• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49 
50 #include "internal.h"
51 
52 #define KIOCB_KEY		0
53 
54 #define AIO_RING_MAGIC			0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES	1
56 #define AIO_RING_INCOMPAT_FEATURES	0
57 struct aio_ring {
58 	unsigned	id;	/* kernel internal index number */
59 	unsigned	nr;	/* number of io_events */
60 	unsigned	head;	/* Written to by userland or under ring_lock
61 				 * mutex by aio_read_events_ring(). */
62 	unsigned	tail;
63 
64 	unsigned	magic;
65 	unsigned	compat_features;
66 	unsigned	incompat_features;
67 	unsigned	header_length;	/* size of aio_ring */
68 
69 
70 	struct io_event		io_events[];
71 }; /* 128 bytes + ring size */
72 
73 /*
74  * Plugging is meant to work with larger batches of IOs. If we don't
75  * have more than the below, then don't bother setting up a plug.
76  */
77 #define AIO_PLUG_THRESHOLD	2
78 
79 #define AIO_RING_PAGES	8
80 
81 struct kioctx_table {
82 	struct rcu_head		rcu;
83 	unsigned		nr;
84 	struct kioctx __rcu	*table[];
85 };
86 
87 struct kioctx_cpu {
88 	unsigned		reqs_available;
89 };
90 
91 struct ctx_rq_wait {
92 	struct completion comp;
93 	atomic_t count;
94 };
95 
96 struct kioctx {
97 	struct percpu_ref	users;
98 	atomic_t		dead;
99 
100 	struct percpu_ref	reqs;
101 
102 	unsigned long		user_id;
103 
104 	struct __percpu kioctx_cpu *cpu;
105 
106 	/*
107 	 * For percpu reqs_available, number of slots we move to/from global
108 	 * counter at a time:
109 	 */
110 	unsigned		req_batch;
111 	/*
112 	 * This is what userspace passed to io_setup(), it's not used for
113 	 * anything but counting against the global max_reqs quota.
114 	 *
115 	 * The real limit is nr_events - 1, which will be larger (see
116 	 * aio_setup_ring())
117 	 */
118 	unsigned		max_reqs;
119 
120 	/* Size of ringbuffer, in units of struct io_event */
121 	unsigned		nr_events;
122 
123 	unsigned long		mmap_base;
124 	unsigned long		mmap_size;
125 
126 	struct page		**ring_pages;
127 	long			nr_pages;
128 
129 	struct rcu_work		free_rwork;	/* see free_ioctx() */
130 
131 	/*
132 	 * signals when all in-flight requests are done
133 	 */
134 	struct ctx_rq_wait	*rq_wait;
135 
136 	struct {
137 		/*
138 		 * This counts the number of available slots in the ringbuffer,
139 		 * so we avoid overflowing it: it's decremented (if positive)
140 		 * when allocating a kiocb and incremented when the resulting
141 		 * io_event is pulled off the ringbuffer.
142 		 *
143 		 * We batch accesses to it with a percpu version.
144 		 */
145 		atomic_t	reqs_available;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct {
149 		spinlock_t	ctx_lock;
150 		struct list_head active_reqs;	/* used for cancellation */
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct {
154 		struct mutex	ring_lock;
155 		wait_queue_head_t wait;
156 	} ____cacheline_aligned_in_smp;
157 
158 	struct {
159 		unsigned	tail;
160 		unsigned	completed_events;
161 		spinlock_t	completion_lock;
162 	} ____cacheline_aligned_in_smp;
163 
164 	struct page		*internal_pages[AIO_RING_PAGES];
165 	struct file		*aio_ring_file;
166 
167 	unsigned		id;
168 };
169 
170 /*
171  * First field must be the file pointer in all the
172  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173  */
174 struct fsync_iocb {
175 	struct file		*file;
176 	struct work_struct	work;
177 	bool			datasync;
178 	struct cred		*creds;
179 };
180 
181 struct poll_iocb {
182 	struct file		*file;
183 	struct wait_queue_head	*head;
184 	__poll_t		events;
185 	bool			cancelled;
186 	bool			work_scheduled;
187 	bool			work_need_resched;
188 	struct wait_queue_entry	wait;
189 	struct work_struct	work;
190 };
191 
192 /*
193  * NOTE! Each of the iocb union members has the file pointer
194  * as the first entry in their struct definition. So you can
195  * access the file pointer through any of the sub-structs,
196  * or directly as just 'ki_filp' in this struct.
197  */
198 struct aio_kiocb {
199 	union {
200 		struct file		*ki_filp;
201 		struct kiocb		rw;
202 		struct fsync_iocb	fsync;
203 		struct poll_iocb	poll;
204 	};
205 
206 	struct kioctx		*ki_ctx;
207 	kiocb_cancel_fn		*ki_cancel;
208 
209 	struct io_event		ki_res;
210 
211 	struct list_head	ki_list;	/* the aio core uses this
212 						 * for cancellation */
213 	refcount_t		ki_refcnt;
214 
215 	/*
216 	 * If the aio_resfd field of the userspace iocb is not zero,
217 	 * this is the underlying eventfd context to deliver events to.
218 	 */
219 	struct eventfd_ctx	*ki_eventfd;
220 };
221 
222 /*------ sysctl variables----*/
223 static DEFINE_SPINLOCK(aio_nr_lock);
224 unsigned long aio_nr;		/* current system wide number of aio requests */
225 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
226 /*----end sysctl variables---*/
227 
228 static struct kmem_cache	*kiocb_cachep;
229 static struct kmem_cache	*kioctx_cachep;
230 
231 static struct vfsmount *aio_mnt;
232 
233 static const struct file_operations aio_ring_fops;
234 static const struct address_space_operations aio_ctx_aops;
235 
aio_private_file(struct kioctx * ctx,loff_t nr_pages)236 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
237 {
238 	struct file *file;
239 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
240 	if (IS_ERR(inode))
241 		return ERR_CAST(inode);
242 
243 	inode->i_mapping->a_ops = &aio_ctx_aops;
244 	inode->i_mapping->private_data = ctx;
245 	inode->i_size = PAGE_SIZE * nr_pages;
246 
247 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
248 				O_RDWR, &aio_ring_fops);
249 	if (IS_ERR(file))
250 		iput(inode);
251 	return file;
252 }
253 
aio_init_fs_context(struct fs_context * fc)254 static int aio_init_fs_context(struct fs_context *fc)
255 {
256 	if (!init_pseudo(fc, AIO_RING_MAGIC))
257 		return -ENOMEM;
258 	fc->s_iflags |= SB_I_NOEXEC;
259 	return 0;
260 }
261 
262 /* aio_setup
263  *	Creates the slab caches used by the aio routines, panic on
264  *	failure as this is done early during the boot sequence.
265  */
aio_setup(void)266 static int __init aio_setup(void)
267 {
268 	static struct file_system_type aio_fs = {
269 		.name		= "aio",
270 		.init_fs_context = aio_init_fs_context,
271 		.kill_sb	= kill_anon_super,
272 	};
273 	aio_mnt = kern_mount(&aio_fs);
274 	if (IS_ERR(aio_mnt))
275 		panic("Failed to create aio fs mount.");
276 
277 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
279 	return 0;
280 }
281 __initcall(aio_setup);
282 
put_aio_ring_file(struct kioctx * ctx)283 static void put_aio_ring_file(struct kioctx *ctx)
284 {
285 	struct file *aio_ring_file = ctx->aio_ring_file;
286 	struct address_space *i_mapping;
287 
288 	if (aio_ring_file) {
289 		truncate_setsize(file_inode(aio_ring_file), 0);
290 
291 		/* Prevent further access to the kioctx from migratepages */
292 		i_mapping = aio_ring_file->f_mapping;
293 		spin_lock(&i_mapping->private_lock);
294 		i_mapping->private_data = NULL;
295 		ctx->aio_ring_file = NULL;
296 		spin_unlock(&i_mapping->private_lock);
297 
298 		fput(aio_ring_file);
299 	}
300 }
301 
aio_free_ring(struct kioctx * ctx)302 static void aio_free_ring(struct kioctx *ctx)
303 {
304 	int i;
305 
306 	/* Disconnect the kiotx from the ring file.  This prevents future
307 	 * accesses to the kioctx from page migration.
