1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54
55 #define SRPT_ID_STRING "Linux SRP target"
56
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62 MODULE_LICENSE("Dual BSD/GPL");
63
64 /*
65 * Global Variables
66 */
67
68 static u64 srpt_service_guid;
69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
71
72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73 module_param(srp_max_req_size, int, 0444);
74 MODULE_PARM_DESC(srp_max_req_size,
75 "Maximum size of SRP request messages in bytes.");
76
77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78 module_param(srpt_srq_size, int, 0444);
79 MODULE_PARM_DESC(srpt_srq_size,
80 "Shared receive queue (SRQ) size.");
81
srpt_set_u64_x(const char * buffer,const struct kernel_param * kp)82 static int srpt_set_u64_x(const char *buffer, const struct kernel_param *kp)
83 {
84 return kstrtou64(buffer, 16, (u64 *)kp->arg);
85 }
srpt_get_u64_x(char * buffer,const struct kernel_param * kp)86 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
87 {
88 return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg);
89 }
90 module_param_call(srpt_service_guid, srpt_set_u64_x, srpt_get_u64_x,
91 &srpt_service_guid, 0444);
92 MODULE_PARM_DESC(srpt_service_guid,
93 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 /* Protects both rdma_cm_port and rdma_cm_id. */
97 static DEFINE_MUTEX(rdma_cm_mutex);
98 /* Port number RDMA/CM will bind to. */
99 static u16 rdma_cm_port;
100 static struct rdma_cm_id *rdma_cm_id;
101 static void srpt_release_cmd(struct se_cmd *se_cmd);
102 static void srpt_free_ch(struct kref *kref);
103 static int srpt_queue_status(struct se_cmd *cmd);
104 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
105 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
106 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
107
108 /*
109 * The only allowed channel state changes are those that change the channel
110 * state into a state with a higher numerical value. Hence the new > prev test.
111 */
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new)112 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
113 {
114 unsigned long flags;
115 enum rdma_ch_state prev;
116 bool changed = false;
117
118 spin_lock_irqsave(&ch->spinlock, flags);
119 prev = ch->state;
120 if (new > prev) {
121 ch->state = new;
122 changed = true;
123 }
124 spin_unlock_irqrestore(&ch->spinlock, flags);
125
126 return changed;
127 }
128
129 /**
130 * srpt_event_handler - asynchronous IB event callback function
131 * @handler: IB event handler registered by ib_register_event_handler().
132 * @event: Description of the event that occurred.
133 *
134 * Callback function called by the InfiniBand core when an asynchronous IB
135 * event occurs. This callback may occur in interrupt context. See also
136 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
137 * Architecture Specification.
138 */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)139 static void srpt_event_handler(struct ib_event_handler *handler,
140 struct ib_event *event)
141 {
142 struct srpt_device *sdev =
143 container_of(handler, struct srpt_device, event_handler);
144 struct srpt_port *sport;
145 u8 port_num;
146
147 pr_debug("ASYNC event= %d on device= %s\n", event->event,
148 dev_name(&sdev->device->dev));
149
150 switch (event->event) {
151 case IB_EVENT_PORT_ERR:
152 port_num = event->element.port_num - 1;
153 if (port_num < sdev->device->phys_port_cnt) {
154 sport = &sdev->port[port_num];
155 sport->lid = 0;
156 sport->sm_lid = 0;
157 } else {
158 WARN(true, "event %d: port_num %d out of range 1..%d\n",
159 event->event, port_num + 1,
160 sdev->device->phys_port_cnt);
161 }
162 break;
163 case IB_EVENT_PORT_ACTIVE:
164 case IB_EVENT_LID_CHANGE:
165 case IB_EVENT_PKEY_CHANGE:
166 case IB_EVENT_SM_CHANGE:
167 case IB_EVENT_CLIENT_REREGISTER:
168 case IB_EVENT_GID_CHANGE:
169 /* Refresh port data asynchronously. */
170 port_num = event->element.port_num - 1;
171 if (port_num < sdev->device->phys_port_cnt) {
172 sport = &sdev->port[port_num];
173 if (!sport->lid && !sport->sm_lid)
174 schedule_work(&sport->work);
175 } else {
176 WARN(true, "event %d: port_num %d out of range 1..%d\n",
177 event->event, port_num + 1,
178 sdev->device->phys_port_cnt);
179 }
180 break;
181 default:
182 pr_err("received unrecognized IB event %d\n", event->event);
183 break;
184 }
185 }
186
187 /**
188 * srpt_srq_event - SRQ event callback function
189 * @event: Description of the event that occurred.
190 * @ctx: Context pointer specified at SRQ creation time.
191 */
srpt_srq_event(struct ib_event * event,void * ctx)192 static void srpt_srq_event(struct ib_event *event, void *ctx)
193 {
194 pr_debug("SRQ event %d\n", event->event);
195 }
196
get_ch_state_name(enum rdma_ch_state s)197 static const char *get_ch_state_name(enum rdma_ch_state s)
198 {
199 switch (s) {
200 case CH_CONNECTING:
201 return "connecting";
202 case CH_LIVE:
203 return "live";
204 case CH_DISCONNECTING:
205 return "disconnecting";
206 case CH_DRAINING:
207 return "draining";
208 case CH_DISCONNECTED:
209 return "disconnected";
210 }
211 return "???";
212 }
213
214 /**
215 * srpt_qp_event - QP event callback function
216 * @event: Description of the event that occurred.
217 * @ptr: SRPT RDMA channel.
218 */
srpt_qp_event(struct ib_event * event,void * ptr)219 static void srpt_qp_event(struct ib_event *event, void *ptr)
220 {
221 struct srpt_rdma_ch *ch = ptr;
222
223 pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
224 event->event, ch, ch->sess_name, ch->qp->qp_num,
225 get_ch_state_name(ch->state));
226
227 switch (event->event) {
228 case IB_EVENT_COMM_EST:
229 if (ch->using_rdma_cm)
230 rdma_notify(ch->rdma_cm.cm_id, event->event);
231 else
232 ib_cm_notify(ch->ib_cm.cm_id, event->event);
233 break;
234 case IB_EVENT_QP_LAST_WQE_REACHED:
235 pr_debug("%s-%d, state %s: received Last WQE event.\n",
236 ch->sess_name, ch->qp->qp_num,
237 get_ch_state_name(ch->state));
238 break;
239 default:
240 pr_err("received unrecognized IB QP event %d\n", event->event);
241 break;
242 }
243 }
244
245 /**
246 * srpt_set_ioc - initialize a IOUnitInfo structure
247 * @c_list: controller list.
248 * @slot: one-based slot number.
249 * @value: four-bit value.
250 *
251 * Copies the lowest four bits of value in element slot of the array of four
252 * bit elements called c_list (controller list). The index slot is one-based.
253 */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)254 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
255 {
256 u16 id;
257 u8 tmp;
258
259 id = (slot - 1) / 2;
260 if (slot & 0x1) {
261 tmp = c_list[id] & 0xf;
262 c_list[id] = (value << 4) | tmp;
263 } else {
264 tmp = c_list[id] & 0xf0;
265 c_list[id] = (value & 0xf) | tmp;
266 }
267 }
268
269 /**
270 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
271 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
272 *
273 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
274 * Specification.
275 */
srpt_get_class_port_info(struct ib_dm_mad * mad)276 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
277 {
278 struct ib_class_port_info *cif;
279
280 cif = (struct ib_class_port_info *)mad->data;
281 memset(cif, 0, sizeof(*cif));
282 cif->base_version = 1;
283 cif->class_version = 1;
284
285 ib_set_cpi_resp_time(cif, 20);
286 mad->mad_hdr.status = 0;
287 }
288
289 /**
290 * srpt_get_iou - write IOUnitInfo to a management datagram
291 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
292 *
293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
294 * Specification. See also section B.7, table B.6 in the SRP r16a document.
295 */
srpt_get_iou(struct ib_dm_mad * mad)296 static void srpt_get_iou(struct ib_dm_mad *mad)
297 {
298 struct ib_dm_iou_info *ioui;
299 u8 slot;
300 int i;
301
302 ioui = (struct ib_dm_iou_info *)mad->data;
303 ioui->change_id = cpu_to_be16(1);
304 ioui->max_controllers = 16;
305
306 /* set present for slot 1 and empty for the rest */
307 srpt_set_ioc(ioui->controller_list, 1, 1);
308 for (i = 1, slot = 2; i < 16; i++, slot++)
309 srpt_set_ioc(ioui->controller_list, slot, 0);
310
311 mad->mad_hdr.status = 0;
312 }
313
314 /**
315 * srpt_get_ioc - write IOControllerprofile to a management datagram
316 * @sport: HCA port through which the MAD has been received.
317 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
318 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326 {
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329 int send_queue_depth;
330
331 iocp = (struct ib_dm_ioc_profile *)mad->data;
332
333 if (!slot || slot > 16) {
334 mad->mad_hdr.status
335 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
336 return;
337 }
338
339 if (slot > 2) {
340 mad->mad_hdr.status
341 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
342 return;
343 }
344
345 if (sdev->use_srq)
346 send_queue_depth = sdev->srq_size;
347 else
348 send_queue_depth = min(MAX_SRPT_RQ_SIZE,
349 sdev->device->attrs.max_qp_wr);
350
351 memset(iocp, 0, sizeof(*iocp));
352 strcpy(iocp->id_string, SRPT_ID_STRING);
353 iocp->guid = cpu_to_be64(srpt_service_guid);
354 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
355 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
356 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
357 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
358 iocp->subsys_device_id = 0x0;
359 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
360 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
361 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
362 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
363 iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
364 iocp->rdma_read_depth = 4;
365 iocp->send_size = cpu_to_be32(srp_max_req_size);
366 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
367 1U << 24));
368 iocp->num_svc_entries = 1;
369 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
370 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
371
372 mad->mad_hdr.status = 0;
373 }
374
375 /**
376 * srpt_get_svc_entries - write ServiceEntries to a management datagram
377 * @ioc_guid: I/O controller GUID to use in reply.
378 * @slot: I/O controller number.
379 * @hi: End of the range of service entries to be specified in the reply.
380 * @lo: Start of the range of service entries to be specified in the reply..
381 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
382 *
383 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
384 * Specification. See also section B.7, table B.8 in the SRP r16a document.
385 */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)386 static void srpt_get_svc_entries(u64 ioc_guid,
387 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
388 {
389 struct ib_dm_svc_entries *svc_entries;
390
391 WARN_ON(!ioc_guid);
392
393 if (!slot || slot > 16) {
394 mad->mad_hdr.status
395 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
396 return;
397 }
398
399 if (slot > 2 || lo > hi || hi > 1) {
400 mad->mad_hdr.status
401 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
402 return;
403 }
404
405 svc_entries = (struct ib_dm_svc_entries *)mad->data;
406 memset(svc_entries, 0, sizeof(*svc_entries));
407 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
408 snprintf(svc_entries->service_entries[0].name,
409 sizeof(svc_entries->service_entries[0].name),
410 "%s%016llx",
411 SRP_SERVICE_NAME_PREFIX,
412 ioc_guid);
413
414 mad->mad_hdr.status = 0;
415 }
416
417 /**
418 * srpt_mgmt_method_get - process a received management datagram
419 * @sp: HCA port through which the MAD has been received.
420 * @rq_mad: received MAD.
421 * @rsp_mad: response MAD.
422 */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)423 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
424 struct ib_dm_mad *rsp_mad)
425 {
426 u16 attr_id;
427 u32 slot;
428 u8 hi, lo;
429
430 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
431 switch (attr_id) {
432 case DM_ATTR_CLASS_PORT_INFO:
433 srpt_get_class_port_info(rsp_mad);
434 break;
435 case DM_ATTR_IOU_INFO:
436 srpt_get_iou(rsp_mad);
437 break;
438 case DM_ATTR_IOC_PROFILE:
439 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
440 srpt_get_ioc(sp, slot, rsp_mad);
441 break;
442 case DM_ATTR_SVC_ENTRIES:
443 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
444 hi = (u8) ((slot >> 8) & 0xff);
445 lo = (u8) (slot & 0xff);
446 slot = (u16) ((slot >> 16) & 0xffff);
447 srpt_get_svc_entries(srpt_service_guid,
448 slot, hi, lo, rsp_mad);
449 break;
450 default:
451 rsp_mad->mad_hdr.status =
452 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
453 break;
454 }
455 }
456
457 /**
458 * srpt_mad_send_handler - MAD send completion callback
459 * @mad_agent: Return value of ib_register_mad_agent().
460 * @mad_wc: Work completion reporting that the MAD has been sent.
461 */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)462 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
463 struct ib_mad_send_wc *mad_wc)
464 {
465 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
466 ib_free_send_mad(mad_wc->send_buf);
467 }
468
469 /**
470 * srpt_mad_recv_handler - MAD reception callback function
471 * @mad_agent: Return value of ib_register_mad_agent().
472 * @send_buf: Not used.
473 * @mad_wc: Work completion reporting that a MAD has been received.
474 */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_buf * send_buf,struct ib_mad_recv_wc * mad_wc)475 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
476 struct ib_mad_send_buf *send_buf,
477 struct ib_mad_recv_wc *mad_wc)
478 {
479 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
480 struct ib_ah *ah;
481 struct ib_mad_send_buf *rsp;
482 struct ib_dm_mad *dm_mad;
483
484 if (!mad_wc || !mad_wc->recv_buf.mad)
485 return;
486
487 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
488 mad_wc->recv_buf.grh, mad_agent->port_num);
489 if (IS_ERR(ah))
490 goto err;
491
492 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
493
494 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
495 mad_wc->wc->pkey_index, 0,
496 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
497 GFP_KERNEL,
498 IB_MGMT_BASE_VERSION);
499 if (IS_ERR(rsp))
500 goto err_rsp;
501
502 rsp->ah = ah;
503
504 dm_mad = rsp->mad;
505 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
506 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
507 dm_mad->mad_hdr.status = 0;
508
509 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
510 case IB_MGMT_METHOD_GET:
511 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
512 break;
513 case IB_MGMT_METHOD_SET:
514 dm_mad->mad_hdr.status =
515 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
516 break;
517 default:
518 dm_mad->mad_hdr.status =
519 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
520 break;
521 }
522
523 if (!ib_post_send_mad(rsp, NULL)) {
524 ib_free_recv_mad(mad_wc);
525 /* will destroy_ah & free_send_mad in send completion */
526 return;
527 }
528
529 ib_free_send_mad(rsp);
530
531 err_rsp:
532 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
533 err:
534 ib_free_recv_mad(mad_wc);
535 }
536
srpt_format_guid(char * buf,unsigned int size,const __be64 * guid)537 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
538 {
539 const __be16 *g = (const __be16 *)guid;
540
541 return snprintf(buf, size, "%04x:%04x:%04x:%04x",
542 be16_to_cpu(g[0]), be16_to_cpu(g[1]),
543 be16_to_cpu(g[2]), be16_to_cpu(g[3]));
544 }
545
546 /**
547 * srpt_refresh_port - configure a HCA port
548 * @sport: SRPT HCA port.
549 *
550 * Enable InfiniBand management datagram processing, update the cached sm_lid,
551 * lid and gid values, and register a callback function for processing MADs
552 * on the specified port.
553 *
554 * Note: It is safe to call this function more than once for the same port.
