1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81 };
82
ib_event_msg(enum ib_event_type event)83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory management operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115 };
116
ib_wc_status_msg(enum ib_wc_status status)117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
ib_rate_to_mult(enum ib_rate rate)126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 default: return -1;
151 }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
mult_to_ib_rate(int mult)155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157 switch (mult) {
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
180 }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
ib_rate_to_mbps(enum ib_rate rate)184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186 switch (rate) {
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
208 default: return -1;
209 }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type)214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
225
226 return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
rdma_port_get_link_layer(struct ib_device * device,u8 port_num)230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
231 {
232 enum rdma_transport_type lt;
233 if (device->ops.get_link_layer)
234 return device->ops.get_link_layer(device, port_num);
235
236 lt = rdma_node_get_transport(device->node_type);
237 if (lt == RDMA_TRANSPORT_IB)
238 return IB_LINK_LAYER_INFINIBAND;
239
240 return IB_LINK_LAYER_ETHERNET;
241 }
242 EXPORT_SYMBOL(rdma_port_get_link_layer);
243
244 /* Protection domains */
245
246 /**
247 * ib_alloc_pd - Allocates an unused protection domain.
248 * @device: The device on which to allocate the protection domain.
249 * @flags: protection domain flags
250 * @caller: caller's build-time module name
251 *
252 * A protection domain object provides an association between QPs, shared
253 * receive queues, address handles, memory regions, and memory windows.
254 *
255 * Every PD has a local_dma_lkey which can be used as the lkey value for local
256 * memory operations.
257 */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)258 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
259 const char *caller)
260 {
261 struct ib_pd *pd;
262 int mr_access_flags = 0;
263 int ret;
264
265 pd = rdma_zalloc_drv_obj(device, ib_pd);
266 if (!pd)
267 return ERR_PTR(-ENOMEM);
268
269 pd->device = device;
270 pd->uobject = NULL;
271 pd->__internal_mr = NULL;
272 atomic_set(&pd->usecnt, 0);
273 pd->flags = flags;
274
275 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
276 rdma_restrack_set_name(&pd->res, caller);
277
278 ret = device->ops.alloc_pd(pd, NULL);
279 if (ret) {
280 rdma_restrack_put(&pd->res);
281 kfree(pd);
282 return ERR_PTR(ret);
283 }
284 rdma_restrack_add(&pd->res);
285
286 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
287 pd->local_dma_lkey = device->local_dma_lkey;
288 else
289 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
290
291 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
292 pr_warn("%s: enabling unsafe global rkey\n", caller);
293 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
294 }
295
296 if (mr_access_flags) {
297 struct ib_mr *mr;
298
299 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
300 if (IS_ERR(mr)) {
301 ib_dealloc_pd(pd);
302 return ERR_CAST(mr);
303 }
304
305 mr->device = pd->device;
306 mr->pd = pd;
307 mr->type = IB_MR_TYPE_DMA;
308 mr->uobject = NULL;
309 mr->need_inval = false;
310
311 pd->__internal_mr = mr;
312
313 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
314 pd->local_dma_lkey = pd->__internal_mr->lkey;
315
316 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
317 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
318 }
319
320 return pd;
321 }
322 EXPORT_SYMBOL(__ib_alloc_pd);
323
324 /**
325 * ib_dealloc_pd_user - Deallocates a protection domain.
326 * @pd: The protection domain to deallocate.
327 * @udata: Valid user data or NULL for kernel object
328 *
329 * It is an error to call this function while any resources in the pd still
330 * exist. The caller is responsible to synchronously destroy them and
331 * guarantee no new allocations will happen.
332 */
ib_dealloc_pd_user(struct ib_pd * pd,struct ib_udata * udata)333 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
334 {
335 int ret;
336
337 if (pd->__internal_mr) {
338 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
339 WARN_ON(ret);
340 pd->__internal_mr = NULL;
341 }
342
343 /* uverbs manipulates usecnt with proper locking, while the kabi
344 requires the caller to guarantee we can't race here. */
345 WARN_ON(atomic_read(&pd->usecnt));
346
347 ret = pd->device->ops.dealloc_pd(pd, udata);
348 if (ret)
349 return ret;
350
351 rdma_restrack_del(&pd->res);
352 kfree(pd);
353 return ret;
354 }
355 EXPORT_SYMBOL(ib_dealloc_pd_user);
356
357 /* Address handles */
358
359 /**
360 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
361 * @dest: Pointer to destination ah_attr. Contents of the destination
362 * pointer is assumed to be invalid and attribute are overwritten.
363 * @src: Pointer to source ah_attr.
364 */
rdma_copy_ah_attr(struct rdma_ah_attr * dest,const struct rdma_ah_attr * src)365 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
366 const struct rdma_ah_attr *src)
367 {
368 *dest = *src;
369 if (dest->grh.sgid_attr)
370 rdma_hold_gid_attr(dest->grh.sgid_attr);
371 }
372 EXPORT_SYMBOL(rdma_copy_ah_attr);
373
374 /**
375 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
376 * @old: Pointer to existing ah_attr which needs to be replaced.
377 * old is assumed to be valid or zero'd
378 * @new: Pointer to the new ah_attr.
379 *
380 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
381 * old the ah_attr is valid; after that it copies the new attribute and holds
382 * the reference to the replaced ah_attr.
383 */
rdma_replace_ah_attr(struct rdma_ah_attr * old,const struct rdma_ah_attr * new)384 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
385 const struct rdma_ah_attr *new)
386 {
387 rdma_destroy_ah_attr(old);
388 *old = *new;
389 if (old->grh.sgid_attr)
390 rdma_hold_gid_attr(old->grh.sgid_attr);
391 }
392 EXPORT_SYMBOL(rdma_replace_ah_attr);
393
394 /**
395 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
396 * @dest: Pointer to destination ah_attr to copy to.
397 * dest is assumed to be valid or zero'd
398 * @src: Pointer to the new ah_attr.
399 *
400 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
401 * if it is valid. This also transfers ownership of internal references from
402 * src to dest, making src invalid in the process. No new reference of the src
403 * ah_attr is taken.
404 */
rdma_move_ah_attr(struct rdma_ah_attr * dest,struct rdma_ah_attr * src)405 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
406 {
407 rdma_destroy_ah_attr(dest);
408 *dest = *src;
409 src->grh.sgid_attr = NULL;
410 }
411 EXPORT_SYMBOL(rdma_move_ah_attr);
412
413 /*
414 * Validate that the rdma_ah_attr is valid for the device before passing it
415 * off to the driver.
416 */
rdma_check_ah_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr)417 static int rdma_check_ah_attr(struct ib_device *device,
418 struct rdma_ah_attr *ah_attr)
419 {
420 if (!rdma_is_port_valid(device, ah_attr->port_num))
421 return -EINVAL;
422
423 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
424 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
425 !(ah_attr->ah_flags & IB_AH_GRH))
426 return -EINVAL;
427
428 if (ah_attr->grh.sgid_attr) {
429 /*
430 * Make sure the passed sgid_attr is consistent with the
431 * parameters
432 */
433 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
434 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
435 return -EINVAL;
436 }
437 return 0;
438 }
439
440 /*
441 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
442 * On success the caller is responsible to call rdma_unfill_sgid_attr().
443 */
rdma_fill_sgid_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr,const struct ib_gid_attr ** old_sgid_attr)444 static int rdma_fill_sgid_attr(struct ib_device *device,
445 struct rdma_ah_attr *ah_attr,
446 const struct ib_gid_attr **old_sgid_attr)
447 {
448 const struct ib_gid_attr *sgid_attr;
449 struct ib_global_route *grh;
450 int ret;
451
452 *old_sgid_attr = ah_attr->grh.sgid_attr;
453
454 ret = rdma_check_ah_attr(device, ah_attr);
455 if (ret)
456 return ret;
457
458 if (!(ah_attr->ah_flags & IB_AH_GRH))
459 return 0;
460
461 grh = rdma_ah_retrieve_grh(ah_attr);
462 if (grh->sgid_attr)
463 return 0;
464
465 sgid_attr =
466 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
467 if (IS_ERR(sgid_attr))
468 return PTR_ERR(sgid_attr);
469
470 /* Move ownerhip of the kref into the ah_attr */
471 grh->sgid_attr = sgid_attr;
472 return 0;
473 }
474
rdma_unfill_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_sgid_attr)475 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
476 const struct ib_gid_attr *old_sgid_attr)
477 {
478 /*
479 * Fill didn't change anything, the caller retains ownership of
480 * whatever it passed
481 */
482 if (ah_attr->grh.sgid_attr == old_sgid_attr)
483 return;
484
485 /*
486 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
487 * doesn't see any change in the rdma_ah_attr. If we get here
488 * old_sgid_attr is NULL.
489 */
490 rdma_destroy_ah_attr(ah_attr);
491 }
492
493 static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_attr)494 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
495 const struct ib_gid_attr *old_attr)
496 {
497 if (old_attr)
498 rdma_put_gid_attr(old_attr);
499 if (ah_attr->ah_flags & IB_AH_GRH) {
500 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
501 return ah_attr->grh.sgid_attr;
502 }
503 return NULL;
504 }
505
_rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags,struct ib_udata * udata,struct net_device * xmit_slave)506 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
507 struct rdma_ah_attr *ah_attr,
508 u32 flags,
509 struct ib_udata *udata,
510 struct net_device *xmit_slave)
511 {
512 struct rdma_ah_init_attr init_attr = {};
513 struct ib_device *device = pd->device;
514 struct ib_ah *ah;
515 int ret;
516
517 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
518
519 if (!device->ops.create_ah)
520 return ERR_PTR(-EOPNOTSUPP);
521
522 ah = rdma_zalloc_drv_obj_gfp(
523 device, ib_ah,
524 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
525 if (!ah)
526 return ERR_PTR(-ENOMEM);
527
528 ah->device = device;
529 ah->pd = pd;
530 ah->type = ah_attr->type;
531 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
532 init_attr.ah_attr = ah_attr;
533 init_attr.flags = flags;
534 init_attr.xmit_slave = xmit_slave;
535
536 ret = device->ops.create_ah(ah, &init_attr, udata);
537 if (ret) {
538 if (ah->sgid_attr)
539 rdma_put_gid_attr(ah->sgid_attr);
540 kfree(ah);
541 return ERR_PTR(ret);
542 }
543
544 atomic_inc(&pd->usecnt);
545 return ah;
546 }
547
548 /**
549 * rdma_create_ah - Creates an address handle for the
550 * given address vector.
