstate.
3363 		 */
3364 		parsed_hstate = h;
3365 		parsed_valid_hugepagesz = true;
3366 		return 1;
3367 	}
3368 
3369 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3370 	parsed_valid_hugepagesz = true;
3371 	return 1;
3372 }
3373 __setup("hugepagesz=", hugepagesz_setup);
3374 
3375 /*
3376  * default_hugepagesz command line input
3377  * Only one instance of default_hugepagesz allowed on command line.
3378  */
default_hugepagesz_setup(char * s)3379 static int __init default_hugepagesz_setup(char *s)
3380 {
3381 	unsigned long size;
3382 
3383 	parsed_valid_hugepagesz = false;
3384 	if (parsed_default_hugepagesz) {
3385 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3386 		return 0;
3387 	}
3388 
3389 	size = (unsigned long)memparse(s, NULL);
3390 
3391 	if (!arch_hugetlb_valid_size(size)) {
3392 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3393 		return 0;
3394 	}
3395 
3396 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3397 	parsed_valid_hugepagesz = true;
3398 	parsed_default_hugepagesz = true;
3399 	default_hstate_idx = hstate_index(size_to_hstate(size));
3400 
3401 	/*
3402 	 * The number of default huge pages (for this size) could have been
3403 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3404 	 * then default_hstate_max_huge_pages is set.  If the default huge
3405 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3406 	 * allocated here from bootmem allocator.
3407 	 */
3408 	if (default_hstate_max_huge_pages) {
3409 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3410 		if (hstate_is_gigantic(&default_hstate))
3411 			hugetlb_hstate_alloc_pages(&default_hstate);
3412 		default_hstate_max_huge_pages = 0;
3413 	}
3414 
3415 	return 1;
3416 }
3417 __setup("default_hugepagesz=", default_hugepagesz_setup);
3418 
allowed_mems_nr(struct hstate * h)3419 static unsigned int allowed_mems_nr(struct hstate *h)
3420 {
3421 	int node;
3422 	unsigned int nr = 0;
3423 	nodemask_t *mpol_allowed;
3424 	unsigned int *array = h->free_huge_pages_node;
3425 	gfp_t gfp_mask = htlb_alloc_mask(h);
3426 
3427 	mpol_allowed = policy_nodemask_current(gfp_mask);
3428 
3429 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3430 		if (!mpol_allowed ||
3431 		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3432 			nr += array[node];
3433 	}
3434 
3435 	return nr;
3436 }
3437 
3438 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)3439 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3440 					  void *buffer, size_t *length,
3441 					  loff_t *ppos, unsigned long *out)
3442 {
3443 	struct ctl_table dup_table;
3444 
3445 	/*
3446 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3447 	 * can duplicate the @table and alter the duplicate of it.
3448 	 */
3449 	dup_table = *table;
3450 	dup_table.data = out;
3451 
3452 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3453 }
3454 
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3455 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3456 			 struct ctl_table *table, int write,
3457 			 void *buffer, size_t *length, loff_t *ppos)
3458 {
3459 	struct hstate *h = &default_hstate;
3460 	unsigned long tmp = h->max_huge_pages;
3461 	int ret;
3462 
3463 	if (!hugepages_supported())
3464 		return -EOPNOTSUPP;
3465 
3466 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3467 					     &tmp);
3468 	if (ret)
3469 		goto out;
3470 
3471 	if (write)
3472 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3473 						  NUMA_NO_NODE, tmp, *length);
3474 out:
3475 	return ret;
3476 }
3477 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3478 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3479 			  void *buffer, size_t *length, loff_t *ppos)
3480 {
3481 
3482 	return hugetlb_sysctl_handler_common(false, table, write,
3483 							buffer, length, ppos);
3484 }
3485 
3486 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3487 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3488 			  void *buffer, size_t *length, loff_t *ppos)
3489 {
3490 	return hugetlb_sysctl_handler_common(true, table, write,
3491 							buffer, length, ppos);
3492 }
3493 #endif /* CONFIG_NUMA */
3494 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3495 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3496 		void *buffer, size_t *length, loff_t *ppos)
3497 {
3498 	struct hstate *h = &default_hstate;
3499 	unsigned long tmp;
3500 	int ret;
3501 
3502 	if (!hugepages_supported())
3503 		return -EOPNOTSUPP;
3504 
3505 	tmp = h->nr_overcommit_huge_pages;
3506 
3507 	if (write && hstate_is_gigantic(h))
3508 		return -EINVAL;
3509 
3510 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3511 					     &tmp);
3512 	if (ret)
3513 		goto out;
3514 
3515 	if (write) {
3516 		spin_lock(&hugetlb_lock);
3517 		h->nr_overcommit_huge_pages = tmp;
3518 		spin_unlock(&hugetlb_lock);
3519 	}
3520 out:
3521 	return ret;
3522 }
3523 
3524 #endif /* CONFIG_SYSCTL */
3525 
hugetlb_report_meminfo(struct seq_file * m)3526 void hugetlb_report_meminfo(struct seq_file *m)
3527 {
3528 	struct hstate *h;
3529 	unsigned long total = 0;
3530 
3531 	if (!hugepages_supported())
3532 		return;
3533 
3534 	for_each_hstate(h) {
3535 		unsigned long count = h->nr_huge_pages;
3536 
3537 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3538 
3539 		if (h == &default_hstate)
3540 			seq_printf(m,
3541 				   "HugePages_Total:   %5lu\n"
3542 				   "HugePages_Free:    %5lu\n"
3543 				   "HugePages_Rsvd:    %5lu\n"
3544 				   "HugePages_Surp:    %5lu\n"
3545 				   "Hugepagesize:   %8lu kB\n",
3546 				   count,
3547 				   h->free_huge_pages,
3548 				   h->resv_huge_pages,
3549 				   h->surplus_huge_pages,
3550 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3551 	}
3552 
3553 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3554 }
3555 
hugetlb_report_node_meminfo(char * buf,int len,int nid)3556 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3557 {
3558 	struct hstate *h = &default_hstate;
3559 
3560 	if (!hugepages_supported())
3561 		return 0;
3562 
3563 	return sysfs_emit_at(buf, len,
3564 			     "Node %d HugePages_Total: %5u\n"
3565 			     "Node %d HugePages_Free:  %5u\n"
3566 			     "Node %d HugePages_Surp:  %5u\n",
3567 			     nid, h->nr_huge_pages_node[nid],
3568 			     nid, h->free_huge_pages_node[nid],
3569 			     nid, h->surplus_huge_pages_node[nid]);
3570 }
3571 
hugetlb_show_meminfo(void)3572 void hugetlb_show_meminfo(void)
3573 {
3574 	struct hstate *h;
3575 	int nid;
3576 
3577 	if (!hugepages_supported())
3578 		return;
3579 
3580 	for_each_node_state(nid, N_MEMORY)
3581 		for_each_hstate(h)
3582 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3583 				nid,
3584 				h->nr_huge_pages_node[nid],
3585 				h->free_huge_pages_node[nid],
3586 				h->surplus_huge_pages_node[nid],
3587 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3588 }
3589 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)3590 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3591 {
3592 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3593 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3594 }
3595 
3596 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)3597 unsigned long hugetlb_total_pages(void)
3598 {
3599 	struct hstate *h;
3600 	unsigned long nr_total_pages = 0;
3601 
3602 	for_each_hstate(h)
3603 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3604 	return nr_total_pages;
3605 }
3606 
hugetlb_acct_memory(struct hstate * h,long delta)3607 static int hugetlb_acct_memory(struct hstate *h, long delta)
3608 {
3609 	int ret = -ENOMEM;
3610 
3611 	spin_lock(&hugetlb_lock);
3612 	/*
3613 	 * When cpuset is configured, it breaks the strict hugetlb page
3614 	 * reservation as the accounting is done on a global variable. Such
3615 	 * reservation is completely rubbish in the presence of cpuset because
3616 	 * the reservation is not checked against page availability for the
3617 	 * current cpuset. Application can still potentially OOM'ed by kernel
3618 	 * with lack of free htlb page in cpuset that the task is in.
3619 	 * Attempt to enforce strict accounting with cpuset is almost
3620 	 * impossible (or too ugly) because cpuset is too fluid that
3621 	 * task or memory node can be dynamically moved between cpusets.
3622 	 *
3623 	 * The change of semantics for shared hugetlb mapping with cpuset is
3624 	 * undesirable. However, in order to preserve some of the semantics,
3625 	 * we fall back to check against current free page availability as
3626 	 * a best attempt and hopefully to minimize the impact of changing
3627 	 * semantics that cpuset has.
3628 	 *
3629 	 * Apart from cpuset, we also have memory policy mechanism that
3630 	 * also determines from which node the kernel will allocate memory
3631 	 * in a NUMA system. So similar to cpuset, we also should consider
3632 	 * the memory policy of the current task. Similar to the description
3633 	 * above.
3634 	 */
3635 	if (delta > 0) {
3636 		if (gather_surplus_pages(h, delta) < 0)
3637 			goto out;
3638 
3639 		if (delta > allowed_mems_nr(h)) {
3640 			return_unused_surplus_pages(h, delta);
3641 			goto out;
3642 		}
3643 	}
3644 
3645 	ret = 0;
3646 	if (delta < 0)
3647 		return_unused_surplus_pages(h, (unsigned long) -delta);
3648 
3649 out:
3650 	spin_unlock(&hugetlb_lock);
3651 	return ret;
3652 }
3653 
hugetlb_vm_op_open(struct vm_area_struct * vma)3654 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3655 {
3656 	struct resv_map *resv = vma_resv_map(vma);
3657 
3658 	/*
3659 	 * This new VMA should share its siblings reservation map if present.
3660 	 * The VMA will only ever have a valid reservation map pointer where
3661 	 * it is being copied for another still existing VMA.  As that VMA
3662 	 * has a reference to the reservation map it cannot disappear until
3663 	 * after this open call completes.  It is therefore safe to take a
3664 	 * new reference here without additional locking.