555 */
srpt_refresh_port(struct srpt_port * sport)556 static int srpt_refresh_port(struct srpt_port *sport)
557 {
558 struct ib_mad_agent *mad_agent;
559 struct ib_mad_reg_req reg_req;
560 struct ib_port_modify port_modify;
561 struct ib_port_attr port_attr;
562 int ret;
563
564 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
565 if (ret)
566 return ret;
567
568 sport->sm_lid = port_attr.sm_lid;
569 sport->lid = port_attr.lid;
570
571 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
572 if (ret)
573 return ret;
574
575 srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name),
576 &sport->gid.global.interface_id);
577 snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name),
578 "0x%016llx%016llx",
579 be64_to_cpu(sport->gid.global.subnet_prefix),
580 be64_to_cpu(sport->gid.global.interface_id));
581
582 if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
583 return 0;
584
585 memset(&port_modify, 0, sizeof(port_modify));
586 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
587 port_modify.clr_port_cap_mask = 0;
588
589 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
590 if (ret) {
591 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
592 dev_name(&sport->sdev->device->dev), sport->port, ret);
593 return 0;
594 }
595
596 if (!sport->mad_agent) {
597 memset(®_req, 0, sizeof(reg_req));
598 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
599 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
600 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
601 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
602
603 mad_agent = ib_register_mad_agent(sport->sdev->device,
604 sport->port,
605 IB_QPT_GSI,
606 ®_req, 0,
607 srpt_mad_send_handler,
608 srpt_mad_recv_handler,
609 sport, 0);
610 if (IS_ERR(mad_agent)) {
611 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
612 dev_name(&sport->sdev->device->dev), sport->port,
613 PTR_ERR(mad_agent));
614 sport->mad_agent = NULL;
615 memset(&port_modify, 0, sizeof(port_modify));
616 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
617 ib_modify_port(sport->sdev->device, sport->port, 0,
618 &port_modify);
619 return 0;
620 }
621
622 sport->mad_agent = mad_agent;
623 }
624
625 return 0;
626 }
627
628 /**
629 * srpt_unregister_mad_agent - unregister MAD callback functions
630 * @sdev: SRPT HCA pointer.
631 * @port_cnt: number of ports with registered MAD
632 *
633 * Note: It is safe to call this function more than once for the same device.
634 */
srpt_unregister_mad_agent(struct srpt_device * sdev,int port_cnt)635 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)
636 {
637 struct ib_port_modify port_modify = {
638 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
639 };
640 struct srpt_port *sport;
641 int i;
642
643 for (i = 1; i <= port_cnt; i++) {
644 sport = &sdev->port[i - 1];
645 WARN_ON(sport->port != i);
646 if (sport->mad_agent) {
647 ib_modify_port(sdev->device, i, 0, &port_modify);
648 ib_unregister_mad_agent(sport->mad_agent);
649 sport->mad_agent = NULL;
650 }
651 }
652 }
653
654 /**
655 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
656 * @sdev: SRPT HCA pointer.
657 * @ioctx_size: I/O context size.
658 * @buf_cache: I/O buffer cache.
659 * @dir: DMA data direction.
660 */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,struct kmem_cache * buf_cache,enum dma_data_direction dir)661 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
662 int ioctx_size,
663 struct kmem_cache *buf_cache,
664 enum dma_data_direction dir)
665 {
666 struct srpt_ioctx *ioctx;
667
668 ioctx = kzalloc(ioctx_size, GFP_KERNEL);
669 if (!ioctx)
670 goto err;
671
672 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
673 if (!ioctx->buf)
674 goto err_free_ioctx;
675
676 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
677 kmem_cache_size(buf_cache), dir);
678 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
679 goto err_free_buf;
680
681 return ioctx;
682
683 err_free_buf:
684 kmem_cache_free(buf_cache, ioctx->buf);
685 err_free_ioctx:
686 kfree(ioctx);
687 err:
688 return NULL;
689 }
690
691 /**
692 * srpt_free_ioctx - free a SRPT I/O context structure
693 * @sdev: SRPT HCA pointer.
694 * @ioctx: I/O context pointer.
695 * @buf_cache: I/O buffer cache.
696 * @dir: DMA data direction.
697 */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,struct kmem_cache * buf_cache,enum dma_data_direction dir)698 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
699 struct kmem_cache *buf_cache,
700 enum dma_data_direction dir)
701 {
702 if (!ioctx)
703 return;
704
705 ib_dma_unmap_single(sdev->device, ioctx->dma,
706 kmem_cache_size(buf_cache), dir);
707 kmem_cache_free(buf_cache, ioctx->buf);
708 kfree(ioctx);
709 }
710
711 /**
712 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
713 * @sdev: Device to allocate the I/O context ring for.
714 * @ring_size: Number of elements in the I/O context ring.
715 * @ioctx_size: I/O context size.
716 * @buf_cache: I/O buffer cache.
717 * @alignment_offset: Offset in each ring buffer at which the SRP information
718 * unit starts.
719 * @dir: DMA data direction.
720 */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,struct kmem_cache * buf_cache,int alignment_offset,enum dma_data_direction dir)721 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
722 int ring_size, int ioctx_size,
723 struct kmem_cache *buf_cache,
724 int alignment_offset,
725 enum dma_data_direction dir)
726 {
727 struct srpt_ioctx **ring;
728 int i;
729
730 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
731 ioctx_size != sizeof(struct srpt_send_ioctx));
732
733 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
734 if (!ring)
735 goto out;
736 for (i = 0; i < ring_size; ++i) {
737 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
738 if (!ring[i])
739 goto err;
740 ring[i]->index = i;
741 ring[i]->offset = alignment_offset;
742 }
743 goto out;
744
745 err:
746 while (--i >= 0)
747 srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
748 kvfree(ring);
749 ring = NULL;
750 out:
751 return ring;
752 }
753
754 /**
755 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
756 * @ioctx_ring: I/O context ring to be freed.
757 * @sdev: SRPT HCA pointer.
758 * @ring_size: Number of ring elements.
759 * @buf_cache: I/O buffer cache.
760 * @dir: DMA data direction.
761 */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,struct kmem_cache * buf_cache,enum dma_data_direction dir)762 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
763 struct srpt_device *sdev, int ring_size,
764 struct kmem_cache *buf_cache,
765 enum dma_data_direction dir)
766 {
767 int i;
768
769 if (!ioctx_ring)
770 return;
771
772 for (i = 0; i < ring_size; ++i)
773 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
774 kvfree(ioctx_ring);
775 }
776
777 /**
778 * srpt_set_cmd_state - set the state of a SCSI command
779 * @ioctx: Send I/O context.
780 * @new: New I/O context state.
781 *
782 * Does not modify the state of aborted commands. Returns the previous command
783 * state.
784 */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)785 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
786 enum srpt_command_state new)
787 {
788 enum srpt_command_state previous;
789
790 previous = ioctx->state;
791 if (previous != SRPT_STATE_DONE)
792 ioctx->state = new;
793
794 return previous;
795 }
796
797 /**
798 * srpt_test_and_set_cmd_state - test and set the state of a command
799 * @ioctx: Send I/O context.
800 * @old: Current I/O context state.
801 * @new: New I/O context state.
802 *
803 * Returns true if and only if the previous command state was equal to 'old'.
804 */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)805 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
806 enum srpt_command_state old,
807 enum srpt_command_state new)
808 {
809 enum srpt_command_state previous;
810
811 WARN_ON(!ioctx);
812 WARN_ON(old == SRPT_STATE_DONE);
813 WARN_ON(new == SRPT_STATE_NEW);
814
815 previous = ioctx->state;
816 if (previous == old)
817 ioctx->state = new;
818
819 return previous == old;
820 }
821
822 /**
823 * srpt_post_recv - post an IB receive request
824 * @sdev: SRPT HCA pointer.
825 * @ch: SRPT RDMA channel.
826 * @ioctx: Receive I/O context pointer.
827 */
srpt_post_recv(struct srpt_device * sdev,struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * ioctx)828 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
829 struct srpt_recv_ioctx *ioctx)
830 {
831 struct ib_sge list;
832 struct ib_recv_wr wr;
833
834 BUG_ON(!sdev);
835 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
836 list.length = srp_max_req_size;
837 list.lkey = sdev->lkey;
838
839 ioctx->ioctx.cqe.done = srpt_recv_done;
840 wr.wr_cqe = &ioctx->ioctx.cqe;
841 wr.next = NULL;
842 wr.sg_list = &list;
843 wr.num_sge = 1;
844
845 if (sdev->use_srq)
846 return ib_post_srq_recv(sdev->srq, &wr, NULL);
847 else
848 return ib_post_recv(ch->qp, &wr, NULL);
849 }
850
851 /**
852 * srpt_zerolength_write - perform a zero-length RDMA write
853 * @ch: SRPT RDMA channel.
854 *
855 * A quote from the InfiniBand specification: C9-88: For an HCA responder
856 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
857 * request, the R_Key shall not be validated, even if the request includes
858 * Immediate data.
859 */
srpt_zerolength_write(struct srpt_rdma_ch * ch)860 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
861 {
862 struct ib_rdma_wr wr = {
863 .wr = {
864 .next = NULL,
865 { .wr_cqe = &ch->zw_cqe, },
866 .opcode = IB_WR_RDMA_WRITE,
867 .send_flags = IB_SEND_SIGNALED,
868 }
869 };
870
871 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
872 ch->qp->qp_num);
873
874 return ib_post_send(ch->qp, &wr.wr, NULL);
875 }
876
srpt_zerolength_write_done(struct ib_cq * cq,struct ib_wc * wc)877 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
878 {
879 struct srpt_rdma_ch *ch = wc->qp->qp_context;
880
881 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
882 wc->status);
883
884 if (wc->status == IB_WC_SUCCESS) {
885 srpt_process_wait_list(ch);
886 } else {
887 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
888 schedule_work(&ch->release_work);
889 else
890 pr_debug("%s-%d: already disconnected.\n",
891 ch->sess_name, ch->qp->qp_num);
892 }
893 }
894
srpt_alloc_rw_ctxs(struct srpt_send_ioctx * ioctx,struct srp_direct_buf * db,int nbufs,struct scatterlist ** sg,unsigned * sg_cnt)895 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
896 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
897 unsigned *sg_cnt)
898 {
899 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
900 struct srpt_rdma_ch *ch = ioctx->ch;
901 struct scatterlist *prev = NULL;
902 unsigned prev_nents;
903 int ret, i;
904
905 if (nbufs == 1) {
906 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
907 } else {
908 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
909 GFP_KERNEL);
910 if (!ioctx->rw_ctxs)
911 return -ENOMEM;
912 }
913
914 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
915 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
916 u64 remote_addr = be64_to_cpu(db->va);
917 u32 size = be32_to_cpu(db->len);
918 u32 rkey = be32_to_cpu(db->key);
919
920 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
921 i < nbufs - 1);
922 if (ret)
923 goto unwind;
924
925 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
926 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
927 if (ret < 0) {
928 target_free_sgl(ctx->sg, ctx->nents);
929 goto unwind;
930 }
931
932 ioctx->n_rdma += ret;
933 ioctx->n_rw_ctx++;
934
935 if (prev) {
936 sg_unmark_end(&prev[prev_nents - 1]);
937 sg_chain(prev, prev_nents + 1, ctx->sg);
938 } else {
939 *sg = ctx->sg;
940 }
941
942 prev = ctx->sg;
943 prev_nents = ctx->nents;
944
945 *sg_cnt += ctx->nents;
946 }
947
948 return 0;
949
950 unwind:
951 while (--i >= 0) {
952 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
953
954 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
955 ctx->sg, ctx->nents, dir);
956 target_free_sgl(ctx->sg, ctx->nents);
957 }
958 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
959 kfree(ioctx->rw_ctxs);
960 return ret;
961 }
962
srpt_free_rw_ctxs(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)963 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
964 struct srpt_send_ioctx *ioctx)
965 {
966 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
967 int i;
968
969 for (i = 0; i < ioctx->n_rw_ctx; i++) {
970 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
971
972 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
973 ctx->sg, ctx->nents, dir);
974 target_free_sgl(ctx->sg, ctx->nents);
975 }
976
977 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
978 kfree(ioctx->rw_ctxs);
979 }
980
srpt_get_desc_buf(struct srp_cmd * srp_cmd)981 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
982 {
983 /*
984 * The pointer computations below will only be compiled correctly
985 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
986 * whether srp_cmd::add_data has been declared as a byte pointer.
987 */
988 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
989 !__same_type(srp_cmd->add_data[0], (u8)0));
990
991 /*
992 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
993 * CDB LENGTH' field are reserved and the size in bytes of this field
994 * is four times the value specified in bits 3..7. Hence the "& ~3".
995 */
996 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
997 }
998
999 /**
1000 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
1001 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
1002 * @ioctx: I/O context that will be used for responding to the initiator.
1003 * @srp_cmd: Pointer to the SRP_CMD request data.
1004 * @dir: Pointer to the variable to which the transfer direction will be
1005 * written.
1006 * @sg: [out] scatterlist for the parsed SRP_CMD.
1007 * @sg_cnt: [out] length of @sg.
1008 * @data_len: Pointer to the variable to which the total data length of all
1009 * descriptors in the SRP_CMD request will be written.
1010 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1011 * starts.
1012 *
1013 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1014 *
1015 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1016 * -ENOMEM when memory allocation fails and zero upon success.
1017 */
srpt_get_desc_tbl(struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,struct scatterlist ** sg,unsigned int * sg_cnt,u64 * data_len,u16 imm_data_offset)1018 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1019 struct srpt_send_ioctx *ioctx,
1020 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1021 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1022 u16 imm_data_offset)
1023 {
1024 BUG_ON(!dir);
1025 BUG_ON(!data_len);
1026
1027 /*
1028 * The lower four bits of the buffer format field contain the DATA-IN
1029 * buffer descriptor format, and the highest four bits contain the
1030 * DATA-OUT buffer descriptor format.
1031 */
1032 if (srp_cmd->buf_fmt & 0xf)
1033 /* DATA-IN: transfer data from target to initiator (read). */
1034 *dir = DMA_FROM_DEVICE;
1035 else if (srp_cmd->buf_fmt >> 4)
1036 /* DATA-OUT: transfer data from initiator to target (write). */
1037 *dir = DMA_TO_DEVICE;
1038 else
1039 *dir = DMA_NONE;
1040
1041 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1042 ioctx->cmd.data_direction = *dir;
1043
1044 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1045 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1046 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1047
1048 *data_len = be32_to_cpu(db->len);
1049 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1050 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1051 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1052 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1053 int nbufs = be32_to_cpu(idb->table_desc.len) /
1054 sizeof(struct srp_direct_buf);
1055
1056 if (nbufs >
1057 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1058 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1059 srp_cmd->data_out_desc_cnt,
1060 srp_cmd->data_in_desc_cnt,
1061 be32_to_cpu(idb->table_desc.len),
1062 sizeof(struct srp_direct_buf));
1063 return -EINVAL;
1064 }
1065
1066 *data_len = be32_to_cpu(idb->len);
1067 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1068 sg, sg_cnt);
1069 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1070 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1071 void *data = (void *)srp_cmd + imm_data_offset;
1072 uint32_t len = be32_to_cpu(imm_buf->len);
1073 uint32_t req_size = imm_data_offset + len;
1074
1075 if (req_size > srp_max_req_size) {
1076 pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1077 imm_data_offset, len, srp_max_req_size);
1078 return -EINVAL;
1079 }
1080 if (recv_ioctx->byte_len < req_size) {
1081 pr_err("Received too few data - %d < %d\n",
1082 recv_ioctx->byte_len, req_size);
1083 return -EIO;
1084 }
1085 /*
1086 * The immediate data buffer descriptor must occur before the
1087 * immediate data itself.