551 * @pd: The protection domain associated with the address handle.
552 * @ah_attr: The attributes of the address vector.
553 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
554 *
555 * It returns 0 on success and returns appropriate error code on error.
556 * The address handle is used to reference a local or global destination
557 * in all UD QP post sends.
558 */
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags)559 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
560 u32 flags)
561 {
562 const struct ib_gid_attr *old_sgid_attr;
563 struct net_device *slave;
564 struct ib_ah *ah;
565 int ret;
566
567 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
568 if (ret)
569 return ERR_PTR(ret);
570 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
571 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
572 GFP_KERNEL : GFP_ATOMIC);
573 if (IS_ERR(slave)) {
574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575 return (void *)slave;
576 }
577 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
578 rdma_lag_put_ah_roce_slave(slave);
579 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
580 return ah;
581 }
582 EXPORT_SYMBOL(rdma_create_ah);
583
584 /**
585 * rdma_create_user_ah - Creates an address handle for the
586 * given address vector.
587 * It resolves destination mac address for ah attribute of RoCE type.
588 * @pd: The protection domain associated with the address handle.
589 * @ah_attr: The attributes of the address vector.
590 * @udata: pointer to user's input output buffer information need by
591 * provider driver.
592 *
593 * It returns 0 on success and returns appropriate error code on error.
594 * The address handle is used to reference a local or global destination
595 * in all UD QP post sends.
596 */
rdma_create_user_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)597 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
598 struct rdma_ah_attr *ah_attr,
599 struct ib_udata *udata)
600 {
601 const struct ib_gid_attr *old_sgid_attr;
602 struct ib_ah *ah;
603 int err;
604
605 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
606 if (err)
607 return ERR_PTR(err);
608
609 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
610 err = ib_resolve_eth_dmac(pd->device, ah_attr);
611 if (err) {
612 ah = ERR_PTR(err);
613 goto out;
614 }
615 }
616
617 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
618 udata, NULL);
619
620 out:
621 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
622 return ah;
623 }
624 EXPORT_SYMBOL(rdma_create_user_ah);
625
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)626 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
627 {
628 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
629 struct iphdr ip4h_checked;
630 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
631
632 /* If it's IPv6, the version must be 6, otherwise, the first
633 * 20 bytes (before the IPv4 header) are garbled.
634 */
635 if (ip6h->version != 6)
636 return (ip4h->version == 4) ? 4 : 0;
637 /* version may be 6 or 4 because the first 20 bytes could be garbled */
638
639 /* RoCE v2 requires no options, thus header length
640 * must be 5 words
641 */
642 if (ip4h->ihl != 5)
643 return 6;
644
645 /* Verify checksum.
646 * We can't write on scattered buffers so we need to copy to
647 * temp buffer.
648 */
649 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
650 ip4h_checked.check = 0;
651 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
652 /* if IPv4 header checksum is OK, believe it */
653 if (ip4h->check == ip4h_checked.check)
654 return 4;
655 return 6;
656 }
657 EXPORT_SYMBOL(ib_get_rdma_header_version);
658
ib_get_net_type_by_grh(struct ib_device * device,u8 port_num,const struct ib_grh * grh)659 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
660 u8 port_num,
661 const struct ib_grh *grh)
662 {
663 int grh_version;
664
665 if (rdma_protocol_ib(device, port_num))
666 return RDMA_NETWORK_IB;
667
668 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
669
670 if (grh_version == 4)
671 return RDMA_NETWORK_IPV4;
672
673 if (grh->next_hdr == IPPROTO_UDP)
674 return RDMA_NETWORK_IPV6;
675
676 return RDMA_NETWORK_ROCE_V1;
677 }
678
679 struct find_gid_index_context {
680 u16 vlan_id;
681 enum ib_gid_type gid_type;
682 };
683
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)684 static bool find_gid_index(const union ib_gid *gid,
685 const struct ib_gid_attr *gid_attr,
686 void *context)
687 {
688 struct find_gid_index_context *ctx = context;
689 u16 vlan_id = 0xffff;
690 int ret;
691
692 if (ctx->gid_type != gid_attr->gid_type)
693 return false;
694
695 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
696 if (ret)
697 return false;
698
699 return ctx->vlan_id == vlan_id;
700 }
701
702 static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device * device,u8 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type)703 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
704 u16 vlan_id, const union ib_gid *sgid,
705 enum ib_gid_type gid_type)
706 {
707 struct find_gid_index_context context = {.vlan_id = vlan_id,
708 .gid_type = gid_type};
709
710 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
711 &context);
712 }
713
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)714 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
715 enum rdma_network_type net_type,
716 union ib_gid *sgid, union ib_gid *dgid)
717 {
718 struct sockaddr_in src_in;
719 struct sockaddr_in dst_in;
720 __be32 src_saddr, dst_saddr;
721
722 if (!sgid || !dgid)
723 return -EINVAL;
724
725 if (net_type == RDMA_NETWORK_IPV4) {
726 memcpy(&src_in.sin_addr.s_addr,
727 &hdr->roce4grh.saddr, 4);
728 memcpy(&dst_in.sin_addr.s_addr,
729 &hdr->roce4grh.daddr, 4);
730 src_saddr = src_in.sin_addr.s_addr;
731 dst_saddr = dst_in.sin_addr.s_addr;
732 ipv6_addr_set_v4mapped(src_saddr,
733 (struct in6_addr *)sgid);
734 ipv6_addr_set_v4mapped(dst_saddr,
735 (struct in6_addr *)dgid);
736 return 0;
737 } else if (net_type == RDMA_NETWORK_IPV6 ||
738 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
739 *dgid = hdr->ibgrh.dgid;
740 *sgid = hdr->ibgrh.sgid;
741 return 0;
742 } else {
743 return -EINVAL;
744 }
745 }
746 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
747
748 /* Resolve destination mac address and hop limit for unicast destination
749 * GID entry, considering the source GID entry as well.
750 * ah_attribute must have have valid port_num, sgid_index.
751 */
ib_resolve_unicast_gid_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)752 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
753 struct rdma_ah_attr *ah_attr)
754 {
755 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
756 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
757 int hop_limit = 0xff;
758 int ret = 0;
759
760 /* If destination is link local and source GID is RoCEv1,
761 * IP stack is not used.
762 */
763 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
764 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
765 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
766 ah_attr->roce.dmac);
767 return ret;
768 }
769
770 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
771 ah_attr->roce.dmac,
772 sgid_attr, &hop_limit);
773
774 grh->hop_limit = hop_limit;
775 return ret;
776 }
777
778 /*
779 * This function initializes address handle attributes from the incoming packet.
780 * Incoming packet has dgid of the receiver node on which this code is
781 * getting executed and, sgid contains the GID of the sender.
782 *
783 * When resolving mac address of destination, the arrived dgid is used
784 * as sgid and, sgid is used as dgid because sgid contains destinations
785 * GID whom to respond to.
786 *
787 * On success the caller is responsible to call rdma_destroy_ah_attr on the
788 * attr.
789 */
ib_init_ah_attr_from_wc(struct ib_device * device,u8 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)790 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
791 const struct ib_wc *wc, const struct ib_grh *grh,
792 struct rdma_ah_attr *ah_attr)
793 {
794 u32 flow_class;
795 int ret;
796 enum rdma_network_type net_type = RDMA_NETWORK_IB;
797 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
798 const struct ib_gid_attr *sgid_attr;
799 int hoplimit = 0xff;
800 union ib_gid dgid;
801 union ib_gid sgid;
802
803 might_sleep();
804
805 memset(ah_attr, 0, sizeof *ah_attr);
806 ah_attr->type = rdma_ah_find_type(device, port_num);
807 if (rdma_cap_eth_ah(device, port_num)) {
808 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
809 net_type = wc->network_hdr_type;
810 else
811 net_type = ib_get_net_type_by_grh(device, port_num, grh);
812 gid_type = ib_network_to_gid_type(net_type);
813 }
814 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
815 &sgid, &dgid);
816 if (ret)
817 return ret;
818
819 rdma_ah_set_sl(ah_attr, wc->sl);
820 rdma_ah_set_port_num(ah_attr, port_num);
821
822 if (rdma_protocol_roce(device, port_num)) {
823 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
824 wc->vlan_id : 0xffff;
825
826 if (!(wc->wc_flags & IB_WC_GRH))
827 return -EPROTOTYPE;
828
829 sgid_attr = get_sgid_attr_from_eth(device, port_num,
830 vlan_id, &dgid,
831 gid_type);
832 if (IS_ERR(sgid_attr))
833 return PTR_ERR(sgid_attr);
834
835 flow_class = be32_to_cpu(grh->version_tclass_flow);
836 rdma_move_grh_sgid_attr(ah_attr,
837 &sgid,
838 flow_class & 0xFFFFF,
839 hoplimit,
840 (flow_class >> 20) & 0xFF,
841 sgid_attr);
842
843 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
844 if (ret)
845 rdma_destroy_ah_attr(ah_attr);
846
847 return ret;
848 } else {
849 rdma_ah_set_dlid(ah_attr, wc->slid);
850 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
851
852 if ((wc->wc_flags & IB_WC_GRH) == 0)
853 return 0;
854
855 if (dgid.global.interface_id !=
856 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
857 sgid_attr = rdma_find_gid_by_port(
858 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
859 } else
860 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
861
862 if (IS_ERR(sgid_attr))
863 return PTR_ERR(sgid_attr);
864 flow_class = be32_to_cpu(grh->version_tclass_flow);
865 rdma_move_grh_sgid_attr(ah_attr,
866 &sgid,
867 flow_class & 0xFFFFF,
868 hoplimit,
869 (flow_class >> 20) & 0xFF,
870 sgid_attr);
871
872 return 0;
873 }
874 }
875 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
876
877 /**
878 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
879 * of the reference
880 *
881 * @attr: Pointer to AH attribute structure
882 * @dgid: Destination GID
883 * @flow_label: Flow label
884 * @hop_limit: Hop limit
885 * @traffic_class: traffic class
886 * @sgid_attr: Pointer to SGID attribute
887 *
888 * This takes ownership of the sgid_attr reference. The caller must ensure
889 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
890 * calling this function.