3665 	 */
3666 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
3667 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
3668 		kref_get(&resv->refs);
3669 	}
3670 }
3671 
hugetlb_vm_op_close(struct vm_area_struct * vma)3672 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3673 {
3674 	struct hstate *h = hstate_vma(vma);
3675 	struct resv_map *resv = vma_resv_map(vma);
3676 	struct hugepage_subpool *spool = subpool_vma(vma);
3677 	unsigned long reserve, start, end;
3678 	long gbl_reserve;
3679 
3680 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3681 		return;
3682 
3683 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3684 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3685 
3686 	reserve = (end - start) - region_count(resv, start, end);
3687 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3688 	if (reserve) {
3689 		/*
3690 		 * Decrement reserve counts.  The global reserve count may be
3691 		 * adjusted if the subpool has a minimum size.
3692 		 */
3693 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3694 		hugetlb_acct_memory(h, -gbl_reserve);
3695 	}
3696 
3697 	kref_put(&resv->refs, resv_map_release);
3698 }
3699 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)3700 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3701 {
3702 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3703 		return -EINVAL;
3704 
3705 	/*
3706 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
3707 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
3708 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
3709 	 */
3710 	if (addr & ~PUD_MASK) {
3711 		/*
3712 		 * hugetlb_vm_op_split is called right before we attempt to
3713 		 * split the VMA. We will need to unshare PMDs in the old and
3714 		 * new VMAs, so let's unshare before we split.
3715 		 */
3716 		unsigned long floor = addr & PUD_MASK;
3717 		unsigned long ceil = floor + PUD_SIZE;
3718 
3719 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
3720 			hugetlb_unshare_pmds(vma, floor, ceil);
3721 	}
3722 
3723 	return 0;
3724 }
3725 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)3726 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3727 {
3728 	struct hstate *hstate = hstate_vma(vma);
3729 
3730 	return 1UL << huge_page_shift(hstate);
3731 }
3732 
3733 /*
3734  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3735  * handle_mm_fault() to try to instantiate regular-sized pages in the
3736  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3737  * this far.
3738  */
hugetlb_vm_op_fault(struct vm_fault * vmf)3739 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3740 {
3741 	BUG();
3742 	return 0;
3743 }
3744 
3745 /*
3746  * When a new function is introduced to vm_operations_struct and added
3747  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3748  * This is because under System V memory model, mappings created via
3749  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3750  * their original vm_ops are overwritten with shm_vm_ops.
3751  */
3752 const struct vm_operations_struct hugetlb_vm_ops = {
3753 	.fault = hugetlb_vm_op_fault,
3754 	.open = hugetlb_vm_op_open,
3755 	.close = hugetlb_vm_op_close,
3756 	.split = hugetlb_vm_op_split,
3757 	.pagesize = hugetlb_vm_op_pagesize,
3758 };
3759 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)3760 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3761 				int writable)
3762 {
3763 	pte_t entry;
3764 
3765 	if (writable) {
3766 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3767 					 vma->vm_page_prot)));
3768 	} else {
3769 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3770 					   vma->vm_page_prot));
3771 	}
3772 	entry = pte_mkyoung(entry);
3773 	entry = pte_mkhuge(entry);
3774 	entry = arch_make_huge_pte(entry, vma, page, writable);
3775 
3776 	return entry;
3777 }
3778 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)3779 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3780 				   unsigned long address, pte_t *ptep)
3781 {
3782 	pte_t entry;
3783 
3784 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3785 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3786 		update_mmu_cache(vma, address, ptep);
3787 }
3788 
is_hugetlb_entry_migration(pte_t pte)3789 bool is_hugetlb_entry_migration(pte_t pte)
3790 {
3791 	swp_entry_t swp;
3792 
3793 	if (huge_pte_none(pte) || pte_present(pte))
3794 		return false;
3795 	swp = pte_to_swp_entry(pte);
3796 	if (is_migration_entry(swp))
3797 		return true;
3798 	else
3799 		return false;
3800 }
3801 
is_hugetlb_entry_hwpoisoned(pte_t pte)3802 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3803 {
3804 	swp_entry_t swp;
3805 
3806 	if (huge_pte_none(pte) || pte_present(pte))
3807 		return false;
3808 	swp = pte_to_swp_entry(pte);
3809 	if (is_hwpoison_entry(swp))
3810 		return true;
3811 	else
3812 		return false;
3813 }
3814 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)3815 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3816 			    struct vm_area_struct *vma)
3817 {
3818 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3819 	struct page *ptepage;
3820 	unsigned long addr;
3821 	int cow;
3822 	struct hstate *h = hstate_vma(vma);
3823 	unsigned long sz = huge_page_size(h);
3824 	struct address_space *mapping = vma->vm_file->f_mapping;
3825 	struct mmu_notifier_range range;
3826 	int ret = 0;
3827 
3828 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3829 
3830 	if (cow) {
3831 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3832 					vma->vm_start,
3833 					vma->vm_end);
3834 		mmu_notifier_invalidate_range_start(&range);
3835 	} else {
3836 		/*
3837 		 * For shared mappings i_mmap_rwsem must be held to call
3838 		 * huge_pte_alloc, otherwise the returned ptep could go
3839 		 * away if part of a shared pmd and another thread calls
3840 		 * huge_pmd_unshare.
3841 		 */
3842 		i_mmap_lock_read(mapping);
3843 	}
3844 
3845 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3846 		spinlock_t *src_ptl, *dst_ptl;
3847 		src_pte = huge_pte_offset(src, addr, sz);
3848 		if (!src_pte)
3849 			continue;
3850 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3851 		if (!dst_pte) {
3852 			ret = -ENOMEM;
3853 			break;
3854 		}
3855 
3856 		/*
3857 		 * If the pagetables are shared don't copy or take references.
3858 		 * dst_pte == src_pte is the common case of src/dest sharing.
3859 		 *
3860 		 * However, src could have 'unshared' and dst shares with
3861 		 * another vma.  If dst_pte !none, this implies sharing.
3862 		 * Check here before taking page table lock, and once again
3863 		 * after taking the lock below.
3864 		 */
3865 		dst_entry = huge_ptep_get(dst_pte);
3866 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3867 			continue;
3868 
3869 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3870 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3871 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3872 		entry = huge_ptep_get(src_pte);
3873 		dst_entry = huge_ptep_get(dst_pte);
3874 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3875 			/*
3876 			 * Skip if src entry none.  Also, skip in the
3877 			 * unlikely case dst entry !none as this implies
3878 			 * sharing with another vma.
3879 			 */
3880 			;
3881 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3882 				    is_hugetlb_entry_hwpoisoned(entry))) {
3883 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3884 
3885 			if (is_write_migration_entry(swp_entry) && cow) {
3886 				/*
3887 				 * COW mappings require pages in both
3888 				 * parent and child to be set to read.
3889 				 */
3890 				make_migration_entry_read(&swp_entry);
3891 				entry = swp_entry_to_pte(swp_entry);
3892 				set_huge_swap_pte_at(src, addr, src_pte,
3893 						     entry, sz);
3894 			}
3895 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3896 		} else {
3897 			if (cow) {
3898 				/*
3899 				 * No need to notify as we are downgrading page
3900 				 * table protection not changing it to point
3901 				 * to a new page.
3902 				 *
3903 				 * See Documentation/vm/mmu_notifier.rst
3904 				 */
3905 				huge_ptep_set_wrprotect(src, addr, src_pte);
3906 			}
3907 			entry = huge_ptep_get(src_pte);
3908 			ptepage = pte_page(entry);
3909 			get_page(ptepage);
3910 			page_dup_rmap(ptepage, true);
3911 			set_huge_pte_at(dst, addr, dst_pte, entry);
3912 			hugetlb_count_add(pages_per_huge_page(h), dst);
3913 		}
3914 		spin_unlock(src_ptl);
3915 		spin_unlock(dst_ptl);
3916 	}
3917 
3918 	if (cow)
3919 		mmu_notifier_invalidate_range_end(&range);
3920 	else
3921 		i_mmap_unlock_read(mapping);
3922 
3923 	return ret;
3924 }
3925 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3926 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3927 			    unsigned long start, unsigned long end,
3928 			    struct page *ref_page)
3929 {
3930 	struct mm_struct *mm = vma->vm_mm;
3931 	unsigned long address;
3932 	pte_t *ptep;
3933 	pte_t pte;
3934 	spinlock_t *ptl;
3935 	struct page *page;
3936 	struct hstate *h = hstate_vma(vma);
3937 	unsigned long sz = huge_page_size(h);
3938 	struct mmu_notifier_range range;
3939 	bool force_flush = false;
3940 
3941 	WARN_ON(!is_vm_hugetlb_page(vma));
3942 	BUG_ON(start & ~huge_page_mask(h));
3943 	BUG_ON(end & ~huge_page_mask(h));
3944 
3945 	/*
3946 	 * This is a hugetlb vma, all the pte entries should point
3947 	 * to huge page.
3948 	 */
3949 	tlb_change_page_size(tlb, sz);
3950 	tlb_start_vma(tlb, vma);
3951 
3952 	/*
3953 	 * If sharing possible, alert mmu notifiers of worst case.
3954 	 */
3955 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3956 				end);
3957 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3958 	mmu_notifier_invalidate_range_start(&range);
3959 	address = start;
3960 	for (; address < end; address += sz) {
3961 		ptep = huge_pte_offset(mm, address, sz);
3962 		if (!ptep)
3963 			continue;
3964 
3965 		ptl = huge_pte_lock(h, mm, ptep);
3966 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3967 			spin_unlock(ptl);
3968 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3969 			force_flush = true;
3970 			continue;
3971 		}
3972 
3973 		pte = huge_ptep_get(ptep);
3974 		if (huge_pte_none(pte)) {
3975 			spin_unlock(ptl);
3976 			continue;
3977 		}
3978 
3979 		/*
3980 		 * Migrating hugepage or HWPoisoned hugepage is already
3981 		 * unmapped and its refcount is dropped, so just clear pte here.
3982 		 */
3983 		if (unlikely(!pte_present(pte))) {
3984 			huge_pte_clear(mm, address, ptep, sz);
3985 			spin_unlock(ptl);
3986 			continue;
3987 		}
3988 
3989 		page = pte_page(pte);
3990 		/*
3991 		 * If a reference page is supplied, it is because a specific
3992 		 * page is being unmapped, not a range. Ensure the page we
3993 		 * are about to unmap is the actual page of interest.