308 	 */
309 	put_aio_ring_file(ctx);
310 
311 	for (i = 0; i < ctx->nr_pages; i++) {
312 		struct page *page;
313 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
314 				page_count(ctx->ring_pages[i]));
315 		page = ctx->ring_pages[i];
316 		if (!page)
317 			continue;
318 		ctx->ring_pages[i] = NULL;
319 		put_page(page);
320 	}
321 
322 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
323 		kfree(ctx->ring_pages);
324 		ctx->ring_pages = NULL;
325 	}
326 }
327 
aio_ring_mremap(struct vm_area_struct * vma)328 static int aio_ring_mremap(struct vm_area_struct *vma)
329 {
330 	struct file *file = vma->vm_file;
331 	struct mm_struct *mm = vma->vm_mm;
332 	struct kioctx_table *table;
333 	int i, res = -EINVAL;
334 
335 	spin_lock(&mm->ioctx_lock);
336 	rcu_read_lock();
337 	table = rcu_dereference(mm->ioctx_table);
338 	if (!table)
339 		goto out_unlock;
340 
341 	for (i = 0; i < table->nr; i++) {
342 		struct kioctx *ctx;
343 
344 		ctx = rcu_dereference(table->table[i]);
345 		if (ctx && ctx->aio_ring_file == file) {
346 			if (!atomic_read(&ctx->dead)) {
347 				ctx->user_id = ctx->mmap_base = vma->vm_start;
348 				res = 0;
349 			}
350 			break;
351 		}
352 	}
353 
354 out_unlock:
355 	rcu_read_unlock();
356 	spin_unlock(&mm->ioctx_lock);
357 	return res;
358 }
359 
360 static const struct vm_operations_struct aio_ring_vm_ops = {
361 	.mremap		= aio_ring_mremap,
362 #if IS_ENABLED(CONFIG_MMU)
363 	.fault		= filemap_fault,
364 	.map_pages	= filemap_map_pages,
365 	.page_mkwrite	= filemap_page_mkwrite,
366 #endif
367 };
368 
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)369 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
370 {
371 	vma->vm_flags |= VM_DONTEXPAND;
372 	vma->vm_ops = &aio_ring_vm_ops;
373 	return 0;
374 }
375 
376 static const struct file_operations aio_ring_fops = {
377 	.mmap = aio_ring_mmap,
378 };
379 
380 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)381 static int aio_migratepage(struct address_space *mapping, struct page *new,
382 			struct page *old, enum migrate_mode mode)
383 {
384 	struct kioctx *ctx;
385 	unsigned long flags;
386 	pgoff_t idx;
387 	int rc;
388 
389 	/*
390 	 * We cannot support the _NO_COPY case here, because copy needs to
391 	 * happen under the ctx->completion_lock. That does not work with the
392 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
393 	 */
394 	if (mode == MIGRATE_SYNC_NO_COPY)
395 		return -EINVAL;
396 
397 	rc = 0;
398 
399 	/* mapping->private_lock here protects against the kioctx teardown.  */
400 	spin_lock(&mapping->private_lock);
401 	ctx = mapping->private_data;
402 	if (!ctx) {
403 		rc = -EINVAL;
404 		goto out;
405 	}
406 
407 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
408 	 * to the ring's head, and prevents page migration from mucking in
409 	 * a partially initialized kiotx.
410 	 */
411 	if (!mutex_trylock(&ctx->ring_lock)) {
412 		rc = -EAGAIN;
413 		goto out;
414 	}
415 
416 	idx = old->index;
417 	if (idx < (pgoff_t)ctx->nr_pages) {
418 		/* Make sure the old page hasn't already been changed */
419 		if (ctx->ring_pages[idx] != old)
420 			rc = -EAGAIN;
421 	} else
422 		rc = -EINVAL;
423 
424 	if (rc != 0)
425 		goto out_unlock;
426 
427 	/* Writeback must be complete */
428 	BUG_ON(PageWriteback(old));
429 	get_page(new);
430 
431 	rc = migrate_page_move_mapping(mapping, new, old, 1);
432 	if (rc != MIGRATEPAGE_SUCCESS) {
433 		put_page(new);
434 		goto out_unlock;
435 	}
436 
437 	/* Take completion_lock to prevent other writes to the ring buffer
438 	 * while the old page is copied to the new.  This prevents new
439 	 * events from being lost.
440 	 */
441 	spin_lock_irqsave(&ctx->completion_lock, flags);
442 	migrate_page_copy(new, old);
443 	BUG_ON(ctx->ring_pages[idx] != old);
444 	ctx->ring_pages[idx] = new;
445 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
446 
447 	/* The old page is no longer accessible. */
448 	put_page(old);
449 
450 out_unlock:
451 	mutex_unlock(&ctx->ring_lock);
452 out:
453 	spin_unlock(&mapping->private_lock);
454 	return rc;
455 }
456 #endif
457 
458 static const struct address_space_operations aio_ctx_aops = {
459 	.set_page_dirty = __set_page_dirty_no_writeback,
460 #if IS_ENABLED(CONFIG_MIGRATION)
461 	.migratepage	= aio_migratepage,
462 #endif
463 };
464 
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)465 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
466 {
467 	struct aio_ring *ring;
468 	struct mm_struct *mm = current->mm;
469 	unsigned long size, unused;
470 	int nr_pages;
471 	int i;
472 	struct file *file;
473 
474 	/* Compensate for the ring buffer's head/tail overlap entry */
475 	nr_events += 2;	/* 1 is required, 2 for good luck */
476 
477 	size = sizeof(struct aio_ring);
478 	size += sizeof(struct io_event) * nr_events;
479 
480 	nr_pages = PFN_UP(size);
481 	if (nr_pages < 0)
482 		return -EINVAL;
483 
484 	file = aio_private_file(ctx, nr_pages);
485 	if (IS_ERR(file)) {
486 		ctx->aio_ring_file = NULL;
487 		return -ENOMEM;
488 	}
489 
490 	ctx->aio_ring_file = file;
491 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
492 			/ sizeof(struct io_event);
493 
494 	ctx->ring_pages = ctx->internal_pages;
495 	if (nr_pages > AIO_RING_PAGES) {
496 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
497 					  GFP_KERNEL);
498 		if (!ctx->ring_pages) {
499 			put_aio_ring_file(ctx);
500 			return -ENOMEM;
501 		}
502 	}
503 
504 	for (i = 0; i < nr_pages; i++) {
505 		struct page *page;
506 		page = find_or_create_page(file->f_mapping,
507 					   i, GFP_HIGHUSER | __GFP_ZERO);
508 		if (!page)
509 			break;
510 		pr_debug("pid(%d) page[%d]->count=%d\n",
511 			 current->pid, i, page_count(page));
512 		SetPageUptodate(page);
513 		unlock_page(page);
514 
515 		ctx->ring_pages[i] = page;
516 	}
517 	ctx->nr_pages = i;
518 
519 	if (unlikely(i != nr_pages)) {
520 		aio_free_ring(ctx);
521 		return -ENOMEM;
522 	}
523 
524 	ctx->mmap_size = nr_pages * PAGE_SIZE;
525 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
526 
527 	if (mmap_write_lock_killable(mm)) {
528 		ctx->mmap_size = 0;
529 		aio_free_ring(ctx);
530 		return -EINTR;
531 	}
532 
533 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
534 				 PROT_READ | PROT_WRITE,
535 				 MAP_SHARED, 0, &unused, NULL);
536 	mmap_write_unlock(mm);
537 	if (IS_ERR((void *)ctx->mmap_base)) {
538 		ctx->mmap_size = 0;
539 		aio_free_ring(ctx);
540 		return -ENOMEM;
541 	}
542 
543 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
544 
545 	ctx->user_id = ctx->mmap_base;
546 	ctx->nr_events = nr_events; /* trusted copy */
547 
548 	ring = kmap_atomic(ctx->ring_pages[0]);
549 	ring->nr = nr_events;	/* user copy */
550 	ring->id = ~0U;
551 	ring->head = ring->tail = 0;
552 	ring->magic = AIO_RING_MAGIC;
553 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
554 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
555 	ring->header_length = sizeof(struct aio_ring);
556 	kunmap_atomic(ring);
557 	flush_dcache_page(ctx->ring_pages[0]);
558 
559 	return 0;
560 }
561 
562 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
563 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
564 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
565 
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)566 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
567 {
568 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
569 	struct kioctx *ctx = req->ki_ctx;
570 	unsigned long flags;
571 
572 	/*
573 	 * kiocb didn't come from aio or is neither a read nor a write, hence
574 	 * ignore it.
575 	 */
576 	if (!(iocb->ki_flags & IOCB_AIO_RW))
577 		return;
578 
579 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
580 		return;
581 
582 	spin_lock_irqsave(&ctx->ctx_lock, flags);
583 	list_add_tail(&req->ki_list, &ctx->active_reqs);
584 	req->ki_cancel = cancel;
585 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
586 }
587 EXPORT_SYMBOL(kiocb_set_cancel_fn);
588 
589 /*
590  * free_ioctx() should be RCU delayed to synchronize against the RCU
591  * protected lookup_ioctx() and also needs process context to call
592  * aio_free_ring().  Use rcu_work.
593  */
free_ioctx(struct work_struct * work)594 static void free_ioctx(struct work_struct *work)
595 {
596 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
597 					  free_rwork);
598 	pr_debug("freeing %p\n", ctx);
599 
600 	aio_free_ring(ctx);
601 	free_percpu(ctx->cpu);
602 	percpu_ref_exit(&ctx->reqs);
603 	percpu_ref_exit(&ctx->users);
604 	kmem_cache_free(kioctx_cachep, ctx);
605 }
606 
free_ioctx_reqs(struct percpu_ref * ref)607 static void free_ioctx_reqs(struct percpu_ref *ref)
608 {
609 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
610 
611 	/* At this point we know that there are no any in-flight requests */
612 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
613 		complete(&ctx->rq_wait->comp);
614 
615 	/* Synchronize against RCU protected table->table[] dereferences */
616 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
617 	queue_rcu_work(system_wq, &ctx->free_rwork);
618 }
619 
620 /*
621  * When this function runs, the kioctx has been removed from the "hash table"
622  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
623  * now it's safe to cancel any that need to be.
