• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/console.h>
9 #include <linux/crash_dump.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/dmi.h>
12 #include <linux/efi.h>
13 #include <linux/init_ohci1394_dma.h>
14 #include <linux/initrd.h>
15 #include <linux/iscsi_ibft.h>
16 #include <linux/memblock.h>
17 #include <linux/pci.h>
18 #include <linux/root_dev.h>
19 #include <linux/sfi.h>
20 #include <linux/hugetlb.h>
21 #include <linux/tboot.h>
22 #include <linux/usb/xhci-dbgp.h>
23 #include <linux/static_call.h>
24 #include <linux/swiotlb.h>
25 
26 #include <uapi/linux/mount.h>
27 
28 #include <xen/xen.h>
29 
30 #include <asm/apic.h>
31 #include <asm/numa.h>
32 #include <asm/bios_ebda.h>
33 #include <asm/bugs.h>
34 #include <asm/cpu.h>
35 #include <asm/efi.h>
36 #include <asm/gart.h>
37 #include <asm/hypervisor.h>
38 #include <asm/io_apic.h>
39 #include <asm/kasan.h>
40 #include <asm/kaslr.h>
41 #include <asm/mce.h>
42 #include <asm/mtrr.h>
43 #include <asm/realmode.h>
44 #include <asm/olpc_ofw.h>
45 #include <asm/pci-direct.h>
46 #include <asm/prom.h>
47 #include <asm/proto.h>
48 #include <asm/unwind.h>
49 #include <asm/vsyscall.h>
50 #include <linux/vmalloc.h>
51 
52 /*
53  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
54  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
55  *
56  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
57  * represented by pfn_mapped[].
58  */
59 unsigned long max_low_pfn_mapped;
60 unsigned long max_pfn_mapped;
61 
62 #ifdef CONFIG_DMI
63 RESERVE_BRK(dmi_alloc, 65536);
64 #endif
65 
66 
67 unsigned long _brk_start = (unsigned long)__brk_base;
68 unsigned long _brk_end   = (unsigned long)__brk_base;
69 
70 struct boot_params boot_params;
71 
72 /*
73  * These are the four main kernel memory regions, we put them into
74  * the resource tree so that kdump tools and other debugging tools
75  * recover it:
76  */
77 
78 static struct resource rodata_resource = {
79 	.name	= "Kernel rodata",
80 	.start	= 0,
81 	.end	= 0,
82 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
83 };
84 
85 static struct resource data_resource = {
86 	.name	= "Kernel data",
87 	.start	= 0,
88 	.end	= 0,
89 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
90 };
91 
92 static struct resource code_resource = {
93 	.name	= "Kernel code",
94 	.start	= 0,
95 	.end	= 0,
96 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
97 };
98 
99 static struct resource bss_resource = {
100 	.name	= "Kernel bss",
101 	.start	= 0,
102 	.end	= 0,
103 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
104 };
105 
106 
107 #ifdef CONFIG_X86_32
108 /* CPU data as detected by the assembly code in head_32.S */
109 struct cpuinfo_x86 new_cpu_data;
110 
111 /* Common CPU data for all CPUs */
112 struct cpuinfo_x86 boot_cpu_data __read_mostly;
113 EXPORT_SYMBOL(boot_cpu_data);
114 
115 unsigned int def_to_bigsmp;
116 
117 /* For MCA, but anyone else can use it if they want */
118 unsigned int machine_id;
119 unsigned int machine_submodel_id;
120 unsigned int BIOS_revision;
121 
122 struct apm_info apm_info;
123 EXPORT_SYMBOL(apm_info);
124 
125 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
126 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
127 struct ist_info ist_info;
128 EXPORT_SYMBOL(ist_info);
129 #else
130 struct ist_info ist_info;
131 #endif
132 
133 #else
134 struct cpuinfo_x86 boot_cpu_data __read_mostly;
135 EXPORT_SYMBOL(boot_cpu_data);
136 #endif
137 
138 
139 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
140 __visible unsigned long mmu_cr4_features __ro_after_init;
141 #else
142 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
143 #endif
144 
145 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
146 int bootloader_type, bootloader_version;
147 
148 /*
149  * Setup options
150  */
151 struct screen_info screen_info;
152 EXPORT_SYMBOL(screen_info);
153 struct edid_info edid_info;
154 EXPORT_SYMBOL_GPL(edid_info);
155 
156 extern int root_mountflags;
157 
158 unsigned long saved_video_mode;
159 
160 #define RAMDISK_IMAGE_START_MASK	0x07FF
161 #define RAMDISK_PROMPT_FLAG		0x8000
162 #define RAMDISK_LOAD_FLAG		0x4000
163 
164 static char __initdata command_line[COMMAND_LINE_SIZE];
165 #ifdef CONFIG_CMDLINE_BOOL
166 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
167 #endif
168 
169 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
170 struct edd edd;
171 #ifdef CONFIG_EDD_MODULE
172 EXPORT_SYMBOL(edd);
173 #endif
174 /**
175  * copy_edd() - Copy the BIOS EDD information
176  *              from boot_params into a safe place.