1088 */
1089 if ((void *)(imm_buf + 1) > (void *)data) {
1090 pr_err("Received invalid write request\n");
1091 return -EINVAL;
1092 }
1093 *data_len = len;
1094 ioctx->recv_ioctx = recv_ioctx;
1095 if ((uintptr_t)data & 511) {
1096 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1097 return -EINVAL;
1098 }
1099 sg_init_one(&ioctx->imm_sg, data, len);
1100 *sg = &ioctx->imm_sg;
1101 *sg_cnt = 1;
1102 return 0;
1103 } else {
1104 *data_len = 0;
1105 return 0;
1106 }
1107 }
1108
1109 /**
1110 * srpt_init_ch_qp - initialize queue pair attributes
1111 * @ch: SRPT RDMA channel.
1112 * @qp: Queue pair pointer.
1113 *
1114 * Initialized the attributes of queue pair 'qp' by allowing local write,
1115 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1116 */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)1117 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1118 {
1119 struct ib_qp_attr *attr;
1120 int ret;
1121
1122 WARN_ON_ONCE(ch->using_rdma_cm);
1123
1124 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1125 if (!attr)
1126 return -ENOMEM;
1127
1128 attr->qp_state = IB_QPS_INIT;
1129 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1130 attr->port_num = ch->sport->port;
1131
1132 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1133 ch->pkey, &attr->pkey_index);
1134 if (ret < 0)
1135 pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1136 ch->pkey, ret);
1137
1138 ret = ib_modify_qp(qp, attr,
1139 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1140 IB_QP_PKEY_INDEX);
1141
1142 kfree(attr);
1143 return ret;
1144 }
1145
1146 /**
1147 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1148 * @ch: channel of the queue pair.
1149 * @qp: queue pair to change the state of.
1150 *
1151 * Returns zero upon success and a negative value upon failure.
1152 *
1153 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1154 * If this structure ever becomes larger, it might be necessary to allocate
1155 * it dynamically instead of on the stack.
1156 */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)1157 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1158 {
1159 struct ib_qp_attr qp_attr;
1160 int attr_mask;
1161 int ret;
1162
1163 WARN_ON_ONCE(ch->using_rdma_cm);
1164
1165 qp_attr.qp_state = IB_QPS_RTR;
1166 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1167 if (ret)
1168 goto out;
1169
1170 qp_attr.max_dest_rd_atomic = 4;
1171
1172 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1173
1174 out:
1175 return ret;
1176 }
1177
1178 /**
1179 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1180 * @ch: channel of the queue pair.
1181 * @qp: queue pair to change the state of.
1182 *
1183 * Returns zero upon success and a negative value upon failure.
1184 *
1185 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1186 * If this structure ever becomes larger, it might be necessary to allocate
1187 * it dynamically instead of on the stack.
1188 */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1189 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1190 {
1191 struct ib_qp_attr qp_attr;
1192 int attr_mask;
1193 int ret;
1194
1195 qp_attr.qp_state = IB_QPS_RTS;
1196 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1197 if (ret)
1198 goto out;
1199
1200 qp_attr.max_rd_atomic = 4;
1201
1202 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1203
1204 out:
1205 return ret;
1206 }
1207
1208 /**
1209 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1210 * @ch: SRPT RDMA channel.
1211 */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1212 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1213 {
1214 struct ib_qp_attr qp_attr;
1215
1216 qp_attr.qp_state = IB_QPS_ERR;
1217 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1218 }
1219
1220 /**
1221 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1222 * @ch: SRPT RDMA channel.
1223 */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1224 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1225 {
1226 struct srpt_send_ioctx *ioctx;
1227 int tag, cpu;
1228
1229 BUG_ON(!ch);
1230
1231 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1232 if (tag < 0)
1233 return NULL;
1234
1235 ioctx = ch->ioctx_ring[tag];
1236 BUG_ON(ioctx->ch != ch);
1237 ioctx->state = SRPT_STATE_NEW;
1238 WARN_ON_ONCE(ioctx->recv_ioctx);
1239 ioctx->n_rdma = 0;
1240 ioctx->n_rw_ctx = 0;
1241 ioctx->queue_status_only = false;
1242 /*
1243 * transport_init_se_cmd() does not initialize all fields, so do it
1244 * here.
1245 */
1246 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1247 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1248 ioctx->cmd.map_tag = tag;
1249 ioctx->cmd.map_cpu = cpu;
1250
1251 return ioctx;
1252 }
1253
1254 /**
1255 * srpt_abort_cmd - abort a SCSI command
1256 * @ioctx: I/O context associated with the SCSI command.
1257 */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1258 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1259 {
1260 enum srpt_command_state state;
1261
1262 BUG_ON(!ioctx);
1263
1264 /*
1265 * If the command is in a state where the target core is waiting for
1266 * the ib_srpt driver, change the state to the next state.
1267 */
1268
1269 state = ioctx->state;
1270 switch (state) {
1271 case SRPT_STATE_NEED_DATA:
1272 ioctx->state = SRPT_STATE_DATA_IN;
1273 break;
1274 case SRPT_STATE_CMD_RSP_SENT:
1275 case SRPT_STATE_MGMT_RSP_SENT:
1276 ioctx->state = SRPT_STATE_DONE;
1277 break;
1278 default:
1279 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1280 __func__, state);
1281 break;
1282 }
1283
1284 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1285 ioctx->state, ioctx->cmd.tag);
1286
1287 switch (state) {
1288 case SRPT_STATE_NEW:
1289 case SRPT_STATE_DATA_IN:
1290 case SRPT_STATE_MGMT:
1291 case SRPT_STATE_DONE:
1292 /*
1293 * Do nothing - defer abort processing until
1294 * srpt_queue_response() is invoked.
1295 */
1296 break;
1297 case SRPT_STATE_NEED_DATA:
1298 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1299 transport_generic_request_failure(&ioctx->cmd,
1300 TCM_CHECK_CONDITION_ABORT_CMD);
1301 break;
1302 case SRPT_STATE_CMD_RSP_SENT:
1303 /*
1304 * SRP_RSP sending failed or the SRP_RSP send completion has
1305 * not been received in time.
1306 */
1307 transport_generic_free_cmd(&ioctx->cmd, 0);
1308 break;
1309 case SRPT_STATE_MGMT_RSP_SENT:
1310 transport_generic_free_cmd(&ioctx->cmd, 0);
1311 break;
1312 default:
1313 WARN(1, "Unexpected command state (%d)", state);
1314 break;
1315 }
1316
1317 return state;
1318 }
1319
1320 /**
1321 * srpt_rdma_read_done - RDMA read completion callback
1322 * @cq: Completion queue.
1323 * @wc: Work completion.
1324 *
1325 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1326 * the data that has been transferred via IB RDMA had to be postponed until the
1327 * check_stop_free() callback. None of this is necessary anymore and needs to
1328 * be cleaned up.
1329 */
srpt_rdma_read_done(struct ib_cq * cq,struct ib_wc * wc)1330 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1331 {
1332 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1333 struct srpt_send_ioctx *ioctx =
1334 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1335
1336 WARN_ON(ioctx->n_rdma <= 0);
1337 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1338 ioctx->n_rdma = 0;
1339
1340 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1341 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1342 ioctx, wc->status);
1343 srpt_abort_cmd(ioctx);
1344 return;
1345 }
1346
1347 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1348 SRPT_STATE_DATA_IN))
1349 target_execute_cmd(&ioctx->cmd);
1350 else
1351 pr_err("%s[%d]: wrong state = %d\n", __func__,
1352 __LINE__, ioctx->state);
1353 }
1354
1355 /**
1356 * srpt_build_cmd_rsp - build a SRP_RSP response
1357 * @ch: RDMA channel through which the request has been received.
1358 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1359 * be built in the buffer ioctx->buf points at and hence this function will
1360 * overwrite the request data.
1361 * @tag: tag of the request for which this response is being generated.
1362 * @status: value for the STATUS field of the SRP_RSP information unit.
1363 *
1364 * Returns the size in bytes of the SRP_RSP response.
1365 *
1366 * An SRP_RSP response contains a SCSI status or service response. See also
1367 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1368 * response. See also SPC-2 for more information about sense data.
1369 */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1370 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1371 struct srpt_send_ioctx *ioctx, u64 tag,
1372 int status)
1373 {
1374 struct se_cmd *cmd = &ioctx->cmd;
1375 struct srp_rsp *srp_rsp;
1376 const u8 *sense_data;
1377 int sense_data_len, max_sense_len;
1378 u32 resid = cmd->residual_count;
1379
1380 /*
1381 * The lowest bit of all SAM-3 status codes is zero (see also
1382 * paragraph 5.3 in SAM-3).
1383 */
1384 WARN_ON(status & 1);
1385
1386 srp_rsp = ioctx->ioctx.buf;
1387 BUG_ON(!srp_rsp);
1388
1389 sense_data = ioctx->sense_data;
1390 sense_data_len = ioctx->cmd.scsi_sense_length;
1391 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1392
1393 memset(srp_rsp, 0, sizeof(*srp_rsp));
1394 srp_rsp->opcode = SRP_RSP;
1395 srp_rsp->req_lim_delta =
1396 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1397 srp_rsp->tag = tag;
1398 srp_rsp->status = status;
1399
1400 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1401 if (cmd->data_direction == DMA_TO_DEVICE) {
1402 /* residual data from an underflow write */
1403 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1404 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1405 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1406 /* residual data from an underflow read */
1407 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1408 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1409 }
1410 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1411 if (cmd->data_direction == DMA_TO_DEVICE) {
1412 /* residual data from an overflow write */
1413 srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1414 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1415 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1416 /* residual data from an overflow read */
1417 srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1418 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1419 }
1420 }
1421
1422 if (sense_data_len) {
1423 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1424 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1425 if (sense_data_len > max_sense_len) {
1426 pr_warn("truncated sense data from %d to %d bytes\n",
1427 sense_data_len, max_sense_len);
1428 sense_data_len = max_sense_len;
1429 }
1430
1431 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1432 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1433 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1434 }
1435
1436 return sizeof(*srp_rsp) + sense_data_len;
1437 }
1438
1439 /**
1440 * srpt_build_tskmgmt_rsp - build a task management response
1441 * @ch: RDMA channel through which the request has been received.
1442 * @ioctx: I/O context in which the SRP_RSP response will be built.
1443 * @rsp_code: RSP_CODE that will be stored in the response.
1444 * @tag: Tag of the request for which this response is being generated.
1445 *
1446 * Returns the size in bytes of the SRP_RSP response.
1447 *
1448 * An SRP_RSP response contains a SCSI status or service response. See also
1449 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1450 * response.
1451 */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1452 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1453 struct srpt_send_ioctx *ioctx,
1454 u8 rsp_code, u64 tag)
1455 {
1456 struct srp_rsp *srp_rsp;
1457 int resp_data_len;
1458 int resp_len;
1459
1460 resp_data_len = 4;
1461 resp_len = sizeof(*srp_rsp) + resp_data_len;
1462
1463 srp_rsp = ioctx->ioctx.buf;
1464 BUG_ON(!srp_rsp);
1465 memset(srp_rsp, 0, sizeof(*srp_rsp));
1466
1467 srp_rsp->opcode = SRP_RSP;
1468 srp_rsp->req_lim_delta =
1469 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1470 srp_rsp->tag = tag;
1471
1472 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1473 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1474 srp_rsp->data[3] = rsp_code;
1475
1476 return resp_len;
1477 }
1478
srpt_check_stop_free(struct se_cmd * cmd)1479 static int srpt_check_stop_free(struct se_cmd *cmd)
1480 {
1481 struct srpt_send_ioctx *ioctx = container_of(cmd,
1482 struct srpt_send_ioctx, cmd);
1483
1484 return target_put_sess_cmd(&ioctx->cmd);
1485 }
1486
1487 /**
1488 * srpt_handle_cmd - process a SRP_CMD information unit
1489 * @ch: SRPT RDMA channel.
1490 * @recv_ioctx: Receive I/O context.
1491 * @send_ioctx: Send I/O context.
1492 */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1493 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1494 struct srpt_recv_ioctx *recv_ioctx,
1495 struct srpt_send_ioctx *send_ioctx)
1496 {
1497 struct se_cmd *cmd;
1498 struct srp_cmd *srp_cmd;
1499 struct scatterlist *sg = NULL;
1500 unsigned sg_cnt = 0;
1501 u64 data_len;
1502 enum dma_data_direction dir;
1503 int rc;
1504
1505 BUG_ON(!send_ioctx);
1506
1507 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1508 cmd = &send_ioctx->cmd;
1509 cmd->tag = srp_cmd->tag;
1510
1511 switch (srp_cmd->task_attr) {
1512 case SRP_CMD_SIMPLE_Q:
1513 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1514 break;
1515 case SRP_CMD_ORDERED_Q:
1516 default:
1517 cmd->sam_task_attr = TCM_ORDERED_TAG;
1518 break;
1519 case SRP_CMD_HEAD_OF_Q:
1520 cmd->sam_task_attr = TCM_HEAD_TAG;
1521 break;
1522 case SRP_CMD_ACA:
1523 cmd->sam_task_attr = TCM_ACA_TAG;
1524 break;
1525 }
1526
1527 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1528 &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1529 if (rc) {
1530 if (rc != -EAGAIN) {
1531 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1532 srp_cmd->tag);
1533 }
1534 goto busy;
1535 }
1536
1537 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1538 &send_ioctx->sense_data[0],
1539 scsilun_to_int(&srp_cmd->lun), data_len,
1540 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1541 sg, sg_cnt, NULL, 0, NULL, 0);
1542 if (rc != 0) {
1543 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1544 srp_cmd->tag);
1545 goto busy;
1546 }
1547 return;
1548
1549 busy:
1550 target_send_busy(cmd);
1551 }
1552
srp_tmr_to_tcm(int fn)1553 static int srp_tmr_to_tcm(int fn)
1554 {
1555 switch (fn) {
1556 case SRP_TSK_ABORT_TASK:
1557 return TMR_ABORT_TASK;
1558 case SRP_TSK_ABORT_TASK_SET:
1559 return TMR_ABORT_TASK_SET;
1560 case SRP_TSK_CLEAR_TASK_SET:
1561 return TMR_CLEAR_TASK_SET;
1562 case SRP_TSK_LUN_RESET:
1563 return TMR_LUN_RESET;
1564 case SRP_TSK_CLEAR_ACA:
1565 return TMR_CLEAR_ACA;
1566 default:
1567 return -1;
1568 }
1569 }
1570
1571 /**
1572 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1573 * @ch: SRPT RDMA channel.
1574 * @recv_ioctx: Receive I/O context.
1575 * @send_ioctx: Send I/O context.
1576 *
1577 * Returns 0 if and only if the request will be processed by the target core.