891 */
rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 hop_limit,u8 traffic_class,const struct ib_gid_attr * sgid_attr)892 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
893 u32 flow_label, u8 hop_limit, u8 traffic_class,
894 const struct ib_gid_attr *sgid_attr)
895 {
896 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
897 traffic_class);
898 attr->grh.sgid_attr = sgid_attr;
899 }
900 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
901
902 /**
903 * rdma_destroy_ah_attr - Release reference to SGID attribute of
904 * ah attribute.
905 * @ah_attr: Pointer to ah attribute
906 *
907 * Release reference to the SGID attribute of the ah attribute if it is
908 * non NULL. It is safe to call this multiple times, and safe to call it on
909 * a zero initialized ah_attr.
910 */
rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)911 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
912 {
913 if (ah_attr->grh.sgid_attr) {
914 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
915 ah_attr->grh.sgid_attr = NULL;
916 }
917 }
918 EXPORT_SYMBOL(rdma_destroy_ah_attr);
919
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u8 port_num)920 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
921 const struct ib_grh *grh, u8 port_num)
922 {
923 struct rdma_ah_attr ah_attr;
924 struct ib_ah *ah;
925 int ret;
926
927 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
928 if (ret)
929 return ERR_PTR(ret);
930
931 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
932
933 rdma_destroy_ah_attr(&ah_attr);
934 return ah;
935 }
936 EXPORT_SYMBOL(ib_create_ah_from_wc);
937
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)938 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
939 {
940 const struct ib_gid_attr *old_sgid_attr;
941 int ret;
942
943 if (ah->type != ah_attr->type)
944 return -EINVAL;
945
946 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
947 if (ret)
948 return ret;
949
950 ret = ah->device->ops.modify_ah ?
951 ah->device->ops.modify_ah(ah, ah_attr) :
952 -EOPNOTSUPP;
953
954 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
955 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
956 return ret;
957 }
958 EXPORT_SYMBOL(rdma_modify_ah);
959
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)960 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
961 {
962 ah_attr->grh.sgid_attr = NULL;
963
964 return ah->device->ops.query_ah ?
965 ah->device->ops.query_ah(ah, ah_attr) :
966 -EOPNOTSUPP;
967 }
968 EXPORT_SYMBOL(rdma_query_ah);
969
rdma_destroy_ah_user(struct ib_ah * ah,u32 flags,struct ib_udata * udata)970 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
971 {
972 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
973 struct ib_pd *pd;
974 int ret;
975
976 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
977
978 pd = ah->pd;
979
980 ret = ah->device->ops.destroy_ah(ah, flags);
981 if (ret)
982 return ret;
983
984 atomic_dec(&pd->usecnt);
985 if (sgid_attr)
986 rdma_put_gid_attr(sgid_attr);
987
988 kfree(ah);
989 return ret;
990 }
991 EXPORT_SYMBOL(rdma_destroy_ah_user);
992
993 /* Shared receive queues */
994
995 /**
996 * ib_create_srq_user - Creates a SRQ associated with the specified protection
997 * domain.
998 * @pd: The protection domain associated with the SRQ.
999 * @srq_init_attr: A list of initial attributes required to create the
1000 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1001 * the actual capabilities of the created SRQ.
1002 * @uobject: uobject pointer if this is not a kernel SRQ
1003 * @udata: udata pointer if this is not a kernel SRQ
1004 *
1005 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1006 * requested size of the SRQ, and set to the actual values allocated
1007 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1008 * will always be at least as large as the requested values.
1009 */
ib_create_srq_user(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr,struct ib_usrq_object * uobject,struct ib_udata * udata)1010 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1011 struct ib_srq_init_attr *srq_init_attr,
1012 struct ib_usrq_object *uobject,
1013 struct ib_udata *udata)
1014 {
1015 struct ib_srq *srq;
1016 int ret;
1017
1018 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1019 if (!srq)
1020 return ERR_PTR(-ENOMEM);
1021
1022 srq->device = pd->device;
1023 srq->pd = pd;
1024 srq->event_handler = srq_init_attr->event_handler;
1025 srq->srq_context = srq_init_attr->srq_context;
1026 srq->srq_type = srq_init_attr->srq_type;
1027 srq->uobject = uobject;
1028
1029 if (ib_srq_has_cq(srq->srq_type)) {
1030 srq->ext.cq = srq_init_attr->ext.cq;
1031 atomic_inc(&srq->ext.cq->usecnt);
1032 }
1033 if (srq->srq_type == IB_SRQT_XRC) {
1034 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1035 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1036 }
1037 atomic_inc(&pd->usecnt);
1038
1039 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1040 if (ret) {
1041 atomic_dec(&srq->pd->usecnt);
1042 if (srq->srq_type == IB_SRQT_XRC)
1043 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1044 if (ib_srq_has_cq(srq->srq_type))
1045 atomic_dec(&srq->ext.cq->usecnt);
1046 kfree(srq);
1047 return ERR_PTR(ret);
1048 }
1049
1050 return srq;
1051 }
1052 EXPORT_SYMBOL(ib_create_srq_user);
1053
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)1054 int ib_modify_srq(struct ib_srq *srq,
1055 struct ib_srq_attr *srq_attr,
1056 enum ib_srq_attr_mask srq_attr_mask)
1057 {
1058 return srq->device->ops.modify_srq ?
1059 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1060 NULL) : -EOPNOTSUPP;
1061 }
1062 EXPORT_SYMBOL(ib_modify_srq);
1063
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)1064 int ib_query_srq(struct ib_srq *srq,
1065 struct ib_srq_attr *srq_attr)
1066 {
1067 return srq->device->ops.query_srq ?
1068 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1069 }
1070 EXPORT_SYMBOL(ib_query_srq);
1071
ib_destroy_srq_user(struct ib_srq * srq,struct ib_udata * udata)1072 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1073 {
1074 int ret;
1075
1076 if (atomic_read(&srq->usecnt))
1077 return -EBUSY;
1078
1079 ret = srq->device->ops.destroy_srq(srq, udata);
1080 if (ret)
1081 return ret;
1082
1083 atomic_dec(&srq->pd->usecnt);
1084 if (srq->srq_type == IB_SRQT_XRC)
1085 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1086 if (ib_srq_has_cq(srq->srq_type))
1087 atomic_dec(&srq->ext.cq->usecnt);
1088 kfree(srq);
1089
1090 return ret;
1091 }
1092 EXPORT_SYMBOL(ib_destroy_srq_user);
1093
1094 /* Queue pairs */
1095
__ib_shared_qp_event_handler(struct ib_event * event,void * context)1096 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1097 {
1098 struct ib_qp *qp = context;
1099 unsigned long flags;
1100
1101 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1102 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1103 if (event->element.qp->event_handler)
1104 event->element.qp->event_handler(event, event->element.qp->qp_context);
1105 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1106 }
1107
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)1108 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1109 void (*event_handler)(struct ib_event *, void *),
1110 void *qp_context)
1111 {
1112 struct ib_qp *qp;
1113 unsigned long flags;
1114 int err;
1115
1116 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1117 if (!qp)
1118 return ERR_PTR(-ENOMEM);
1119
1120 qp->real_qp = real_qp;
1121 err = ib_open_shared_qp_security(qp, real_qp->device);
1122 if (err) {
1123 kfree(qp);
1124 return ERR_PTR(err);
1125 }
1126
1127 qp->real_qp = real_qp;
1128 atomic_inc(&real_qp->usecnt);
1129 qp->device = real_qp->device;
1130 qp->event_handler = event_handler;
1131 qp->qp_context = qp_context;
1132 qp->qp_num = real_qp->qp_num;
1133 qp->qp_type = real_qp->qp_type;
1134
1135 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1136 list_add(&qp->open_list, &real_qp->open_list);
1137 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1138
1139 return qp;
1140 }
1141
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)1142 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1143 struct ib_qp_open_attr *qp_open_attr)
1144 {
1145 struct ib_qp *qp, *real_qp;
1146
1147 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1148 return ERR_PTR(-EINVAL);
1149
1150 down_read(&xrcd->tgt_qps_rwsem);
1151 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1152 if (!real_qp) {
1153 up_read(&xrcd->tgt_qps_rwsem);
1154 return ERR_PTR(-EINVAL);
1155 }
1156 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1157 qp_open_attr->qp_context);
1158 up_read(&xrcd->tgt_qps_rwsem);
1159 return qp;
1160 }
1161 EXPORT_SYMBOL(ib_open_qp);
1162
create_xrc_qp_user(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)1163 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1164 struct ib_qp_init_attr *qp_init_attr)
1165 {
1166 struct ib_qp *real_qp = qp;
1167 int err;
1168
1169 qp->event_handler = __ib_shared_qp_event_handler;
1170 qp->qp_context = qp;
1171 qp->pd = NULL;
1172 qp->send_cq = qp->recv_cq = NULL;
1173 qp->srq = NULL;
1174 qp->xrcd = qp_init_attr->xrcd;
1175 atomic_inc(&qp_init_attr->xrcd->usecnt);
1176 INIT_LIST_HEAD(&qp->open_list);
1177
1178 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1179 qp_init_attr->qp_context);
1180 if (IS_ERR(qp))
1181 return qp;
1182
1183 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1184 real_qp, GFP_KERNEL));
1185 if (err) {
1186 ib_close_qp(qp);
1187 return ERR_PTR(err);
1188 }
1189 return qp;
1190 }
1191
1192 /**
1193 * ib_create_qp - Creates a kernel QP associated with the specified protection
1194 * domain.
1195 * @pd: The protection domain associated with the QP.
1196 * @qp_init_attr: A list of initial attributes required to create the
1197 * QP. If QP creation succeeds, then the attributes are updated to
1198 * the actual capabilities of the created QP.
1199 *
1200 * NOTE: for user qp use ib_create_qp_user with valid udata!