3994 		 */
3995 		if (ref_page) {
3996 			if (page != ref_page) {
3997 				spin_unlock(ptl);
3998 				continue;
3999 			}
4000 			/*
4001 			 * Mark the VMA as having unmapped its page so that
4002 			 * future faults in this VMA will fail rather than
4003 			 * looking like data was lost
4004 			 */
4005 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4006 		}
4007 
4008 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4009 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4010 		if (huge_pte_dirty(pte))
4011 			set_page_dirty(page);
4012 
4013 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4014 		page_remove_rmap(page, true);
4015 
4016 		spin_unlock(ptl);
4017 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4018 		/*
4019 		 * Bail out after unmapping reference page if supplied
4020 		 */
4021 		if (ref_page)
4022 			break;
4023 	}
4024 	mmu_notifier_invalidate_range_end(&range);
4025 	tlb_end_vma(tlb, vma);
4026 
4027 	/*
4028 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4029 	 * could defer the flush until now, since by holding i_mmap_rwsem we
4030 	 * guaranteed that the last refernece would not be dropped. But we must
4031 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4032 	 * dropped and the last reference to the shared PMDs page might be
4033 	 * dropped as well.
4034 	 *
4035 	 * In theory we could defer the freeing of the PMD pages as well, but
4036 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4037 	 * detect sharing, so we cannot defer the release of the page either.
4038 	 * Instead, do flush now.
4039 	 */
4040 	if (force_flush)
4041 		tlb_flush_mmu_tlbonly(tlb);
4042 }
4043 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4044 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4045 			  struct vm_area_struct *vma, unsigned long start,
4046 			  unsigned long end, struct page *ref_page)
4047 {
4048 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4049 
4050 	/*
4051 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4052 	 * test will fail on a vma being torn down, and not grab a page table
4053 	 * on its way out.  We're lucky that the flag has such an appropriate
4054 	 * name, and can in fact be safely cleared here. We could clear it
4055 	 * before the __unmap_hugepage_range above, but all that's necessary
4056 	 * is to clear it before releasing the i_mmap_rwsem. This works
4057 	 * because in the context this is called, the VMA is about to be
4058 	 * destroyed and the i_mmap_rwsem is held.
4059 	 */
4060 	vma->vm_flags &= ~VM_MAYSHARE;
4061 }
4062 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4063 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4064 			  unsigned long end, struct page *ref_page)
4065 {
4066 	struct mm_struct *mm;
4067 	struct mmu_gather tlb;
4068 	unsigned long tlb_start = start;
4069 	unsigned long tlb_end = end;
4070 
4071 	/*
4072 	 * If shared PMDs were possibly used within this vma range, adjust
4073 	 * start/end for worst case tlb flushing.
4074 	 * Note that we can not be sure if PMDs are shared until we try to
4075 	 * unmap pages.  However, we want to make sure TLB flushing covers
4076 	 * the largest possible range.
4077 	 */
4078 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4079 
4080 	mm = vma->vm_mm;
4081 
4082 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4083 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4084 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4085 }
4086 
4087 /*
4088  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4089  * mappping it owns the reserve page for. The intention is to unmap the page
4090  * from other VMAs and let the children be SIGKILLed if they are faulting the
4091  * same region.
4092  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)4093 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4094 			      struct page *page, unsigned long address)
4095 {
4096 	struct hstate *h = hstate_vma(vma);
4097 	struct vm_area_struct *iter_vma;
4098 	struct address_space *mapping;
4099 	pgoff_t pgoff;
4100 
4101 	/*
4102 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4103 	 * from page cache lookup which is in HPAGE_SIZE units.
4104 	 */
4105 	address = address & huge_page_mask(h);
4106 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4107 			vma->vm_pgoff;
4108 	mapping = vma->vm_file->f_mapping;
4109 
4110 	/*
4111 	 * Take the mapping lock for the duration of the table walk. As
4112 	 * this mapping should be shared between all the VMAs,
4113 	 * __unmap_hugepage_range() is called as the lock is already held
4114 	 */
4115 	i_mmap_lock_write(mapping);
4116 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4117 		/* Do not unmap the current VMA */
4118 		if (iter_vma == vma)
4119 			continue;
4120 
4121 		/*
4122 		 * Shared VMAs have their own reserves and do not affect
4123 		 * MAP_PRIVATE accounting but it is possible that a shared
4124 		 * VMA is using the same page so check and skip such VMAs.
4125 		 */
4126 		if (iter_vma->vm_flags & VM_MAYSHARE)
4127 			continue;
4128 
4129 		/*
4130 		 * Unmap the page from other VMAs without their own reserves.
4131 		 * They get marked to be SIGKILLed if they fault in these
4132 		 * areas. This is because a future no-page fault on this VMA
4133 		 * could insert a zeroed page instead of the data existing
4134 		 * from the time of fork. This would look like data corruption
4135 		 */
4136 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4137 			unmap_hugepage_range(iter_vma, address,
4138 					     address + huge_page_size(h), page);
4139 	}
4140 	i_mmap_unlock_write(mapping);
4141 }
4142 
4143 /*
4144  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4145  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4146  * cannot race with other handlers or page migration.
4147  * Keep the pte_same checks anyway to make transition from the mutex easier.
4148  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,struct page * pagecache_page,spinlock_t * ptl)4149 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4150 		       unsigned long address, pte_t *ptep,
4151 		       struct page *pagecache_page, spinlock_t *ptl)
4152 {
4153 	pte_t pte;
4154 	struct hstate *h = hstate_vma(vma);
4155 	struct page *old_page, *new_page;
4156 	int outside_reserve = 0;
4157 	vm_fault_t ret = 0;
4158 	unsigned long haddr = address & huge_page_mask(h);
4159 	struct mmu_notifier_range range;
4160 
4161 	pte = huge_ptep_get(ptep);
4162 	old_page = pte_page(pte);
4163 
4164 retry_avoidcopy:
4165 	/* If no-one else is actually using this page, avoid the copy
4166 	 * and just make the page writable */
4167 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4168 		page_move_anon_rmap(old_page, vma);
4169 		set_huge_ptep_writable(vma, haddr, ptep);
4170 		return 0;
4171 	}
4172 
4173 	/*
4174 	 * If the process that created a MAP_PRIVATE mapping is about to
4175 	 * perform a COW due to a shared page count, attempt to satisfy
4176 	 * the allocation without using the existing reserves. The pagecache
4177 	 * page is used to determine if the reserve at this address was
4178 	 * consumed or not. If reserves were used, a partial faulted mapping
4179 	 * at the time of fork() could consume its reserves on COW instead
4180 	 * of the full address range.
4181 	 */
4182 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4183 			old_page != pagecache_page)
4184 		outside_reserve = 1;
4185 
4186 	get_page(old_page);
4187 
4188 	/*
4189 	 * Drop page table lock as buddy allocator may be called. It will
4190 	 * be acquired again before returning to the caller, as expected.
4191 	 */
4192 	spin_unlock(ptl);
4193 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4194 
4195 	if (IS_ERR(new_page)) {
4196 		/*
4197 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4198 		 * it is due to references held by a child and an insufficient
4199 		 * huge page pool. To guarantee the original mappers
4200 		 * reliability, unmap the page from child processes. The child
4201 		 * may get SIGKILLed if it later faults.
4202 		 */
4203 		if (outside_reserve) {
4204 			struct address_space *mapping = vma->vm_file->f_mapping;
4205 			pgoff_t idx;
4206 			u32 hash;
4207 
4208 			put_page(old_page);
4209 			BUG_ON(huge_pte_none(pte));
4210 			/*
4211 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4212 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4213 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4214 			 * here is OK as COW mappings do not interact with
4215 			 * PMD sharing.
4216 			 *
4217 			 * Reacquire both after unmap operation.
4218 			 */
4219 			idx = vma_hugecache_offset(h, vma, haddr);
4220 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4221 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4222 			i_mmap_unlock_read(mapping);
4223 
4224 			unmap_ref_private(mm, vma, old_page, haddr);
4225 
4226 			i_mmap_lock_read(mapping);
4227 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4228 			spin_lock(ptl);
4229 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4230 			if (likely(ptep &&
4231 				   pte_same(huge_ptep_get(ptep), pte)))
4232 				goto retry_avoidcopy;
4233 			/*
4234 			 * race occurs while re-acquiring page table
4235 			 * lock, and our job is done.
4236 			 */
4237 			return 0;
4238 		}
4239 
4240 		ret = vmf_error(PTR_ERR(new_page));
4241 		goto out_release_old;
4242 	}
4243 
4244 	/*
4245 	 * When the original hugepage is shared one, it does not have
4246 	 * anon_vma prepared.
4247 	 */
4248 	if (unlikely(anon_vma_prepare(vma))) {
4249 		ret = VM_FAULT_OOM;
4250 		goto out_release_all;
4251 	}
4252 
4253 	copy_user_huge_page(new_page, old_page, address, vma,
4254 			    pages_per_huge_page(h));
4255 	__SetPageUptodate(new_page);
4256 
4257 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4258 				haddr + huge_page_size(h));
4259 	mmu_notifier_invalidate_range_start(&range);
4260 
4261 	/*
4262 	 * Retake the page table lock to check for racing updates
4263 	 * before the page tables are altered
4264 	 */
4265 	spin_lock(ptl);
4266 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4267 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4268 		ClearPagePrivate(new_page);
4269 
4270 		/* Break COW */
4271 		huge_ptep_clear_flush(vma, haddr, ptep);
4272 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4273 		set_huge_pte_at(mm, haddr, ptep,
4274 				make_huge_pte(vma, new_page, 1));
4275 		page_remove_rmap(old_page, true);
4276 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4277 		set_page_huge_active(new_page);
4278 		/* Make the old page be freed below */
4279 		new_page = old_page;
4280 	}
4281 	spin_unlock(ptl);
4282 	mmu_notifier_invalidate_range_end(&range);
4283 out_release_all:
4284 	restore_reserve_on_error(h, vma, haddr, new_page);
4285 	put_page(new_page);
4286 out_release_old:
4287 	put_page(old_page);
4288 
4289 	spin_lock(ptl); /* Caller expects lock to be held */
4290 	return ret;
4291 }
4292 
4293 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4294 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4295 			struct vm_area_struct *vma, unsigned long address)
4296 {
4297 	struct address_space *mapping;
4298 	pgoff_t idx;
4299 
4300 	mapping = vma->vm_file->f_mapping;
4301 	idx = vma_hugecache_offset(h, vma, address);
4302 
4303 	return find_lock_page(mapping, idx);
4304 }
4305 
4306 /*
4307  * Return whether there is a pagecache page to back given address within VMA.