177  *
178  */
copy_edd(void)179 static inline void __init copy_edd(void)
180 {
181      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
182 	    sizeof(edd.mbr_signature));
183      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
184      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
185      edd.edd_info_nr = boot_params.eddbuf_entries;
186 }
187 #else
copy_edd(void)188 static inline void __init copy_edd(void)
189 {
190 }
191 #endif
192 
extend_brk(size_t size,size_t align)193 void * __init extend_brk(size_t size, size_t align)
194 {
195 	size_t mask = align - 1;
196 	void *ret;
197 
198 	BUG_ON(_brk_start == 0);
199 	BUG_ON(align & mask);
200 
201 	_brk_end = (_brk_end + mask) & ~mask;
202 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
203 
204 	ret = (void *)_brk_end;
205 	_brk_end += size;
206 
207 	memset(ret, 0, size);
208 
209 	return ret;
210 }
211 
212 #ifdef CONFIG_X86_32
cleanup_highmap(void)213 static void __init cleanup_highmap(void)
214 {
215 }
216 #endif
217 
reserve_brk(void)218 static void __init reserve_brk(void)
219 {
220 	if (_brk_end > _brk_start)
221 		memblock_reserve(__pa_symbol(_brk_start),
222 				 _brk_end - _brk_start);
223 
224 	/* Mark brk area as locked down and no longer taking any
225 	   new allocations */
226 	_brk_start = 0;
227 }
228 
229 u64 relocated_ramdisk;
230 
231 #ifdef CONFIG_BLK_DEV_INITRD
232 
get_ramdisk_image(void)233 static u64 __init get_ramdisk_image(void)
234 {
235 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
236 
237 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
238 
239 	if (ramdisk_image == 0)
240 		ramdisk_image = phys_initrd_start;
241 
242 	return ramdisk_image;
243 }
get_ramdisk_size(void)244 static u64 __init get_ramdisk_size(void)
245 {
246 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
247 
248 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
249 
250 	if (ramdisk_size == 0)
251 		ramdisk_size = phys_initrd_size;
252 
253 	return ramdisk_size;
254 }
255 
relocate_initrd(void)256 static void __init relocate_initrd(void)
257 {
258 	/* Assume only end is not page aligned */
259 	u64 ramdisk_image = get_ramdisk_image();
260 	u64 ramdisk_size  = get_ramdisk_size();
261 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
262 
263 	/* We need to move the initrd down into directly mapped mem */
264 	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
265 						      PFN_PHYS(max_pfn_mapped));
266 	if (!relocated_ramdisk)
267 		panic("Cannot find place for new RAMDISK of size %lld\n",
268 		      ramdisk_size);
269 
270 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
271 	initrd_end   = initrd_start + ramdisk_size;
272 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
273 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
274 
275 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
276 
277 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
278 		" [mem %#010llx-%#010llx]\n",
279 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
280 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
281 }
282 
early_reserve_initrd(void)283 static void __init early_reserve_initrd(void)
284 {
285 	/* Assume only end is not page aligned */
286 	u64 ramdisk_image = get_ramdisk_image();
287 	u64 ramdisk_size  = get_ramdisk_size();
288 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
289 
290 	if (!boot_params.hdr.type_of_loader ||
291 	    !ramdisk_image || !ramdisk_size)
292 		return;		/* No initrd provided by bootloader */
293 
294 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
295 }
296 
reserve_initrd(void)297 static void __init reserve_initrd(void)
298 {
299 	/* Assume only end is not page aligned */
300 	u64 ramdisk_image = get_ramdisk_image();
301 	u64 ramdisk_size  = get_ramdisk_size();
302 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
303 
304 	if (!boot_params.hdr.type_of_loader ||
305 	    !ramdisk_image || !ramdisk_size)
306 		return;		/* No initrd provided by bootloader */
307 
308 	initrd_start = 0;
309 
310 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
311 			ramdisk_end - 1);
312 
313 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