1201 */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)1202 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1203 struct ib_qp_init_attr *qp_init_attr)
1204 {
1205 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1206 struct ib_qp *qp;
1207 int ret;
1208
1209 if (qp_init_attr->rwq_ind_tbl &&
1210 (qp_init_attr->recv_cq ||
1211 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1212 qp_init_attr->cap.max_recv_sge))
1213 return ERR_PTR(-EINVAL);
1214
1215 if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1216 !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1217 return ERR_PTR(-EINVAL);
1218
1219 /*
1220 * If the callers is using the RDMA API calculate the resources
1221 * needed for the RDMA READ/WRITE operations.
1222 *
1223 * Note that these callers need to pass in a port number.
1224 */
1225 if (qp_init_attr->cap.max_rdma_ctxs)
1226 rdma_rw_init_qp(device, qp_init_attr);
1227
1228 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1229 if (IS_ERR(qp))
1230 return qp;
1231
1232 ret = ib_create_qp_security(qp, device);
1233 if (ret)
1234 goto err;
1235
1236 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1237 struct ib_qp *xrc_qp =
1238 create_xrc_qp_user(qp, qp_init_attr);
1239
1240 if (IS_ERR(xrc_qp)) {
1241 ret = PTR_ERR(xrc_qp);
1242 goto err;
1243 }
1244 return xrc_qp;
1245 }
1246
1247 qp->event_handler = qp_init_attr->event_handler;
1248 qp->qp_context = qp_init_attr->qp_context;
1249 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1250 qp->recv_cq = NULL;
1251 qp->srq = NULL;
1252 } else {
1253 qp->recv_cq = qp_init_attr->recv_cq;
1254 if (qp_init_attr->recv_cq)
1255 atomic_inc(&qp_init_attr->recv_cq->usecnt);
1256 qp->srq = qp_init_attr->srq;
1257 if (qp->srq)
1258 atomic_inc(&qp_init_attr->srq->usecnt);
1259 }
1260
1261 qp->send_cq = qp_init_attr->send_cq;
1262 qp->xrcd = NULL;
1263
1264 atomic_inc(&pd->usecnt);
1265 if (qp_init_attr->send_cq)
1266 atomic_inc(&qp_init_attr->send_cq->usecnt);
1267 if (qp_init_attr->rwq_ind_tbl)
1268 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1269
1270 if (qp_init_attr->cap.max_rdma_ctxs) {
1271 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1272 if (ret)
1273 goto err;
1274 }
1275
1276 /*
1277 * Note: all hw drivers guarantee that max_send_sge is lower than
1278 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1279 * max_send_sge <= max_sge_rd.
1280 */
1281 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1282 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1283 device->attrs.max_sge_rd);
1284 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1285 qp->integrity_en = true;
1286
1287 return qp;
1288
1289 err:
1290 ib_destroy_qp(qp);
1291 return ERR_PTR(ret);
1292
1293 }
1294 EXPORT_SYMBOL(ib_create_qp);
1295
1296 static const struct {
1297 int valid;
1298 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1299 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1300 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1301 [IB_QPS_RESET] = {
1302 [IB_QPS_RESET] = { .valid = 1 },
1303 [IB_QPS_INIT] = {
1304 .valid = 1,
1305 .req_param = {
1306 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1307 IB_QP_PORT |
1308 IB_QP_QKEY),
1309 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1310 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1311 IB_QP_PORT |
1312 IB_QP_ACCESS_FLAGS),
1313 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1314 IB_QP_PORT |
1315 IB_QP_ACCESS_FLAGS),
1316 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1317 IB_QP_PORT |
1318 IB_QP_ACCESS_FLAGS),
1319 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1320 IB_QP_PORT |
1321 IB_QP_ACCESS_FLAGS),
1322 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1323 IB_QP_QKEY),
1324 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1325 IB_QP_QKEY),
1326 }
1327 },
1328 },
1329 [IB_QPS_INIT] = {
1330 [IB_QPS_RESET] = { .valid = 1 },
1331 [IB_QPS_ERR] = { .valid = 1 },
1332 [IB_QPS_INIT] = {
1333 .valid = 1,
1334 .opt_param = {
1335 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1336 IB_QP_PORT |
1337 IB_QP_QKEY),
1338 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1339 IB_QP_PORT |
1340 IB_QP_ACCESS_FLAGS),
1341 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1342 IB_QP_PORT |
1343 IB_QP_ACCESS_FLAGS),
1344 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1345 IB_QP_PORT |
1346 IB_QP_ACCESS_FLAGS),
1347 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1348 IB_QP_PORT |
1349 IB_QP_ACCESS_FLAGS),
1350 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1351 IB_QP_QKEY),
1352 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1353 IB_QP_QKEY),
1354 }
1355 },
1356 [IB_QPS_RTR] = {
1357 .valid = 1,
1358 .req_param = {
1359 [IB_QPT_UC] = (IB_QP_AV |
1360 IB_QP_PATH_MTU |
1361 IB_QP_DEST_QPN |
1362 IB_QP_RQ_PSN),
1363 [IB_QPT_RC] = (IB_QP_AV |
1364 IB_QP_PATH_MTU |
1365 IB_QP_DEST_QPN |
1366 IB_QP_RQ_PSN |
1367 IB_QP_MAX_DEST_RD_ATOMIC |
1368 IB_QP_MIN_RNR_TIMER),
1369 [IB_QPT_XRC_INI] = (IB_QP_AV |
1370 IB_QP_PATH_MTU |
1371 IB_QP_DEST_QPN |
1372 IB_QP_RQ_PSN),
1373 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1374 IB_QP_PATH_MTU |
1375 IB_QP_DEST_QPN |
1376 IB_QP_RQ_PSN |
1377 IB_QP_MAX_DEST_RD_ATOMIC |
1378 IB_QP_MIN_RNR_TIMER),
1379 },
1380 .opt_param = {
1381 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1382 IB_QP_QKEY),
1383 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1384 IB_QP_ACCESS_FLAGS |
1385 IB_QP_PKEY_INDEX),
1386 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1387 IB_QP_ACCESS_FLAGS |
1388 IB_QP_PKEY_INDEX),
1389 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1390 IB_QP_ACCESS_FLAGS |
1391 IB_QP_PKEY_INDEX),
1392 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1393 IB_QP_ACCESS_FLAGS |
1394 IB_QP_PKEY_INDEX),
1395 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1396 IB_QP_QKEY),
1397 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1398 IB_QP_QKEY),
1399 },
1400 },
1401 },
1402 [IB_QPS_RTR] = {
1403 [IB_QPS_RESET] = { .valid = 1 },
1404 [IB_QPS_ERR] = { .valid = 1 },
1405 [IB_QPS_RTS] = {
1406 .valid = 1,
1407 .req_param = {
1408 [IB_QPT_UD] = IB_QP_SQ_PSN,
1409 [IB_QPT_UC] = IB_QP_SQ_PSN,
1410 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1411 IB_QP_RETRY_CNT |
1412 IB_QP_RNR_RETRY |
1413 IB_QP_SQ_PSN |
1414 IB_QP_MAX_QP_RD_ATOMIC),
1415 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1416 IB_QP_RETRY_CNT |
1417 IB_QP_RNR_RETRY |
1418 IB_QP_SQ_PSN |
1419 IB_QP_MAX_QP_RD_ATOMIC),
1420 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1421 IB_QP_SQ_PSN),
1422 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1423 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1424 },
1425 .opt_param = {
1426 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1427 IB_QP_QKEY),
1428 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1429 IB_QP_ALT_PATH |
1430 IB_QP_ACCESS_FLAGS |
1431 IB_QP_PATH_MIG_STATE),
1432 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1433 IB_QP_ALT_PATH |
1434 IB_QP_ACCESS_FLAGS |
1435 IB_QP_MIN_RNR_TIMER |
1436 IB_QP_PATH_MIG_STATE),
1437 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1438 IB_QP_ALT_PATH |
1439 IB_QP_ACCESS_FLAGS |
1440 IB_QP_PATH_MIG_STATE),
1441 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1442 IB_QP_ALT_PATH |
1443 IB_QP_ACCESS_FLAGS |
1444 IB_QP_MIN_RNR_TIMER |
1445 IB_QP_PATH_MIG_STATE),
1446 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1447 IB_QP_QKEY),
1448 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1449 IB_QP_QKEY),
1450 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1451 }
1452 }
1453 },
1454 [IB_QPS_RTS] = {
1455 [IB_QPS_RESET] = { .valid = 1 },
1456 [IB_QPS_ERR] = { .valid = 1 },
1457 [IB_QPS_RTS] = {
1458 .valid = 1,
1459 .opt_param = {
1460 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1461 IB_QP_QKEY),
1462 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1463 IB_QP_ACCESS_FLAGS |
1464 IB_QP_ALT_PATH |
1465 IB_QP_PATH_MIG_STATE),
1466 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1467 IB_QP_ACCESS_FLAGS |
1468 IB_QP_ALT_PATH |
1469 IB_QP_PATH_MIG_STATE |
1470 IB_QP_MIN_RNR_TIMER),
1471 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1472 IB_QP_ACCESS_FLAGS |
1473 IB_QP_ALT_PATH |
1474 IB_QP_PATH_MIG_STATE),
1475 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1476 IB_QP_ACCESS_FLAGS |
1477 IB_QP_ALT_PATH |
1478 IB_QP_PATH_MIG_STATE |
1479 IB_QP_MIN_RNR_TIMER),
1480 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1481 IB_QP_QKEY),
1482 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1483 IB_QP_QKEY),
1484 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1485 }
1486 },
1487 [IB_QPS_SQD] = {
1488 .valid = 1,
1489 .opt_param = {
1490 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1491 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1492 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1493 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1494 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1495 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1496 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1497 }