4308  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4309  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4310 static bool hugetlbfs_pagecache_present(struct hstate *h,
4311 			struct vm_area_struct *vma, unsigned long address)
4312 {
4313 	struct address_space *mapping;
4314 	pgoff_t idx;
4315 	struct page *page;
4316 
4317 	mapping = vma->vm_file->f_mapping;
4318 	idx = vma_hugecache_offset(h, vma, address);
4319 
4320 	page = find_get_page(mapping, idx);
4321 	if (page)
4322 		put_page(page);
4323 	return page != NULL;
4324 }
4325 
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)4326 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4327 			   pgoff_t idx)
4328 {
4329 	struct inode *inode = mapping->host;
4330 	struct hstate *h = hstate_inode(inode);
4331 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4332 
4333 	if (err)
4334 		return err;
4335 	ClearPagePrivate(page);
4336 
4337 	/*
4338 	 * set page dirty so that it will not be removed from cache/file
4339 	 * by non-hugetlbfs specific code paths.
4340 	 */
4341 	set_page_dirty(page);
4342 
4343 	spin_lock(&inode->i_lock);
4344 	inode->i_blocks += blocks_per_huge_page(h);
4345 	spin_unlock(&inode->i_lock);
4346 	return 0;
4347 }
4348 
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long reason)4349 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4350 						  struct address_space *mapping,
4351 						  pgoff_t idx,
4352 						  unsigned int flags,
4353 						  unsigned long haddr,
4354 						  unsigned long reason)
4355 {
4356 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4357 	struct vm_fault vmf = {
4358 		.vma = vma,
4359 		.address = haddr,
4360 		.flags = flags,
4361 		/*
4362 		 * Hard to debug if it ends up being
4363 		 * used by a callee that assumes
4364 		 * something about the other
4365 		 * uninitialized fields... same as in
4366 		 * memory.c
4367 		 */
4368 	};
4369 
4370 	/*
4371 	 * vma_lock and hugetlb_fault_mutex must be dropped
4372 	 * before handling userfault. Also mmap_lock will
4373 	 * be dropped during handling userfault, any vma
4374 	 * operation should be careful from here.
4375 	 */
4376 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4377 	i_mmap_unlock_read(mapping);
4378 	return handle_userfault(&vmf, VM_UFFD_MISSING);
4379 }
4380 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)4381 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4382 			struct vm_area_struct *vma,
4383 			struct address_space *mapping, pgoff_t idx,
4384 			unsigned long address, pte_t *ptep, unsigned int flags)
4385 {
4386 	struct hstate *h = hstate_vma(vma);
4387 	vm_fault_t ret = VM_FAULT_SIGBUS;
4388 	int anon_rmap = 0;
4389 	unsigned long size;
4390 	struct page *page;
4391 	pte_t new_pte;
4392 	spinlock_t *ptl;
4393 	unsigned long haddr = address & huge_page_mask(h);
4394 	bool new_page = false;
4395 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4396 
4397 	/*
4398 	 * Currently, we are forced to kill the process in the event the
4399 	 * original mapper has unmapped pages from the child due to a failed
4400 	 * COW. Warn that such a situation has occurred as it may not be obvious
4401 	 */
4402 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4403 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4404 			   current->pid);
4405 		goto out;
4406 	}
4407 
4408 	/*
4409 	 * We can not race with truncation due to holding i_mmap_rwsem.
4410 	 * i_size is modified when holding i_mmap_rwsem, so check here
4411 	 * once for faults beyond end of file.
4412 	 */
4413 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4414 	if (idx >= size)
4415 		goto out;
4416 
4417 retry:
4418 	page = find_lock_page(mapping, idx);
4419 	if (!page) {
4420 		/* Check for page in userfault range */
4421 		if (userfaultfd_missing(vma)) {
4422 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4423 						       flags, haddr,
4424 						       VM_UFFD_MISSING);
4425 			goto out;
4426 		}
4427 
4428 		page = alloc_huge_page(vma, haddr, 0);
4429 		if (IS_ERR(page)) {
4430 			/*
4431 			 * Returning error will result in faulting task being
4432 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4433 			 * tasks from racing to fault in the same page which
4434 			 * could result in false unable to allocate errors.
4435 			 * Page migration does not take the fault mutex, but
4436 			 * does a clear then write of pte's under page table
4437 			 * lock.  Page fault code could race with migration,
4438 			 * notice the clear pte and try to allocate a page
4439 			 * here.  Before returning error, get ptl and make
4440 			 * sure there really is no pte entry.
4441 			 */
4442 			ptl = huge_pte_lock(h, mm, ptep);
4443 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4444 				ret = 0;
4445 				spin_unlock(ptl);
4446 				goto out;
4447 			}
4448 			spin_unlock(ptl);
4449 			ret = vmf_error(PTR_ERR(page));
4450 			goto out;
4451 		}
4452 		clear_huge_page(page, address, pages_per_huge_page(h));
4453 		__SetPageUptodate(page);
4454 		new_page = true;
4455 
4456 		if (vma->vm_flags & VM_MAYSHARE) {
4457 			int err = huge_add_to_page_cache(page, mapping, idx);
4458 			if (err) {
4459 				put_page(page);
4460 				if (err == -EEXIST)
4461 					goto retry;
4462 				goto out;
4463 			}
4464 		} else {
4465 			lock_page(page);
4466 			if (unlikely(anon_vma_prepare(vma))) {
4467 				ret = VM_FAULT_OOM;
4468 				goto backout_unlocked;
4469 			}
4470 			anon_rmap = 1;
4471 		}
4472 	} else {
4473 		/*
4474 		 * If memory error occurs between mmap() and fault, some process
4475 		 * don't have hwpoisoned swap entry for errored virtual address.
4476 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4477 		 */
4478 		if (unlikely(PageHWPoison(page))) {
4479 			ret = VM_FAULT_HWPOISON_LARGE |
4480 				VM_FAULT_SET_HINDEX(hstate_index(h));
4481 			goto backout_unlocked;
4482 		}
4483 
4484 		/* Check for page in userfault range. */
4485 		if (userfaultfd_minor(vma)) {
4486 			unlock_page(page);
4487 			put_page(page);
4488 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4489 						       flags, haddr,
4490 						       VM_UFFD_MINOR);
4491 			goto out;
4492 		}
4493 	}
4494 
4495 	/*
4496 	 * If we are going to COW a private mapping later, we examine the
4497 	 * pending reservations for this page now. This will ensure that
4498 	 * any allocations necessary to record that reservation occur outside
4499 	 * the spinlock.
4500 	 */
4501 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4502 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4503 			ret = VM_FAULT_OOM;
4504 			goto backout_unlocked;
4505 		}
4506 		/* Just decrements count, does not deallocate */
4507 		vma_end_reservation(h, vma, haddr);
4508 	}
4509 
4510 	ptl = huge_pte_lock(h, mm, ptep);
4511 	ret = 0;
4512 	if (!huge_pte_none(huge_ptep_get(ptep)))
4513 		goto backout;
4514 
4515 	if (anon_rmap) {
4516 		ClearPagePrivate(page);
4517 		hugepage_add_new_anon_rmap(page, vma, haddr);
4518 	} else
4519 		page_dup_rmap(page, true);
4520 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4521 				&& (vma->vm_flags & VM_SHARED)));
4522 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4523 
4524 	hugetlb_count_add(pages_per_huge_page(h), mm);
4525 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4526 		/* Optimization, do the COW without a second fault */
4527 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4528 	}
4529 
4530 	spin_unlock(ptl);
4531 
4532 	/*
4533 	 * Only make newly allocated pages active.  Existing pages found
4534 	 * in the pagecache could be !page_huge_active() if they have been
4535 	 * isolated for migration.
4536 	 */
4537 	if (new_page)
4538 		set_page_huge_active(page);
4539 
4540 	unlock_page(page);
4541 out:
4542 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4543 	i_mmap_unlock_read(mapping);
4544 	return ret;
4545 
4546 backout:
4547 	spin_unlock(ptl);
4548 backout_unlocked:
4549 	unlock_page(page);
4550 	restore_reserve_on_error(h, vma, haddr, page);
4551 	put_page(page);
4552 	goto out;
4553 }
4554 
4555 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4556 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4557 {
4558 	unsigned long key[2];
4559 	u32 hash;
4560 
4561 	key[0] = (unsigned long) mapping;
4562 	key[1] = idx;
4563 
4564 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4565 
4566 	return hash & (num_fault_mutexes - 1);
4567 }
4568 #else
4569 /*
4570  * For uniprocesor systems we always use a single mutex, so just
4571  * return 0 and avoid the hashing overhead.
4572  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4573 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4574 {
4575 	return 0;
4576 }
4577 #endif
4578 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)4579 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4580 			unsigned long address, unsigned int flags)
4581 {
4582 	pte_t *ptep, entry;
4583 	spinlock_t *ptl;
4584 	vm_fault_t ret;
4585 	u32 hash;
4586 	pgoff_t idx;
4587 	struct page *page = NULL;
4588 	struct page *pagecache_page = NULL;
4589 	struct hstate *h = hstate_vma(vma);
4590 	struct address_space *mapping;
4591 	int need_wait_lock = 0;
4592 	unsigned long haddr = address & huge_page_mask(h);
4593 
4594 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4595 	if (ptep) {
4596 		/*
4597 		 * Since we hold no locks, ptep could be stale.  That is
4598 		 * OK as we are only making decisions based on content and
4599 		 * not actually modifying content here.
4600 		 */
4601 		entry = huge_ptep_get(ptep);
4602 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4603 			migration_entry_wait_huge(vma, mm, ptep);
4604 			return 0;
4605 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4606 			return VM_FAULT_HWPOISON_LARGE |
4607 				VM_FAULT_SET_HINDEX(hstate_index(h));
4608 	}
4609 
4610 	/*
4611 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4612 	 * until finished with ptep.  This serves two purposes:
4613 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4614 	 *    and making the ptep no longer valid.
4615 	 * 2) It synchronizes us with i_size modifications during truncation.
4616 	 *
4617 	 * ptep could have already be assigned via huge_pte_offset.  That
4618 	 * is OK, as huge_pte_alloc will return the same value unless
4619 	 * something has changed.