624  */
free_ioctx_users(struct percpu_ref * ref)625 static void free_ioctx_users(struct percpu_ref *ref)
626 {
627 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
628 	struct aio_kiocb *req;
629 
630 	spin_lock_irq(&ctx->ctx_lock);
631 
632 	while (!list_empty(&ctx->active_reqs)) {
633 		req = list_first_entry(&ctx->active_reqs,
634 				       struct aio_kiocb, ki_list);
635 		req->ki_cancel(&req->rw);
636 		list_del_init(&req->ki_list);
637 	}
638 
639 	spin_unlock_irq(&ctx->ctx_lock);
640 
641 	percpu_ref_kill(&ctx->reqs);
642 	percpu_ref_put(&ctx->reqs);
643 }
644 
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)645 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
646 {
647 	unsigned i, new_nr;
648 	struct kioctx_table *table, *old;
649 	struct aio_ring *ring;
650 
651 	spin_lock(&mm->ioctx_lock);
652 	table = rcu_dereference_raw(mm->ioctx_table);
653 
654 	while (1) {
655 		if (table)
656 			for (i = 0; i < table->nr; i++)
657 				if (!rcu_access_pointer(table->table[i])) {
658 					ctx->id = i;
659 					rcu_assign_pointer(table->table[i], ctx);
660 					spin_unlock(&mm->ioctx_lock);
661 
662 					/* While kioctx setup is in progress,
663 					 * we are protected from page migration
664 					 * changes ring_pages by ->ring_lock.
665 					 */
666 					ring = kmap_atomic(ctx->ring_pages[0]);
667 					ring->id = ctx->id;
668 					kunmap_atomic(ring);
669 					return 0;
670 				}
671 
672 		new_nr = (table ? table->nr : 1) * 4;
673 		spin_unlock(&mm->ioctx_lock);
674 
675 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
676 				new_nr, GFP_KERNEL);
677 		if (!table)
678 			return -ENOMEM;
679 
680 		table->nr = new_nr;
681 
682 		spin_lock(&mm->ioctx_lock);
683 		old = rcu_dereference_raw(mm->ioctx_table);
684 
685 		if (!old) {
686 			rcu_assign_pointer(mm->ioctx_table, table);
687 		} else if (table->nr > old->nr) {
688 			memcpy(table->table, old->table,
689 			       old->nr * sizeof(struct kioctx *));
690 
691 			rcu_assign_pointer(mm->ioctx_table, table);
692 			kfree_rcu(old, rcu);
693 		} else {
694 			kfree(table);
695 			table = old;
696 		}
697 	}
698 }
699 
aio_nr_sub(unsigned nr)700 static void aio_nr_sub(unsigned nr)
701 {
702 	spin_lock(&aio_nr_lock);
703 	if (WARN_ON(aio_nr - nr > aio_nr))
704 		aio_nr = 0;
705 	else
706 		aio_nr -= nr;
707 	spin_unlock(&aio_nr_lock);
708 }
709 
710 /* ioctx_alloc
711  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
712  */
ioctx_alloc(unsigned nr_events)713 static struct kioctx *ioctx_alloc(unsigned nr_events)
714 {
715 	struct mm_struct *mm = current->mm;
716 	struct kioctx *ctx;
717 	int err = -ENOMEM;
718 
719 	/*
720 	 * Store the original nr_events -- what userspace passed to io_setup(),
721 	 * for counting against the global limit -- before it changes.
722 	 */
723 	unsigned int max_reqs = nr_events;
724 
725 	/*
726 	 * We keep track of the number of available ringbuffer slots, to prevent
727 	 * overflow (reqs_available), and we also use percpu counters for this.
728 	 *
729 	 * So since up to half the slots might be on other cpu's percpu counters
730 	 * and unavailable, double nr_events so userspace sees what they
731 	 * expected: additionally, we move req_batch slots to/from percpu
732 	 * counters at a time, so make sure that isn't 0:
733 	 */
734 	nr_events = max(nr_events, num_possible_cpus() * 4);
735 	nr_events *= 2;
736 
737 	/* Prevent overflows */
738 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
739 		pr_debug("ENOMEM: nr_events too high\n");
740 		return ERR_PTR(-EINVAL);
741 	}
742 
743 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
744 		return ERR_PTR(-EAGAIN);
745 
746 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
747 	if (!ctx)
748 		return ERR_PTR(-ENOMEM);
749 
750 	ctx->max_reqs = max_reqs;
751 
752 	spin_lock_init(&ctx->ctx_lock);
753 	spin_lock_init(&ctx->completion_lock);
754 	mutex_init(&ctx->ring_lock);
755 	/* Protect against page migration throughout kiotx setup by keeping
756 	 * the ring_lock mutex held until setup is complete. */
757 	mutex_lock(&ctx->ring_lock);
758 	init_waitqueue_head(&ctx->wait);
759 
760 	INIT_LIST_HEAD(&ctx->active_reqs);
761 
762 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
763 		goto err;
764 
765 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
766 		goto err;
767 
768 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
769 	if (!ctx->cpu)
770 		goto err;
771 
772 	err = aio_setup_ring(ctx, nr_events);
773 	if (err < 0)
774 		goto err;
775 
776 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
777 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
778 	if (ctx->req_batch < 1)
779 		ctx->req_batch = 1;
780 
781 	/* limit the number of system wide aios */
782 	spin_lock(&aio_nr_lock);
783 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
784 	    aio_nr + ctx->max_reqs < aio_nr) {
785 		spin_unlock(&aio_nr_lock);
786 		err = -EAGAIN;
787 		goto err_ctx;
788 	}
789 	aio_nr += ctx->max_reqs;
790 	spin_unlock(&aio_nr_lock);
791 
792 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
793 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
794 
795 	err = ioctx_add_table(ctx, mm);
796 	if (err)
797 		goto err_cleanup;
798 
799 	/* Release the ring_lock mutex now that all setup is complete. */
800 	mutex_unlock(&ctx->ring_lock);
801 
802 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
803 		 ctx, ctx->user_id, mm, ctx->nr_events);
804 	return ctx;
805 
806 err_cleanup:
807 	aio_nr_sub(ctx->max_reqs);
808 err_ctx:
809 	atomic_set(&ctx->dead, 1);
810 	if (ctx->mmap_size)
811 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
812 	aio_free_ring(ctx);
813 err:
814 	mutex_unlock(&ctx->ring_lock);
815 	free_percpu(ctx->cpu);
816 	percpu_ref_exit(&ctx->reqs);
817 	percpu_ref_exit(&ctx->users);
818 	kmem_cache_free(kioctx_cachep, ctx);
819 	pr_debug("error allocating ioctx %d\n", err);
820 	return ERR_PTR(err);
821 }
822 
823 /* kill_ioctx
824  *	Cancels all outstanding aio requests on an aio context.  Used
825  *	when the processes owning a context have all exited to encourage
826  *	the rapid destruction of the kioctx.
827  */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)828 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
829 		      struct ctx_rq_wait *wait)
830 {
831 	struct kioctx_table *table;
832 
833 	spin_lock(&mm->ioctx_lock);
834 	if (atomic_xchg(&ctx->dead, 1)) {
835 		spin_unlock(&mm->ioctx_lock);
836 		return -EINVAL;
837 	}
838 
839 	table = rcu_dereference_raw(mm->ioctx_table);
840 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
841 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
842 	spin_unlock(&mm->ioctx_lock);
843 
844 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
845 	wake_up_all(&ctx->wait);
846 
847 	/*
848 	 * It'd be more correct to do this in free_ioctx(), after all
849 	 * the outstanding kiocbs have finished - but by then io_destroy
850 	 * has already returned, so io_setup() could potentially return
851 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
852 	 *  could tell).
853 	 */
854 	aio_nr_sub(ctx->max_reqs);
855 
856 	if (ctx->mmap_size)
857 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
858 
859 	ctx->rq_wait = wait;
860 	percpu_ref_kill(&ctx->users);
861 	return 0;
862 }
863 
864 /*
865  * exit_aio: called when the last user of mm goes away.  At this point, there is
866  * no way for any new requests to be submited or any of the io_* syscalls to be
867  * called on the context.
868  *
869  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
870  * them.
871  */
exit_aio(struct mm_struct * mm)872 void exit_aio(struct mm_struct *mm)
873 {
874 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
875 	struct ctx_rq_wait wait;
876 	int i, skipped;
877 
878 	if (!table)
879 		return;
880 
881 	atomic_set(&wait.count, table->nr);
882 	init_completion(&wait.comp);
883 
884 	skipped = 0;
885 	for (i = 0; i < table->nr; ++i) {
886 		struct kioctx *ctx =
887 			rcu_dereference_protected(table->table[i], true);
888 
889 		if (!ctx) {
890 			skipped++;
891 			continue;
892 		}
893 
894 		/*
895 		 * We don't need to bother with munmap() here - exit_mmap(mm)
896 		 * is coming and it'll unmap everything. And we simply can't,
897 		 * this is not necessarily our ->mm.
898 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
899 		 * that it needs to unmap the area, just set it to 0.
900 		 */
901 		ctx->mmap_size = 0;
902 		kill_ioctx(mm, ctx, &wait);
903 	}
904 
905 	if (!atomic_sub_and_test(skipped, &wait.count)) {
906 		/* Wait until all IO for the context are done. */
907 		wait_for_completion(&wait.comp);
908 	}
909 
910 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
911 	kfree(table);
912 }
913 
put_reqs_available(struct kioctx * ctx,unsigned nr)914 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
915 {
916 	struct kioctx_cpu *kcpu;
917 	unsigned long flags;
918 
919 	local_irq_save(flags);
920 	kcpu = this_cpu_ptr(ctx->cpu);
921 	kcpu->reqs_available += nr;
922 
923 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
924 		kcpu->reqs_available -= ctx->req_batch;
925 		atomic_add(ctx->req_batch, &ctx->reqs_available);
926 	}
927 
928 	local_irq_restore(flags);
929 }
930 
__get_reqs_available(struct kioctx * ctx)931 static bool __get_reqs_available(struct kioctx *ctx)
932 {
933 	struct kioctx_cpu *kcpu;
934 	bool ret = false;
935 	unsigned long flags;
936 
937 	local_irq_save(flags);
938 	kcpu = this_cpu_ptr(ctx->cpu);
939 	if (!kcpu->reqs_available) {
940 		int old, avail = atomic_read(&ctx->reqs_available);
941 
942 		do {
943 			if (avail < ctx->req_batch)
944 				goto out;
945 
946 			old = avail;
947 			avail = atomic_cmpxchg(&ctx->reqs_available,
948 					       avail, avail - ctx->req_batch);
949 		} while (avail != old);
950 
951 		kcpu->reqs_available += ctx->req_batch;
952 	}
953 
954 	ret = true;
955 	kcpu->reqs_available--;
956 out:
957 	local_irq_restore(flags);
958 	return ret;
959 }
960 
961 /* refill_reqs_available
962  *	Updates the reqs_available reference counts used for tracking the
963  *	number of free slots in the completion ring.  This can be called
964  *	from aio_complete() (to optimistically update reqs_available) or
965  *	from aio_get_req() (the we're out of events case).  It must be
966  *	called holding ctx->completion_lock.