1498 },
1499 },
1500 [IB_QPS_SQD] = {
1501 [IB_QPS_RESET] = { .valid = 1 },
1502 [IB_QPS_ERR] = { .valid = 1 },
1503 [IB_QPS_RTS] = {
1504 .valid = 1,
1505 .opt_param = {
1506 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1507 IB_QP_QKEY),
1508 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1509 IB_QP_ALT_PATH |
1510 IB_QP_ACCESS_FLAGS |
1511 IB_QP_PATH_MIG_STATE),
1512 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1513 IB_QP_ALT_PATH |
1514 IB_QP_ACCESS_FLAGS |
1515 IB_QP_MIN_RNR_TIMER |
1516 IB_QP_PATH_MIG_STATE),
1517 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1518 IB_QP_ALT_PATH |
1519 IB_QP_ACCESS_FLAGS |
1520 IB_QP_PATH_MIG_STATE),
1521 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1522 IB_QP_ALT_PATH |
1523 IB_QP_ACCESS_FLAGS |
1524 IB_QP_MIN_RNR_TIMER |
1525 IB_QP_PATH_MIG_STATE),
1526 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1527 IB_QP_QKEY),
1528 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1529 IB_QP_QKEY),
1530 }
1531 },
1532 [IB_QPS_SQD] = {
1533 .valid = 1,
1534 .opt_param = {
1535 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1536 IB_QP_QKEY),
1537 [IB_QPT_UC] = (IB_QP_AV |
1538 IB_QP_ALT_PATH |
1539 IB_QP_ACCESS_FLAGS |
1540 IB_QP_PKEY_INDEX |
1541 IB_QP_PATH_MIG_STATE),
1542 [IB_QPT_RC] = (IB_QP_PORT |
1543 IB_QP_AV |
1544 IB_QP_TIMEOUT |
1545 IB_QP_RETRY_CNT |
1546 IB_QP_RNR_RETRY |
1547 IB_QP_MAX_QP_RD_ATOMIC |
1548 IB_QP_MAX_DEST_RD_ATOMIC |
1549 IB_QP_ALT_PATH |
1550 IB_QP_ACCESS_FLAGS |
1551 IB_QP_PKEY_INDEX |
1552 IB_QP_MIN_RNR_TIMER |
1553 IB_QP_PATH_MIG_STATE),
1554 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1555 IB_QP_AV |
1556 IB_QP_TIMEOUT |
1557 IB_QP_RETRY_CNT |
1558 IB_QP_RNR_RETRY |
1559 IB_QP_MAX_QP_RD_ATOMIC |
1560 IB_QP_ALT_PATH |
1561 IB_QP_ACCESS_FLAGS |
1562 IB_QP_PKEY_INDEX |
1563 IB_QP_PATH_MIG_STATE),
1564 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1565 IB_QP_AV |
1566 IB_QP_TIMEOUT |
1567 IB_QP_MAX_DEST_RD_ATOMIC |
1568 IB_QP_ALT_PATH |
1569 IB_QP_ACCESS_FLAGS |
1570 IB_QP_PKEY_INDEX |
1571 IB_QP_MIN_RNR_TIMER |
1572 IB_QP_PATH_MIG_STATE),
1573 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1574 IB_QP_QKEY),
1575 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1576 IB_QP_QKEY),
1577 }
1578 }
1579 },
1580 [IB_QPS_SQE] = {
1581 [IB_QPS_RESET] = { .valid = 1 },
1582 [IB_QPS_ERR] = { .valid = 1 },
1583 [IB_QPS_RTS] = {
1584 .valid = 1,
1585 .opt_param = {
1586 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1587 IB_QP_QKEY),
1588 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1589 IB_QP_ACCESS_FLAGS),
1590 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1591 IB_QP_QKEY),
1592 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1593 IB_QP_QKEY),
1594 }
1595 }
1596 },
1597 [IB_QPS_ERR] = {
1598 [IB_QPS_RESET] = { .valid = 1 },
1599 [IB_QPS_ERR] = { .valid = 1 }
1600 }
1601 };
1602
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask)1603 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1604 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1605 {
1606 enum ib_qp_attr_mask req_param, opt_param;
1607
1608 if (mask & IB_QP_CUR_STATE &&
1609 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1610 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1611 return false;
1612
1613 if (!qp_state_table[cur_state][next_state].valid)
1614 return false;
1615
1616 req_param = qp_state_table[cur_state][next_state].req_param[type];
1617 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1618
1619 if ((mask & req_param) != req_param)
1620 return false;
1621
1622 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1623 return false;
1624
1625 return true;
1626 }
1627 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1628
1629 /**
1630 * ib_resolve_eth_dmac - Resolve destination mac address
1631 * @device: Device to consider
1632 * @ah_attr: address handle attribute which describes the
1633 * source and destination parameters
1634 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1635 * returns 0 on success or appropriate error code. It initializes the
1636 * necessary ah_attr fields when call is successful.
1637 */
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1638 static int ib_resolve_eth_dmac(struct ib_device *device,
1639 struct rdma_ah_attr *ah_attr)
1640 {
1641 int ret = 0;
1642
1643 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1644 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1645 __be32 addr = 0;
1646
1647 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1648 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1649 } else {
1650 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1651 (char *)ah_attr->roce.dmac);
1652 }
1653 } else {
1654 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1655 }
1656 return ret;
1657 }
1658
is_qp_type_connected(const struct ib_qp * qp)1659 static bool is_qp_type_connected(const struct ib_qp *qp)
1660 {
1661 return (qp->qp_type == IB_QPT_UC ||
1662 qp->qp_type == IB_QPT_RC ||
1663 qp->qp_type == IB_QPT_XRC_INI ||
1664 qp->qp_type == IB_QPT_XRC_TGT);
1665 }
1666
1667 /**
1668 * IB core internal function to perform QP attributes modification.
1669 */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1670 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1671 int attr_mask, struct ib_udata *udata)
1672 {
1673 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1674 const struct ib_gid_attr *old_sgid_attr_av;
1675 const struct ib_gid_attr *old_sgid_attr_alt_av;
1676 int ret;
1677
1678 attr->xmit_slave = NULL;
1679 if (attr_mask & IB_QP_AV) {
1680 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1681 &old_sgid_attr_av);
1682 if (ret)
1683 return ret;
1684
1685 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1686 is_qp_type_connected(qp)) {
1687 struct net_device *slave;
1688
1689 /*
1690 * If the user provided the qp_attr then we have to
1691 * resolve it. Kerne users have to provide already
1692 * resolved rdma_ah_attr's.
1693 */
1694 if (udata) {
1695 ret = ib_resolve_eth_dmac(qp->device,
1696 &attr->ah_attr);
1697 if (ret)
1698 goto out_av;
1699 }
1700 slave = rdma_lag_get_ah_roce_slave(qp->device,
1701 &attr->ah_attr,
1702 GFP_KERNEL);
1703 if (IS_ERR(slave)) {
1704 ret = PTR_ERR(slave);
1705 goto out_av;
1706 }
1707 attr->xmit_slave = slave;
1708 }
1709 }
1710 if (attr_mask & IB_QP_ALT_PATH) {
1711 /*
1712 * FIXME: This does not track the migration state, so if the
1713 * user loads a new alternate path after the HW has migrated
1714 * from primary->alternate we will keep the wrong
1715 * references. This is OK for IB because the reference
1716 * counting does not serve any functional purpose.
1717 */
1718 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1719 &old_sgid_attr_alt_av);
1720 if (ret)
1721 goto out_av;
1722
1723 /*
1724 * Today the core code can only handle alternate paths and APM
1725 * for IB. Ban them in roce mode.
1726 */
1727 if (!(rdma_protocol_ib(qp->device,
1728 attr->alt_ah_attr.port_num) &&
1729 rdma_protocol_ib(qp->device, port))) {
1730 ret = -EINVAL;
1731 goto out;
1732 }
1733 }
1734
1735 if (rdma_ib_or_roce(qp->device, port)) {
1736 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1737 dev_warn(&qp->device->dev,
1738 "%s rq_psn overflow, masking to 24 bits\n",
1739 __func__);
1740 attr->rq_psn &= 0xffffff;
1741 }
1742
1743 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1744 dev_warn(&qp->device->dev,
1745 " %s sq_psn overflow, masking to 24 bits\n",
1746 __func__);
1747 attr->sq_psn &= 0xffffff;
1748 }
1749 }
1750
1751 /*
1752 * Bind this qp to a counter automatically based on the rdma counter
1753 * rules. This only set in RST2INIT with port specified
1754 */
1755 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1756 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1757 rdma_counter_bind_qp_auto(qp, attr->port_num);
1758
1759 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1760 if (ret)
1761 goto out;
1762
1763 if (attr_mask & IB_QP_PORT)
1764 qp->port = attr->port_num;
1765 if (attr_mask & IB_QP_AV)
1766 qp->av_sgid_attr =
1767 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1768 if (attr_mask & IB_QP_ALT_PATH)
1769 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1770 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1771
1772 out:
1773 if (attr_mask & IB_QP_ALT_PATH)
1774 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1775 out_av:
1776 if (attr_mask & IB_QP_AV) {
1777 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1778 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1779 }
1780 return ret;
1781 }
1782
1783 /**
1784 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1785 * @ib_qp: The QP to modify.
1786 * @attr: On input, specifies the QP attributes to modify. On output,
1787 * the current values of selected QP attributes are returned.
1788 * @attr_mask: A bit-mask used to specify which attributes of the QP
1789 * are being modified.
1790 * @udata: pointer to user's input output buffer information
1791 * are being modified.
1792 * It returns 0 on success and returns appropriate error code on error.