314 				PFN_DOWN(ramdisk_end))) {
315 		/* All are mapped, easy case */
316 		initrd_start = ramdisk_image + PAGE_OFFSET;
317 		initrd_end = initrd_start + ramdisk_size;
318 		return;
319 	}
320 
321 	relocate_initrd();
322 
323 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
324 }
325 
326 #else
early_reserve_initrd(void)327 static void __init early_reserve_initrd(void)
328 {
329 }
reserve_initrd(void)330 static void __init reserve_initrd(void)
331 {
332 }
333 #endif /* CONFIG_BLK_DEV_INITRD */
334 
parse_setup_data(void)335 static void __init parse_setup_data(void)
336 {
337 	struct setup_data *data;
338 	u64 pa_data, pa_next;
339 
340 	pa_data = boot_params.hdr.setup_data;
341 	while (pa_data) {
342 		u32 data_len, data_type;
343 
344 		data = early_memremap(pa_data, sizeof(*data));
345 		data_len = data->len + sizeof(struct setup_data);
346 		data_type = data->type;
347 		pa_next = data->next;
348 		early_memunmap(data, sizeof(*data));
349 
350 		switch (data_type) {
351 		case SETUP_E820_EXT:
352 			e820__memory_setup_extended(pa_data, data_len);
353 			break;
354 		case SETUP_DTB:
355 			add_dtb(pa_data);
356 			break;
357 		case SETUP_EFI:
358 			parse_efi_setup(pa_data, data_len);
359 			break;
360 		default:
361 			break;
362 		}
363 		pa_data = pa_next;
364 	}
365 }
366 
memblock_x86_reserve_range_setup_data(void)367 static void __init memblock_x86_reserve_range_setup_data(void)
368 {
369 	struct setup_indirect *indirect;
370 	struct setup_data *data;
371 	u64 pa_data, pa_next;
372 	u32 len;
373 
374 	pa_data = boot_params.hdr.setup_data;
375 	while (pa_data) {
376 		data = early_memremap(pa_data, sizeof(*data));
377 		if (!data) {
378 			pr_warn("setup: failed to memremap setup_data entry\n");
379 			return;
380 		}
381 
382 		len = sizeof(*data);
383 		pa_next = data->next;
384 
385 		memblock_reserve(pa_data, sizeof(*data) + data->len);
386 
387 		if (data->type == SETUP_INDIRECT) {
388 			len += data->len;
389 			early_memunmap(data, sizeof(*data));
390 			data = early_memremap(pa_data, len);
391 			if (!data) {
392 				pr_warn("setup: failed to memremap indirect setup_data\n");
393 				return;
394 			}
395 
396 			indirect = (struct setup_indirect *)data->data;
397 
398 			if (indirect->type != SETUP_INDIRECT)
399 				memblock_reserve(indirect->addr, indirect->len);
400 		}
401 
402 		pa_data = pa_next;
403 		early_memunmap(data, len);
404 	}
405 }
406 
407 /*
408  * --------- Crashkernel reservation ------------------------------
409  */
410 
411 #ifdef CONFIG_KEXEC_CORE
412 
413 /* 16M alignment for crash kernel regions */
414 #define CRASH_ALIGN		SZ_16M
415 
416 /*
417  * Keep the crash kernel below this limit.
418  *
419  * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
420  * due to mapping restrictions.
421  *
422  * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
423  * the upper limit of system RAM in 4-level paging mode. Since the kdump
424  * jump could be from 5-level paging to 4-level paging, the jump will fail if
425  * the kernel is put above 64 TB, and during the 1st kernel bootup there's
426  * no good way to detect the paging mode of the target kernel which will be
427  * loaded for dumping.
428  */
429 #ifdef CONFIG_X86_32
430 # define CRASH_ADDR_LOW_MAX	SZ_512M
431 # define CRASH_ADDR_HIGH_MAX	SZ_512M
432 #else
433 # define CRASH_ADDR_LOW_MAX	SZ_4G
434 # define CRASH_ADDR_HIGH_MAX	SZ_64T
435 #endif
436 
reserve_crashkernel_low(void)437 static int __init reserve_crashkernel_low(void)
438 {
439 #ifdef CONFIG_X86_64
440 	unsigned long long base, low_base = 0, low_size = 0;
441 	unsigned long low_mem_limit;
442 	int ret;
443 
444 	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
445 
446 	/* crashkernel=Y,low */
447 	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
448 	if (ret) {
449 		/*
450 		 * two parts from kernel/dma/swiotlb.c:
451 		 * -swiotlb size: user-specified with swiotlb= or default.
452 		 *
453 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
454 		 * to 8M for other buffers that may need to stay low too. Also
455 		 * make sure we allocate enough extra low memory so that we
456 		 * don't run out of DMA buffers for 32-bit devices.