967  */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)968 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
969                                   unsigned tail)
970 {
971 	unsigned events_in_ring, completed;
972 
973 	/* Clamp head since userland can write to it. */
974 	head %= ctx->nr_events;
975 	if (head <= tail)
976 		events_in_ring = tail - head;
977 	else
978 		events_in_ring = ctx->nr_events - (head - tail);
979 
980 	completed = ctx->completed_events;
981 	if (events_in_ring < completed)
982 		completed -= events_in_ring;
983 	else
984 		completed = 0;
985 
986 	if (!completed)
987 		return;
988 
989 	ctx->completed_events -= completed;
990 	put_reqs_available(ctx, completed);
991 }
992 
993 /* user_refill_reqs_available
994  *	Called to refill reqs_available when aio_get_req() encounters an
995  *	out of space in the completion ring.
996  */
user_refill_reqs_available(struct kioctx * ctx)997 static void user_refill_reqs_available(struct kioctx *ctx)
998 {
999 	spin_lock_irq(&ctx->completion_lock);
1000 	if (ctx->completed_events) {
1001 		struct aio_ring *ring;
1002 		unsigned head;
1003 
1004 		/* Access of ring->head may race with aio_read_events_ring()
1005 		 * here, but that's okay since whether we read the old version
1006 		 * or the new version, and either will be valid.  The important
1007 		 * part is that head cannot pass tail since we prevent
1008 		 * aio_complete() from updating tail by holding
1009 		 * ctx->completion_lock.  Even if head is invalid, the check
1010 		 * against ctx->completed_events below will make sure we do the
1011 		 * safe/right thing.
1012 		 */
1013 		ring = kmap_atomic(ctx->ring_pages[0]);
1014 		head = ring->head;
1015 		kunmap_atomic(ring);
1016 
1017 		refill_reqs_available(ctx, head, ctx->tail);
1018 	}
1019 
1020 	spin_unlock_irq(&ctx->completion_lock);
1021 }
1022 
get_reqs_available(struct kioctx * ctx)1023 static bool get_reqs_available(struct kioctx *ctx)
1024 {
1025 	if (__get_reqs_available(ctx))
1026 		return true;
1027 	user_refill_reqs_available(ctx);
1028 	return __get_reqs_available(ctx);
1029 }
1030 
1031 /* aio_get_req
1032  *	Allocate a slot for an aio request.
1033  * Returns NULL if no requests are free.
1034  *
1035  * The refcount is initialized to 2 - one for the async op completion,
1036  * one for the synchronous code that does this.
1037  */
aio_get_req(struct kioctx * ctx)1038 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1039 {
1040 	struct aio_kiocb *req;
1041 
1042 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1043 	if (unlikely(!req))
1044 		return NULL;
1045 
1046 	if (unlikely(!get_reqs_available(ctx))) {
1047 		kmem_cache_free(kiocb_cachep, req);
1048 		return NULL;
1049 	}
1050 
1051 	percpu_ref_get(&ctx->reqs);
1052 	req->ki_ctx = ctx;
1053 	INIT_LIST_HEAD(&req->ki_list);
1054 	refcount_set(&req->ki_refcnt, 2);
1055 	req->ki_eventfd = NULL;
1056 	return req;
1057 }
1058 
lookup_ioctx(unsigned long ctx_id)1059 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1060 {
1061 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1062 	struct mm_struct *mm = current->mm;
1063 	struct kioctx *ctx, *ret = NULL;
1064 	struct kioctx_table *table;
1065 	unsigned id;
1066 
1067 	if (get_user(id, &ring->id))
1068 		return NULL;
1069 
1070 	rcu_read_lock();
1071 	table = rcu_dereference(mm->ioctx_table);
1072 
1073 	if (!table || id >= table->nr)
1074 		goto out;
1075 
1076 	id = array_index_nospec(id, table->nr);
1077 	ctx = rcu_dereference(table->table[id]);
1078 	if (ctx && ctx->user_id == ctx_id) {
1079 		if (percpu_ref_tryget_live(&ctx->users))
1080 			ret = ctx;
1081 	}
1082 out:
1083 	rcu_read_unlock();
1084 	return ret;
1085 }
1086 
iocb_destroy(struct aio_kiocb * iocb)1087 static inline void iocb_destroy(struct aio_kiocb *iocb)
1088 {
1089 	if (iocb->ki_eventfd)
1090 		eventfd_ctx_put(iocb->ki_eventfd);
1091 	if (iocb->ki_filp)
1092 		fput(iocb->ki_filp);
1093 	percpu_ref_put(&iocb->ki_ctx->reqs);
1094 	kmem_cache_free(kiocb_cachep, iocb);
1095 }
1096 
1097 /* aio_complete
1098  *	Called when the io request on the given iocb is complete.
1099  */
aio_complete(struct aio_kiocb * iocb)1100 static void aio_complete(struct aio_kiocb *iocb)
1101 {
1102 	struct kioctx	*ctx = iocb->ki_ctx;
1103 	struct aio_ring	*ring;
1104 	struct io_event	*ev_page, *event;
1105 	unsigned tail, pos, head;
1106 	unsigned long	flags;
1107 
1108 	/*
1109 	 * Add a completion event to the ring buffer. Must be done holding
1110 	 * ctx->completion_lock to prevent other code from messing with the tail
1111 	 * pointer since we might be called from irq context.
1112 	 */
1113 	spin_lock_irqsave(&ctx->completion_lock, flags);
1114 
1115 	tail = ctx->tail;
1116 	pos = tail + AIO_EVENTS_OFFSET;
1117 
1118 	if (++tail >= ctx->nr_events)
1119 		tail = 0;
1120 
1121 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1122 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1123 
1124 	*event = iocb->ki_res;
1125 
1126 	kunmap_atomic(ev_page);
1127 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1128 
1129 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1130 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1131 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1132 
1133 	/* after flagging the request as done, we
1134 	 * must never even look at it again
1135 	 */
1136 	smp_wmb();	/* make event visible before updating tail */
1137 
1138 	ctx->tail = tail;
1139 
1140 	ring = kmap_atomic(ctx->ring_pages[0]);
1141 	head = ring->head;
1142 	ring->tail = tail;
1143 	kunmap_atomic(ring);
1144 	flush_dcache_page(ctx->ring_pages[0]);
1145 
1146 	ctx->completed_events++;
1147 	if (ctx->completed_events > 1)
1148 		refill_reqs_available(ctx, head, tail);
1149 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1150 
1151 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1152 
1153 	/*
1154 	 * Check if the user asked us to deliver the result through an
1155 	 * eventfd. The eventfd_signal() function is safe to be called
1156 	 * from IRQ context.
1157 	 */
1158 	if (iocb->ki_eventfd)
1159 		eventfd_signal(iocb->ki_eventfd, 1);
1160 
1161 	/*
1162 	 * We have to order our ring_info tail store above and test
1163 	 * of the wait list below outside the wait lock.  This is
1164 	 * like in wake_up_bit() where clearing a bit has to be
1165 	 * ordered with the unlocked test.
1166 	 */
1167 	smp_mb();
1168 
1169 	if (waitqueue_active(&ctx->wait))
1170 		wake_up(&ctx->wait);
1171 }
1172 
iocb_put(struct aio_kiocb * iocb)1173 static inline void iocb_put(struct aio_kiocb *iocb)
1174 {
1175 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1176 		aio_complete(iocb);
1177 		iocb_destroy(iocb);
1178 	}
1179 }
1180 
1181 /* aio_read_events_ring
1182  *	Pull an event off of the ioctx's event ring.  Returns the number of
1183  *	events fetched
1184  */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1185 static long aio_read_events_ring(struct kioctx *ctx,
1186 				 struct io_event __user *event, long nr)
1187 {
1188 	struct aio_ring *ring;
1189 	unsigned head, tail, pos;
1190 	long ret = 0;
1191 	int copy_ret;
1192 
1193 	/*
1194 	 * The mutex can block and wake us up and that will cause
1195 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1196 	 * and repeat. This should be rare enough that it doesn't cause
1197 	 * peformance issues. See the comment in read_events() for more detail.
1198 	 */
1199 	sched_annotate_sleep();
1200 	mutex_lock(&ctx->ring_lock);
1201 
1202 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1203 	ring = kmap_atomic(ctx->ring_pages[0]);
1204 	head = ring->head;
1205 	tail = ring->tail;
1206 	kunmap_atomic(ring);
1207 
1208 	/*
1209 	 * Ensure that once we've read the current tail pointer, that
1210 	 * we also see the events that were stored up to the tail.