4620 	 */
4621 	mapping = vma->vm_file->f_mapping;
4622 	i_mmap_lock_read(mapping);
4623 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4624 	if (!ptep) {
4625 		i_mmap_unlock_read(mapping);
4626 		return VM_FAULT_OOM;
4627 	}
4628 
4629 	/*
4630 	 * Serialize hugepage allocation and instantiation, so that we don't
4631 	 * get spurious allocation failures if two CPUs race to instantiate
4632 	 * the same page in the page cache.
4633 	 */
4634 	idx = vma_hugecache_offset(h, vma, haddr);
4635 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4636 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4637 
4638 	entry = huge_ptep_get(ptep);
4639 	if (huge_pte_none(entry))
4640 		/*
4641 		 * hugetlb_no_page will drop vma lock and hugetlb fault
4642 		 * mutex internally, which make us return immediately.
4643 		 */
4644 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4645 
4646 	ret = 0;
4647 
4648 	/*
4649 	 * entry could be a migration/hwpoison entry at this point, so this
4650 	 * check prevents the kernel from going below assuming that we have
4651 	 * an active hugepage in pagecache. This goto expects the 2nd page
4652 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4653 	 * properly handle it.
4654 	 */
4655 	if (!pte_present(entry))
4656 		goto out_mutex;
4657 
4658 	/*
4659 	 * If we are going to COW the mapping later, we examine the pending
4660 	 * reservations for this page now. This will ensure that any
4661 	 * allocations necessary to record that reservation occur outside the
4662 	 * spinlock. For private mappings, we also lookup the pagecache
4663 	 * page now as it is used to determine if a reservation has been
4664 	 * consumed.
4665 	 */
4666 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4667 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4668 			ret = VM_FAULT_OOM;
4669 			goto out_mutex;
4670 		}
4671 		/* Just decrements count, does not deallocate */
4672 		vma_end_reservation(h, vma, haddr);
4673 
4674 		if (!(vma->vm_flags & VM_MAYSHARE))
4675 			pagecache_page = hugetlbfs_pagecache_page(h,
4676 								vma, haddr);
4677 	}
4678 
4679 	ptl = huge_pte_lock(h, mm, ptep);
4680 
4681 	/* Check for a racing update before calling hugetlb_cow */
4682 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4683 		goto out_ptl;
4684 
4685 	/*
4686 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4687 	 * pagecache_page, so here we need take the former one
4688 	 * when page != pagecache_page or !pagecache_page.
4689 	 */
4690 	page = pte_page(entry);
4691 	if (page != pagecache_page)
4692 		if (!trylock_page(page)) {
4693 			need_wait_lock = 1;
4694 			goto out_ptl;
4695 		}
4696 
4697 	get_page(page);
4698 
4699 	if (flags & FAULT_FLAG_WRITE) {
4700 		if (!huge_pte_write(entry)) {
4701 			ret = hugetlb_cow(mm, vma, address, ptep,
4702 					  pagecache_page, ptl);
4703 			goto out_put_page;
4704 		}
4705 		entry = huge_pte_mkdirty(entry);
4706 	}
4707 	entry = pte_mkyoung(entry);
4708 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4709 						flags & FAULT_FLAG_WRITE))
4710 		update_mmu_cache(vma, haddr, ptep);
4711 out_put_page:
4712 	if (page != pagecache_page)
4713 		unlock_page(page);
4714 	put_page(page);
4715 out_ptl:
4716 	spin_unlock(ptl);
4717 
4718 	if (pagecache_page) {
4719 		unlock_page(pagecache_page);
4720 		put_page(pagecache_page);
4721 	}
4722 out_mutex:
4723 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4724 	i_mmap_unlock_read(mapping);
4725 	/*
4726 	 * Generally it's safe to hold refcount during waiting page lock. But
4727 	 * here we just wait to defer the next page fault to avoid busy loop and
4728 	 * the page is not used after unlocked before returning from the current
4729 	 * page fault. So we are safe from accessing freed page, even if we wait
4730 	 * here without taking refcount.
4731 	 */
4732 	if (need_wait_lock)
4733 		wait_on_page_locked(page);
4734 	return ret;
4735 }
4736 
4737 #ifdef CONFIG_USERFAULTFD
4738 /*
4739  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4740  * modifications for huge pages.
4741  */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,enum mcopy_atomic_mode mode,struct page ** pagep)4742 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4743 			    pte_t *dst_pte,
4744 			    struct vm_area_struct *dst_vma,
4745 			    unsigned long dst_addr,
4746 			    unsigned long src_addr,
4747 			    enum mcopy_atomic_mode mode,
4748 			    struct page **pagep)
4749 {
4750 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
4751 	struct address_space *mapping;
4752 	pgoff_t idx;
4753 	unsigned long size;
4754 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4755 	struct hstate *h = hstate_vma(dst_vma);
4756 	pte_t _dst_pte;
4757 	spinlock_t *ptl;
4758 	int ret;
4759 	struct page *page;
4760 	int writable;
4761 
4762 	mapping = dst_vma->vm_file->f_mapping;
4763 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4764 
4765 	if (is_continue) {
4766 		ret = -EFAULT;
4767 		page = find_lock_page(mapping, idx);
4768 		if (!page)
4769 			goto out;
4770 	} else if (!*pagep) {
4771 		/* If a page already exists, then it's UFFDIO_COPY for
4772 		 * a non-missing case. Return -EEXIST.
4773 		 */
4774 		if (vm_shared &&
4775 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4776 			ret = -EEXIST;
4777 			goto out;
4778 		}
4779 
4780 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4781 		if (IS_ERR(page)) {
4782 			ret = -ENOMEM;
4783 			goto out;
4784 		}
4785 
4786 		ret = copy_huge_page_from_user(page,
4787 						(const void __user *) src_addr,
4788 						pages_per_huge_page(h), false);
4789 
4790 		/* fallback to copy_from_user outside mmap_lock */
4791 		if (unlikely(ret)) {
4792 			ret = -ENOENT;
4793 			*pagep = page;
4794 			/* don't free the page */
4795 			goto out;
4796 		}
4797 	} else {
4798 		page = *pagep;
4799 		*pagep = NULL;
4800 	}
4801 
4802 	/*
4803 	 * The memory barrier inside __SetPageUptodate makes sure that
4804 	 * preceding stores to the page contents become visible before
4805 	 * the set_pte_at() write.
4806 	 */
4807 	__SetPageUptodate(page);
4808 
4809 	/* Add shared, newly allocated pages to the page cache. */
4810 	if (vm_shared && !is_continue) {
4811 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4812 		ret = -EFAULT;
4813 		if (idx >= size)
4814 			goto out_release_nounlock;
4815 
4816 		/*
4817 		 * Serialization between remove_inode_hugepages() and
4818 		 * huge_add_to_page_cache() below happens through the
4819 		 * hugetlb_fault_mutex_table that here must be hold by
4820 		 * the caller.
4821 		 */
4822 		ret = huge_add_to_page_cache(page, mapping, idx);
4823 		if (ret)
4824 			goto out_release_nounlock;
4825 	}
4826 
4827 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4828 	spin_lock(ptl);
4829 
4830 	/*
4831 	 * Recheck the i_size after holding PT lock to make sure not
4832 	 * to leave any page mapped (as page_mapped()) beyond the end
4833 	 * of the i_size (remove_inode_hugepages() is strict about
4834 	 * enforcing that). If we bail out here, we'll also leave a
4835 	 * page in the radix tree in the vm_shared case beyond the end
4836 	 * of the i_size, but remove_inode_hugepages() will take care
4837 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4838 	 */
4839 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4840 	ret = -EFAULT;
4841 	if (idx >= size)
4842 		goto out_release_unlock;
4843 
4844 	ret = -EEXIST;
4845 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4846 		goto out_release_unlock;
4847 
4848 	if (vm_shared) {
4849 		page_dup_rmap(page, true);
4850 	} else {
4851 		ClearPagePrivate(page);
4852 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4853 	}
4854 
4855 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
4856 	if (is_continue && !vm_shared)
4857 		writable = 0;
4858 	else
4859 		writable = dst_vma->vm_flags & VM_WRITE;
4860 
4861 	_dst_pte = make_huge_pte(dst_vma, page, writable);
4862 	if (writable)
4863 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4864 	_dst_pte = pte_mkyoung(_dst_pte);
4865 
4866 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4867 
4868 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4869 					dst_vma->vm_flags & VM_WRITE);
4870 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4871 
4872 	/* No need to invalidate - it was non-present before */
4873 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4874 
4875 	spin_unlock(ptl);
4876 	if (!is_continue)
4877 		set_page_huge_active(page);
4878 	if (vm_shared || is_continue)
4879 		unlock_page(page);
4880 	ret = 0;
4881 out:
4882 	return ret;
4883 out_release_unlock:
4884 	spin_unlock(ptl);
4885 	if (vm_shared || is_continue)
4886 		unlock_page(page);
4887 out_release_nounlock:
4888 	put_page(page);
4889 	goto out;
4890 }
4891 #endif /* CONFIG_USERFAULTFD */
4892 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * locked)4893 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4894 			 struct page **pages, struct vm_area_struct **vmas,
4895 			 unsigned long *position, unsigned long *nr_pages,
4896 			 long i, unsigned int flags, int *locked)
4897 {
4898 	unsigned long pfn_offset;
4899 	unsigned long vaddr = *position;
4900 	unsigned long remainder = *nr_pages;
4901 	struct hstate *h = hstate_vma(vma);
4902 	int err = -EFAULT;
4903 
4904 	while (vaddr < vma->vm_end && remainder) {
4905 		pte_t *pte;
4906 		spinlock_t *ptl = NULL;
4907 		int absent;
4908 		struct page *page;
4909 
4910 		/*
4911 		 * If we have a pending SIGKILL, don't keep faulting pages and
4912 		 * potentially allocating memory.
4913 		 */
4914 		if (fatal_signal_pending(current)) {
4915 			remainder = 0;
4916 			break;
4917 		}
4918 
4919 		/*
4920 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4921 		 * each hugepage.  We have to make sure we get the
4922 		 * first, for the page indexing below to work.
4923 		 *
4924 		 * Note that page table lock is not held when pte is null.