1578 *
1579 * For more information about SRP_TSK_MGMT information units, see also section
1580 * 6.7 in the SRP r16a document.
1581 */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1582 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1583 struct srpt_recv_ioctx *recv_ioctx,
1584 struct srpt_send_ioctx *send_ioctx)
1585 {
1586 struct srp_tsk_mgmt *srp_tsk;
1587 struct se_cmd *cmd;
1588 struct se_session *sess = ch->sess;
1589 int tcm_tmr;
1590 int rc;
1591
1592 BUG_ON(!send_ioctx);
1593
1594 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1595 cmd = &send_ioctx->cmd;
1596
1597 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1598 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1599 ch->sess);
1600
1601 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1602 send_ioctx->cmd.tag = srp_tsk->tag;
1603 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1604 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1605 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1606 GFP_KERNEL, srp_tsk->task_tag,
1607 TARGET_SCF_ACK_KREF);
1608 if (rc != 0) {
1609 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1610 cmd->se_tfo->queue_tm_rsp(cmd);
1611 }
1612 return;
1613 }
1614
1615 /**
1616 * srpt_handle_new_iu - process a newly received information unit
1617 * @ch: RDMA channel through which the information unit has been received.
1618 * @recv_ioctx: Receive I/O context associated with the information unit.
1619 */
1620 static bool
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx)1621 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1622 {
1623 struct srpt_send_ioctx *send_ioctx = NULL;
1624 struct srp_cmd *srp_cmd;
1625 bool res = false;
1626 u8 opcode;
1627
1628 BUG_ON(!ch);
1629 BUG_ON(!recv_ioctx);
1630
1631 if (unlikely(ch->state == CH_CONNECTING))
1632 goto push;
1633
1634 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1635 recv_ioctx->ioctx.dma,
1636 recv_ioctx->ioctx.offset + srp_max_req_size,
1637 DMA_FROM_DEVICE);
1638
1639 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1640 opcode = srp_cmd->opcode;
1641 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1642 send_ioctx = srpt_get_send_ioctx(ch);
1643 if (unlikely(!send_ioctx))
1644 goto push;
1645 }
1646
1647 if (!list_empty(&recv_ioctx->wait_list)) {
1648 WARN_ON_ONCE(!ch->processing_wait_list);
1649 list_del_init(&recv_ioctx->wait_list);
1650 }
1651
1652 switch (opcode) {
1653 case SRP_CMD:
1654 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1655 break;
1656 case SRP_TSK_MGMT:
1657 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1658 break;
1659 case SRP_I_LOGOUT:
1660 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1661 break;
1662 case SRP_CRED_RSP:
1663 pr_debug("received SRP_CRED_RSP\n");
1664 break;
1665 case SRP_AER_RSP:
1666 pr_debug("received SRP_AER_RSP\n");
1667 break;
1668 case SRP_RSP:
1669 pr_err("Received SRP_RSP\n");
1670 break;
1671 default:
1672 pr_err("received IU with unknown opcode 0x%x\n", opcode);
1673 break;
1674 }
1675
1676 if (!send_ioctx || !send_ioctx->recv_ioctx)
1677 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1678 res = true;
1679
1680 out:
1681 return res;
1682
1683 push:
1684 if (list_empty(&recv_ioctx->wait_list)) {
1685 WARN_ON_ONCE(ch->processing_wait_list);
1686 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1687 }
1688 goto out;
1689 }
1690
srpt_recv_done(struct ib_cq * cq,struct ib_wc * wc)1691 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1692 {
1693 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1694 struct srpt_recv_ioctx *ioctx =
1695 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1696
1697 if (wc->status == IB_WC_SUCCESS) {
1698 int req_lim;
1699
1700 req_lim = atomic_dec_return(&ch->req_lim);
1701 if (unlikely(req_lim < 0))
1702 pr_err("req_lim = %d < 0\n", req_lim);
1703 ioctx->byte_len = wc->byte_len;
1704 srpt_handle_new_iu(ch, ioctx);
1705 } else {
1706 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1707 ioctx, wc->status);
1708 }
1709 }
1710
1711 /*
1712 * This function must be called from the context in which RDMA completions are
1713 * processed because it accesses the wait list without protection against
1714 * access from other threads.
1715 */
srpt_process_wait_list(struct srpt_rdma_ch * ch)1716 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1717 {
1718 struct srpt_recv_ioctx *recv_ioctx, *tmp;
1719
1720 WARN_ON_ONCE(ch->state == CH_CONNECTING);
1721
1722 if (list_empty(&ch->cmd_wait_list))
1723 return;
1724
1725 WARN_ON_ONCE(ch->processing_wait_list);
1726 ch->processing_wait_list = true;
1727 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1728 wait_list) {
1729 if (!srpt_handle_new_iu(ch, recv_ioctx))
1730 break;
1731 }
1732 ch->processing_wait_list = false;
1733 }
1734
1735 /**
1736 * srpt_send_done - send completion callback
1737 * @cq: Completion queue.
1738 * @wc: Work completion.
1739 *
1740 * Note: Although this has not yet been observed during tests, at least in
1741 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1742 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1743 * value in each response is set to one, and it is possible that this response
1744 * makes the initiator send a new request before the send completion for that
1745 * response has been processed. This could e.g. happen if the call to
1746 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1747 * if IB retransmission causes generation of the send completion to be
1748 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1749 * are queued on cmd_wait_list. The code below processes these delayed
1750 * requests one at a time.
1751 */
srpt_send_done(struct ib_cq * cq,struct ib_wc * wc)1752 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1753 {
1754 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1755 struct srpt_send_ioctx *ioctx =
1756 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1757 enum srpt_command_state state;
1758
1759 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1760
1761 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1762 state != SRPT_STATE_MGMT_RSP_SENT);
1763
1764 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1765
1766 if (wc->status != IB_WC_SUCCESS)
1767 pr_info("sending response for ioctx 0x%p failed with status %d\n",
1768 ioctx, wc->status);
1769
1770 if (state != SRPT_STATE_DONE) {
1771 transport_generic_free_cmd(&ioctx->cmd, 0);
1772 } else {
1773 pr_err("IB completion has been received too late for wr_id = %u.\n",
1774 ioctx->ioctx.index);
1775 }
1776
1777 srpt_process_wait_list(ch);
1778 }
1779
1780 /**
1781 * srpt_create_ch_ib - create receive and send completion queues
1782 * @ch: SRPT RDMA channel.
1783 */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)1784 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1785 {
1786 struct ib_qp_init_attr *qp_init;
1787 struct srpt_port *sport = ch->sport;
1788 struct srpt_device *sdev = sport->sdev;
1789 const struct ib_device_attr *attrs = &sdev->device->attrs;
1790 int sq_size = sport->port_attrib.srp_sq_size;
1791 int i, ret;
1792
1793 WARN_ON(ch->rq_size < 1);
1794
1795 ret = -ENOMEM;
1796 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1797 if (!qp_init)
1798 goto out;
1799
1800 retry:
1801 ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1,
1802 IB_POLL_WORKQUEUE);
1803 if (IS_ERR(ch->cq)) {
1804 ret = PTR_ERR(ch->cq);
1805 pr_err("failed to create CQ cqe= %d ret= %d\n",
1806 ch->rq_size + sq_size, ret);
1807 goto out;
1808 }
1809 ch->cq_size = ch->rq_size + sq_size;
1810
1811 qp_init->qp_context = (void *)ch;
1812 qp_init->event_handler = srpt_qp_event;
1813 qp_init->send_cq = ch->cq;
1814 qp_init->recv_cq = ch->cq;
1815 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1816 qp_init->qp_type = IB_QPT_RC;
1817 /*
1818 * We divide up our send queue size into half SEND WRs to send the
1819 * completions, and half R/W contexts to actually do the RDMA
1820 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1821 * both both, as RDMA contexts will also post completions for the
1822 * RDMA READ case.
1823 */
1824 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1825 qp_init->cap.max_rdma_ctxs = sq_size / 2;
1826 qp_init->cap.max_send_sge = attrs->max_send_sge;
1827 qp_init->cap.max_recv_sge = 1;
1828 qp_init->port_num = ch->sport->port;
1829 if (sdev->use_srq)
1830 qp_init->srq = sdev->srq;
1831 else
1832 qp_init->cap.max_recv_wr = ch->rq_size;
1833
1834 if (ch->using_rdma_cm) {
1835 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1836 ch->qp = ch->rdma_cm.cm_id->qp;
1837 } else {
1838 ch->qp = ib_create_qp(sdev->pd, qp_init);
1839 if (!IS_ERR(ch->qp)) {
1840 ret = srpt_init_ch_qp(ch, ch->qp);
1841 if (ret)
1842 ib_destroy_qp(ch->qp);
1843 } else {
1844 ret = PTR_ERR(ch->qp);
1845 }
1846 }
1847 if (ret) {
1848 bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1849
1850 if (retry) {
1851 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1852 sq_size, ret);
1853 ib_cq_pool_put(ch->cq, ch->cq_size);
1854 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1855 goto retry;
1856 } else {
1857 pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1858 sq_size, ret);
1859 goto err_destroy_cq;
1860 }
1861 }
1862
1863 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1864
1865 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1866 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1867 qp_init->cap.max_send_wr, ch);
1868
1869 if (!sdev->use_srq)
1870 for (i = 0; i < ch->rq_size; i++)
1871 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1872
1873 out:
1874 kfree(qp_init);
1875 return ret;
1876
1877 err_destroy_cq:
1878 ch->qp = NULL;
1879 ib_cq_pool_put(ch->cq, ch->cq_size);
1880 goto out;
1881 }
1882
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)1883 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1884 {
1885 ib_destroy_qp(ch->qp);
1886 ib_cq_pool_put(ch->cq, ch->cq_size);
1887 }
1888
1889 /**
1890 * srpt_close_ch - close a RDMA channel
1891 * @ch: SRPT RDMA channel.
1892 *
1893 * Make sure all resources associated with the channel will be deallocated at
1894 * an appropriate time.
1895 *
1896 * Returns true if and only if the channel state has been modified into
1897 * CH_DRAINING.
1898 */
srpt_close_ch(struct srpt_rdma_ch * ch)1899 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1900 {
1901 int ret;
1902
1903 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1904 pr_debug("%s: already closed\n", ch->sess_name);
1905 return false;
1906 }
1907
1908 kref_get(&ch->kref);
1909
1910 ret = srpt_ch_qp_err(ch);
1911 if (ret < 0)
1912 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1913 ch->sess_name, ch->qp->qp_num, ret);
1914
1915 ret = srpt_zerolength_write(ch);
1916 if (ret < 0) {
1917 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1918 ch->sess_name, ch->qp->qp_num, ret);
1919 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1920 schedule_work(&ch->release_work);
1921 else
1922 WARN_ON_ONCE(true);
1923 }
1924
1925 kref_put(&ch->kref, srpt_free_ch);
1926
1927 return true;
1928 }
1929
1930 /*
1931 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1932 * reached the connected state, close it. If a channel is in the connected
1933 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1934 * the responsibility of the caller to ensure that this function is not
1935 * invoked concurrently with the code that accepts a connection. This means
1936 * that this function must either be invoked from inside a CM callback
1937 * function or that it must be invoked with the srpt_port.mutex held.
1938 */
srpt_disconnect_ch(struct srpt_rdma_ch * ch)1939 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1940 {
1941 int ret;
1942
1943 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1944 return -ENOTCONN;
1945
1946 if (ch->using_rdma_cm) {
1947 ret = rdma_disconnect(ch->rdma_cm.cm_id);
1948 } else {
1949 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1950 if (ret < 0)
1951 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1952 }
1953
1954 if (ret < 0 && srpt_close_ch(ch))
1955 ret = 0;
1956
1957 return ret;
1958 }
1959
1960 /* Send DREQ and wait for DREP. */
srpt_disconnect_ch_sync(struct srpt_rdma_ch * ch)1961 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1962 {
1963 DECLARE_COMPLETION_ONSTACK(closed);
1964 struct srpt_port *sport = ch->sport;
1965
1966 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1967 ch->state);
1968
1969 ch->closed = &closed;
1970
1971 mutex_lock(&sport->mutex);
1972 srpt_disconnect_ch(ch);
1973 mutex_unlock(&sport->mutex);
1974
1975 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1976 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1977 ch->sess_name, ch->qp->qp_num, ch->state);
1978
1979 }
1980
__srpt_close_all_ch(struct srpt_port * sport)1981 static void __srpt_close_all_ch(struct srpt_port *sport)
1982 {
1983 struct srpt_nexus *nexus;
1984 struct srpt_rdma_ch *ch;
1985
1986 lockdep_assert_held(&sport->mutex);
1987
1988 list_for_each_entry(nexus, &sport->nexus_list, entry) {
1989 list_for_each_entry(ch, &nexus->ch_list, list) {
1990 if (srpt_disconnect_ch(ch) >= 0)
1991 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1992 ch->sess_name, ch->qp->qp_num,
1993 dev_name(&sport->sdev->device->dev),
1994 sport->port);
1995 srpt_close_ch(ch);
1996 }
1997 }
1998 }
1999
2000 /*
2001 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
2002 * it does not yet exist.
2003 */
srpt_get_nexus(struct srpt_port * sport,const u8 i_port_id[16],const u8 t_port_id[16])2004 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2005 const u8 i_port_id[16],
2006 const u8 t_port_id[16])
2007 {
2008 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2009
2010 for (;;) {
2011 mutex_lock(&sport->mutex);
2012 list_for_each_entry(n, &sport->nexus_list, entry) {
2013 if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2014 memcmp(n->t_port_id, t_port_id, 16) == 0) {
2015 nexus = n;
2016 break;
2017 }
2018 }
2019 if (!nexus && tmp_nexus) {
2020 list_add_tail_rcu(&tmp_nexus->entry,
2021 &sport->nexus_list);
2022 swap(nexus, tmp_nexus);
2023 }
2024 mutex_unlock(&sport->mutex);
2025
2026 if (nexus)
2027 break;
2028 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2029 if (!tmp_nexus) {
2030 nexus = ERR_PTR(-ENOMEM);
2031 break;
2032 }
2033 INIT_LIST_HEAD(&tmp_nexus->ch_list);
2034 memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2035 memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2036 }
2037
2038 kfree(tmp_nexus);
2039
2040 return nexus;
2041 }
2042
srpt_set_enabled(struct srpt_port * sport,bool enabled)2043 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2044 __must_hold(&sport->mutex)
2045 {
2046 lockdep_assert_held(&sport->mutex);
2047
2048 if (sport->enabled == enabled)
2049 return;
2050 sport->enabled = enabled;
2051 if (!enabled)
2052 __srpt_close_all_ch(sport);
2053 }
2054
srpt_drop_sport_ref(struct srpt_port * sport)2055 static void srpt_drop_sport_ref(struct srpt_port *sport)
2056 {
2057 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2058 complete(sport->freed_channels);
2059 }
2060
srpt_free_ch(struct kref * kref)2061 static void srpt_free_ch(struct kref *kref)
2062 {
2063 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2064
2065 srpt_drop_sport_ref(ch->sport);
2066 kfree_rcu(ch, rcu);
2067 }
2068
2069 /*
2070 * Shut down the SCSI target session, tell the connection manager to
2071 * disconnect the associated RDMA channel, transition the QP to the error
2072 * state and remove the channel from the channel list. This function is
2073 * typically called from inside srpt_zerolength_write_done(). Concurrent
2074 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2075 * as long as the channel is on sport->nexus_list.