457 		 */
458 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
459 	} else {
460 		/* passed with crashkernel=0,low ? */
461 		if (!low_size)
462 			return 0;
463 	}
464 
465 	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
466 	if (!low_base) {
467 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
468 		       (unsigned long)(low_size >> 20));
469 		return -ENOMEM;
470 	}
471 
472 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
473 		(unsigned long)(low_size >> 20),
474 		(unsigned long)(low_base >> 20),
475 		(unsigned long)(low_mem_limit >> 20));
476 
477 	crashk_low_res.start = low_base;
478 	crashk_low_res.end   = low_base + low_size - 1;
479 	insert_resource(&iomem_resource, &crashk_low_res);
480 #endif
481 	return 0;
482 }
483 
reserve_crashkernel(void)484 static void __init reserve_crashkernel(void)
485 {
486 	unsigned long long crash_size, crash_base, total_mem;
487 	bool high = false;
488 	int ret;
489 
490 	total_mem = memblock_phys_mem_size();
491 
492 	/* crashkernel=XM */
493 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
494 	if (ret != 0 || crash_size <= 0) {
495 		/* crashkernel=X,high */
496 		ret = parse_crashkernel_high(boot_command_line, total_mem,
497 					     &crash_size, &crash_base);
498 		if (ret != 0 || crash_size <= 0)
499 			return;
500 		high = true;
501 	}
502 
503 	if (xen_pv_domain()) {
504 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
505 		return;
506 	}
507 
508 	/* 0 means: find the address automatically */
509 	if (!crash_base) {
510 		/*
511 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
512 		 * crashkernel=x,high reserves memory over 4G, also allocates
513 		 * 256M extra low memory for DMA buffers and swiotlb.
514 		 * But the extra memory is not required for all machines.
515 		 * So try low memory first and fall back to high memory
516 		 * unless "crashkernel=size[KMG],high" is specified.
517 		 */
518 		if (!high)
519 			crash_base = memblock_phys_alloc_range(crash_size,
520 						CRASH_ALIGN, CRASH_ALIGN,
521 						CRASH_ADDR_LOW_MAX);
522 		if (!crash_base)
523 			crash_base = memblock_phys_alloc_range(crash_size,
524 						CRASH_ALIGN, CRASH_ALIGN,
525 						CRASH_ADDR_HIGH_MAX);
526 		if (!crash_base) {
527 			pr_info("crashkernel reservation failed - No suitable area found.\n");
528 			return;
529 		}
530 	} else {
531 		unsigned long long start;
532 
533 		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
534 						  crash_base + crash_size);
535 		if (start != crash_base) {
536 			pr_info("crashkernel reservation failed - memory is in use.\n");
537 			return;
538 		}
539 	}
540 
541 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
542 		memblock_free(crash_base, crash_size);
543 		return;
544 	}
545 
546 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
547 		(unsigned long)(crash_size >> 20),
548 		(unsigned long)(crash_base >> 20),
549 		(unsigned long)(total_mem >> 20));
550 
551 	crashk_res.start = crash_base;
552 	crashk_res.end   = crash_base + crash_size - 1;
553 	insert_resource(&iomem_resource, &crashk_res);
554 }
555 #else
reserve_crashkernel(void)556 static void __init reserve_crashkernel(void)
557 {
558 }
559 #endif
560 
561 static struct resource standard_io_resources[] = {
562 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
563 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
564 	{ .name = "pic1", .start = 0x20, .end = 0x21,
565 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
566 	{ .name = "timer0", .start = 0x40, .end = 0x43,
567 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
568 	{ .name = "timer1", .start = 0x50, .end = 0x53,
569 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
570 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
571 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
572 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
573 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
574 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
575 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
576 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
577 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
578 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
579 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
580 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
581 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
582 };
583 
reserve_standard_io_resources(void)584 void __init reserve_standard_io_resources(void)
585 {
586 	int i;
587 
588 	/* request I/O space for devices used on all i[345]86 PCs */
589 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
590 		request_resource(&ioport_resource, &standard_io_resources[i]);
591 
592 }
593 
reserve_ibft_region(void)594 static __init void reserve_ibft_region(void)
595 {
596 	unsigned long addr, size = 0;
597 
598 	addr = find_ibft_region(&size);
599 
600 	if (size)
601 		memblock_reserve(addr, size);
602 }
603 
snb_gfx_workaround_needed(void)604 static bool __init snb_gfx_workaround_needed(void)
605 {
606 #ifdef CONFIG_PCI
607 	int i;
608 	u16 vendor, devid;
609 	static const __initconst u16 snb_ids[] = {
610 		0x0102,
611 		0x0112,
612 		0x0122,
613 		0x0106,
614 		0x0116,
615 		0x0126,
616 		0x010a,
617 	};
618 
619 	/* Assume no if something weird is going on with PCI */
620 	if (!early_pci_allowed())
621 		return false;
622 
623 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
624 	if (vendor != 0x8086)
625 		return false;
626 
627 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
628 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
629 		if (devid == snb_ids[i])
630 			return true;
631 #endif
632 
633 	return false;
634 }
635 
636 /*
637  * Sandy Bridge graphics has trouble with certain ranges, exclude
638  * them from allocation.
639  */
trim_snb_memory(void)640 static void __init trim_snb_memory(void)
641 {
642 	static const __initconst unsigned long bad_pages[] = {
643 		0x20050000,
644 		0x20110000,
645 		0x20130000,
646 		0x20138000,
647 		0x40004000,
648 	};
649 	int i;
650 
651 	if (!snb_gfx_workaround_needed())
652 		return;
653 
654 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
655 
656 	/*
657 	 * Reserve all memory below the 1 MB mark that has not
658 	 * already been reserved.