4925 		 */
4926 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4927 				      huge_page_size(h));
4928 		if (pte)
4929 			ptl = huge_pte_lock(h, mm, pte);
4930 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4931 
4932 		/*
4933 		 * When coredumping, it suits get_dump_page if we just return
4934 		 * an error where there's an empty slot with no huge pagecache
4935 		 * to back it.  This way, we avoid allocating a hugepage, and
4936 		 * the sparse dumpfile avoids allocating disk blocks, but its
4937 		 * huge holes still show up with zeroes where they need to be.
4938 		 */
4939 		if (absent && (flags & FOLL_DUMP) &&
4940 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4941 			if (pte)
4942 				spin_unlock(ptl);
4943 			remainder = 0;
4944 			break;
4945 		}
4946 
4947 		/*
4948 		 * We need call hugetlb_fault for both hugepages under migration
4949 		 * (in which case hugetlb_fault waits for the migration,) and
4950 		 * hwpoisoned hugepages (in which case we need to prevent the
4951 		 * caller from accessing to them.) In order to do this, we use
4952 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4953 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4954 		 * both cases, and because we can't follow correct pages
4955 		 * directly from any kind of swap entries.
4956 		 */
4957 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4958 		    ((flags & FOLL_WRITE) &&
4959 		      !huge_pte_write(huge_ptep_get(pte)))) {
4960 			vm_fault_t ret;
4961 			unsigned int fault_flags = 0;
4962 
4963 			if (pte)
4964 				spin_unlock(ptl);
4965 			if (flags & FOLL_WRITE)
4966 				fault_flags |= FAULT_FLAG_WRITE;
4967 			if (locked)
4968 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4969 					FAULT_FLAG_KILLABLE;
4970 			if (flags & FOLL_NOWAIT)
4971 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4972 					FAULT_FLAG_RETRY_NOWAIT;
4973 			if (flags & FOLL_TRIED) {
4974 				/*
4975 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4976 				 * FAULT_FLAG_TRIED can co-exist
4977 				 */
4978 				fault_flags |= FAULT_FLAG_TRIED;
4979 			}
4980 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4981 			if (ret & VM_FAULT_ERROR) {
4982 				err = vm_fault_to_errno(ret, flags);
4983 				remainder = 0;
4984 				break;
4985 			}
4986 			if (ret & VM_FAULT_RETRY) {
4987 				if (locked &&
4988 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4989 					*locked = 0;
4990 				*nr_pages = 0;
4991 				/*
4992 				 * VM_FAULT_RETRY must not return an
4993 				 * error, it will return zero
4994 				 * instead.
4995 				 *
4996 				 * No need to update "position" as the
4997 				 * caller will not check it after
4998 				 * *nr_pages is set to 0.
4999 				 */
5000 				return i;
5001 			}
5002 			continue;
5003 		}
5004 
5005 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5006 		page = pte_page(huge_ptep_get(pte));
5007 
5008 		/*
5009 		 * If subpage information not requested, update counters
5010 		 * and skip the same_page loop below.
5011 		 */
5012 		if (!pages && !vmas && !pfn_offset &&
5013 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
5014 		    (remainder >= pages_per_huge_page(h))) {
5015 			vaddr += huge_page_size(h);
5016 			remainder -= pages_per_huge_page(h);
5017 			i += pages_per_huge_page(h);
5018 			spin_unlock(ptl);
5019 			continue;
5020 		}
5021 
5022 same_page:
5023 		if (pages) {
5024 			pages[i] = mem_map_offset(page, pfn_offset);
5025 			/*
5026 			 * try_grab_page() should always succeed here, because:
5027 			 * a) we hold the ptl lock, and b) we've just checked
5028 			 * that the huge page is present in the page tables. If
5029 			 * the huge page is present, then the tail pages must
5030 			 * also be present. The ptl prevents the head page and
5031 			 * tail pages from being rearranged in any way. So this
5032 			 * page must be available at this point, unless the page
5033 			 * refcount overflowed:
5034 			 */
5035 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
5036 				spin_unlock(ptl);
5037 				remainder = 0;
5038 				err = -ENOMEM;
5039 				break;
5040 			}
5041 		}
5042 
5043 		if (vmas)
5044 			vmas[i] = vma;
5045 
5046 		vaddr += PAGE_SIZE;
5047 		++pfn_offset;
5048 		--remainder;
5049 		++i;
5050 		if (vaddr < vma->vm_end && remainder &&
5051 				pfn_offset < pages_per_huge_page(h)) {
5052 			/*
5053 			 * We use pfn_offset to avoid touching the pageframes
5054 			 * of this compound page.
5055 			 */
5056 			goto same_page;
5057 		}
5058 		spin_unlock(ptl);
5059 	}
5060 	*nr_pages = remainder;
5061 	/*
5062 	 * setting position is actually required only if remainder is
5063 	 * not zero but it's faster not to add a "if (remainder)"
5064 	 * branch.
5065 	 */
5066 	*position = vaddr;
5067 
5068 	return i ? i : err;
5069 }
5070 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)5071 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5072 		unsigned long address, unsigned long end, pgprot_t newprot)
5073 {
5074 	struct mm_struct *mm = vma->vm_mm;
5075 	unsigned long start = address;
5076 	pte_t *ptep;
5077 	pte_t pte;
5078 	struct hstate *h = hstate_vma(vma);
5079 	unsigned long pages = 0;
5080 	bool shared_pmd = false;
5081 	struct mmu_notifier_range range;
5082 
5083 	/*
5084 	 * In the case of shared PMDs, the area to flush could be beyond
5085 	 * start/end.  Set range.start/range.end to cover the maximum possible
5086 	 * range if PMD sharing is possible.
5087 	 */
5088 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5089 				0, vma, mm, start, end);
5090 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5091 
5092 	BUG_ON(address >= end);
5093 	flush_cache_range(vma, range.start, range.end);
5094 
5095 	mmu_notifier_invalidate_range_start(&range);
5096 	i_mmap_lock_write(vma->vm_file->f_mapping);
5097 	for (; address < end; address += huge_page_size(h)) {
5098 		spinlock_t *ptl;
5099 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5100 		if (!ptep)
5101 			continue;
5102 		ptl = huge_pte_lock(h, mm, ptep);
5103 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5104 			pages++;
5105 			spin_unlock(ptl);
5106 			shared_pmd = true;
5107 			continue;
5108 		}
5109 		pte = huge_ptep_get(ptep);
5110 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5111 			spin_unlock(ptl);
5112 			continue;
5113 		}
5114 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5115 			swp_entry_t entry = pte_to_swp_entry(pte);
5116 
5117 			if (is_write_migration_entry(entry)) {
5118 				pte_t newpte;
5119 
5120 				make_migration_entry_read(&entry);
5121 				newpte = swp_entry_to_pte(entry);
5122 				set_huge_swap_pte_at(mm, address, ptep,
5123 						     newpte, huge_page_size(h));
5124 				pages++;
5125 			}
5126 			spin_unlock(ptl);
5127 			continue;
5128 		}
5129 		if (!huge_pte_none(pte)) {
5130 			pte_t old_pte;
5131 
5132 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5133 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5134 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5135 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5136 			pages++;
5137 		}
5138 		spin_unlock(ptl);
5139 	}
5140 	/*
5141 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5142 	 * may have cleared our pud entry and done put_page on the page table:
5143 	 * once we release i_mmap_rwsem, another task can do the final put_page
5144 	 * and that page table be reused and filled with junk.  If we actually
5145 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5146 	 */
5147 	if (shared_pmd)
5148 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5149 	else
5150 		flush_hugetlb_tlb_range(vma, start, end);
5151 	/*
5152 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5153 	 * page table protection not changing it to point to a new page.
5154 	 *
5155 	 * See Documentation/vm/mmu_notifier.rst
5156 	 */
5157 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5158 	mmu_notifier_invalidate_range_end(&range);
5159 
5160 	return pages << h->order;
5161 }
5162 
5163 /* Return true if reservation was successful, false otherwise.  */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)5164 bool hugetlb_reserve_pages(struct inode *inode,
5165 					long from, long to,
5166 					struct vm_area_struct *vma,
5167 					vm_flags_t vm_flags)
5168 {
5169 	long chg, add = -1;
5170 	struct hstate *h = hstate_inode(inode);
5171 	struct hugepage_subpool *spool = subpool_inode(inode);
5172 	struct resv_map *resv_map;
5173 	struct hugetlb_cgroup *h_cg = NULL;
5174 	long gbl_reserve, regions_needed = 0;
5175 
5176 	/* This should never happen */
5177 	if (from > to) {
5178 		VM_WARN(1, "%s called with a negative range\n", __func__);
5179 		return false;
5180 	}
5181 
5182 	/*
5183 	 * Only apply hugepage reservation if asked. At fault time, an
5184 	 * attempt will be made for VM_NORESERVE to allocate a page
5185 	 * without using reserves
5186 	 */
5187 	if (vm_flags & VM_NORESERVE)
5188 		return true;
5189 
5190 	/*
5191 	 * Shared mappings base their reservation on the number of pages that
5192 	 * are already allocated on behalf of the file. Private mappings need
5193 	 * to reserve the full area even if read-only as mprotect() may be
5194 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5195 	 */
5196 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5197 		/*
5198 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5199 		 * called for inodes for which resv_maps were created (see
5200 		 * hugetlbfs_get_inode).
5201 		 */
5202 		resv_map = inode_resv_map(inode);
5203 
5204 		chg = region_chg(resv_map, from, to, &regions_needed);
5205 
5206 	} else {
5207 		/* Private mapping. */
5208 		resv_map = resv_map_alloc();
5209 		if (!resv_map)
5210 			return false;
5211 
5212 		chg = to - from;
5213 
5214 		set_vma_resv_map(vma, resv_map);
5215 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5216 	}
5217 
5218 	if (chg < 0)
5219 		goto out_err;
5220 
5221 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5222 				chg * pages_per_huge_page(h), &h_cg) < 0)
5223 		goto out_err;
5224 
5225 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5226 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5227 		 * of the resv_map.
5228 		 */
5229 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5230 	}
5231 
5232 	/*
5233 	 * There must be enough pages in the subpool for the mapping. If
5234 	 * the subpool has a minimum size, there may be some global
5235 	 * reservations already in place (gbl_reserve).
5236 	 */
5237 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5238 	if (gbl_reserve < 0)
5239 		goto out_uncharge_cgroup;
5240 
5241 	/*
5242 	 * Check enough hugepages are available for the reservation.