2076 */
srpt_release_channel_work(struct work_struct * w)2077 static void srpt_release_channel_work(struct work_struct *w)
2078 {
2079 struct srpt_rdma_ch *ch;
2080 struct srpt_device *sdev;
2081 struct srpt_port *sport;
2082 struct se_session *se_sess;
2083
2084 ch = container_of(w, struct srpt_rdma_ch, release_work);
2085 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2086
2087 sdev = ch->sport->sdev;
2088 BUG_ON(!sdev);
2089
2090 se_sess = ch->sess;
2091 BUG_ON(!se_sess);
2092
2093 target_sess_cmd_list_set_waiting(se_sess);
2094 target_wait_for_sess_cmds(se_sess);
2095
2096 target_remove_session(se_sess);
2097 ch->sess = NULL;
2098
2099 if (ch->using_rdma_cm)
2100 rdma_destroy_id(ch->rdma_cm.cm_id);
2101 else
2102 ib_destroy_cm_id(ch->ib_cm.cm_id);
2103
2104 sport = ch->sport;
2105 mutex_lock(&sport->mutex);
2106 list_del_rcu(&ch->list);
2107 mutex_unlock(&sport->mutex);
2108
2109 if (ch->closed)
2110 complete(ch->closed);
2111
2112 srpt_destroy_ch_ib(ch);
2113
2114 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2115 ch->sport->sdev, ch->rq_size,
2116 ch->rsp_buf_cache, DMA_TO_DEVICE);
2117
2118 kmem_cache_destroy(ch->rsp_buf_cache);
2119
2120 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2121 sdev, ch->rq_size,
2122 ch->req_buf_cache, DMA_FROM_DEVICE);
2123
2124 kmem_cache_destroy(ch->req_buf_cache);
2125
2126 kref_put(&ch->kref, srpt_free_ch);
2127 }
2128
2129 /**
2130 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2131 * @sdev: HCA through which the login request was received.
2132 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2133 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2134 * @port_num: Port through which the REQ message was received.
2135 * @pkey: P_Key of the incoming connection.
2136 * @req: SRP login request.
2137 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2138 * the login request.
2139 *
2140 * Ownership of the cm_id is transferred to the target session if this
2141 * function returns zero. Otherwise the caller remains the owner of cm_id.
2142 */
srpt_cm_req_recv(struct srpt_device * const sdev,struct ib_cm_id * ib_cm_id,struct rdma_cm_id * rdma_cm_id,u8 port_num,__be16 pkey,const struct srp_login_req * req,const char * src_addr)2143 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2144 struct ib_cm_id *ib_cm_id,
2145 struct rdma_cm_id *rdma_cm_id,
2146 u8 port_num, __be16 pkey,
2147 const struct srp_login_req *req,
2148 const char *src_addr)
2149 {
2150 struct srpt_port *sport = &sdev->port[port_num - 1];
2151 struct srpt_nexus *nexus;
2152 struct srp_login_rsp *rsp = NULL;
2153 struct srp_login_rej *rej = NULL;
2154 union {
2155 struct rdma_conn_param rdma_cm;
2156 struct ib_cm_rep_param ib_cm;
2157 } *rep_param = NULL;
2158 struct srpt_rdma_ch *ch = NULL;
2159 char i_port_id[36];
2160 u32 it_iu_len;
2161 int i, tag_num, tag_size, ret;
2162 struct srpt_tpg *stpg;
2163
2164 WARN_ON_ONCE(irqs_disabled());
2165
2166 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2167
2168 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2169 req->initiator_port_id, req->target_port_id, it_iu_len,
2170 port_num, &sport->gid, be16_to_cpu(pkey));
2171
2172 nexus = srpt_get_nexus(sport, req->initiator_port_id,
2173 req->target_port_id);
2174 if (IS_ERR(nexus)) {
2175 ret = PTR_ERR(nexus);
2176 goto out;
2177 }
2178
2179 ret = -ENOMEM;
2180 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2181 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2182 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2183 if (!rsp || !rej || !rep_param)
2184 goto out;
2185
2186 ret = -EINVAL;
2187 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2188 rej->reason = cpu_to_be32(
2189 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2190 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2191 it_iu_len, 64, srp_max_req_size);
2192 goto reject;
2193 }
2194
2195 if (!sport->enabled) {
2196 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2197 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2198 dev_name(&sport->sdev->device->dev), port_num);
2199 goto reject;
2200 }
2201
2202 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2203 || *(__be64 *)(req->target_port_id + 8) !=
2204 cpu_to_be64(srpt_service_guid)) {
2205 rej->reason = cpu_to_be32(
2206 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2207 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2208 goto reject;
2209 }
2210
2211 ret = -ENOMEM;
2212 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2213 if (!ch) {
2214 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2215 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2216 goto reject;
2217 }
2218
2219 kref_init(&ch->kref);
2220 ch->pkey = be16_to_cpu(pkey);
2221 ch->nexus = nexus;
2222 ch->zw_cqe.done = srpt_zerolength_write_done;
2223 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2224 ch->sport = sport;
2225 if (ib_cm_id) {
2226 ch->ib_cm.cm_id = ib_cm_id;
2227 ib_cm_id->context = ch;
2228 } else {
2229 ch->using_rdma_cm = true;
2230 ch->rdma_cm.cm_id = rdma_cm_id;
2231 rdma_cm_id->context = ch;
2232 }
2233 /*
2234 * ch->rq_size should be at least as large as the initiator queue
2235 * depth to avoid that the initiator driver has to report QUEUE_FULL
2236 * to the SCSI mid-layer.
2237 */
2238 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2239 spin_lock_init(&ch->spinlock);
2240 ch->state = CH_CONNECTING;
2241 INIT_LIST_HEAD(&ch->cmd_wait_list);
2242 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2243
2244 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2245 512, 0, NULL);
2246 if (!ch->rsp_buf_cache)
2247 goto free_ch;
2248
2249 ch->ioctx_ring = (struct srpt_send_ioctx **)
2250 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2251 sizeof(*ch->ioctx_ring[0]),
2252 ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2253 if (!ch->ioctx_ring) {
2254 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2255 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2256 goto free_rsp_cache;
2257 }
2258
2259 for (i = 0; i < ch->rq_size; i++)
2260 ch->ioctx_ring[i]->ch = ch;
2261 if (!sdev->use_srq) {
2262 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2263 be16_to_cpu(req->imm_data_offset) : 0;
2264 u16 alignment_offset;
2265 u32 req_sz;
2266
2267 if (req->req_flags & SRP_IMMED_REQUESTED)
2268 pr_debug("imm_data_offset = %d\n",
2269 be16_to_cpu(req->imm_data_offset));
2270 if (imm_data_offset >= sizeof(struct srp_cmd)) {
2271 ch->imm_data_offset = imm_data_offset;
2272 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2273 } else {
2274 ch->imm_data_offset = 0;
2275 }
2276 alignment_offset = round_up(imm_data_offset, 512) -
2277 imm_data_offset;
2278 req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2279 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2280 512, 0, NULL);
2281 if (!ch->req_buf_cache)
2282 goto free_rsp_ring;
2283
2284 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2285 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2286 sizeof(*ch->ioctx_recv_ring[0]),
2287 ch->req_buf_cache,
2288 alignment_offset,
2289 DMA_FROM_DEVICE);
2290 if (!ch->ioctx_recv_ring) {
2291 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2292 rej->reason =
2293 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2294 goto free_recv_cache;
2295 }
2296 for (i = 0; i < ch->rq_size; i++)
2297 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2298 }
2299
2300 ret = srpt_create_ch_ib(ch);
2301 if (ret) {
2302 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2303 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2304 goto free_recv_ring;
2305 }
2306
2307 strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2308 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2309 be64_to_cpu(*(__be64 *)nexus->i_port_id),
2310 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2311
2312 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2313 i_port_id);
2314
2315 tag_num = ch->rq_size;
2316 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2317
2318 if (sport->guid_id) {
2319 mutex_lock(&sport->guid_id->mutex);
2320 list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) {
2321 if (!IS_ERR_OR_NULL(ch->sess))
2322 break;
2323 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2324 tag_size, TARGET_PROT_NORMAL,
2325 ch->sess_name, ch, NULL);
2326 }
2327 mutex_unlock(&sport->guid_id->mutex);
2328 }
2329
2330 if (sport->gid_id) {
2331 mutex_lock(&sport->gid_id->mutex);
2332 list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) {
2333 if (!IS_ERR_OR_NULL(ch->sess))
2334 break;
2335 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2336 tag_size, TARGET_PROT_NORMAL, i_port_id,
2337 ch, NULL);
2338 if (!IS_ERR_OR_NULL(ch->sess))
2339 break;
2340 /* Retry without leading "0x" */
2341 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2342 tag_size, TARGET_PROT_NORMAL,
2343 i_port_id + 2, ch, NULL);
2344 }
2345 mutex_unlock(&sport->gid_id->mutex);
2346 }
2347
2348 if (IS_ERR_OR_NULL(ch->sess)) {
2349 WARN_ON_ONCE(ch->sess == NULL);
2350 ret = PTR_ERR(ch->sess);
2351 ch->sess = NULL;
2352 pr_info("Rejected login for initiator %s: ret = %d.\n",
2353 ch->sess_name, ret);
2354 rej->reason = cpu_to_be32(ret == -ENOMEM ?
2355 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2356 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2357 goto destroy_ib;
2358 }
2359
2360 /*
2361 * Once a session has been created destruction of srpt_rdma_ch objects
2362 * will decrement sport->refcount. Hence increment sport->refcount now.
2363 */
2364 atomic_inc(&sport->refcount);
2365
2366 mutex_lock(&sport->mutex);
2367
2368 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2369 struct srpt_rdma_ch *ch2;
2370
2371 list_for_each_entry(ch2, &nexus->ch_list, list) {
2372 if (srpt_disconnect_ch(ch2) < 0)
2373 continue;
2374 pr_info("Relogin - closed existing channel %s\n",
2375 ch2->sess_name);
2376 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2377 }
2378 } else {
2379 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2380 }
2381
2382 list_add_tail_rcu(&ch->list, &nexus->ch_list);
2383
2384 if (!sport->enabled) {
2385 rej->reason = cpu_to_be32(
2386 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2387 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2388 dev_name(&sdev->device->dev), port_num);
2389 mutex_unlock(&sport->mutex);
2390 ret = -EINVAL;
2391 goto reject;
2392 }
2393
2394 mutex_unlock(&sport->mutex);
2395
2396 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2397 if (ret) {
2398 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2399 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2400 ret);
2401 goto reject;
2402 }
2403
2404 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2405 ch->sess_name, ch);
2406
2407 /* create srp_login_response */
2408 rsp->opcode = SRP_LOGIN_RSP;
2409 rsp->tag = req->tag;
2410 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2411 rsp->max_ti_iu_len = req->req_it_iu_len;
2412 ch->max_ti_iu_len = it_iu_len;
2413 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2414 SRP_BUF_FORMAT_INDIRECT);
2415 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2416 atomic_set(&ch->req_lim, ch->rq_size);
2417 atomic_set(&ch->req_lim_delta, 0);
2418
2419 /* create cm reply */
2420 if (ch->using_rdma_cm) {
2421 rep_param->rdma_cm.private_data = (void *)rsp;
2422 rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2423 rep_param->rdma_cm.rnr_retry_count = 7;
2424 rep_param->rdma_cm.flow_control = 1;
2425 rep_param->rdma_cm.responder_resources = 4;
2426 rep_param->rdma_cm.initiator_depth = 4;
2427 } else {
2428 rep_param->ib_cm.qp_num = ch->qp->qp_num;
2429 rep_param->ib_cm.private_data = (void *)rsp;
2430 rep_param->ib_cm.private_data_len = sizeof(*rsp);
2431 rep_param->ib_cm.rnr_retry_count = 7;
2432 rep_param->ib_cm.flow_control = 1;
2433 rep_param->ib_cm.failover_accepted = 0;
2434 rep_param->ib_cm.srq = 1;
2435 rep_param->ib_cm.responder_resources = 4;
2436 rep_param->ib_cm.initiator_depth = 4;
2437 }
2438
2439 /*
2440 * Hold the sport mutex while accepting a connection to avoid that
2441 * srpt_disconnect_ch() is invoked concurrently with this code.
2442 */
2443 mutex_lock(&sport->mutex);
2444 if (sport->enabled && ch->state == CH_CONNECTING) {
2445 if (ch->using_rdma_cm)
2446 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2447 else
2448 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2449 } else {
2450 ret = -EINVAL;
2451 }
2452 mutex_unlock(&sport->mutex);
2453
2454 switch (ret) {
2455 case 0:
2456 break;
2457 case -EINVAL:
2458 goto reject;
2459 default:
2460 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2461 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2462 ret);
2463 goto reject;
2464 }
2465
2466 goto out;
2467
2468 destroy_ib:
2469 srpt_destroy_ch_ib(ch);
2470
2471 free_recv_ring:
2472 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2473 ch->sport->sdev, ch->rq_size,
2474 ch->req_buf_cache, DMA_FROM_DEVICE);
2475
2476 free_recv_cache:
2477 kmem_cache_destroy(ch->req_buf_cache);
2478
2479 free_rsp_ring:
2480 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2481 ch->sport->sdev, ch->rq_size,
2482 ch->rsp_buf_cache, DMA_TO_DEVICE);
2483
2484 free_rsp_cache:
2485 kmem_cache_destroy(ch->rsp_buf_cache);
2486
2487 free_ch:
2488 if (rdma_cm_id)
2489 rdma_cm_id->context = NULL;
2490 else
2491 ib_cm_id->context = NULL;
2492 kfree(ch);
2493 ch = NULL;
2494
2495 WARN_ON_ONCE(ret == 0);
2496
2497 reject:
2498 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2499 rej->opcode = SRP_LOGIN_REJ;
2500 rej->tag = req->tag;
2501 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2502 SRP_BUF_FORMAT_INDIRECT);
2503
2504 if (rdma_cm_id)
2505 rdma_reject(rdma_cm_id, rej, sizeof(*rej),
2506 IB_CM_REJ_CONSUMER_DEFINED);
2507 else
2508 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2509 rej, sizeof(*rej));
2510
2511 if (ch && ch->sess) {
2512 srpt_close_ch(ch);
2513 /*
2514 * Tell the caller not to free cm_id since
2515 * srpt_release_channel_work() will do that.