1211 	 */
1212 	smp_rmb();
1213 
1214 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1215 
1216 	if (head == tail)
1217 		goto out;
1218 
1219 	head %= ctx->nr_events;
1220 	tail %= ctx->nr_events;
1221 
1222 	while (ret < nr) {
1223 		long avail;
1224 		struct io_event *ev;
1225 		struct page *page;
1226 
1227 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1228 		if (head == tail)
1229 			break;
1230 
1231 		pos = head + AIO_EVENTS_OFFSET;
1232 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1233 		pos %= AIO_EVENTS_PER_PAGE;
1234 
1235 		avail = min(avail, nr - ret);
1236 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1237 
1238 		ev = kmap(page);
1239 		copy_ret = copy_to_user(event + ret, ev + pos,
1240 					sizeof(*ev) * avail);
1241 		kunmap(page);
1242 
1243 		if (unlikely(copy_ret)) {
1244 			ret = -EFAULT;
1245 			goto out;
1246 		}
1247 
1248 		ret += avail;
1249 		head += avail;
1250 		head %= ctx->nr_events;
1251 	}
1252 
1253 	ring = kmap_atomic(ctx->ring_pages[0]);
1254 	ring->head = head;
1255 	kunmap_atomic(ring);
1256 	flush_dcache_page(ctx->ring_pages[0]);
1257 
1258 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1259 out:
1260 	mutex_unlock(&ctx->ring_lock);
1261 
1262 	return ret;
1263 }
1264 
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1265 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1266 			    struct io_event __user *event, long *i)
1267 {
1268 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1269 
1270 	if (ret > 0)
1271 		*i += ret;
1272 
1273 	if (unlikely(atomic_read(&ctx->dead)))
1274 		ret = -EINVAL;
1275 
1276 	if (!*i)
1277 		*i = ret;
1278 
1279 	return ret < 0 || *i >= min_nr;
1280 }
1281 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1282 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1283 			struct io_event __user *event,
1284 			ktime_t until)
1285 {
1286 	long ret = 0;
1287 
1288 	/*
1289 	 * Note that aio_read_events() is being called as the conditional - i.e.
1290 	 * we're calling it after prepare_to_wait() has set task state to
1291 	 * TASK_INTERRUPTIBLE.
1292 	 *
1293 	 * But aio_read_events() can block, and if it blocks it's going to flip
1294 	 * the task state back to TASK_RUNNING.
1295 	 *
1296 	 * This should be ok, provided it doesn't flip the state back to
1297 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1298 	 * will only happen if the mutex_lock() call blocks, and we then find
1299 	 * the ringbuffer empty. So in practice we should be ok, but it's
1300 	 * something to be aware of when touching this code.
1301 	 */
1302 	if (until == 0)
1303 		aio_read_events(ctx, min_nr, nr, event, &ret);
1304 	else
1305 		wait_event_interruptible_hrtimeout(ctx->wait,
1306 				aio_read_events(ctx, min_nr, nr, event, &ret),
1307 				until);
1308 	return ret;
1309 }
1310 
1311 /* sys_io_setup:
1312  *	Create an aio_context capable of receiving at least nr_events.
1313  *	ctxp must not point to an aio_context that already exists, and
1314  *	must be initialized to 0 prior to the call.  On successful
1315  *	creation of the aio_context, *ctxp is filled in with the resulting
1316  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1317  *	if the specified nr_events exceeds internal limits.  May fail
1318  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1319  *	of available events.  May fail with -ENOMEM if insufficient kernel
1320  *	resources are available.  May fail with -EFAULT if an invalid
1321  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1322  *	implemented.
1323  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1324 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1325 {
1326 	struct kioctx *ioctx = NULL;
1327 	unsigned long ctx;
1328 	long ret;
1329 
1330 	ret = get_user(ctx, ctxp);
1331 	if (unlikely(ret))
1332 		goto out;
1333 
1334 	ret = -EINVAL;
1335 	if (unlikely(ctx || nr_events == 0)) {
1336 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1337 		         ctx, nr_events);
1338 		goto out;
1339 	}
1340 
1341 	ioctx = ioctx_alloc(nr_events);
1342 	ret = PTR_ERR(ioctx);
1343 	if (!IS_ERR(ioctx)) {
1344 		ret = put_user(ioctx->user_id, ctxp);
1345 		if (ret)
1346 			kill_ioctx(current->mm, ioctx, NULL);
1347 		percpu_ref_put(&ioctx->users);
1348 	}
1349 
1350 out:
1351 	return ret;
1352 }
1353 
1354 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1355 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1356 {
1357 	struct kioctx *ioctx = NULL;
1358 	unsigned long ctx;
1359 	long ret;
1360 
1361 	ret = get_user(ctx, ctx32p);
1362 	if (unlikely(ret))
1363 		goto out;
1364 
1365 	ret = -EINVAL;
1366 	if (unlikely(ctx || nr_events == 0)) {
1367 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1368 		         ctx, nr_events);
1369 		goto out;
1370 	}
1371 
1372 	ioctx = ioctx_alloc(nr_events);
1373 	ret = PTR_ERR(ioctx);
1374 	if (!IS_ERR(ioctx)) {
1375 		/* truncating is ok because it's a user address */
1376 		ret = put_user((u32)ioctx->user_id, ctx32p);
1377 		if (ret)
1378 			kill_ioctx(current->mm, ioctx, NULL);
1379 		percpu_ref_put(&ioctx->users);
1380 	}
1381 
1382 out:
1383 	return ret;
1384 }
1385 #endif
1386 
1387 /* sys_io_destroy:
1388  *	Destroy the aio_context specified.  May cancel any outstanding
1389  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1390  *	implemented.  May fail with -EINVAL if the context pointed to
1391  *	is invalid.
1392  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1393 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1394 {
1395 	struct kioctx *ioctx = lookup_ioctx(ctx);
1396 	if (likely(NULL != ioctx)) {
1397 		struct ctx_rq_wait wait;
1398 		int ret;
1399 
1400 		init_completion(&wait.comp);
1401 		atomic_set(&wait.count, 1);
1402 
1403 		/* Pass requests_done to kill_ioctx() where it can be set
1404 		 * in a thread-safe way. If we try to set it here then we have
1405 		 * a race condition if two io_destroy() called simultaneously.
1406 		 */
1407 		ret = kill_ioctx(current->mm, ioctx, &wait);
1408 		percpu_ref_put(&ioctx->users);
1409 
1410 		/* Wait until all IO for the context are done. Otherwise kernel
1411 		 * keep using user-space buffers even if user thinks the context
1412 		 * is destroyed.
1413 		 */
1414 		if (!ret)
1415 			wait_for_completion(&wait.comp);
1416 
1417 		return ret;
1418 	}
1419 	pr_debug("EINVAL: invalid context id\n");
1420 	return -EINVAL;
1421 }
1422 
aio_remove_iocb(struct aio_kiocb * iocb)1423 static void aio_remove_iocb(struct aio_kiocb *iocb)
1424 {
1425 	struct kioctx *ctx = iocb->ki_ctx;
1426 	unsigned long flags;
1427 
1428 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1429 	list_del(&iocb->ki_list);
1430 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1431 }
1432 
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1433 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1434 {
1435 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1436 
1437 	if (!list_empty_careful(&iocb->ki_list))
1438 		aio_remove_iocb(iocb);
1439 
1440 	if (kiocb->ki_flags & IOCB_WRITE) {
1441 		struct inode *inode = file_inode(kiocb->ki_filp);
1442 
1443 		/*
1444 		 * Tell lockdep we inherited freeze protection from submission
1445 		 * thread.
1446 		 */
1447 		if (S_ISREG(inode->i_mode))
1448 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1449 		file_end_write(kiocb->ki_filp);
1450 	}
1451 
1452 	iocb->ki_res.res = res;
1453 	iocb->ki_res.res2 = res2;
1454 	iocb_put(iocb);
1455 }
1456 
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1457 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1458 {
1459 	int ret;
1460 
1461 	req->ki_complete = aio_complete_rw;
1462 	req->private = NULL;
1463 	req->ki_pos = iocb->aio_offset;
1464 	req->ki_flags = iocb_flags(req->ki_filp) | IOCB_AIO_RW;
1465 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1466 		req->ki_flags |= IOCB_EVENTFD;
1467 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1468 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1469 		/*
1470 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1471 		 * aio_reqprio is interpreted as an I/O scheduling
1472 		 * class and priority.
1473 		 */
1474 		ret = ioprio_check_cap(iocb->aio_reqprio);
1475 		if (ret) {
1476 			pr_debug("aio ioprio check cap error: %d\n", ret);
1477 			return ret;
1478 		}
1479 
1480 		req->ki_ioprio = iocb->aio_reqprio;
1481 	} else
1482 		req->ki_ioprio = get_current_ioprio();
1483 
1484 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1485 	if (unlikely(ret))
1486 		return ret;
1487 
1488 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1489 	return 0;
1490 }
1491 
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1492 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1493 		struct iovec **iovec, bool vectored, bool compat,
1494 		struct iov_iter *iter)
1495 {
1496 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1497 	size_t len = iocb->aio_nbytes;
1498 
1499 	if (!vectored) {
1500 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1501 		*iovec = NULL;
1502 		return ret;
1503 	}
1504 
1505 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1506 }
1507 
aio_rw_done(struct kiocb * req,ssize_t ret)1508 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1509 {
1510 	switch (ret) {
1511 	case -EIOCBQUEUED:
1512 		break;
1513 	case -ERESTARTSYS:
1514 	case -ERESTARTNOINTR:
1515 	case -ERESTARTNOHAND:
1516 	case -ERESTART_RESTARTBLOCK:
1517 		/*
1518 		 * There's no easy way to restart the syscall since other AIO's
1519 		 * may be already running. Just fail this IO with EINTR.