5243 	 * Hand the pages back to the subpool if there are not
5244 	 */
5245 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5246 		goto out_put_pages;
5247 
5248 	/*
5249 	 * Account for the reservations made. Shared mappings record regions
5250 	 * that have reservations as they are shared by multiple VMAs.
5251 	 * When the last VMA disappears, the region map says how much
5252 	 * the reservation was and the page cache tells how much of
5253 	 * the reservation was consumed. Private mappings are per-VMA and
5254 	 * only the consumed reservations are tracked. When the VMA
5255 	 * disappears, the original reservation is the VMA size and the
5256 	 * consumed reservations are stored in the map. Hence, nothing
5257 	 * else has to be done for private mappings here
5258 	 */
5259 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5260 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5261 
5262 		if (unlikely(add < 0)) {
5263 			hugetlb_acct_memory(h, -gbl_reserve);
5264 			goto out_put_pages;
5265 		} else if (unlikely(chg > add)) {
5266 			/*
5267 			 * pages in this range were added to the reserve
5268 			 * map between region_chg and region_add.  This
5269 			 * indicates a race with alloc_huge_page.  Adjust
5270 			 * the subpool and reserve counts modified above
5271 			 * based on the difference.
5272 			 */
5273 			long rsv_adjust;
5274 
5275 			/*
5276 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5277 			 * reference to h_cg->css. See comment below for detail.
5278 			 */
5279 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5280 				hstate_index(h),
5281 				(chg - add) * pages_per_huge_page(h), h_cg);
5282 
5283 			rsv_adjust = hugepage_subpool_put_pages(spool,
5284 								chg - add);
5285 			hugetlb_acct_memory(h, -rsv_adjust);
5286 		} else if (h_cg) {
5287 			/*
5288 			 * The file_regions will hold their own reference to
5289 			 * h_cg->css. So we should release the reference held
5290 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5291 			 * done.
5292 			 */
5293 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5294 		}
5295 	}
5296 	return true;
5297 
5298 out_put_pages:
5299 	/* put back original number of pages, chg */
5300 	(void)hugepage_subpool_put_pages(spool, chg);
5301 out_uncharge_cgroup:
5302 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5303 					    chg * pages_per_huge_page(h), h_cg);
5304 out_err:
5305 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5306 		/* Only call region_abort if the region_chg succeeded but the
5307 		 * region_add failed or didn't run.
5308 		 */
5309 		if (chg >= 0 && add < 0)
5310 			region_abort(resv_map, from, to, regions_needed);
5311 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5312 		kref_put(&resv_map->refs, resv_map_release);
5313 	return false;
5314 }
5315 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)5316 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5317 								long freed)
5318 {
5319 	struct hstate *h = hstate_inode(inode);
5320 	struct resv_map *resv_map = inode_resv_map(inode);
5321 	long chg = 0;
5322 	struct hugepage_subpool *spool = subpool_inode(inode);
5323 	long gbl_reserve;
5324 
5325 	/*
5326 	 * Since this routine can be called in the evict inode path for all
5327 	 * hugetlbfs inodes, resv_map could be NULL.
5328 	 */
5329 	if (resv_map) {
5330 		chg = region_del(resv_map, start, end);
5331 		/*
5332 		 * region_del() can fail in the rare case where a region
5333 		 * must be split and another region descriptor can not be
5334 		 * allocated.  If end == LONG_MAX, it will not fail.
5335 		 */
5336 		if (chg < 0)
5337 			return chg;
5338 	}
5339 
5340 	spin_lock(&inode->i_lock);
5341 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5342 	spin_unlock(&inode->i_lock);
5343 
5344 	/*
5345 	 * If the subpool has a minimum size, the number of global
5346 	 * reservations to be released may be adjusted.
5347 	 */
5348 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5349 	hugetlb_acct_memory(h, -gbl_reserve);
5350 
5351 	return 0;
5352 }
5353 
5354 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)5355 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5356 				struct vm_area_struct *vma,
5357 				unsigned long addr, pgoff_t idx)
5358 {
5359 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5360 				svma->vm_start;
5361 	unsigned long sbase = saddr & PUD_MASK;
5362 	unsigned long s_end = sbase + PUD_SIZE;
5363 
5364 	/* Allow segments to share if only one is marked locked */
5365 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5366 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5367 
5368 	/*
5369 	 * match the virtual addresses, permission and the alignment of the
5370 	 * page table page.
5371 	 */
5372 	if (pmd_index(addr) != pmd_index(saddr) ||
5373 	    vm_flags != svm_flags ||
5374 	    sbase < svma->vm_start || svma->vm_end < s_end)
5375 		return 0;
5376 
5377 	return saddr;
5378 }
5379 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)5380 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5381 {
5382 	unsigned long base = addr & PUD_MASK;
5383 	unsigned long end = base + PUD_SIZE;
5384 
5385 	/*
5386 	 * check on proper vm_flags and page table alignment
5387 	 */
5388 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5389 		return true;
5390 	return false;
5391 }
5392 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)5393 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5394 {
5395 #ifdef CONFIG_USERFAULTFD
5396 	if (uffd_disable_huge_pmd_share(vma))
5397 		return false;
5398 #endif
5399 	return vma_shareable(vma, addr);
5400 }
5401 
5402 /*
5403  * Determine if start,end range within vma could be mapped by shared pmd.
5404  * If yes, adjust start and end to cover range associated with possible
5405  * shared pmd mappings.
5406  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5407 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5408 				unsigned long *start, unsigned long *end)
5409 {
5410 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5411 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5412 
5413 	/*
5414 	 * vma need span at least one aligned PUD size and the start,end range
5415 	 * must at least partialy within it.
5416 	 */
5417 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5418 		(*end <= v_start) || (*start >= v_end))
5419 		return;
5420 
5421 	/* Extend the range to be PUD aligned for a worst case scenario */
5422 	if (*start > v_start)
5423 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5424 
5425 	if (*end < v_end)
5426 		*end = ALIGN(*end, PUD_SIZE);
5427 }
5428 
5429 /*
5430  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5431  * and returns the corresponding pte. While this is not necessary for the
5432  * !shared pmd case because we can allocate the pmd later as well, it makes the
5433  * code much cleaner.
5434  *
5435  * This routine must be called with i_mmap_rwsem held in at least read mode if
5436  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5437  * table entries associated with the address space.  This is important as we
5438  * are setting up sharing based on existing page table entries (mappings).
5439  *
5440  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5441  * huge_pte_alloc know that sharing is not possible and do not take
5442  * i_mmap_rwsem as a performance optimization.  This is handled by the
5443  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5444  * only required for subsequent processing.
5445  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)5446 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5447 		      unsigned long addr, pud_t *pud)
5448 {
5449 	struct address_space *mapping = vma->vm_file->f_mapping;
5450 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5451 			vma->vm_pgoff;
5452 	struct vm_area_struct *svma;
5453 	unsigned long saddr;
5454 	pte_t *spte = NULL;
5455 	pte_t *pte;
5456 	spinlock_t *ptl;
5457 
5458 	i_mmap_assert_locked(mapping);
5459 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5460 		if (svma == vma)
5461 			continue;
5462 
5463 		saddr = page_table_shareable(svma, vma, addr, idx);
5464 		if (saddr) {
5465 			spte = huge_pte_offset(svma->vm_mm, saddr,
5466 					       vma_mmu_pagesize(svma));
5467 			if (spte) {
5468 				get_page(virt_to_page(spte));
5469 				break;
5470 			}
5471 		}
5472 	}
5473 
5474 	if (!spte)
5475 		goto out;
5476 
5477 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5478 	if (pud_none(*pud)) {
5479 		pud_populate(mm, pud,
5480 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5481 		mm_inc_nr_pmds(mm);
5482 	} else {
5483 		put_page(virt_to_page(spte));
5484 	}
5485 	spin_unlock(ptl);
5486 out:
5487 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5488 	return pte;
5489 }
5490 
5491 /*
5492  * unmap huge page backed by shared pte.
5493  *
5494  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5495  * indicated by page_count > 1, unmap is achieved by clearing pud and
5496  * decrementing the ref count. If count == 1, the pte page is not shared.
5497  *
5498  * Called with page table lock held and i_mmap_rwsem held in write mode.
5499  *
5500  * returns: 1 successfully unmapped a shared pte page
5501  *	    0 the underlying pte page is not shared, or it is the last user
5502  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5503 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5504 					unsigned long *addr, pte_t *ptep)
5505 {
5506 	pgd_t *pgd = pgd_offset(mm, *addr);
5507 	p4d_t *p4d = p4d_offset(pgd, *addr);
5508 	pud_t *pud = pud_offset(p4d, *addr);
5509 
5510 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5511 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5512 	if (page_count(virt_to_page(ptep)) == 1)
5513 		return 0;
5514 
5515 	pud_clear(pud);
5516 	put_page(virt_to_page(ptep));
5517 	mm_dec_nr_pmds(mm);
5518 	/*
5519 	 * This update of passed address optimizes loops sequentially
5520 	 * processing addresses in increments of huge page size (PMD_SIZE
5521 	 * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
5522 	 * Update address to the 'last page' in the cleared area so that
5523 	 * calling loop can move to first page past this area.
5524 	 */
5525 	*addr |= PUD_SIZE - PMD_SIZE;
5526 	return 1;
5527 }
5528 
5529 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)5530 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5531 		      unsigned long addr, pud_t *pud)
5532 {
5533 	return NULL;
5534 }
5535 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5536 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5537 				unsigned long *addr, pte_t *ptep)
5538 {
5539 	return 0;
5540 }
5541 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5542 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5543 				unsigned long *start, unsigned long *end)
5544 {
5545 }
5546 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)5547 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5548 {
5549 	return false;
5550 }
5551 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5552 
5553 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)5554 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5555 			unsigned long addr, unsigned long sz)
5556 {
5557 	pgd_t *pgd;
5558 	p4d_t *p4d;
5559 	pud_t *pud;
5560 	pte_t *pte = NULL;
5561 
5562 	pgd = pgd_offset(mm, addr);
5563 	p4d = p4d_alloc(mm, pgd, addr);
5564 	if (!p4d)
5565 		return NULL;
5566 	pud = pud_alloc(mm, p4d, addr);
5567 	if (pud) {
5568 		if (sz == PUD_SIZE) {
5569 			pte = (pte_t *)pud;
5570 		} else {
5571 			BUG_ON(sz != PMD_SIZE);
5572 			if (want_pmd_share(vma, addr) && pud_none(*pud))
5573 				pte = huge_pmd_share(mm, vma, addr, pud);
5574 			else
5575 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5576 		}
5577 	}
5578 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5579 
5580 	return pte;
5581 }
5582 
5583 /*
5584  * huge_pte_offset() - Walk the page table to resolve the hugepage
5585  * entry at address @addr
5586  *
5587  * Return: Pointer to page table entry (PUD or PMD) for
5588  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5589  * size @sz doesn't match the hugepage size at this level of the page
5590  * table.