659 	 */
660 	memblock_reserve(0, 1<<20);
661 
662 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
663 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
664 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
665 			       bad_pages[i]);
666 	}
667 }
668 
669 /*
670  * Here we put platform-specific memory range workarounds, i.e.
671  * memory known to be corrupt or otherwise in need to be reserved on
672  * specific platforms.
673  *
674  * If this gets used more widely it could use a real dispatch mechanism.
675  */
trim_platform_memory_ranges(void)676 static void __init trim_platform_memory_ranges(void)
677 {
678 	trim_snb_memory();
679 }
680 
trim_bios_range(void)681 static void __init trim_bios_range(void)
682 {
683 	/*
684 	 * A special case is the first 4Kb of memory;
685 	 * This is a BIOS owned area, not kernel ram, but generally
686 	 * not listed as such in the E820 table.
687 	 *
688 	 * This typically reserves additional memory (64KiB by default)
689 	 * since some BIOSes are known to corrupt low memory.  See the
690 	 * Kconfig help text for X86_RESERVE_LOW.
691 	 */
692 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
693 
694 	/*
695 	 * special case: Some BIOSes report the PC BIOS
696 	 * area (640Kb -> 1Mb) as RAM even though it is not.
697 	 * take them out.
698 	 */
699 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
700 
701 	e820__update_table(e820_table);
702 }
703 
704 /* called before trim_bios_range() to spare extra sanitize */
e820_add_kernel_range(void)705 static void __init e820_add_kernel_range(void)
706 {
707 	u64 start = __pa_symbol(_text);
708 	u64 size = __pa_symbol(_end) - start;
709 
710 	/*
711 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
712 	 * attempt to fix it by adding the range. We may have a confused BIOS,
713 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
714 	 * exclude kernel range. If we really are running on top non-RAM,
715 	 * we will crash later anyways.
716 	 */
717 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
718 		return;
719 
720 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
721 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
722 	e820__range_add(start, size, E820_TYPE_RAM);
723 }
724 
725 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
726 
parse_reservelow(char * p)727 static int __init parse_reservelow(char *p)
728 {
729 	unsigned long long size;
730 
731 	if (!p)
732 		return -EINVAL;
733 
734 	size = memparse(p, &p);
735 
736 	if (size < 4096)
737 		size = 4096;
738 
739 	if (size > 640*1024)
740 		size = 640*1024;
741 
742 	reserve_low = size;
743 
744 	return 0;
745 }
746 
747 early_param("reservelow", parse_reservelow);
748 
trim_low_memory_range(void)749 static void __init trim_low_memory_range(void)
750 {
751 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
752 }
753 
754 /*
755  * Dump out kernel offset information on panic.
756  */
757 static int
dump_kernel_offset(struct notifier_block * self,unsigned long v,void * p)758 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
759 {
760 	if (kaslr_enabled()) {
761 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
762 			 kaslr_offset(),
763 			 __START_KERNEL,
764 			 __START_KERNEL_map,
765 			 MODULES_VADDR-1);
766 	} else {
767 		pr_emerg("Kernel Offset: disabled\n");
768 	}
769 
770 	return 0;
771 }
772 
773 /*
774  * Determine if we were loaded by an EFI loader.  If so, then we have also been
775  * passed the efi memmap, systab, etc., so we should use these data structures
776  * for initialization.  Note, the efi init code path is determined by the
777  * global efi_enabled. This allows the same kernel image to be used on existing
778  * systems (with a traditional BIOS) as well as on EFI systems.
779  */
780 /*
781  * setup_arch - architecture-specific boot-time initializations
782  *
783  * Note: On x86_64, fixmaps are ready for use even before this is called.
784  */
785 
setup_arch(char ** cmdline_p)786 void __init setup_arch(char **cmdline_p)
787 {
788 	/*
789 	 * Reserve the memory occupied by the kernel between _text and
790 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
791 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
792 	 * separate memblock_reserve() or they will be discarded.
793 	 */
794 	memblock_reserve(__pa_symbol(_text),
795 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
796 
797 	/*
798 	 * Make sure page 0 is always reserved because on systems with
799 	 * L1TF its contents can be leaked to user processes.
800 	 */
801 	memblock_reserve(0, PAGE_SIZE);
802 
803 	early_reserve_initrd();
804 
805 	/*
806 	 * At this point everything still needed from the boot loader
807 	 * or BIOS or kernel text should be early reserved or marked not
808 	 * RAM in e820. All other memory is free game.
809 	 */
810 
811 #ifdef CONFIG_X86_32
812 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
813 
814 	/*
815 	 * copy kernel address range established so far and switch
816 	 * to the proper swapper page table
817 	 */
818 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
819 			initial_page_table + KERNEL_PGD_BOUNDARY,
820 			KERNEL_PGD_PTRS);
821 
822 	load_cr3(swapper_pg_dir);
823 	/*
824 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
825 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
826 	 * will not flush anything because the CPU quirk which clears
827 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
828 	 * load_cr3() above the TLB has been flushed already. The
829 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
830 	 * so proper operation is guaranteed.