1520 		 */
1521 		ret = -EINTR;
1522 		fallthrough;
1523 	default:
1524 		req->ki_complete(req, ret, 0);
1525 	}
1526 }
1527 
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1528 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1529 			bool vectored, bool compat)
1530 {
1531 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1532 	struct iov_iter iter;
1533 	struct file *file;
1534 	int ret;
1535 
1536 	ret = aio_prep_rw(req, iocb);
1537 	if (ret)
1538 		return ret;
1539 	file = req->ki_filp;
1540 	if (unlikely(!(file->f_mode & FMODE_READ)))
1541 		return -EBADF;
1542 	ret = -EINVAL;
1543 	if (unlikely(!file->f_op->read_iter))
1544 		return -EINVAL;
1545 
1546 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1547 	if (ret < 0)
1548 		return ret;
1549 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1550 	if (!ret)
1551 		aio_rw_done(req, call_read_iter(file, req, &iter));
1552 	kfree(iovec);
1553 	return ret;
1554 }
1555 
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1556 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1557 			 bool vectored, bool compat)
1558 {
1559 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1560 	struct iov_iter iter;
1561 	struct file *file;
1562 	int ret;
1563 
1564 	ret = aio_prep_rw(req, iocb);
1565 	if (ret)
1566 		return ret;
1567 	file = req->ki_filp;
1568 
1569 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1570 		return -EBADF;
1571 	if (unlikely(!file->f_op->write_iter))
1572 		return -EINVAL;
1573 
1574 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1575 	if (ret < 0)
1576 		return ret;
1577 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1578 	if (!ret) {
1579 		/*
1580 		 * Open-code file_start_write here to grab freeze protection,
1581 		 * which will be released by another thread in
1582 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1583 		 * released so that it doesn't complain about the held lock when
1584 		 * we return to userspace.
1585 		 */
1586 		if (S_ISREG(file_inode(file)->i_mode)) {
1587 			sb_start_write(file_inode(file)->i_sb);
1588 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1589 		}
1590 		req->ki_flags |= IOCB_WRITE;
1591 		aio_rw_done(req, call_write_iter(file, req, &iter));
1592 	}
1593 	kfree(iovec);
1594 	return ret;
1595 }
1596 
aio_fsync_work(struct work_struct * work)1597 static void aio_fsync_work(struct work_struct *work)
1598 {
1599 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1600 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1601 
1602 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1603 	revert_creds(old_cred);
1604 	put_cred(iocb->fsync.creds);
1605 	iocb_put(iocb);
1606 }
1607 
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1608 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1609 		     bool datasync)
1610 {
1611 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1612 			iocb->aio_rw_flags))
1613 		return -EINVAL;
1614 
1615 	if (unlikely(!req->file->f_op->fsync))
1616 		return -EINVAL;
1617 
1618 	req->creds = prepare_creds();
1619 	if (!req->creds)
1620 		return -ENOMEM;
1621 
1622 	req->datasync = datasync;
1623 	INIT_WORK(&req->work, aio_fsync_work);
1624 	schedule_work(&req->work);
1625 	return 0;
1626 }
1627 
aio_poll_put_work(struct work_struct * work)1628 static void aio_poll_put_work(struct work_struct *work)
1629 {
1630 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1631 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1632 
1633 	iocb_put(iocb);
1634 }
1635 
1636 /*
1637  * Safely lock the waitqueue which the request is on, synchronizing with the
1638  * case where the ->poll() provider decides to free its waitqueue early.
1639  *
1640  * Returns true on success, meaning that req->head->lock was locked, req->wait
1641  * is on req->head, and an RCU read lock was taken.  Returns false if the
1642  * request was already removed from its waitqueue (which might no longer exist).
1643  */
poll_iocb_lock_wq(struct poll_iocb * req)1644 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1645 {
1646 	wait_queue_head_t *head;
1647 
1648 	/*
1649 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1650 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1651 	 * lock in the first place can race with the waitqueue being freed.
1652 	 *
1653 	 * We solve this as eventpoll does: by taking advantage of the fact that
1654 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1655 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1656 	 * non-NULL, we can then lock it without the memory being freed out from
1657 	 * under us, then check whether the request is still on the queue.
1658 	 *
1659 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1660 	 * case the caller deletes the entry from the queue, leaving it empty.
1661 	 * In that case, only RCU prevents the queue memory from being freed.
1662 	 */
1663 	rcu_read_lock();
1664 	head = smp_load_acquire(&req->head);
1665 	if (head) {
1666 		spin_lock(&head->lock);
1667 		if (!list_empty(&req->wait.entry))
1668 			return true;
1669 		spin_unlock(&head->lock);
1670 	}
1671 	rcu_read_unlock();
1672 	return false;
1673 }
1674 
poll_iocb_unlock_wq(struct poll_iocb * req)1675 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1676 {
1677 	spin_unlock(&req->head->lock);
1678 	rcu_read_unlock();
1679 }
1680 
aio_poll_complete_work(struct work_struct * work)1681 static void aio_poll_complete_work(struct work_struct *work)
1682 {
1683 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1684 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1685 	struct poll_table_struct pt = { ._key = req->events };
1686 	struct kioctx *ctx = iocb->ki_ctx;
1687 	__poll_t mask = 0;
1688 
1689 	if (!READ_ONCE(req->cancelled))
1690 		mask = vfs_poll(req->file, &pt) & req->events;
1691 
1692 	/*
1693 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1694 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1695 	 * synchronize with them.  In the cancellation case the list_del_init
1696 	 * itself is not actually needed, but harmless so we keep it in to
1697 	 * avoid further branches in the fast path.
1698 	 */
1699 	spin_lock_irq(&ctx->ctx_lock);
1700 	if (poll_iocb_lock_wq(req)) {
1701 		if (!mask && !READ_ONCE(req->cancelled)) {
1702 			/*
1703 			 * The request isn't actually ready to be completed yet.
1704 			 * Reschedule completion if another wakeup came in.
1705 			 */
1706 			if (req->work_need_resched) {
1707 				schedule_work(&req->work);
1708 				req->work_need_resched = false;
1709 			} else {
1710 				req->work_scheduled = false;
1711 			}
1712 			poll_iocb_unlock_wq(req);
1713 			spin_unlock_irq(&ctx->ctx_lock);
1714 			return;
1715 		}
1716 		list_del_init(&req->wait.entry);
1717 		poll_iocb_unlock_wq(req);
1718 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1719 	list_del_init(&iocb->ki_list);
1720 	iocb->ki_res.res = mangle_poll(mask);
1721 	spin_unlock_irq(&ctx->ctx_lock);
1722 
1723 	iocb_put(iocb);
1724 }
1725 
1726 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1727 static int aio_poll_cancel(struct kiocb *iocb)
1728 {
1729 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1730 	struct poll_iocb *req = &aiocb->poll;
1731 
1732 	if (poll_iocb_lock_wq(req)) {
1733 		WRITE_ONCE(req->cancelled, true);
1734 		if (!req->work_scheduled) {
1735 			schedule_work(&aiocb->poll.work);
1736 			req->work_scheduled = true;
1737 		}
1738 		poll_iocb_unlock_wq(req);
1739 	} /* else, the request was force-cancelled by POLLFREE already */
1740 
1741 	return 0;
1742 }
1743 
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1744 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1745 		void *key)
1746 {
1747 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1748 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1749 	__poll_t mask = key_to_poll(key);
1750 	unsigned long flags;
1751 
1752 	/* for instances that support it check for an event match first: */
1753 	if (mask && !(mask & req->events))
1754 		return 0;
1755 
1756 	/*
1757 	 * Complete the request inline if possible.  This requires that three
1758 	 * conditions be met:
1759 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1760 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1761 	 *	the events, so inline completion isn't possible.
1762 	 *   2. The completion work must not have already been scheduled.
1763 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1764 	 *	already hold the waitqueue lock, so this inverts the normal
1765 	 *	locking order.  Use irqsave/irqrestore because not all
1766 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1767 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1768 	 */
1769 	if (mask && !req->work_scheduled &&
1770 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1771 		struct kioctx *ctx = iocb->ki_ctx;
1772 
1773 		list_del_init(&req->wait.entry);
1774 		list_del(&iocb->ki_list);
1775 		iocb->ki_res.res = mangle_poll(mask);
1776 		if (iocb->ki_eventfd && eventfd_signal_count()) {
1777 			iocb = NULL;
1778 			INIT_WORK(&req->work, aio_poll_put_work);
1779 			schedule_work(&req->work);
1780 		}
1781 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1782 		if (iocb)
1783 			iocb_put(iocb);
1784 	} else {
1785 		/*
1786 		 * Schedule the completion work if needed.  If it was already
1787 		 * scheduled, record that another wakeup came in.
1788 		 *
1789 		 * Don't remove the request from the waitqueue here, as it might
1790 		 * not actually be complete yet (we won't know until vfs_poll()
1791 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1792 		 * exception to this; see below.
1793 		 */
1794 		if (req->work_scheduled) {
1795 			req->work_need_resched = true;
1796 		} else {
1797 			schedule_work(&req->work);
1798 			req->work_scheduled = true;
1799 		}
1800 
1801 		/*
1802 		 * If the waitqueue is being freed early but we can't complete
1803 		 * the request inline, we have to tear down the request as best
1804 		 * we can.  That means immediately removing the request from its
1805 		 * waitqueue and preventing all further accesses to the
1806 		 * waitqueue via the request.  We also need to schedule the
1807 		 * completion work (done above).  Also mark the request as
1808 		 * cancelled, to potentially skip an unneeded call to ->poll().