1793 */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1794 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1795 int attr_mask, struct ib_udata *udata)
1796 {
1797 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1798 }
1799 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1800
ib_get_eth_speed(struct ib_device * dev,u8 port_num,u16 * speed,u8 * width)1801 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width)
1802 {
1803 int rc;
1804 u32 netdev_speed;
1805 struct net_device *netdev;
1806 struct ethtool_link_ksettings lksettings;
1807
1808 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1809 return -EINVAL;
1810
1811 netdev = ib_device_get_netdev(dev, port_num);
1812 if (!netdev)
1813 return -ENODEV;
1814
1815 rtnl_lock();
1816 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1817 rtnl_unlock();
1818
1819 dev_put(netdev);
1820
1821 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1822 netdev_speed = lksettings.base.speed;
1823 } else {
1824 netdev_speed = SPEED_1000;
1825 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1826 netdev_speed);
1827 }
1828
1829 if (netdev_speed <= SPEED_1000) {
1830 *width = IB_WIDTH_1X;
1831 *speed = IB_SPEED_SDR;
1832 } else if (netdev_speed <= SPEED_10000) {
1833 *width = IB_WIDTH_1X;
1834 *speed = IB_SPEED_FDR10;
1835 } else if (netdev_speed <= SPEED_20000) {
1836 *width = IB_WIDTH_4X;
1837 *speed = IB_SPEED_DDR;
1838 } else if (netdev_speed <= SPEED_25000) {
1839 *width = IB_WIDTH_1X;
1840 *speed = IB_SPEED_EDR;
1841 } else if (netdev_speed <= SPEED_40000) {
1842 *width = IB_WIDTH_4X;
1843 *speed = IB_SPEED_FDR10;
1844 } else {
1845 *width = IB_WIDTH_4X;
1846 *speed = IB_SPEED_EDR;
1847 }
1848
1849 return 0;
1850 }
1851 EXPORT_SYMBOL(ib_get_eth_speed);
1852
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)1853 int ib_modify_qp(struct ib_qp *qp,
1854 struct ib_qp_attr *qp_attr,
1855 int qp_attr_mask)
1856 {
1857 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1858 }
1859 EXPORT_SYMBOL(ib_modify_qp);
1860
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)1861 int ib_query_qp(struct ib_qp *qp,
1862 struct ib_qp_attr *qp_attr,
1863 int qp_attr_mask,
1864 struct ib_qp_init_attr *qp_init_attr)
1865 {
1866 qp_attr->ah_attr.grh.sgid_attr = NULL;
1867 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1868
1869 return qp->device->ops.query_qp ?
1870 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1871 qp_init_attr) : -EOPNOTSUPP;
1872 }
1873 EXPORT_SYMBOL(ib_query_qp);
1874
ib_close_qp(struct ib_qp * qp)1875 int ib_close_qp(struct ib_qp *qp)
1876 {
1877 struct ib_qp *real_qp;
1878 unsigned long flags;
1879
1880 real_qp = qp->real_qp;
1881 if (real_qp == qp)
1882 return -EINVAL;
1883
1884 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1885 list_del(&qp->open_list);
1886 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1887
1888 atomic_dec(&real_qp->usecnt);
1889 if (qp->qp_sec)
1890 ib_close_shared_qp_security(qp->qp_sec);
1891 kfree(qp);
1892
1893 return 0;
1894 }
1895 EXPORT_SYMBOL(ib_close_qp);
1896
__ib_destroy_shared_qp(struct ib_qp * qp)1897 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1898 {
1899 struct ib_xrcd *xrcd;
1900 struct ib_qp *real_qp;
1901 int ret;
1902
1903 real_qp = qp->real_qp;
1904 xrcd = real_qp->xrcd;
1905 down_write(&xrcd->tgt_qps_rwsem);
1906 ib_close_qp(qp);
1907 if (atomic_read(&real_qp->usecnt) == 0)
1908 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1909 else
1910 real_qp = NULL;
1911 up_write(&xrcd->tgt_qps_rwsem);
1912
1913 if (real_qp) {
1914 ret = ib_destroy_qp(real_qp);
1915 if (!ret)
1916 atomic_dec(&xrcd->usecnt);
1917 }
1918
1919 return 0;
1920 }
1921
ib_destroy_qp_user(struct ib_qp * qp,struct ib_udata * udata)1922 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1923 {
1924 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1925 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1926 struct ib_pd *pd;
1927 struct ib_cq *scq, *rcq;
1928 struct ib_srq *srq;
1929 struct ib_rwq_ind_table *ind_tbl;
1930 struct ib_qp_security *sec;
1931 int ret;
1932
1933 WARN_ON_ONCE(qp->mrs_used > 0);
1934
1935 if (atomic_read(&qp->usecnt))
1936 return -EBUSY;
1937
1938 if (qp->real_qp != qp)
1939 return __ib_destroy_shared_qp(qp);
1940
1941 pd = qp->pd;
1942 scq = qp->send_cq;
1943 rcq = qp->recv_cq;
1944 srq = qp->srq;
1945 ind_tbl = qp->rwq_ind_tbl;
1946 sec = qp->qp_sec;
1947 if (sec)
1948 ib_destroy_qp_security_begin(sec);
1949
1950 if (!qp->uobject)
1951 rdma_rw_cleanup_mrs(qp);
1952
1953 rdma_counter_unbind_qp(qp, true);
1954 rdma_restrack_del(&qp->res);
1955 ret = qp->device->ops.destroy_qp(qp, udata);
1956 if (!ret) {
1957 if (alt_path_sgid_attr)
1958 rdma_put_gid_attr(alt_path_sgid_attr);
1959 if (av_sgid_attr)
1960 rdma_put_gid_attr(av_sgid_attr);
1961 if (pd)
1962 atomic_dec(&pd->usecnt);
1963 if (scq)
1964 atomic_dec(&scq->usecnt);
1965 if (rcq)
1966 atomic_dec(&rcq->usecnt);
1967 if (srq)
1968 atomic_dec(&srq->usecnt);
1969 if (ind_tbl)
1970 atomic_dec(&ind_tbl->usecnt);
1971 if (sec)
1972 ib_destroy_qp_security_end(sec);
1973 } else {
1974 if (sec)
1975 ib_destroy_qp_security_abort(sec);
1976 }
1977
1978 return ret;
1979 }
1980 EXPORT_SYMBOL(ib_destroy_qp_user);
1981
1982 /* Completion queues */
1983
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)1984 struct ib_cq *__ib_create_cq(struct ib_device *device,
1985 ib_comp_handler comp_handler,
1986 void (*event_handler)(struct ib_event *, void *),
1987 void *cq_context,
1988 const struct ib_cq_init_attr *cq_attr,
1989 const char *caller)
1990 {
1991 struct ib_cq *cq;
1992 int ret;
1993
1994 cq = rdma_zalloc_drv_obj(device, ib_cq);
1995 if (!cq)
1996 return ERR_PTR(-ENOMEM);
1997
1998 cq->device = device;
1999 cq->uobject = NULL;
2000 cq->comp_handler = comp_handler;
2001 cq->event_handler = event_handler;
2002 cq->cq_context = cq_context;
2003 atomic_set(&cq->usecnt, 0);
2004
2005 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2006 rdma_restrack_set_name(&cq->res, caller);
2007
2008 ret = device->ops.create_cq(cq, cq_attr, NULL);
2009 if (ret) {
2010 rdma_restrack_put(&cq->res);
2011 kfree(cq);
2012 return ERR_PTR(ret);
2013 }
2014
2015 rdma_restrack_add(&cq->res);
2016 return cq;
2017 }
2018 EXPORT_SYMBOL(__ib_create_cq);
2019
rdma_set_cq_moderation(struct ib_cq * cq,u16 cq_count,u16 cq_period)2020 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2021 {
2022 if (cq->shared)
2023 return -EOPNOTSUPP;
2024
2025 return cq->device->ops.modify_cq ?
2026 cq->device->ops.modify_cq(cq, cq_count,
2027 cq_period) : -EOPNOTSUPP;
2028 }
2029 EXPORT_SYMBOL(rdma_set_cq_moderation);
2030
ib_destroy_cq_user(struct ib_cq * cq,struct ib_udata * udata)2031 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2032 {
2033 int ret;
2034
2035 if (WARN_ON_ONCE(cq->shared))
2036 return -EOPNOTSUPP;
2037
2038 if (atomic_read(&cq->usecnt))
2039 return -EBUSY;
2040
2041 ret = cq->device->ops.destroy_cq(cq, udata);
2042 if (ret)
2043 return ret;
2044
2045 rdma_restrack_del(&cq->res);
2046 kfree(cq);
2047 return ret;
2048 }
2049 EXPORT_SYMBOL(ib_destroy_cq_user);
2050
ib_resize_cq(struct ib_cq * cq,int cqe)2051 int ib_resize_cq(struct ib_cq *cq, int cqe)
2052 {
2053 if (cq->shared)
2054 return -EOPNOTSUPP;
2055
2056 return cq->device->ops.resize_cq ?
2057 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2058 }
2059 EXPORT_SYMBOL(ib_resize_cq);
2060
2061 /* Memory regions */
2062
ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags)2063 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2064 u64 virt_addr, int access_flags)
2065 {
2066 struct ib_mr *mr;
2067
2068 if (access_flags & IB_ACCESS_ON_DEMAND) {
2069 if (!(pd->device->attrs.device_cap_flags &
2070 IB_DEVICE_ON_DEMAND_PAGING)) {
2071 pr_debug("ODP support not available\n");
2072 return ERR_PTR(-EINVAL);
2073 }
2074 }
2075
2076 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2077 access_flags, NULL);
2078
2079 if (IS_ERR(mr))
2080 return mr;
2081
2082 mr->device = pd->device;
2083 mr->type = IB_MR_TYPE_USER;
2084 mr->pd = pd;
2085 mr->dm = NULL;
2086 atomic_inc(&pd->usecnt);
2087 mr->iova = virt_addr;
2088 mr->length = length;
2089
2090 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2091 rdma_restrack_parent_name(&mr->res, &pd->res);
2092 rdma_restrack_add(&mr->res);
2093
2094 return mr;
2095 }
2096 EXPORT_SYMBOL(ib_reg_user_mr);
2097
ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2098 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2099 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2100 {
2101 if (!pd->device->ops.advise_mr)
2102 return -EOPNOTSUPP;
2103
2104 if (!num_sge)
2105 return 0;
2106
2107 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2108 NULL);
2109 }
2110 EXPORT_SYMBOL(ib_advise_mr);
2111
ib_dereg_mr_user(struct ib_mr * mr,struct ib_udata * udata)2112 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2113 {
2114 struct ib_pd *pd = mr->pd;
2115 struct ib_dm *dm = mr->dm;
2116 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2117 int ret;
2118
2119 trace_mr_dereg(mr);
2120 rdma_restrack_del(&mr->res);
2121 ret = mr->device->ops.dereg_mr(mr, udata);
2122 if (!ret) {
2123 atomic_dec(&pd->usecnt);
2124 if (dm)
2125 atomic_dec(&dm->usecnt);
2126 kfree(sig_attrs);
2127 }
2128
2129 return ret;
2130 }
2131 EXPORT_SYMBOL(ib_dereg_mr_user);
2132
2133 /**
2134 * ib_alloc_mr() - Allocates a memory region
2135 * @pd: protection domain associated with the region
2136 * @mr_type: memory region type
2137 * @max_num_sg: maximum sg entries available for registration.