2516 */
2517 ret = 0;
2518 }
2519
2520 out:
2521 kfree(rep_param);
2522 kfree(rsp);
2523 kfree(rej);
2524
2525 return ret;
2526 }
2527
srpt_ib_cm_req_recv(struct ib_cm_id * cm_id,const struct ib_cm_req_event_param * param,void * private_data)2528 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2529 const struct ib_cm_req_event_param *param,
2530 void *private_data)
2531 {
2532 char sguid[40];
2533
2534 srpt_format_guid(sguid, sizeof(sguid),
2535 ¶m->primary_path->dgid.global.interface_id);
2536
2537 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2538 param->primary_path->pkey,
2539 private_data, sguid);
2540 }
2541
srpt_rdma_cm_req_recv(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)2542 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2543 struct rdma_cm_event *event)
2544 {
2545 struct srpt_device *sdev;
2546 struct srp_login_req req;
2547 const struct srp_login_req_rdma *req_rdma;
2548 struct sa_path_rec *path_rec = cm_id->route.path_rec;
2549 char src_addr[40];
2550
2551 sdev = ib_get_client_data(cm_id->device, &srpt_client);
2552 if (!sdev)
2553 return -ECONNREFUSED;
2554
2555 if (event->param.conn.private_data_len < sizeof(*req_rdma))
2556 return -EINVAL;
2557
2558 /* Transform srp_login_req_rdma into srp_login_req. */
2559 req_rdma = event->param.conn.private_data;
2560 memset(&req, 0, sizeof(req));
2561 req.opcode = req_rdma->opcode;
2562 req.tag = req_rdma->tag;
2563 req.req_it_iu_len = req_rdma->req_it_iu_len;
2564 req.req_buf_fmt = req_rdma->req_buf_fmt;
2565 req.req_flags = req_rdma->req_flags;
2566 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2567 memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2568 req.imm_data_offset = req_rdma->imm_data_offset;
2569
2570 snprintf(src_addr, sizeof(src_addr), "%pIS",
2571 &cm_id->route.addr.src_addr);
2572
2573 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2574 path_rec ? path_rec->pkey : 0, &req, src_addr);
2575 }
2576
srpt_cm_rej_recv(struct srpt_rdma_ch * ch,enum ib_cm_rej_reason reason,const u8 * private_data,u8 private_data_len)2577 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2578 enum ib_cm_rej_reason reason,
2579 const u8 *private_data,
2580 u8 private_data_len)
2581 {
2582 char *priv = NULL;
2583 int i;
2584
2585 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2586 GFP_KERNEL))) {
2587 for (i = 0; i < private_data_len; i++)
2588 sprintf(priv + 3 * i, " %02x", private_data[i]);
2589 }
2590 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2591 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2592 "; private data" : "", priv ? priv : " (?)");
2593 kfree(priv);
2594 }
2595
2596 /**
2597 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2598 * @ch: SRPT RDMA channel.
2599 *
2600 * An RTU (ready to use) message indicates that the connection has been
2601 * established and that the recipient may begin transmitting.
2602 */
srpt_cm_rtu_recv(struct srpt_rdma_ch * ch)2603 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2604 {
2605 int ret;
2606
2607 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2608 if (ret < 0) {
2609 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2610 ch->qp->qp_num);
2611 srpt_close_ch(ch);
2612 return;
2613 }
2614
2615 /*
2616 * Note: calling srpt_close_ch() if the transition to the LIVE state
2617 * fails is not necessary since that means that that function has
2618 * already been invoked from another thread.
2619 */
2620 if (!srpt_set_ch_state(ch, CH_LIVE)) {
2621 pr_err("%s-%d: channel transition to LIVE state failed\n",
2622 ch->sess_name, ch->qp->qp_num);
2623 return;
2624 }
2625
2626 /* Trigger wait list processing. */
2627 ret = srpt_zerolength_write(ch);
2628 WARN_ONCE(ret < 0, "%d\n", ret);
2629 }
2630
2631 /**
2632 * srpt_cm_handler - IB connection manager callback function
2633 * @cm_id: IB/CM connection identifier.
2634 * @event: IB/CM event.
2635 *
2636 * A non-zero return value will cause the caller destroy the CM ID.
2637 *
2638 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2639 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2640 * a non-zero value in any other case will trigger a race with the
2641 * ib_destroy_cm_id() call in srpt_release_channel().
2642 */
srpt_cm_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * event)2643 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2644 const struct ib_cm_event *event)
2645 {
2646 struct srpt_rdma_ch *ch = cm_id->context;
2647 int ret;
2648
2649 ret = 0;
2650 switch (event->event) {
2651 case IB_CM_REQ_RECEIVED:
2652 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2653 event->private_data);
2654 break;
2655 case IB_CM_REJ_RECEIVED:
2656 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2657 event->private_data,
2658 IB_CM_REJ_PRIVATE_DATA_SIZE);
2659 break;
2660 case IB_CM_RTU_RECEIVED:
2661 case IB_CM_USER_ESTABLISHED:
2662 srpt_cm_rtu_recv(ch);
2663 break;
2664 case IB_CM_DREQ_RECEIVED:
2665 srpt_disconnect_ch(ch);
2666 break;
2667 case IB_CM_DREP_RECEIVED:
2668 pr_info("Received CM DREP message for ch %s-%d.\n",
2669 ch->sess_name, ch->qp->qp_num);
2670 srpt_close_ch(ch);
2671 break;
2672 case IB_CM_TIMEWAIT_EXIT:
2673 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2674 ch->sess_name, ch->qp->qp_num);
2675 srpt_close_ch(ch);
2676 break;
2677 case IB_CM_REP_ERROR:
2678 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2679 ch->qp->qp_num);
2680 break;
2681 case IB_CM_DREQ_ERROR:
2682 pr_info("Received CM DREQ ERROR event.\n");
2683 break;
2684 case IB_CM_MRA_RECEIVED:
2685 pr_info("Received CM MRA event\n");
2686 break;
2687 default:
2688 pr_err("received unrecognized CM event %d\n", event->event);
2689 break;
2690 }
2691
2692 return ret;
2693 }
2694
srpt_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)2695 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2696 struct rdma_cm_event *event)
2697 {
2698 struct srpt_rdma_ch *ch = cm_id->context;
2699 int ret = 0;
2700
2701 switch (event->event) {
2702 case RDMA_CM_EVENT_CONNECT_REQUEST:
2703 ret = srpt_rdma_cm_req_recv(cm_id, event);
2704 break;
2705 case RDMA_CM_EVENT_REJECTED:
2706 srpt_cm_rej_recv(ch, event->status,
2707 event->param.conn.private_data,
2708 event->param.conn.private_data_len);
2709 break;
2710 case RDMA_CM_EVENT_ESTABLISHED:
2711 srpt_cm_rtu_recv(ch);
2712 break;
2713 case RDMA_CM_EVENT_DISCONNECTED:
2714 if (ch->state < CH_DISCONNECTING)
2715 srpt_disconnect_ch(ch);
2716 else
2717 srpt_close_ch(ch);
2718 break;
2719 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2720 srpt_close_ch(ch);
2721 break;
2722 case RDMA_CM_EVENT_UNREACHABLE:
2723 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2724 ch->qp->qp_num);
2725 break;
2726 case RDMA_CM_EVENT_DEVICE_REMOVAL:
2727 case RDMA_CM_EVENT_ADDR_CHANGE:
2728 break;
2729 default:
2730 pr_err("received unrecognized RDMA CM event %d\n",
2731 event->event);
2732 break;
2733 }
2734
2735 return ret;
2736 }
2737
2738 /*
2739 * srpt_write_pending - Start data transfer from initiator to target (write).
2740 */
srpt_write_pending(struct se_cmd * se_cmd)2741 static int srpt_write_pending(struct se_cmd *se_cmd)
2742 {
2743 struct srpt_send_ioctx *ioctx =
2744 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2745 struct srpt_rdma_ch *ch = ioctx->ch;
2746 struct ib_send_wr *first_wr = NULL;
2747 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2748 enum srpt_command_state new_state;
2749 int ret, i;
2750
2751 if (ioctx->recv_ioctx) {
2752 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2753 target_execute_cmd(&ioctx->cmd);
2754 return 0;
2755 }
2756
2757 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2758 WARN_ON(new_state == SRPT_STATE_DONE);
2759
2760 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2761 pr_warn("%s: IB send queue full (needed %d)\n",
2762 __func__, ioctx->n_rdma);
2763 ret = -ENOMEM;
2764 goto out_undo;
2765 }
2766
2767 cqe->done = srpt_rdma_read_done;
2768 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2769 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2770
2771 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2772 cqe, first_wr);
2773 cqe = NULL;
2774 }
2775
2776 ret = ib_post_send(ch->qp, first_wr, NULL);
2777 if (ret) {
2778 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2779 __func__, ret, ioctx->n_rdma,
2780 atomic_read(&ch->sq_wr_avail));
2781 goto out_undo;
2782 }
2783
2784 return 0;
2785 out_undo:
2786 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2787 return ret;
2788 }
2789
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2790 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2791 {
2792 switch (tcm_mgmt_status) {
2793 case TMR_FUNCTION_COMPLETE:
2794 return SRP_TSK_MGMT_SUCCESS;
2795 case TMR_FUNCTION_REJECTED:
2796 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2797 }
2798 return SRP_TSK_MGMT_FAILED;
2799 }
2800
2801 /**
2802 * srpt_queue_response - transmit the response to a SCSI command
2803 * @cmd: SCSI target command.
2804 *
2805 * Callback function called by the TCM core. Must not block since it can be
2806 * invoked on the context of the IB completion handler.
2807 */
srpt_queue_response(struct se_cmd * cmd)2808 static void srpt_queue_response(struct se_cmd *cmd)
2809 {
2810 struct srpt_send_ioctx *ioctx =
2811 container_of(cmd, struct srpt_send_ioctx, cmd);
2812 struct srpt_rdma_ch *ch = ioctx->ch;
2813 struct srpt_device *sdev = ch->sport->sdev;
2814 struct ib_send_wr send_wr, *first_wr = &send_wr;
2815 struct ib_sge sge;
2816 enum srpt_command_state state;
2817 int resp_len, ret, i;
2818 u8 srp_tm_status;
2819
2820 state = ioctx->state;
2821 switch (state) {
2822 case SRPT_STATE_NEW:
2823 case SRPT_STATE_DATA_IN:
2824 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2825 break;
2826 case SRPT_STATE_MGMT:
2827 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2828 break;
2829 default:
2830 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2831 ch, ioctx->ioctx.index, ioctx->state);
2832 break;
2833 }
2834
2835 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2836 return;
2837
2838 /* For read commands, transfer the data to the initiator. */
2839 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2840 ioctx->cmd.data_length &&
2841 !ioctx->queue_status_only) {
2842 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2843 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2844
2845 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2846 ch->sport->port, NULL, first_wr);
2847 }
2848 }
2849
2850 if (state != SRPT_STATE_MGMT)
2851 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2852 cmd->scsi_status);
2853 else {
2854 srp_tm_status
2855 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2856 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2857 ioctx->cmd.tag);
2858 }
2859
2860 atomic_inc(&ch->req_lim);
2861
2862 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2863 &ch->sq_wr_avail) < 0)) {
2864 pr_warn("%s: IB send queue full (needed %d)\n",
2865 __func__, ioctx->n_rdma);
2866 ret = -ENOMEM;
2867 goto out;
2868 }
2869
2870 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2871 DMA_TO_DEVICE);
2872
2873 sge.addr = ioctx->ioctx.dma;
2874 sge.length = resp_len;
2875 sge.lkey = sdev->lkey;
2876
2877 ioctx->ioctx.cqe.done = srpt_send_done;
2878 send_wr.next = NULL;
2879 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2880 send_wr.sg_list = &sge;
2881 send_wr.num_sge = 1;
2882 send_wr.opcode = IB_WR_SEND;
2883 send_wr.send_flags = IB_SEND_SIGNALED;
2884
2885 ret = ib_post_send(ch->qp, first_wr, NULL);
2886 if (ret < 0) {
2887 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2888 __func__, ioctx->cmd.tag, ret);
2889 goto out;
2890 }
2891
2892 return;
2893
2894 out:
2895 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2896 atomic_dec(&ch->req_lim);
2897 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2898 target_put_sess_cmd(&ioctx->cmd);
2899 }
2900
srpt_queue_data_in(struct se_cmd * cmd)2901 static int srpt_queue_data_in(struct se_cmd *cmd)
2902 {
2903 srpt_queue_response(cmd);
2904 return 0;
2905 }
2906
srpt_queue_tm_rsp(struct se_cmd * cmd)2907 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2908 {
2909 srpt_queue_response(cmd);
2910 }
2911
2912 /*
2913 * This function is called for aborted commands if no response is sent to the
2914 * initiator. Make sure that the credits freed by aborting a command are
2915 * returned to the initiator the next time a response is sent by incrementing
2916 * ch->req_lim_delta.
2917 */
srpt_aborted_task(struct se_cmd * cmd)2918 static void srpt_aborted_task(struct se_cmd *cmd)
2919 {
2920 struct srpt_send_ioctx *ioctx = container_of(cmd,
2921 struct srpt_send_ioctx, cmd);
2922 struct srpt_rdma_ch *ch = ioctx->ch;
2923
2924 atomic_inc(&ch->req_lim_delta);
2925 }
2926
srpt_queue_status(struct se_cmd * cmd)2927 static int srpt_queue_status(struct se_cmd *cmd)
2928 {
2929 struct srpt_send_ioctx *ioctx;
2930
2931 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2932 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2933 if (cmd->se_cmd_flags &
2934 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2935 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2936 ioctx->queue_status_only = true;
2937 srpt_queue_response(cmd);
2938 return 0;
2939 }
2940
srpt_refresh_port_work(struct work_struct * work)2941 static void srpt_refresh_port_work(struct work_struct *work)
2942 {
2943 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2944
2945 srpt_refresh_port(sport);
2946 }
2947
2948 /**
2949 * srpt_release_sport - disable login and wait for associated channels
2950 * @sport: SRPT HCA port.
2951 */
srpt_release_sport(struct srpt_port * sport)2952 static int srpt_release_sport(struct srpt_port *sport)
2953 {
2954 DECLARE_COMPLETION_ONSTACK(c);
2955 struct srpt_nexus *nexus, *next_n;
2956 struct srpt_rdma_ch *ch;
2957
2958 WARN_ON_ONCE(irqs_disabled());
2959
2960 sport->freed_channels = &c;
2961
2962 mutex_lock(&sport->mutex);
2963 srpt_set_enabled(sport, false);
2964 mutex_unlock(&sport->mutex);
2965
2966 while (atomic_read(&sport->refcount) > 0 &&
2967 wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2968 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2969 dev_name(&sport->sdev->device->dev), sport->port,
2970 atomic_read(&sport->refcount));
2971 rcu_read_lock();
2972 list_for_each_entry(nexus, &sport->nexus_list, entry) {
2973 list_for_each_entry(ch, &nexus->ch_list, list) {
2974 pr_info("%s-%d: state %s\n",
2975 ch->sess_name, ch->qp->qp_num,
2976 get_ch_state_name(ch->state));
2977 }
2978 }
2979 rcu_read_unlock();
2980 }
2981
2982 mutex_lock(&sport->mutex);
2983 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2984 list_del(&nexus->entry);
2985 kfree_rcu(nexus, rcu);
2986 }
2987 mutex_unlock(&sport->mutex);
2988
2989 return 0;
2990 }
2991
2992 struct port_and_port_id {
2993 struct srpt_port *sport;
2994 struct srpt_port_id **port_id;
2995 };
2996
__srpt_lookup_port(const char * name)2997 static struct port_and_port_id __srpt_lookup_port(const char *name)
2998 {
2999 struct ib_device *dev;
3000 struct srpt_device *sdev;
3001 struct srpt_port *sport;
3002 int i;
3003
3004 list_for_each_entry(sdev, &srpt_dev_list, list) {
3005 dev = sdev->device;
3006 if (!dev)
3007 continue;
3008
3009 for (i = 0; i < dev->phys_port_cnt; i++) {
3010 sport = &sdev->port[i];
3011
3012 if (strcmp(sport->guid_name, name) == 0) {
3013 kref_get(&sdev->refcnt);
3014 return (struct port_and_port_id){
3015 sport, &sport->guid_id};
3016 }
3017 if (strcmp(sport->gid_name, name) == 0) {
3018 kref_get(&sdev->refcnt);
3019 return (struct port_and_port_id){
3020 sport, &sport->gid_id};
3021 }
3022 }
3023 }
3024
3025 return (struct port_and_port_id){};
3026 }
3027
3028 /**
3029 * srpt_lookup_port() - Look up an RDMA port by name
3030 * @name: ASCII port name
3031 *
3032 * Increments the RDMA port reference count if an RDMA port pointer is returned.