1809 		 */
1810 		if (mask & POLLFREE) {
1811 			WRITE_ONCE(req->cancelled, true);
1812 			list_del_init(&req->wait.entry);
1813 
1814 			/*
1815 			 * Careful: this *must* be the last step, since as soon
1816 			 * as req->head is NULL'ed out, the request can be
1817 			 * completed and freed, since aio_poll_complete_work()
1818 			 * will no longer need to take the waitqueue lock.
1819 			 */
1820 			smp_store_release(&req->head, NULL);
1821 		}
1822 	}
1823 	return 1;
1824 }
1825 
1826 struct aio_poll_table {
1827 	struct poll_table_struct	pt;
1828 	struct aio_kiocb		*iocb;
1829 	bool				queued;
1830 	int				error;
1831 };
1832 
1833 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1834 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1835 		struct poll_table_struct *p)
1836 {
1837 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1838 
1839 	/* multiple wait queues per file are not supported */
1840 	if (unlikely(pt->queued)) {
1841 		pt->error = -EINVAL;
1842 		return;
1843 	}
1844 
1845 	pt->queued = true;
1846 	pt->error = 0;
1847 	pt->iocb->poll.head = head;
1848 	add_wait_queue(head, &pt->iocb->poll.wait);
1849 }
1850 
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1851 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1852 {
1853 	struct kioctx *ctx = aiocb->ki_ctx;
1854 	struct poll_iocb *req = &aiocb->poll;
1855 	struct aio_poll_table apt;
1856 	bool cancel = false;
1857 	__poll_t mask;
1858 
1859 	/* reject any unknown events outside the normal event mask. */
1860 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1861 		return -EINVAL;
1862 	/* reject fields that are not defined for poll */
1863 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1864 		return -EINVAL;
1865 
1866 	INIT_WORK(&req->work, aio_poll_complete_work);
1867 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1868 
1869 	req->head = NULL;
1870 	req->cancelled = false;
1871 	req->work_scheduled = false;
1872 	req->work_need_resched = false;
1873 
1874 	apt.pt._qproc = aio_poll_queue_proc;
1875 	apt.pt._key = req->events;
1876 	apt.iocb = aiocb;
1877 	apt.queued = false;
1878 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1879 
1880 	/* initialized the list so that we can do list_empty checks */
1881 	INIT_LIST_HEAD(&req->wait.entry);
1882 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1883 
1884 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1885 	spin_lock_irq(&ctx->ctx_lock);
1886 	if (likely(apt.queued)) {
1887 		bool on_queue = poll_iocb_lock_wq(req);
1888 
1889 		if (!on_queue || req->work_scheduled) {
1890 			/*
1891 			 * aio_poll_wake() already either scheduled the async
1892 			 * completion work, or completed the request inline.
1893 			 */
1894 			if (apt.error) /* unsupported case: multiple queues */
1895 				cancel = true;
1896 			apt.error = 0;
1897 			mask = 0;
1898 		}
1899 		if (mask || apt.error) {
1900 			/* Steal to complete synchronously. */
1901 			list_del_init(&req->wait.entry);
1902 		} else if (cancel) {
1903 			/* Cancel if possible (may be too late though). */
1904 			WRITE_ONCE(req->cancelled, true);
1905 		} else if (on_queue) {
1906 			/*
1907 			 * Actually waiting for an event, so add the request to
1908 			 * active_reqs so that it can be cancelled if needed.
1909 			 */
1910 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1911 			aiocb->ki_cancel = aio_poll_cancel;
1912 		}
1913 		if (on_queue)
1914 			poll_iocb_unlock_wq(req);
1915 	}
1916 	if (mask) { /* no async, we'd stolen it */
1917 		aiocb->ki_res.res = mangle_poll(mask);
1918 		apt.error = 0;
1919 	}
1920 	spin_unlock_irq(&ctx->ctx_lock);
1921 	if (mask)
1922 		iocb_put(aiocb);
1923 	return apt.error;
1924 }
1925 
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,struct aio_kiocb * req,bool compat)1926 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1927 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1928 			   bool compat)
1929 {
1930 	req->ki_filp = fget(iocb->aio_fildes);
1931 	if (unlikely(!req->ki_filp))
1932 		return -EBADF;
1933 
1934 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1935 		struct eventfd_ctx *eventfd;
1936 		/*
1937 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1938 		 * instance of the file* now. The file descriptor must be
1939 		 * an eventfd() fd, and will be signaled for each completed
1940 		 * event using the eventfd_signal() function.
1941 		 */
1942 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1943 		if (IS_ERR(eventfd))
1944 			return PTR_ERR(eventfd);
1945 
1946 		req->ki_eventfd = eventfd;
1947 	}
1948 
1949 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1950 		pr_debug("EFAULT: aio_key\n");
1951 		return -EFAULT;
1952 	}
1953 
1954 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1955 	req->ki_res.data = iocb->aio_data;
1956 	req->ki_res.res = 0;
1957 	req->ki_res.res2 = 0;
1958 
1959 	switch (iocb->aio_lio_opcode) {
1960 	case IOCB_CMD_PREAD:
1961 		return aio_read(&req->rw, iocb, false, compat);
1962 	case IOCB_CMD_PWRITE:
1963 		return aio_write(&req->rw, iocb, false, compat);
1964 	case IOCB_CMD_PREADV:
1965 		return aio_read(&req->rw, iocb, true, compat);
1966 	case IOCB_CMD_PWRITEV:
1967 		return aio_write(&req->rw, iocb, true, compat);
1968 	case IOCB_CMD_FSYNC:
1969 		return aio_fsync(&req->fsync, iocb, false);
1970 	case IOCB_CMD_FDSYNC:
1971 		return aio_fsync(&req->fsync, iocb, true);
1972 	case IOCB_CMD_POLL:
1973 		return aio_poll(req, iocb);
1974 	default:
1975 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1976 		return -EINVAL;
1977 	}
1978 }
1979 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)1980 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1981 			 bool compat)
1982 {
1983 	struct aio_kiocb *req;
1984 	struct iocb iocb;
1985 	int err;
1986 
1987 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1988 		return -EFAULT;
1989 
1990 	/* enforce forwards compatibility on users */
1991 	if (unlikely(iocb.aio_reserved2)) {
1992 		pr_debug("EINVAL: reserve field set\n");
1993 		return -EINVAL;
1994 	}
1995 
1996 	/* prevent overflows */
1997 	if (unlikely(
1998 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1999 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2000 	    ((ssize_t)iocb.aio_nbytes < 0)
2001 	   )) {
2002 		pr_debug("EINVAL: overflow check\n");
2003 		return -EINVAL;
2004 	}
2005 
2006 	req = aio_get_req(ctx);
2007 	if (unlikely(!req))
2008 		return -EAGAIN;
2009 
2010 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2011 
2012 	/* Done with the synchronous reference */
2013 	iocb_put(req);
2014 
2015 	/*
2016 	 * If err is 0, we'd either done aio_complete() ourselves or have
2017 	 * arranged for that to be done asynchronously.  Anything non-zero
2018 	 * means that we need to destroy req ourselves.
2019 	 */
2020 	if (unlikely(err)) {
2021 		iocb_destroy(req);
2022 		put_reqs_available(ctx, 1);
2023 	}
2024 	return err;
2025 }
2026 
2027 /* sys_io_submit:
2028  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2029  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2030  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2031  *	*iocbpp[0] is not properly initialized, if the operation specified
2032  *	is invalid for the file descriptor in the iocb.  May fail with
2033  *	-EFAULT if any of the data structures point to invalid data.  May
2034  *	fail with -EBADF if the file descriptor specified in the first
2035  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2036  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2037  *	fail with -ENOSYS if not implemented.
2038  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2039 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2040 		struct iocb __user * __user *, iocbpp)
2041 {
2042 	struct kioctx *ctx;
2043 	long ret = 0;
2044 	int i = 0;
2045 	struct blk_plug plug;
2046 
2047 	if (unlikely(nr < 0))
2048 		return -EINVAL;
2049 
2050 	ctx = lookup_ioctx(ctx_id);
2051 	if (unlikely(!ctx)) {
2052 		pr_debug("EINVAL: invalid context id\n");
2053 		return -EINVAL;
2054 	}
2055 
2056 	if (nr > ctx->nr_events)
2057 		nr = ctx->nr_events;
2058 
2059 	if (nr > AIO_PLUG_THRESHOLD)
2060 		blk_start_plug(&plug);
2061 	for (i = 0; i < nr; i++) {
2062 		struct iocb __user *user_iocb;
2063 
2064 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2065 			ret = -EFAULT;
2066 			break;
2067 		}
2068 
2069 		ret = io_submit_one(ctx, user_iocb, false);
2070 		if (ret)
2071 			break;
2072 	}
2073 	if (nr > AIO_PLUG_THRESHOLD)
2074 		blk_finish_plug(&plug);
2075 
2076 	percpu_ref_put(&ctx->users);
2077 	return i ? i : ret;
2078 }
2079 
2080 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2081 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2082 		       int, nr, compat_uptr_t __user *, iocbpp)
2083 {
2084 	struct kioctx *ctx;
2085 	long ret = 0;
2086 	int i = 0;
2087 	struct blk_plug plug;
2088 
2089 	if (unlikely(nr < 0))
2090 		return -EINVAL;
2091 
2092 	ctx = lookup_ioctx(ctx_id);
2093 	if (unlikely(!ctx)) {
2094 		pr_debug("EINVAL: invalid context id\n");
2095 		return -EINVAL;
2096 	}
2097 
2098 	if (nr > ctx->nr_events)
2099 		nr = ctx->nr_events;
2100 
2101 	if (nr > AIO_PLUG_THRESHOLD)
2102 		blk_start_plug(&plug);
2103 	for (i = 0; i < nr; i++) {
2104 		compat_uptr_t user_iocb;
2105 
2106 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2107 			ret = -EFAULT;
2108 			break;
2109 		}
2110 
2111 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2112 		if (ret)
2113 			break;
2114 	}
2115 	if (nr > AIO_PLUG_THRESHOLD)
2116 		blk_finish_plug(&plug);
2117 
2118 	percpu_ref_put(&ctx->users);
2119 	return i ? i : ret;
2120 }
2121 #endif
2122 
2123 /* sys_io_cancel:
2124  *	Attempts to cancel an iocb previously passed to io_submit.  If
2125  *	the operation is successfully cancelled, the resulting event is
2126  *	copied into the memory pointed to by result without being placed
2127  *	into the completion queue and 0 is returned.  May fail with
2128  *	-EFAULT if any of the data structures pointed to are invalid.