2138 *
2139 * Notes:
2140 * Memory registeration page/sg lists must not exceed max_num_sg.
2141 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2142 * max_num_sg * used_page_size.
2143 *
2144 */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2145 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2146 u32 max_num_sg)
2147 {
2148 struct ib_mr *mr;
2149
2150 if (!pd->device->ops.alloc_mr) {
2151 mr = ERR_PTR(-EOPNOTSUPP);
2152 goto out;
2153 }
2154
2155 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2156 WARN_ON_ONCE(1);
2157 mr = ERR_PTR(-EINVAL);
2158 goto out;
2159 }
2160
2161 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2162 if (IS_ERR(mr))
2163 goto out;
2164
2165 mr->device = pd->device;
2166 mr->pd = pd;
2167 mr->dm = NULL;
2168 mr->uobject = NULL;
2169 atomic_inc(&pd->usecnt);
2170 mr->need_inval = false;
2171 mr->type = mr_type;
2172 mr->sig_attrs = NULL;
2173
2174 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2175 rdma_restrack_parent_name(&mr->res, &pd->res);
2176 rdma_restrack_add(&mr->res);
2177 out:
2178 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2179 return mr;
2180 }
2181 EXPORT_SYMBOL(ib_alloc_mr);
2182
2183 /**
2184 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2185 * @pd: protection domain associated with the region
2186 * @max_num_data_sg: maximum data sg entries available for registration
2187 * @max_num_meta_sg: maximum metadata sg entries available for
2188 * registration
2189 *
2190 * Notes:
2191 * Memory registration page/sg lists must not exceed max_num_sg,
2192 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2193 *
2194 */
ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_data_sg,u32 max_num_meta_sg)2195 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2196 u32 max_num_data_sg,
2197 u32 max_num_meta_sg)
2198 {
2199 struct ib_mr *mr;
2200 struct ib_sig_attrs *sig_attrs;
2201
2202 if (!pd->device->ops.alloc_mr_integrity ||
2203 !pd->device->ops.map_mr_sg_pi) {
2204 mr = ERR_PTR(-EOPNOTSUPP);
2205 goto out;
2206 }
2207
2208 if (!max_num_meta_sg) {
2209 mr = ERR_PTR(-EINVAL);
2210 goto out;
2211 }
2212
2213 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2214 if (!sig_attrs) {
2215 mr = ERR_PTR(-ENOMEM);
2216 goto out;
2217 }
2218
2219 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2220 max_num_meta_sg);
2221 if (IS_ERR(mr)) {
2222 kfree(sig_attrs);
2223 goto out;
2224 }
2225
2226 mr->device = pd->device;
2227 mr->pd = pd;
2228 mr->dm = NULL;
2229 mr->uobject = NULL;
2230 atomic_inc(&pd->usecnt);
2231 mr->need_inval = false;
2232 mr->type = IB_MR_TYPE_INTEGRITY;
2233 mr->sig_attrs = sig_attrs;
2234
2235 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2236 rdma_restrack_parent_name(&mr->res, &pd->res);
2237 rdma_restrack_add(&mr->res);
2238 out:
2239 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2240 return mr;
2241 }
2242 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2243
2244 /* Multicast groups */
2245
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)2246 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2247 {
2248 struct ib_qp_init_attr init_attr = {};
2249 struct ib_qp_attr attr = {};
2250 int num_eth_ports = 0;
2251 int port;
2252
2253 /* If QP state >= init, it is assigned to a port and we can check this
2254 * port only.
2255 */
2256 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2257 if (attr.qp_state >= IB_QPS_INIT) {
2258 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2259 IB_LINK_LAYER_INFINIBAND)
2260 return true;
2261 goto lid_check;
2262 }
2263 }
2264
2265 /* Can't get a quick answer, iterate over all ports */
2266 for (port = 0; port < qp->device->phys_port_cnt; port++)
2267 if (rdma_port_get_link_layer(qp->device, port) !=
2268 IB_LINK_LAYER_INFINIBAND)
2269 num_eth_ports++;
2270
2271 /* If we have at lease one Ethernet port, RoCE annex declares that
2272 * multicast LID should be ignored. We can't tell at this step if the
2273 * QP belongs to an IB or Ethernet port.
2274 */
2275 if (num_eth_ports)
2276 return true;
2277
2278 /* If all the ports are IB, we can check according to IB spec. */
2279 lid_check:
2280 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2281 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2282 }
2283
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2284 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2285 {
2286 int ret;
2287
2288 if (!qp->device->ops.attach_mcast)
2289 return -EOPNOTSUPP;
2290
2291 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2292 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2293 return -EINVAL;
2294
2295 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2296 if (!ret)
2297 atomic_inc(&qp->usecnt);
2298 return ret;
2299 }
2300 EXPORT_SYMBOL(ib_attach_mcast);
2301
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2302 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2303 {
2304 int ret;
2305
2306 if (!qp->device->ops.detach_mcast)
2307 return -EOPNOTSUPP;
2308
2309 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2310 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2311 return -EINVAL;
2312
2313 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2314 if (!ret)
2315 atomic_dec(&qp->usecnt);
2316 return ret;
2317 }
2318 EXPORT_SYMBOL(ib_detach_mcast);
2319
2320 /**
2321 * ib_alloc_xrcd_user - Allocates an XRC domain.
2322 * @device: The device on which to allocate the XRC domain.
2323 * @inode: inode to connect XRCD
2324 * @udata: Valid user data or NULL for kernel object
2325 */
ib_alloc_xrcd_user(struct ib_device * device,struct inode * inode,struct ib_udata * udata)2326 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2327 struct inode *inode, struct ib_udata *udata)
2328 {
2329 struct ib_xrcd *xrcd;
2330 int ret;
2331
2332 if (!device->ops.alloc_xrcd)
2333 return ERR_PTR(-EOPNOTSUPP);
2334
2335 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2336 if (!xrcd)
2337 return ERR_PTR(-ENOMEM);
2338
2339 xrcd->device = device;
2340 xrcd->inode = inode;
2341 atomic_set(&xrcd->usecnt, 0);
2342 init_rwsem(&xrcd->tgt_qps_rwsem);
2343 xa_init(&xrcd->tgt_qps);
2344
2345 ret = device->ops.alloc_xrcd(xrcd, udata);
2346 if (ret)
2347 goto err;
2348 return xrcd;
2349 err:
2350 kfree(xrcd);
2351 return ERR_PTR(ret);
2352 }
2353 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2354
2355 /**
2356 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2357 * @xrcd: The XRC domain to deallocate.
2358 * @udata: Valid user data or NULL for kernel object
2359 */
ib_dealloc_xrcd_user(struct ib_xrcd * xrcd,struct ib_udata * udata)2360 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2361 {
2362 int ret;
2363
2364 if (atomic_read(&xrcd->usecnt))
2365 return -EBUSY;
2366
2367 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2368 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2369 if (ret)
2370 return ret;
2371 kfree(xrcd);
2372 return ret;
2373 }
2374 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2375
2376 /**
2377 * ib_create_wq - Creates a WQ associated with the specified protection
2378 * domain.
2379 * @pd: The protection domain associated with the WQ.
2380 * @wq_attr: A list of initial attributes required to create the
2381 * WQ. If WQ creation succeeds, then the attributes are updated to
2382 * the actual capabilities of the created WQ.
2383 *
2384 * wq_attr->max_wr and wq_attr->max_sge determine
2385 * the requested size of the WQ, and set to the actual values allocated
2386 * on return.
2387 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2388 * at least as large as the requested values.
2389 */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)2390 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2391 struct ib_wq_init_attr *wq_attr)
2392 {
2393 struct ib_wq *wq;
2394
2395 if (!pd->device->ops.create_wq)
2396 return ERR_PTR(-EOPNOTSUPP);
2397
2398 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2399 if (!IS_ERR(wq)) {
2400 wq->event_handler = wq_attr->event_handler;
2401 wq->wq_context = wq_attr->wq_context;
2402 wq->wq_type = wq_attr->wq_type;
2403 wq->cq = wq_attr->cq;
2404 wq->device = pd->device;
2405 wq->pd = pd;
2406 wq->uobject = NULL;
2407 atomic_inc(&pd->usecnt);
2408 atomic_inc(&wq_attr->cq->usecnt);
2409 atomic_set(&wq->usecnt, 0);
2410 }
2411 return wq;
2412 }
2413 EXPORT_SYMBOL(ib_create_wq);
2414
2415 /**
2416 * ib_destroy_wq_user - Destroys the specified user WQ.
2417 * @wq: The WQ to destroy.
2418 * @udata: Valid user data
2419 */
ib_destroy_wq_user(struct ib_wq * wq,struct ib_udata * udata)2420 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2421 {
2422 struct ib_cq *cq = wq->cq;
2423 struct ib_pd *pd = wq->pd;
2424 int ret;
2425
2426 if (atomic_read(&wq->usecnt))
2427 return -EBUSY;
2428
2429 ret = wq->device->ops.destroy_wq(wq, udata);
2430 if (ret)
2431 return ret;
2432
2433 atomic_dec(&pd->usecnt);
2434 atomic_dec(&cq->usecnt);
2435 return ret;
2436 }
2437 EXPORT_SYMBOL(ib_destroy_wq_user);
2438
2439 /**
2440 * ib_modify_wq - Modifies the specified WQ.
2441 * @wq: The WQ to modify.
2442 * @wq_attr: On input, specifies the WQ attributes to modify.
2443 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2444 * are being modified.
2445 * On output, the current values of selected WQ attributes are returned.