5591  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)5592 pte_t *huge_pte_offset(struct mm_struct *mm,
5593 		       unsigned long addr, unsigned long sz)
5594 {
5595 	pgd_t *pgd;
5596 	p4d_t *p4d;
5597 	pud_t *pud;
5598 	pmd_t *pmd;
5599 
5600 	pgd = pgd_offset(mm, addr);
5601 	if (!pgd_present(*pgd))
5602 		return NULL;
5603 	p4d = p4d_offset(pgd, addr);
5604 	if (!p4d_present(*p4d))
5605 		return NULL;
5606 
5607 	pud = pud_offset(p4d, addr);
5608 	if (sz == PUD_SIZE)
5609 		/* must be pud huge, non-present or none */
5610 		return (pte_t *)pud;
5611 	if (!pud_present(*pud))
5612 		return NULL;
5613 	/* must have a valid entry and size to go further */
5614 
5615 	pmd = pmd_offset(pud, addr);
5616 	/* must be pmd huge, non-present or none */
5617 	return (pte_t *)pmd;
5618 }
5619 
5620 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5621 
5622 /*
5623  * These functions are overwritable if your architecture needs its own
5624  * behavior.
5625  */
5626 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)5627 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5628 			      int write)
5629 {
5630 	return ERR_PTR(-EINVAL);
5631 }
5632 
5633 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)5634 follow_huge_pd(struct vm_area_struct *vma,
5635 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5636 {
5637 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5638 	return NULL;
5639 }
5640 
5641 struct page * __weak
follow_huge_pmd_pte(struct vm_area_struct * vma,unsigned long address,int flags)5642 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
5643 {
5644 	struct hstate *h = hstate_vma(vma);
5645 	struct mm_struct *mm = vma->vm_mm;
5646 	struct page *page = NULL;
5647 	spinlock_t *ptl;
5648 	pte_t *ptep, pte;
5649 
5650 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5651 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5652 			 (FOLL_PIN | FOLL_GET)))
5653 		return NULL;
5654 
5655 retry:
5656 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
5657 	if (!ptep)
5658 		return NULL;
5659 
5660 	ptl = huge_pte_lock(h, mm, ptep);
5661 	pte = huge_ptep_get(ptep);
5662 	if (pte_present(pte)) {
5663 		page = pte_page(pte) +
5664 			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
5665 		/*
5666 		 * try_grab_page() should always succeed here, because: a) we
5667 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5668 		 * huge pmd (head) page is present in the page tables. The ptl
5669 		 * prevents the head page and tail pages from being rearranged
5670 		 * in any way. So this page must be available at this point,
5671 		 * unless the page refcount overflowed:
5672 		 */
5673 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5674 			page = NULL;
5675 			goto out;
5676 		}
5677 	} else {
5678 		if (is_hugetlb_entry_migration(pte)) {
5679 			spin_unlock(ptl);
5680 			__migration_entry_wait(mm, ptep, ptl);
5681 			goto retry;
5682 		}
5683 		/*
5684 		 * hwpoisoned entry is treated as no_page_table in
5685 		 * follow_page_mask().
5686 		 */
5687 	}
5688 out:
5689 	spin_unlock(ptl);
5690 	return page;
5691 }
5692 
5693 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)5694 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5695 		pud_t *pud, int flags)
5696 {
5697 	if (flags & (FOLL_GET | FOLL_PIN))
5698 		return NULL;
5699 
5700 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5701 }
5702 
5703 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)5704 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5705 {
5706 	if (flags & (FOLL_GET | FOLL_PIN))
5707 		return NULL;
5708 
5709 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5710 }
5711 
isolate_hugetlb(struct page * page,struct list_head * list)5712 int isolate_hugetlb(struct page *page, struct list_head *list)
5713 {
5714 	int ret = 0;
5715 
5716 	spin_lock(&hugetlb_lock);
5717 	if (!PageHeadHuge(page) || !page_huge_active(page) ||
5718 	    !get_page_unless_zero(page)) {
5719 		ret = -EBUSY;
5720 		goto unlock;
5721 	}
5722 	clear_page_huge_active(page);
5723 	list_move_tail(&page->lru, list);
5724 unlock:
5725 	spin_unlock(&hugetlb_lock);
5726 	return ret;
5727 }
5728 
putback_active_hugepage(struct page * page)5729 void putback_active_hugepage(struct page *page)
5730 {
5731 	VM_BUG_ON_PAGE(!PageHead(page), page);
5732 	spin_lock(&hugetlb_lock);
5733 	set_page_huge_active(page);
5734 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5735 	spin_unlock(&hugetlb_lock);
5736 	put_page(page);
5737 }
5738 
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)5739 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5740 {
5741 	struct hstate *h = page_hstate(oldpage);
5742 
5743 	hugetlb_cgroup_migrate(oldpage, newpage);
5744 	set_page_owner_migrate_reason(newpage, reason);
5745 
5746 	/*
5747 	 * transfer temporary state of the new huge page. This is
5748 	 * reverse to other transitions because the newpage is going to
5749 	 * be final while the old one will be freed so it takes over
5750 	 * the temporary status.
5751 	 *
5752 	 * Also note that we have to transfer the per-node surplus state
5753 	 * here as well otherwise the global surplus count will not match
5754 	 * the per-node's.
5755 	 */
5756 	if (PageHugeTemporary(newpage)) {
5757 		int old_nid = page_to_nid(oldpage);
5758 		int new_nid = page_to_nid(newpage);
5759 
5760 		SetPageHugeTemporary(oldpage);
5761 		ClearPageHugeTemporary(newpage);
5762 
5763 		spin_lock(&hugetlb_lock);
5764 		if (h->surplus_huge_pages_node[old_nid]) {
5765 			h->surplus_huge_pages_node[old_nid]--;
5766 			h->surplus_huge_pages_node[new_nid]++;
5767 		}
5768 		spin_unlock(&hugetlb_lock);
5769 	}
5770 }
5771 
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)5772 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
5773 				   unsigned long start,
5774 				   unsigned long end)
5775 {
5776 	struct hstate *h = hstate_vma(vma);
5777 	unsigned long sz = huge_page_size(h);
5778 	struct mm_struct *mm = vma->vm_mm;
5779 	struct mmu_notifier_range range;
5780 	unsigned long address;
5781 	spinlock_t *ptl;
5782 	pte_t *ptep;
5783 
5784 	if (!(vma->vm_flags & VM_MAYSHARE))
5785 		return;
5786 
5787 	if (start >= end)
5788 		return;
5789 
5790 	flush_cache_range(vma, start, end);
5791 	/*
5792 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
5793 	 * we have already done the PUD_SIZE alignment.
5794 	 */
5795 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5796 				start, end);
5797 	mmu_notifier_invalidate_range_start(&range);
5798 	i_mmap_lock_write(vma->vm_file->f_mapping);
5799 	for (address = start; address < end; address += PUD_SIZE) {
5800 		unsigned long tmp = address;
5801 
5802 		ptep = huge_pte_offset(mm, address, sz);
5803 		if (!ptep)
5804 			continue;
5805 		ptl = huge_pte_lock(h, mm, ptep);
5806 		/* We don't want 'address' to be changed */
5807 		huge_pmd_unshare(mm, vma, &tmp, ptep);
5808 		spin_unlock(ptl);
5809 	}
5810 	flush_hugetlb_tlb_range(vma, start, end);
5811 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5812 	/*
5813 	 * No need to call mmu_notifier_invalidate_range(), see
5814 	 * Documentation/vm/mmu_notifier.rst.
5815 	 */
5816 	mmu_notifier_invalidate_range_end(&range);
5817 }
5818 
5819 /*
5820  * This function will unconditionally remove all the shared pmd pgtable entries
5821  * within the specific vma for a hugetlbfs memory range.
5822  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)5823 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5824 {
5825 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
5826 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
5827 }
5828 
5829 #ifdef CONFIG_CMA
5830 static bool cma_reserve_called __initdata;
5831 
cmdline_parse_hugetlb_cma(char * p)5832 static int __init cmdline_parse_hugetlb_cma(char *p)
5833 {
5834 	hugetlb_cma_size = memparse(p, &p);
5835 	return 0;
5836 }
5837 
5838 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5839 
hugetlb_cma_reserve(int order)5840 void __init hugetlb_cma_reserve(int order)
5841 {
5842 	unsigned long size, reserved, per_node;
5843 	int nid;
5844 
5845 	cma_reserve_called = true;
5846 
5847 	if (!hugetlb_cma_size)
5848 		return;
5849 
5850 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5851 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5852 			(PAGE_SIZE << order) / SZ_1M);
5853 		return;
5854 	}
5855 
5856 	/*
5857 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5858 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5859 	 */
5860 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5861 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5862 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5863 
5864 	reserved = 0;
5865 	for_each_node_state(nid, N_ONLINE) {
5866 		int res;
5867 		char name[CMA_MAX_NAME];
5868 
5869 		size = min(per_node, hugetlb_cma_size - reserved);
5870 		size = round_up(size, PAGE_SIZE << order);
5871 
5872 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5873 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5874 						 0, false, name,
5875 						 &hugetlb_cma[nid], nid);
5876 		if (res) {
5877 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5878 				res, nid);
5879 			continue;
5880 		}
5881 
5882 		reserved += size;
5883 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5884 			size / SZ_1M, nid);
5885 
5886 		if (reserved >= hugetlb_cma_size)
5887 			break;
5888 	}
5889 }
5890 
hugetlb_cma_check(void)5891 void __init hugetlb_cma_check(void)
5892 {
5893 	if (!hugetlb_cma_size || cma_reserve_called)
5894 		return;
5895 
5896 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5897 }
5898 
5899 #endif /* CONFIG_CMA */
5900