831 	 */
832 	__flush_tlb_all();
833 #else
834 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
835 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
836 #endif
837 
838 	/*
839 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
840 	 * reserve_top(), so do this before touching the ioremap area.
841 	 */
842 	olpc_ofw_detect();
843 
844 	idt_setup_early_traps();
845 	early_cpu_init();
846 	arch_init_ideal_nops();
847 	jump_label_init();
848 	static_call_init();
849 	early_ioremap_init();
850 
851 	setup_olpc_ofw_pgd();
852 
853 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
854 	screen_info = boot_params.screen_info;
855 	edid_info = boot_params.edid_info;
856 #ifdef CONFIG_X86_32
857 	apm_info.bios = boot_params.apm_bios_info;
858 	ist_info = boot_params.ist_info;
859 #endif
860 	saved_video_mode = boot_params.hdr.vid_mode;
861 	bootloader_type = boot_params.hdr.type_of_loader;
862 	if ((bootloader_type >> 4) == 0xe) {
863 		bootloader_type &= 0xf;
864 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
865 	}
866 	bootloader_version  = bootloader_type & 0xf;
867 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
868 
869 #ifdef CONFIG_BLK_DEV_RAM
870 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
871 #endif
872 #ifdef CONFIG_EFI
873 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
874 		     EFI32_LOADER_SIGNATURE, 4)) {
875 		set_bit(EFI_BOOT, &efi.flags);
876 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
877 		     EFI64_LOADER_SIGNATURE, 4)) {
878 		set_bit(EFI_BOOT, &efi.flags);
879 		set_bit(EFI_64BIT, &efi.flags);
880 	}
881 #endif
882 
883 	x86_init.oem.arch_setup();
884 
885 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
886 	e820__memory_setup();
887 	parse_setup_data();
888 
889 	copy_edd();
890 
891 	if (!boot_params.hdr.root_flags)
892 		root_mountflags &= ~MS_RDONLY;
893 	init_mm.start_code = (unsigned long) _text;
894 	init_mm.end_code = (unsigned long) _etext;
895 	init_mm.end_data = (unsigned long) _edata;
896 	init_mm.brk = _brk_end;
897 
898 	code_resource.start = __pa_symbol(_text);
899 	code_resource.end = __pa_symbol(_etext)-1;
900 	rodata_resource.start = __pa_symbol(__start_rodata);
901 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
902 	data_resource.start = __pa_symbol(_sdata);
903 	data_resource.end = __pa_symbol(_edata)-1;
904 	bss_resource.start = __pa_symbol(__bss_start);
905 	bss_resource.end = __pa_symbol(__bss_stop)-1;
906 
907 #ifdef CONFIG_CMDLINE_BOOL
908 #ifdef CONFIG_CMDLINE_OVERRIDE
909 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
910 #else
911 	if (builtin_cmdline[0]) {
912 		/* append boot loader cmdline to builtin */
913 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
914 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
915 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
916 	}
917 #endif
918 #endif
919 
920 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
921 	*cmdline_p = command_line;
922 
923 	/*
924 	 * x86_configure_nx() is called before parse_early_param() to detect
925 	 * whether hardware doesn't support NX (so that the early EHCI debug
926 	 * console setup can safely call set_fixmap()). It may then be called
927 	 * again from within noexec_setup() during parsing early parameters
928 	 * to honor the respective command line option.
929 	 */
930 	x86_configure_nx();
931 
932 	parse_early_param();
933 
934 	if (efi_enabled(EFI_BOOT))
935 		efi_memblock_x86_reserve_range();
936 #ifdef CONFIG_MEMORY_HOTPLUG
937 	/*
938 	 * Memory used by the kernel cannot be hot-removed because Linux
939 	 * cannot migrate the kernel pages. When memory hotplug is
940 	 * enabled, we should prevent memblock from allocating memory
941 	 * for the kernel.
942 	 *
943 	 * ACPI SRAT records all hotpluggable memory ranges. But before
944 	 * SRAT is parsed, we don't know about it.
945 	 *
946 	 * The kernel image is loaded into memory at very early time. We
947 	 * cannot prevent this anyway. So on NUMA system, we set any
948 	 * node the kernel resides in as un-hotpluggable.
949 	 *
950 	 * Since on modern servers, one node could have double-digit
951 	 * gigabytes memory, we can assume the memory around the kernel
952 	 * image is also un-hotpluggable. So before SRAT is parsed, just
953 	 * allocate memory near the kernel image to try the best to keep
954 	 * the kernel away from hotpluggable memory.