3033 * The caller must drop that reference count by calling srpt_port_put_ref().
3034 */
srpt_lookup_port(const char * name)3035 static struct port_and_port_id srpt_lookup_port(const char *name)
3036 {
3037 struct port_and_port_id papi;
3038
3039 spin_lock(&srpt_dev_lock);
3040 papi = __srpt_lookup_port(name);
3041 spin_unlock(&srpt_dev_lock);
3042
3043 return papi;
3044 }
3045
srpt_free_srq(struct srpt_device * sdev)3046 static void srpt_free_srq(struct srpt_device *sdev)
3047 {
3048 if (!sdev->srq)
3049 return;
3050
3051 ib_destroy_srq(sdev->srq);
3052 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3053 sdev->srq_size, sdev->req_buf_cache,
3054 DMA_FROM_DEVICE);
3055 kmem_cache_destroy(sdev->req_buf_cache);
3056 sdev->srq = NULL;
3057 }
3058
srpt_alloc_srq(struct srpt_device * sdev)3059 static int srpt_alloc_srq(struct srpt_device *sdev)
3060 {
3061 struct ib_srq_init_attr srq_attr = {
3062 .event_handler = srpt_srq_event,
3063 .srq_context = (void *)sdev,
3064 .attr.max_wr = sdev->srq_size,
3065 .attr.max_sge = 1,
3066 .srq_type = IB_SRQT_BASIC,
3067 };
3068 struct ib_device *device = sdev->device;
3069 struct ib_srq *srq;
3070 int i;
3071
3072 WARN_ON_ONCE(sdev->srq);
3073 srq = ib_create_srq(sdev->pd, &srq_attr);
3074 if (IS_ERR(srq)) {
3075 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3076 return PTR_ERR(srq);
3077 }
3078
3079 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3080 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3081
3082 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3083 srp_max_req_size, 0, 0, NULL);
3084 if (!sdev->req_buf_cache)
3085 goto free_srq;
3086
3087 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3088 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3089 sizeof(*sdev->ioctx_ring[0]),
3090 sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3091 if (!sdev->ioctx_ring)
3092 goto free_cache;
3093
3094 sdev->use_srq = true;
3095 sdev->srq = srq;
3096
3097 for (i = 0; i < sdev->srq_size; ++i) {
3098 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3099 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3100 }
3101
3102 return 0;
3103
3104 free_cache:
3105 kmem_cache_destroy(sdev->req_buf_cache);
3106
3107 free_srq:
3108 ib_destroy_srq(srq);
3109 return -ENOMEM;
3110 }
3111
srpt_use_srq(struct srpt_device * sdev,bool use_srq)3112 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3113 {
3114 struct ib_device *device = sdev->device;
3115 int ret = 0;
3116
3117 if (!use_srq) {
3118 srpt_free_srq(sdev);
3119 sdev->use_srq = false;
3120 } else if (use_srq && !sdev->srq) {
3121 ret = srpt_alloc_srq(sdev);
3122 }
3123 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3124 dev_name(&device->dev), sdev->use_srq, ret);
3125 return ret;
3126 }
3127
srpt_free_sdev(struct kref * refcnt)3128 static void srpt_free_sdev(struct kref *refcnt)
3129 {
3130 struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt);
3131
3132 kfree(sdev);
3133 }
3134
srpt_sdev_put(struct srpt_device * sdev)3135 static void srpt_sdev_put(struct srpt_device *sdev)
3136 {
3137 kref_put(&sdev->refcnt, srpt_free_sdev);
3138 }
3139
3140 /**
3141 * srpt_add_one - InfiniBand device addition callback function
3142 * @device: Describes a HCA.
3143 */
srpt_add_one(struct ib_device * device)3144 static int srpt_add_one(struct ib_device *device)
3145 {
3146 struct srpt_device *sdev;
3147 struct srpt_port *sport;
3148 int i, ret;
3149
3150 pr_debug("device = %p\n", device);
3151
3152 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3153 GFP_KERNEL);
3154 if (!sdev)
3155 return -ENOMEM;
3156
3157 kref_init(&sdev->refcnt);
3158 sdev->device = device;
3159 mutex_init(&sdev->sdev_mutex);
3160
3161 sdev->pd = ib_alloc_pd(device, 0);
3162 if (IS_ERR(sdev->pd)) {
3163 ret = PTR_ERR(sdev->pd);
3164 goto free_dev;
3165 }
3166
3167 sdev->lkey = sdev->pd->local_dma_lkey;
3168
3169 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3170
3171 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3172
3173 if (!srpt_service_guid)
3174 srpt_service_guid = be64_to_cpu(device->node_guid);
3175
3176 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3177 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3178 if (IS_ERR(sdev->cm_id)) {
3179 pr_info("ib_create_cm_id() failed: %ld\n",
3180 PTR_ERR(sdev->cm_id));
3181 ret = PTR_ERR(sdev->cm_id);
3182 sdev->cm_id = NULL;
3183 if (!rdma_cm_id)
3184 goto err_ring;
3185 }
3186
3187 /* print out target login information */
3188 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3189 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3190
3191 /*
3192 * We do not have a consistent service_id (ie. also id_ext of target_id)
3193 * to identify this target. We currently use the guid of the first HCA
3194 * in the system as service_id; therefore, the target_id will change
3195 * if this HCA is gone bad and replaced by different HCA
3196 */
3197 ret = sdev->cm_id ?
3198 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3199 0;
3200 if (ret < 0) {
3201 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3202 sdev->cm_id->state);
3203 goto err_cm;
3204 }
3205
3206 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3207 srpt_event_handler);
3208 ib_register_event_handler(&sdev->event_handler);
3209
3210 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3211 sport = &sdev->port[i - 1];
3212 INIT_LIST_HEAD(&sport->nexus_list);
3213 mutex_init(&sport->mutex);
3214 sport->sdev = sdev;
3215 sport->port = i;
3216 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3217 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3218 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3219 sport->port_attrib.use_srq = false;
3220 INIT_WORK(&sport->work, srpt_refresh_port_work);
3221
3222 ret = srpt_refresh_port(sport);
3223 if (ret) {
3224 pr_err("MAD registration failed for %s-%d.\n",
3225 dev_name(&sdev->device->dev), i);
3226 i--;
3227 goto err_port;
3228 }
3229 }
3230
3231 spin_lock(&srpt_dev_lock);
3232 list_add_tail(&sdev->list, &srpt_dev_list);
3233 spin_unlock(&srpt_dev_lock);
3234
3235 ib_set_client_data(device, &srpt_client, sdev);
3236 pr_debug("added %s.\n", dev_name(&device->dev));
3237 return 0;
3238
3239 err_port:
3240 srpt_unregister_mad_agent(sdev, i);
3241 ib_unregister_event_handler(&sdev->event_handler);
3242 err_cm:
3243 if (sdev->cm_id)
3244 ib_destroy_cm_id(sdev->cm_id);
3245 err_ring:
3246 srpt_free_srq(sdev);
3247 ib_dealloc_pd(sdev->pd);
3248 free_dev:
3249 srpt_sdev_put(sdev);
3250 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3251 return ret;
3252 }
3253
3254 /**
3255 * srpt_remove_one - InfiniBand device removal callback function
3256 * @device: Describes a HCA.
3257 * @client_data: The value passed as the third argument to ib_set_client_data().
3258 */
srpt_remove_one(struct ib_device * device,void * client_data)3259 static void srpt_remove_one(struct ib_device *device, void *client_data)
3260 {
3261 struct srpt_device *sdev = client_data;
3262 int i;
3263
3264 srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt);
3265
3266 ib_unregister_event_handler(&sdev->event_handler);
3267
3268 /* Cancel any work queued by the just unregistered IB event handler. */
3269 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3270 cancel_work_sync(&sdev->port[i].work);
3271
3272 if (sdev->cm_id)
3273 ib_destroy_cm_id(sdev->cm_id);
3274
3275 ib_set_client_data(device, &srpt_client, NULL);
3276
3277 /*
3278 * Unregistering a target must happen after destroying sdev->cm_id
3279 * such that no new SRP_LOGIN_REQ information units can arrive while
3280 * destroying the target.
3281 */
3282 spin_lock(&srpt_dev_lock);
3283 list_del(&sdev->list);
3284 spin_unlock(&srpt_dev_lock);
3285
3286 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3287 srpt_release_sport(&sdev->port[i]);
3288
3289 srpt_free_srq(sdev);
3290
3291 ib_dealloc_pd(sdev->pd);
3292
3293 srpt_sdev_put(sdev);
3294 }
3295
3296 static struct ib_client srpt_client = {
3297 .name = DRV_NAME,
3298 .add = srpt_add_one,
3299 .remove = srpt_remove_one
3300 };
3301
srpt_check_true(struct se_portal_group * se_tpg)3302 static int srpt_check_true(struct se_portal_group *se_tpg)
3303 {
3304 return 1;
3305 }
3306
srpt_check_false(struct se_portal_group * se_tpg)3307 static int srpt_check_false(struct se_portal_group *se_tpg)
3308 {
3309 return 0;
3310 }
3311
srpt_tpg_to_sport(struct se_portal_group * tpg)3312 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3313 {
3314 return tpg->se_tpg_wwn->priv;
3315 }
3316
srpt_wwn_to_sport_id(struct se_wwn * wwn)3317 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3318 {
3319 struct srpt_port *sport = wwn->priv;
3320
3321 if (sport->guid_id && &sport->guid_id->wwn == wwn)
3322 return sport->guid_id;
3323 if (sport->gid_id && &sport->gid_id->wwn == wwn)
3324 return sport->gid_id;
3325 WARN_ON_ONCE(true);
3326 return NULL;
3327 }
3328
srpt_get_fabric_wwn(struct se_portal_group * tpg)3329 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3330 {
3331 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3332
3333 return stpg->sport_id->name;
3334 }
3335
srpt_get_tag(struct se_portal_group * tpg)3336 static u16 srpt_get_tag(struct se_portal_group *tpg)
3337 {
3338 return 1;
3339 }
3340
srpt_tpg_get_inst_index(struct se_portal_group * se_tpg)3341 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3342 {
3343 return 1;
3344 }
3345
srpt_release_cmd(struct se_cmd * se_cmd)3346 static void srpt_release_cmd(struct se_cmd *se_cmd)
3347 {
3348 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3349 struct srpt_send_ioctx, cmd);
3350 struct srpt_rdma_ch *ch = ioctx->ch;
3351 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3352
3353 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3354 !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3355
3356 if (recv_ioctx) {
3357 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3358 ioctx->recv_ioctx = NULL;
3359 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3360 }
3361
3362 if (ioctx->n_rw_ctx) {
3363 srpt_free_rw_ctxs(ch, ioctx);
3364 ioctx->n_rw_ctx = 0;
3365 }
3366
3367 target_free_tag(se_cmd->se_sess, se_cmd);
3368 }
3369
3370 /**
3371 * srpt_close_session - forcibly close a session
3372 * @se_sess: SCSI target session.
3373 *
3374 * Callback function invoked by the TCM core to clean up sessions associated
3375 * with a node ACL when the user invokes
3376 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3377 */
srpt_close_session(struct se_session * se_sess)3378 static void srpt_close_session(struct se_session *se_sess)
3379 {
3380 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3381
3382 srpt_disconnect_ch_sync(ch);
3383 }
3384
3385 /**
3386 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3387 * @se_sess: SCSI target session.
3388 *
3389 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3390 * This object represents an arbitrary integer used to uniquely identify a
3391 * particular attached remote initiator port to a particular SCSI target port
3392 * within a particular SCSI target device within a particular SCSI instance.
3393 */
srpt_sess_get_index(struct se_session * se_sess)3394 static u32 srpt_sess_get_index(struct se_session *se_sess)
3395 {
3396 return 0;
3397 }
3398
srpt_set_default_node_attrs(struct se_node_acl * nacl)3399 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3400 {
3401 }
3402
3403 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3404 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3405 {
3406 struct srpt_send_ioctx *ioctx;
3407
3408 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3409 return ioctx->state;
3410 }
3411
srpt_parse_guid(u64 * guid,const char * name)3412 static int srpt_parse_guid(u64 *guid, const char *name)
3413 {
3414 u16 w[4];
3415 int ret = -EINVAL;
3416
3417 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3418 goto out;
3419 *guid = get_unaligned_be64(w);
3420 ret = 0;
3421 out:
3422 return ret;
3423 }
3424
3425 /**
3426 * srpt_parse_i_port_id - parse an initiator port ID
3427 * @name: ASCII representation of a 128-bit initiator port ID.
3428 * @i_port_id: Binary 128-bit port ID.