2129  *	May fail with -EINVAL if aio_context specified by ctx_id is
2130  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2131  *	cancelled.  Will fail with -ENOSYS if not implemented.
2132  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2133 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2134 		struct io_event __user *, result)
2135 {
2136 	struct kioctx *ctx;
2137 	struct aio_kiocb *kiocb;
2138 	int ret = -EINVAL;
2139 	u32 key;
2140 	u64 obj = (u64)(unsigned long)iocb;
2141 
2142 	if (unlikely(get_user(key, &iocb->aio_key)))
2143 		return -EFAULT;
2144 	if (unlikely(key != KIOCB_KEY))
2145 		return -EINVAL;
2146 
2147 	ctx = lookup_ioctx(ctx_id);
2148 	if (unlikely(!ctx))
2149 		return -EINVAL;
2150 
2151 	spin_lock_irq(&ctx->ctx_lock);
2152 	/* TODO: use a hash or array, this sucks. */
2153 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2154 		if (kiocb->ki_res.obj == obj) {
2155 			ret = kiocb->ki_cancel(&kiocb->rw);
2156 			list_del_init(&kiocb->ki_list);
2157 			break;
2158 		}
2159 	}
2160 	spin_unlock_irq(&ctx->ctx_lock);
2161 
2162 	if (!ret) {
2163 		/*
2164 		 * The result argument is no longer used - the io_event is
2165 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2166 		 * cancellation is progress:
2167 		 */
2168 		ret = -EINPROGRESS;
2169 	}
2170 
2171 	percpu_ref_put(&ctx->users);
2172 
2173 	return ret;
2174 }
2175 
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2176 static long do_io_getevents(aio_context_t ctx_id,
2177 		long min_nr,
2178 		long nr,
2179 		struct io_event __user *events,
2180 		struct timespec64 *ts)
2181 {
2182 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2183 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2184 	long ret = -EINVAL;
2185 
2186 	if (likely(ioctx)) {
2187 		if (likely(min_nr <= nr && min_nr >= 0))
2188 			ret = read_events(ioctx, min_nr, nr, events, until);
2189 		percpu_ref_put(&ioctx->users);
2190 	}
2191 
2192 	return ret;
2193 }
2194 
2195 /* io_getevents:
2196  *	Attempts to read at least min_nr events and up to nr events from
2197  *	the completion queue for the aio_context specified by ctx_id. If
2198  *	it succeeds, the number of read events is returned. May fail with
2199  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2200  *	out of range, if timeout is out of range.  May fail with -EFAULT
2201  *	if any of the memory specified is invalid.  May return 0 or
2202  *	< min_nr if the timeout specified by timeout has elapsed
2203  *	before sufficient events are available, where timeout == NULL
2204  *	specifies an infinite timeout. Note that the timeout pointed to by
2205  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2206  */
2207 #ifdef CONFIG_64BIT
2208 
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout)2209 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2210 		long, min_nr,
2211 		long, nr,
2212 		struct io_event __user *, events,
2213 		struct __kernel_timespec __user *, timeout)
2214 {
2215 	struct timespec64	ts;
2216 	int			ret;
2217 
2218 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2219 		return -EFAULT;
2220 
2221 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2222 	if (!ret && signal_pending(current))
2223 		ret = -EINTR;
2224 	return ret;
2225 }
2226 
2227 #endif
2228 
2229 struct __aio_sigset {
2230 	const sigset_t __user	*sigmask;
2231 	size_t		sigsetsize;
2232 };
2233 
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __aio_sigset __user *,usig)2234 SYSCALL_DEFINE6(io_pgetevents,
2235 		aio_context_t, ctx_id,
2236 		long, min_nr,
2237 		long, nr,
2238 		struct io_event __user *, events,
2239 		struct __kernel_timespec __user *, timeout,
2240 		const struct __aio_sigset __user *, usig)
2241 {
2242 	struct __aio_sigset	ksig = { NULL, };
2243 	struct timespec64	ts;
2244 	bool interrupted;
2245 	int ret;
2246 
2247 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2248 		return -EFAULT;
2249 
2250 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2251 		return -EFAULT;
2252 
2253 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2254 	if (ret)
2255 		return ret;
2256 
2257 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2258 
2259 	interrupted = signal_pending(current);
2260 	restore_saved_sigmask_unless(interrupted);
2261 	if (interrupted && !ret)
2262 		ret = -ERESTARTNOHAND;
2263 
2264 	return ret;
2265 }
2266 
2267 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2268 
SYSCALL_DEFINE6(io_pgetevents_time32,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __aio_sigset __user *,usig)2269 SYSCALL_DEFINE6(io_pgetevents_time32,
2270 		aio_context_t, ctx_id,
2271 		long, min_nr,
2272 		long, nr,
2273 		struct io_event __user *, events,
2274 		struct old_timespec32 __user *, timeout,
2275 		const struct __aio_sigset __user *, usig)
2276 {
2277 	struct __aio_sigset	ksig = { NULL, };
2278 	struct timespec64	ts;
2279 	bool interrupted;
2280 	int ret;
2281 
2282 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2283 		return -EFAULT;
2284 
2285 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2286 		return -EFAULT;
2287 
2288 
2289 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2290 	if (ret)
2291 		return ret;
2292 
2293 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2294 
2295 	interrupted = signal_pending(current);
2296 	restore_saved_sigmask_unless(interrupted);
2297 	if (interrupted && !ret)
2298 		ret = -ERESTARTNOHAND;
2299 
2300 	return ret;
2301 }
2302 
2303 #endif
2304 
2305 #if defined(CONFIG_COMPAT_32BIT_TIME)
2306 
SYSCALL_DEFINE5(io_getevents_time32,__u32,ctx_id,__s32,min_nr,__s32,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout)2307 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2308 		__s32, min_nr,
2309 		__s32, nr,
2310 		struct io_event __user *, events,
2311 		struct old_timespec32 __user *, timeout)
2312 {
2313 	struct timespec64 t;
2314 	int ret;
2315 
2316 	if (timeout && get_old_timespec32(&t, timeout))
2317 		return -EFAULT;
2318 
2319 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2320 	if (!ret && signal_pending(current))
2321 		ret = -EINTR;
2322 	return ret;
2323 }
2324 
2325 #endif
2326 
2327 #ifdef CONFIG_COMPAT
2328 
2329 struct __compat_aio_sigset {
2330 	compat_uptr_t		sigmask;
2331 	compat_size_t		sigsetsize;
2332 };
2333 
2334 #if defined(CONFIG_COMPAT_32BIT_TIME)
2335 
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __compat_aio_sigset __user *,usig)2336 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2337 		compat_aio_context_t, ctx_id,
2338 		compat_long_t, min_nr,
2339 		compat_long_t, nr,
2340 		struct io_event __user *, events,
2341 		struct old_timespec32 __user *, timeout,
2342 		const struct __compat_aio_sigset __user *, usig)
2343 {
2344 	struct __compat_aio_sigset ksig = { 0, };
2345 	struct timespec64 t;
2346 	bool interrupted;
2347 	int ret;
2348 
2349 	if (timeout && get_old_timespec32(&t, timeout))
2350 		return -EFAULT;
2351 
2352 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2353 		return -EFAULT;
2354 
2355 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2356 	if (ret)
2357 		return ret;
2358 
2359 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2360 
2361 	interrupted = signal_pending(current);
2362 	restore_saved_sigmask_unless(interrupted);
2363 	if (interrupted && !ret)
2364 		ret = -ERESTARTNOHAND;
2365 
2366 	return ret;
2367 }
2368 
2369 #endif
2370 
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2371 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2372 		compat_aio_context_t, ctx_id,
2373 		compat_long_t, min_nr,
2374 		compat_long_t, nr,
2375 		struct io_event __user *, events,
2376 		struct __kernel_timespec __user *, timeout,
2377 		const struct __compat_aio_sigset __user *, usig)
2378 {
2379 	struct __compat_aio_sigset ksig = { 0, };
2380 	struct timespec64 t;
2381 	bool interrupted;
2382 	int ret;
2383 
2384 	if (timeout && get_timespec64(&t, timeout))
2385 		return -EFAULT;
2386 
2387 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2388 		return -EFAULT;
2389 
2390 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2391 	if (ret)
2392 		return ret;
2393 
2394 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2395 
2396 	interrupted = signal_pending(current);
2397 	restore_saved_sigmask_unless(interrupted);
2398 	if (interrupted && !ret)
2399 		ret = -ERESTARTNOHAND;
2400 
2401 	return ret;
2402 }
2403 #endif
2404