955 	 */
956 	if (movable_node_is_enabled())
957 		memblock_set_bottom_up(true);
958 #endif
959 
960 	x86_report_nx();
961 
962 	/* after early param, so could get panic from serial */
963 	memblock_x86_reserve_range_setup_data();
964 
965 	if (acpi_mps_check()) {
966 #ifdef CONFIG_X86_LOCAL_APIC
967 		disable_apic = 1;
968 #endif
969 		setup_clear_cpu_cap(X86_FEATURE_APIC);
970 	}
971 
972 	e820__reserve_setup_data();
973 	e820__finish_early_params();
974 
975 	if (efi_enabled(EFI_BOOT))
976 		efi_init();
977 
978 	dmi_setup();
979 
980 	/*
981 	 * VMware detection requires dmi to be available, so this
982 	 * needs to be done after dmi_setup(), for the boot CPU.
983 	 */
984 	init_hypervisor_platform();
985 
986 	tsc_early_init();
987 	x86_init.resources.probe_roms();
988 
989 	/* after parse_early_param, so could debug it */
990 	insert_resource(&iomem_resource, &code_resource);
991 	insert_resource(&iomem_resource, &rodata_resource);
992 	insert_resource(&iomem_resource, &data_resource);
993 	insert_resource(&iomem_resource, &bss_resource);
994 
995 	e820_add_kernel_range();
996 	trim_bios_range();
997 #ifdef CONFIG_X86_32
998 	if (ppro_with_ram_bug()) {
999 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1000 				  E820_TYPE_RESERVED);
1001 		e820__update_table(e820_table);
1002 		printk(KERN_INFO "fixed physical RAM map:\n");
1003 		e820__print_table("bad_ppro");
1004 	}
1005 #else
1006 	early_gart_iommu_check();
1007 #endif
1008 
1009 	/*
1010 	 * partially used pages are not usable - thus
1011 	 * we are rounding upwards:
1012 	 */
1013 	max_pfn = e820__end_of_ram_pfn();
1014 
1015 	/* update e820 for memory not covered by WB MTRRs */
1016 	mtrr_bp_init();
1017 	if (mtrr_trim_uncached_memory(max_pfn))
1018 		max_pfn = e820__end_of_ram_pfn();
1019 
1020 	max_possible_pfn = max_pfn;
1021 
1022 	/*
1023 	 * This call is required when the CPU does not support PAT. If
1024 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1025 	 * effect.
1026 	 */
1027 	init_cache_modes();
1028 
1029 	/*
1030 	 * Define random base addresses for memory sections after max_pfn is
1031 	 * defined and before each memory section base is used.
1032 	 */
1033 	kernel_randomize_memory();
1034 
1035 #ifdef CONFIG_X86_32
1036 	/* max_low_pfn get updated here */
1037 	find_low_pfn_range();
1038 #else
1039 	check_x2apic();
1040 
1041 	/* How many end-of-memory variables you have, grandma! */
1042 	/* need this before calling reserve_initrd */
1043 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1044 		max_low_pfn = e820__end_of_low_ram_pfn();
1045 	else
1046 		max_low_pfn = max_pfn;
1047 
1048 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1049 #endif
1050 
1051 	/*
1052 	 * Find and reserve possible boot-time SMP configuration:
1053 	 */
1054 	find_smp_config();
1055 
1056 	reserve_ibft_region();
1057 
1058 	early_alloc_pgt_buf();
1059 
1060 	/*
1061 	 * Need to conclude brk, before e820__memblock_setup()
1062 	 *  it could use memblock_find_in_range, could overlap with
1063 	 *  brk area.
1064 	 */
1065 	reserve_brk();
1066 
1067 	cleanup_highmap();
1068 
1069 	memblock_set_current_limit(ISA_END_ADDRESS);
1070 	e820__memblock_setup();
1071 
1072 	reserve_bios_regions();
1073 
1074 	efi_fake_memmap();
1075 	efi_find_mirror();
1076 	efi_esrt_init();
1077 	efi_mokvar_table_init();
1078 
1079 	/*
1080 	 * The EFI specification says that boot service code won't be
1081 	 * called after ExitBootServices(). This is, in fact, a lie.
1082 	 */
1083 	efi_reserve_boot_services();
1084 
1085 	/* preallocate 4k for mptable mpc */
1086 	e820__memblock_alloc_reserved_mpc_new();
1087 
1088 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1089 	setup_bios_corruption_check();
1090 #endif
1091 
1092 #ifdef CONFIG_X86_32
1093 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1094 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1095 #endif
1096 
1097 	reserve_real_mode();
1098 
1099 	trim_platform_memory_ranges();
1100 	trim_low_memory_range();
1101 
1102 	init_mem_mapping();
1103 
1104 	idt_setup_early_pf();
1105 
1106 	/*
1107 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1108 	 * with the current CR4 value.  This may not be necessary, but
1109 	 * auditing all the early-boot CR4 manipulation would be needed to
1110 	 * rule it out.