3429 */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3430 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3431 {
3432 const char *p;
3433 unsigned len, count, leading_zero_bytes;
3434 int ret;
3435
3436 p = name;
3437 if (strncasecmp(p, "0x", 2) == 0)
3438 p += 2;
3439 ret = -EINVAL;
3440 len = strlen(p);
3441 if (len % 2)
3442 goto out;
3443 count = min(len / 2, 16U);
3444 leading_zero_bytes = 16 - count;
3445 memset(i_port_id, 0, leading_zero_bytes);
3446 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3447
3448 out:
3449 return ret;
3450 }
3451
3452 /*
3453 * configfs callback function invoked for mkdir
3454 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3455 *
3456 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3457 * target_alloc_session() calls in this driver. Examples of valid initiator
3458 * port IDs:
3459 * 0x0000000000000000505400fffe4a0b7b
3460 * 0000000000000000505400fffe4a0b7b
3461 * 5054:00ff:fe4a:0b7b
3462 * 192.168.122.76
3463 */
srpt_init_nodeacl(struct se_node_acl * se_nacl,const char * name)3464 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3465 {
3466 struct sockaddr_storage sa;
3467 u64 guid;
3468 u8 i_port_id[16];
3469 int ret;
3470
3471 ret = srpt_parse_guid(&guid, name);
3472 if (ret < 0)
3473 ret = srpt_parse_i_port_id(i_port_id, name);
3474 if (ret < 0)
3475 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3476 &sa);
3477 if (ret < 0)
3478 pr_err("invalid initiator port ID %s\n", name);
3479 return ret;
3480 }
3481
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item * item,char * page)3482 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3483 char *page)
3484 {
3485 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3486 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3487
3488 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3489 }
3490
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item * item,const char * page,size_t count)3491 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3492 const char *page, size_t count)
3493 {
3494 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3495 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3496 unsigned long val;
3497 int ret;
3498
3499 ret = kstrtoul(page, 0, &val);
3500 if (ret < 0) {
3501 pr_err("kstrtoul() failed with ret: %d\n", ret);
3502 return -EINVAL;
3503 }
3504 if (val > MAX_SRPT_RDMA_SIZE) {
3505 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3506 MAX_SRPT_RDMA_SIZE);
3507 return -EINVAL;
3508 }
3509 if (val < DEFAULT_MAX_RDMA_SIZE) {
3510 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3511 val, DEFAULT_MAX_RDMA_SIZE);
3512 return -EINVAL;
3513 }
3514 sport->port_attrib.srp_max_rdma_size = val;
3515
3516 return count;
3517 }
3518
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item * item,char * page)3519 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3520 char *page)
3521 {
3522 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3523 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3524
3525 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3526 }
3527
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item * item,const char * page,size_t count)3528 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3529 const char *page, size_t count)
3530 {
3531 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3532 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3533 unsigned long val;
3534 int ret;
3535
3536 ret = kstrtoul(page, 0, &val);
3537 if (ret < 0) {
3538 pr_err("kstrtoul() failed with ret: %d\n", ret);
3539 return -EINVAL;
3540 }
3541 if (val > MAX_SRPT_RSP_SIZE) {
3542 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3543 MAX_SRPT_RSP_SIZE);
3544 return -EINVAL;
3545 }
3546 if (val < MIN_MAX_RSP_SIZE) {
3547 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3548 MIN_MAX_RSP_SIZE);
3549 return -EINVAL;
3550 }
3551 sport->port_attrib.srp_max_rsp_size = val;
3552
3553 return count;
3554 }
3555
srpt_tpg_attrib_srp_sq_size_show(struct config_item * item,char * page)3556 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3557 char *page)
3558 {
3559 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3560 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3561
3562 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3563 }
3564
srpt_tpg_attrib_srp_sq_size_store(struct config_item * item,const char * page,size_t count)3565 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3566 const char *page, size_t count)
3567 {
3568 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3569 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3570 unsigned long val;
3571 int ret;
3572
3573 ret = kstrtoul(page, 0, &val);
3574 if (ret < 0) {
3575 pr_err("kstrtoul() failed with ret: %d\n", ret);
3576 return -EINVAL;
3577 }
3578 if (val > MAX_SRPT_SRQ_SIZE) {
3579 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3580 MAX_SRPT_SRQ_SIZE);
3581 return -EINVAL;
3582 }
3583 if (val < MIN_SRPT_SRQ_SIZE) {
3584 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3585 MIN_SRPT_SRQ_SIZE);
3586 return -EINVAL;
3587 }
3588 sport->port_attrib.srp_sq_size = val;
3589
3590 return count;
3591 }
3592
srpt_tpg_attrib_use_srq_show(struct config_item * item,char * page)3593 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3594 char *page)
3595 {
3596 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3597 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3598
3599 return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3600 }
3601
srpt_tpg_attrib_use_srq_store(struct config_item * item,const char * page,size_t count)3602 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3603 const char *page, size_t count)
3604 {
3605 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3606 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3607 struct srpt_device *sdev = sport->sdev;
3608 unsigned long val;
3609 bool enabled;
3610 int ret;
3611
3612 ret = kstrtoul(page, 0, &val);
3613 if (ret < 0)
3614 return ret;
3615 if (val != !!val)
3616 return -EINVAL;
3617
3618 ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3619 if (ret < 0)
3620 return ret;
3621 ret = mutex_lock_interruptible(&sport->mutex);
3622 if (ret < 0)
3623 goto unlock_sdev;
3624 enabled = sport->enabled;
3625 /* Log out all initiator systems before changing 'use_srq'. */
3626 srpt_set_enabled(sport, false);
3627 sport->port_attrib.use_srq = val;
3628 srpt_use_srq(sdev, sport->port_attrib.use_srq);
3629 srpt_set_enabled(sport, enabled);
3630 ret = count;
3631 mutex_unlock(&sport->mutex);
3632 unlock_sdev:
3633 mutex_unlock(&sdev->sdev_mutex);
3634
3635 return ret;
3636 }
3637
3638 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3639 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3640 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3641 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq);
3642
3643 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3644 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3645 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3646 &srpt_tpg_attrib_attr_srp_sq_size,
3647 &srpt_tpg_attrib_attr_use_srq,
3648 NULL,
3649 };
3650
srpt_create_rdma_id(struct sockaddr * listen_addr)3651 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3652 {
3653 struct rdma_cm_id *rdma_cm_id;
3654 int ret;
3655
3656 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3657 NULL, RDMA_PS_TCP, IB_QPT_RC);
3658 if (IS_ERR(rdma_cm_id)) {
3659 pr_err("RDMA/CM ID creation failed: %ld\n",
3660 PTR_ERR(rdma_cm_id));
3661 goto out;
3662 }
3663
3664 ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3665 if (ret) {
3666 char addr_str[64];
3667
3668 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3669 pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3670 addr_str, ret);
3671 rdma_destroy_id(rdma_cm_id);
3672 rdma_cm_id = ERR_PTR(ret);
3673 goto out;
3674 }
3675
3676 ret = rdma_listen(rdma_cm_id, 128);
3677 if (ret) {
3678 pr_err("rdma_listen() failed: %d\n", ret);
3679 rdma_destroy_id(rdma_cm_id);
3680 rdma_cm_id = ERR_PTR(ret);
3681 }
3682
3683 out:
3684 return rdma_cm_id;
3685 }
3686
srpt_rdma_cm_port_show(struct config_item * item,char * page)3687 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3688 {
3689 return sprintf(page, "%d\n", rdma_cm_port);
3690 }
3691
srpt_rdma_cm_port_store(struct config_item * item,const char * page,size_t count)3692 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3693 const char *page, size_t count)
3694 {
3695 struct sockaddr_in addr4 = { .sin_family = AF_INET };
3696 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3697 struct rdma_cm_id *new_id = NULL;
3698 u16 val;
3699 int ret;
3700
3701 ret = kstrtou16(page, 0, &val);
3702 if (ret < 0)
3703 return ret;
3704 ret = count;
3705 if (rdma_cm_port == val)
3706 goto out;
3707
3708 if (val) {
3709 addr6.sin6_port = cpu_to_be16(val);
3710 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3711 if (IS_ERR(new_id)) {
3712 addr4.sin_port = cpu_to_be16(val);
3713 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3714 if (IS_ERR(new_id)) {
3715 ret = PTR_ERR(new_id);
3716 goto out;
3717 }
3718 }
3719 }
3720
3721 mutex_lock(&rdma_cm_mutex);
3722 rdma_cm_port = val;
3723 swap(rdma_cm_id, new_id);
3724 mutex_unlock(&rdma_cm_mutex);
3725
3726 if (new_id)
3727 rdma_destroy_id(new_id);
3728 ret = count;
3729 out:
3730 return ret;
3731 }
3732
3733 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3734
3735 static struct configfs_attribute *srpt_da_attrs[] = {
3736 &srpt_attr_rdma_cm_port,
3737 NULL,
3738 };
3739
srpt_tpg_enable_show(struct config_item * item,char * page)3740 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3741 {
3742 struct se_portal_group *se_tpg = to_tpg(item);
3743 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3744
3745 return snprintf(page, PAGE_SIZE, "%d\n", sport->enabled);
3746 }
3747
srpt_tpg_enable_store(struct config_item * item,const char * page,size_t count)3748 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3749 const char *page, size_t count)
3750 {
3751 struct se_portal_group *se_tpg = to_tpg(item);
3752 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3753 unsigned long tmp;
3754 int ret;
3755
3756 ret = kstrtoul(page, 0, &tmp);
3757 if (ret < 0) {
3758 pr_err("Unable to extract srpt_tpg_store_enable\n");
3759 return -EINVAL;
3760 }
3761
3762 if ((tmp != 0) && (tmp != 1)) {
3763 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3764 return -EINVAL;
3765 }
3766
3767 mutex_lock(&sport->mutex);
3768 srpt_set_enabled(sport, tmp);
3769 mutex_unlock(&sport->mutex);
3770
3771 return count;
3772 }
3773
3774 CONFIGFS_ATTR(srpt_tpg_, enable);
3775
3776 static struct configfs_attribute *srpt_tpg_attrs[] = {
3777 &srpt_tpg_attr_enable,
3778 NULL,
3779 };
3780
3781 /**
3782 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3783 * @wwn: Corresponds to $driver/$port.
3784 * @name: $tpg.
3785 */
srpt_make_tpg(struct se_wwn * wwn,const char * name)3786 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3787 const char *name)
3788 {
3789 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3790 struct srpt_tpg *stpg;
3791 int res = -ENOMEM;
3792
3793 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3794 if (!stpg)
3795 return ERR_PTR(res);
3796 stpg->sport_id = sport_id;
3797 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3798 if (res) {
3799 kfree(stpg);
3800 return ERR_PTR(res);
3801 }
3802
3803 mutex_lock(&sport_id->mutex);
3804 list_add_tail(&stpg->entry, &sport_id->tpg_list);
3805 mutex_unlock(&sport_id->mutex);
3806
3807 return &stpg->tpg;
3808 }
3809
3810 /**
3811 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3812 * @tpg: Target portal group to deregister.
3813 */
srpt_drop_tpg(struct se_portal_group * tpg)3814 static void srpt_drop_tpg(struct se_portal_group *tpg)
3815 {
3816 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3817 struct srpt_port_id *sport_id = stpg->sport_id;
3818 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3819
3820 mutex_lock(&sport_id->mutex);
3821 list_del(&stpg->entry);
3822 mutex_unlock(&sport_id->mutex);
3823
3824 sport->enabled = false;
3825 core_tpg_deregister(tpg);
3826 kfree(stpg);
3827 }
3828
3829 /**
3830 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3831 * @tf: Not used.
3832 * @group: Not used.
3833 * @name: $port.
3834 */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3835 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3836 struct config_group *group,
3837 const char *name)
3838 {
3839 struct port_and_port_id papi = srpt_lookup_port(name);
3840 struct srpt_port *sport = papi.sport;
3841 struct srpt_port_id *port_id;
3842
3843 if (!papi.port_id)
3844 return ERR_PTR(-EINVAL);
3845 if (*papi.port_id) {
3846 /* Attempt to create a directory that already exists. */
3847 WARN_ON_ONCE(true);
3848 return &(*papi.port_id)->wwn;
3849 }
3850 port_id = kzalloc(sizeof(*port_id), GFP_KERNEL);
3851 if (!port_id) {
3852 srpt_sdev_put(sport->sdev);
3853 return ERR_PTR(-ENOMEM);
3854 }
3855 mutex_init(&port_id->mutex);
3856 INIT_LIST_HEAD(&port_id->tpg_list);
3857 port_id->wwn.priv = sport;
3858 memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name :
3859 sport->gid_name, ARRAY_SIZE(port_id->name));
3860
3861 *papi.port_id = port_id;
3862
3863 return &port_id->wwn;
3864 }
3865
3866 /**
3867 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3868 * @wwn: $port.
3869 */
srpt_drop_tport(struct se_wwn * wwn)3870 static void srpt_drop_tport(struct se_wwn *wwn)
3871 {
3872 struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn);
3873 struct srpt_port *sport = wwn->priv;
3874
3875 if (sport->guid_id == port_id)
3876 sport->guid_id = NULL;
3877 else if (sport->gid_id == port_id)
3878 sport->gid_id = NULL;
3879 else
3880 WARN_ON_ONCE(true);
3881
3882 srpt_sdev_put(sport->sdev);
3883 kfree(port_id);
3884 }
3885
srpt_wwn_version_show(struct config_item * item,char * buf)3886 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3887 {
3888 return scnprintf(buf, PAGE_SIZE, "\n");
3889 }
3890
3891 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3892
3893 static struct configfs_attribute *srpt_wwn_attrs[] = {
3894 &srpt_wwn_attr_version,
3895 NULL,
3896 };
3897
3898 static const struct target_core_fabric_ops srpt_template = {
3899 .module = THIS_MODULE,
3900 .fabric_name = "srpt",
3901 .tpg_get_wwn = srpt_get_fabric_wwn,
3902 .tpg_get_tag = srpt_get_tag,
3903 .tpg_check_demo_mode = srpt_check_false,
3904 .tpg_check_demo_mode_cache = srpt_check_true,
3905 .tpg_check_demo_mode_write_protect = srpt_check_true,
3906 .tpg_check_prod_mode_write_protect = srpt_check_false,
3907 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3908 .release_cmd = srpt_release_cmd,
3909 .check_stop_free = srpt_check_stop_free,
3910 .close_session = srpt_close_session,
3911 .sess_get_index = srpt_sess_get_index,
3912 .sess_get_initiator_sid = NULL,
3913 .write_pending = srpt_write_pending,
3914 .set_default_node_attributes = srpt_set_default_node_attrs,
3915 .get_cmd_state = srpt_get_tcm_cmd_state,
3916 .queue_data_in = srpt_queue_data_in,
3917 .queue_status = srpt_queue_status,
3918 .queue_tm_rsp = srpt_queue_tm_rsp,
3919 .aborted_task = srpt_aborted_task,
3920 /*
3921 * Setup function pointers for generic logic in
3922 * target_core_fabric_configfs.c
3923 */
3924 .fabric_make_wwn = srpt_make_tport,
3925 .fabric_drop_wwn = srpt_drop_tport,
3926 .fabric_make_tpg = srpt_make_tpg,
3927 .fabric_drop_tpg = srpt_drop_tpg,
3928 .fabric_init_nodeacl = srpt_init_nodeacl,
3929
3930 .tfc_discovery_attrs = srpt_da_attrs,
3931 .tfc_wwn_attrs = srpt_wwn_attrs,
3932 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3933 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3934 };
3935
3936 /**
3937 * srpt_init_module - kernel module initialization
3938 *
3939 * Note: Since ib_register_client() registers callback functions, and since at
3940 * least one of these callback functions (srpt_add_one()) calls target core
3941 * functions, this driver must be registered with the target core before
3942 * ib_register_client() is called.
3943 */
srpt_init_module(void)3944 static int __init srpt_init_module(void)
3945 {
3946 int ret;
3947
3948 ret = -EINVAL;
3949 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3950 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3951 srp_max_req_size, MIN_MAX_REQ_SIZE);
3952 goto out;
3953 }
3954
3955 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3956 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3957 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3958 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3959 goto out;
3960 }
3961
3962 ret = target_register_template(&srpt_template);
3963 if (ret)
3964 goto out;
3965
3966 ret = ib_register_client(&srpt_client);
3967 if (ret) {
3968 pr_err("couldn't register IB client\n");
3969 goto out_unregister_target;
3970 }
3971
3972 return 0;
3973
3974 out_unregister_target:
3975 target_unregister_template(&srpt_template);
3976 out:
3977 return ret;
3978 }
3979
srpt_cleanup_module(void)3980 static void __exit srpt_cleanup_module(void)
3981 {
3982 if (rdma_cm_id)
3983 rdma_destroy_id(rdma_cm_id);
3984 ib_unregister_client(&srpt_client);
3985 target_unregister_template(&srpt_template);
3986 }
3987
3988 module_init(srpt_init_module);
3989 module_exit(srpt_cleanup_module);
3990