1111 	 *
1112 	 * Mask off features that don't work outside long mode (just
1113 	 * PCIDE for now).
1114 	 */
1115 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1116 
1117 	memblock_set_current_limit(get_max_mapped());
1118 
1119 	/*
1120 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1121 	 */
1122 
1123 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1124 	if (init_ohci1394_dma_early)
1125 		init_ohci1394_dma_on_all_controllers();
1126 #endif
1127 	/* Allocate bigger log buffer */
1128 	setup_log_buf(1);
1129 
1130 	if (efi_enabled(EFI_BOOT)) {
1131 		switch (boot_params.secure_boot) {
1132 		case efi_secureboot_mode_disabled:
1133 			pr_info("Secure boot disabled\n");
1134 			break;
1135 		case efi_secureboot_mode_enabled:
1136 			pr_info("Secure boot enabled\n");
1137 			break;
1138 		default:
1139 			pr_info("Secure boot could not be determined\n");
1140 			break;
1141 		}
1142 	}
1143 
1144 	reserve_initrd();
1145 
1146 	acpi_table_upgrade();
1147 	/* Look for ACPI tables and reserve memory occupied by them. */
1148 	acpi_boot_table_init();
1149 
1150 	vsmp_init();
1151 
1152 	io_delay_init();
1153 
1154 	early_platform_quirks();
1155 
1156 	early_acpi_boot_init();
1157 
1158 	initmem_init();
1159 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1160 
1161 	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1162 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1163 
1164 	/*
1165 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1166 	 * won't consume hotpluggable memory.
1167 	 */
1168 	reserve_crashkernel();
1169 
1170 	memblock_find_dma_reserve();
1171 
1172 	if (!early_xdbc_setup_hardware())
1173 		early_xdbc_register_console();
1174 
1175 	x86_init.paging.pagetable_init();
1176 
1177 	kasan_init();
1178 
1179 	/*
1180 	 * Sync back kernel address range.
1181 	 *
1182 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1183 	 * this call?
1184 	 */
1185 	sync_initial_page_table();
1186 
1187 	tboot_probe();
1188 
1189 	map_vsyscall();
1190 
1191 	generic_apic_probe();
1192 
1193 	early_quirks();
1194 
1195 	/*
1196 	 * Read APIC and some other early information from ACPI tables.
1197 	 */
1198 	acpi_boot_init();
1199 	sfi_init();
1200 	x86_dtb_init();
1201 
1202 	/*
1203 	 * get boot-time SMP configuration:
1204 	 */
1205 	get_smp_config();
1206 
1207 	/*
1208 	 * Systems w/o ACPI and mptables might not have it mapped the local
1209 	 * APIC yet, but prefill_possible_map() might need to access it.
1210 	 */
1211 	init_apic_mappings();
1212 
1213 	prefill_possible_map();
1214 
1215 	init_cpu_to_node();
1216 	init_gi_nodes();
1217 
1218 	io_apic_init_mappings();
1219 
1220 	x86_init.hyper.guest_late_init();
1221 
1222 	e820__reserve_resources();
1223 	e820__register_nosave_regions(max_pfn);
1224 
1225 	x86_init.resources.reserve_resources();
1226 
1227 	e820__setup_pci_gap();
1228 
1229 #ifdef CONFIG_VT
1230 #if defined(CONFIG_VGA_CONSOLE)
1231 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1232 		conswitchp = &vga_con;
1233 #endif
1234 #endif
1235 	x86_init.oem.banner();
1236 
1237 	x86_init.timers.wallclock_init();
1238 
1239 	mcheck_init();
1240 
1241 	register_refined_jiffies(CLOCK_TICK_RATE);
1242 
1243 #ifdef CONFIG_EFI
1244 	if (efi_enabled(EFI_BOOT))
1245 		efi_apply_memmap_quirks();
1246 #endif
1247 
1248 	unwind_init();
1249 }
1250 
1251 #ifdef CONFIG_X86_32
1252 
1253 static struct resource video_ram_resource = {
1254 	.name	= "Video RAM area",
1255 	.start	= 0xa0000,
1256 	.end	= 0xbffff,
1257 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1258 };
1259 
i386_reserve_resources(void)1260 void __init i386_reserve_resources(void)
1261 {
1262 	request_resource(&iomem_resource, &video_ram_resource);
1263 	reserve_standard_io_resources();
1264 }
1265 
1266 #endif /* CONFIG_X86_32 */
1267 
1268 static struct notifier_block kernel_offset_notifier = {
1269 	.notifier_call = dump_kernel_offset
1270 };
1271 
register_kernel_offset_dumper(void)1272 static int __init register_kernel_offset_dumper(void)
1273 {
1274 	atomic_notifier_chain_register(&panic_notifier_list,
1275 					&kernel_offset_notifier);
1276 	return 0;
1277 }
1278 __initcall(register_kernel_offset_dumper);
1279