2446 */
ib_modify_wq(struct ib_wq * wq,struct ib_wq_attr * wq_attr,u32 wq_attr_mask)2447 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2448 u32 wq_attr_mask)
2449 {
2450 int err;
2451
2452 if (!wq->device->ops.modify_wq)
2453 return -EOPNOTSUPP;
2454
2455 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2456 return err;
2457 }
2458 EXPORT_SYMBOL(ib_modify_wq);
2459
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)2460 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2461 struct ib_mr_status *mr_status)
2462 {
2463 if (!mr->device->ops.check_mr_status)
2464 return -EOPNOTSUPP;
2465
2466 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2467 }
2468 EXPORT_SYMBOL(ib_check_mr_status);
2469
ib_set_vf_link_state(struct ib_device * device,int vf,u8 port,int state)2470 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2471 int state)
2472 {
2473 if (!device->ops.set_vf_link_state)
2474 return -EOPNOTSUPP;
2475
2476 return device->ops.set_vf_link_state(device, vf, port, state);
2477 }
2478 EXPORT_SYMBOL(ib_set_vf_link_state);
2479
ib_get_vf_config(struct ib_device * device,int vf,u8 port,struct ifla_vf_info * info)2480 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2481 struct ifla_vf_info *info)
2482 {
2483 if (!device->ops.get_vf_config)
2484 return -EOPNOTSUPP;
2485
2486 return device->ops.get_vf_config(device, vf, port, info);
2487 }
2488 EXPORT_SYMBOL(ib_get_vf_config);
2489
ib_get_vf_stats(struct ib_device * device,int vf,u8 port,struct ifla_vf_stats * stats)2490 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2491 struct ifla_vf_stats *stats)
2492 {
2493 if (!device->ops.get_vf_stats)
2494 return -EOPNOTSUPP;
2495
2496 return device->ops.get_vf_stats(device, vf, port, stats);
2497 }
2498 EXPORT_SYMBOL(ib_get_vf_stats);
2499
ib_set_vf_guid(struct ib_device * device,int vf,u8 port,u64 guid,int type)2500 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2501 int type)
2502 {
2503 if (!device->ops.set_vf_guid)
2504 return -EOPNOTSUPP;
2505
2506 return device->ops.set_vf_guid(device, vf, port, guid, type);
2507 }
2508 EXPORT_SYMBOL(ib_set_vf_guid);
2509
ib_get_vf_guid(struct ib_device * device,int vf,u8 port,struct ifla_vf_guid * node_guid,struct ifla_vf_guid * port_guid)2510 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
2511 struct ifla_vf_guid *node_guid,
2512 struct ifla_vf_guid *port_guid)
2513 {
2514 if (!device->ops.get_vf_guid)
2515 return -EOPNOTSUPP;
2516
2517 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2518 }
2519 EXPORT_SYMBOL(ib_get_vf_guid);
2520 /**
2521 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2522 * information) and set an appropriate memory region for registration.
2523 * @mr: memory region
2524 * @data_sg: dma mapped scatterlist for data
2525 * @data_sg_nents: number of entries in data_sg
2526 * @data_sg_offset: offset in bytes into data_sg
2527 * @meta_sg: dma mapped scatterlist for metadata
2528 * @meta_sg_nents: number of entries in meta_sg
2529 * @meta_sg_offset: offset in bytes into meta_sg
2530 * @page_size: page vector desired page size
2531 *
2532 * Constraints:
2533 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2534 *
2535 * Return: 0 on success.
2536 *
2537 * After this completes successfully, the memory region
2538 * is ready for registration.
2539 */
ib_map_mr_sg_pi(struct ib_mr * mr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset,unsigned int page_size)2540 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2541 int data_sg_nents, unsigned int *data_sg_offset,
2542 struct scatterlist *meta_sg, int meta_sg_nents,
2543 unsigned int *meta_sg_offset, unsigned int page_size)
2544 {
2545 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2546 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2547 return -EOPNOTSUPP;
2548
2549 mr->page_size = page_size;
2550
2551 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2552 data_sg_offset, meta_sg,
2553 meta_sg_nents, meta_sg_offset);
2554 }
2555 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2556
2557 /**
2558 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2559 * and set it the memory region.
2560 * @mr: memory region
2561 * @sg: dma mapped scatterlist
2562 * @sg_nents: number of entries in sg
2563 * @sg_offset: offset in bytes into sg
2564 * @page_size: page vector desired page size
2565 *
2566 * Constraints:
2567 *
2568 * - The first sg element is allowed to have an offset.
2569 * - Each sg element must either be aligned to page_size or virtually
2570 * contiguous to the previous element. In case an sg element has a
2571 * non-contiguous offset, the mapping prefix will not include it.
2572 * - The last sg element is allowed to have length less than page_size.
2573 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2574 * then only max_num_sg entries will be mapped.
2575 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2576 * constraints holds and the page_size argument is ignored.
2577 *
2578 * Returns the number of sg elements that were mapped to the memory region.
2579 *
2580 * After this completes successfully, the memory region
2581 * is ready for registration.
2582 */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2583 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2584 unsigned int *sg_offset, unsigned int page_size)
2585 {
2586 if (unlikely(!mr->device->ops.map_mr_sg))
2587 return -EOPNOTSUPP;
2588
2589 mr->page_size = page_size;
2590
2591 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2592 }
2593 EXPORT_SYMBOL(ib_map_mr_sg);
2594
2595 /**
2596 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2597 * to a page vector
2598 * @mr: memory region
2599 * @sgl: dma mapped scatterlist
2600 * @sg_nents: number of entries in sg
2601 * @sg_offset_p: ==== =======================================================
2602 * IN start offset in bytes into sg
2603 * OUT offset in bytes for element n of the sg of the first
2604 * byte that has not been processed where n is the return
2605 * value of this function.
2606 * ==== =======================================================
2607 * @set_page: driver page assignment function pointer
2608 *
2609 * Core service helper for drivers to convert the largest
2610 * prefix of given sg list to a page vector. The sg list
2611 * prefix converted is the prefix that meet the requirements
2612 * of ib_map_mr_sg.
2613 *
2614 * Returns the number of sg elements that were assigned to
2615 * a page vector.
2616 */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2617 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2618 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2619 {
2620 struct scatterlist *sg;
2621 u64 last_end_dma_addr = 0;
2622 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2623 unsigned int last_page_off = 0;
2624 u64 page_mask = ~((u64)mr->page_size - 1);
2625 int i, ret;
2626
2627 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2628 return -EINVAL;
2629
2630 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2631 mr->length = 0;
2632
2633 for_each_sg(sgl, sg, sg_nents, i) {
2634 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2635 u64 prev_addr = dma_addr;
2636 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2637 u64 end_dma_addr = dma_addr + dma_len;
2638 u64 page_addr = dma_addr & page_mask;
2639
2640 /*
2641 * For the second and later elements, check whether either the
2642 * end of element i-1 or the start of element i is not aligned
2643 * on a page boundary.
2644 */
2645 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2646 /* Stop mapping if there is a gap. */
2647 if (last_end_dma_addr != dma_addr)
2648 break;
2649
2650 /*
2651 * Coalesce this element with the last. If it is small
2652 * enough just update mr->length. Otherwise start
2653 * mapping from the next page.
2654 */
2655 goto next_page;
2656 }
2657
2658 do {
2659 ret = set_page(mr, page_addr);
2660 if (unlikely(ret < 0)) {
2661 sg_offset = prev_addr - sg_dma_address(sg);
2662 mr->length += prev_addr - dma_addr;
2663 if (sg_offset_p)
2664 *sg_offset_p = sg_offset;
2665 return i || sg_offset ? i : ret;
2666 }
2667 prev_addr = page_addr;
2668 next_page:
2669 page_addr += mr->page_size;
2670 } while (page_addr < end_dma_addr);
2671
2672 mr->length += dma_len;
2673 last_end_dma_addr = end_dma_addr;
2674 last_page_off = end_dma_addr & ~page_mask;
2675
2676 sg_offset = 0;
2677 }
2678
2679 if (sg_offset_p)
2680 *sg_offset_p = 0;
2681 return i;
2682 }
2683 EXPORT_SYMBOL(ib_sg_to_pages);
2684
2685 struct ib_drain_cqe {
2686 struct ib_cqe cqe;
2687 struct completion done;
2688 };
2689
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2690 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2691 {
2692 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2693 cqe);
2694
2695 complete(&cqe->done);
2696 }
2697
2698 /*
2699 * Post a WR and block until its completion is reaped for the SQ.
2700 */
__ib_drain_sq(struct ib_qp * qp)2701 static void __ib_drain_sq(struct ib_qp *qp)
2702 {
2703 struct ib_cq *cq = qp->send_cq;
2704 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2705 struct ib_drain_cqe sdrain;
2706 struct ib_rdma_wr swr = {
2707 .wr = {
2708 .next = NULL,
2709 { .wr_cqe = &sdrain.cqe, },
2710 .opcode = IB_WR_RDMA_WRITE,
2711 },
2712 };
2713 int ret;
2714
2715 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2716 if (ret) {
2717 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2718 return;
2719 }
2720
2721 sdrain.cqe.done = ib_drain_qp_done;
2722 init_completion(&sdrain.done);
2723
2724 ret = ib_post_send(qp, &swr.wr, NULL);
2725 if (ret) {
2726 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2727 return;
2728 }
2729
2730 if (cq->poll_ctx == IB_POLL_DIRECT)
2731 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2732 ib_process_cq_direct(cq, -1);
2733 else
2734 wait_for_completion(&sdrain.done);
2735 }
2736
2737 /*
2738 * Post a WR and block until its completion is reaped for the RQ.
2739 */
__ib_drain_rq(struct ib_qp * qp)2740 static void __ib_drain_rq(struct ib_qp *qp)
2741 {
2742 struct ib_cq *cq = qp->recv_cq;
2743 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2744 struct ib_drain_cqe rdrain;
2745 struct ib_recv_wr rwr = {};
2746 int ret;
2747
2748 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2749 if (ret) {
2750 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2751 return;
2752 }
2753
2754 rwr.wr_cqe = &rdrain.cqe;
2755 rdrain.cqe.done = ib_drain_qp_done;
2756 init_completion(&rdrain.done);
2757
2758 ret = ib_post_recv(qp, &rwr, NULL);
2759 if (ret) {
2760 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2761 return;
2762 }
2763
2764 if (cq->poll_ctx == IB_POLL_DIRECT)
2765 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2766 ib_process_cq_direct(cq, -1);
2767 else
2768 wait_for_completion(&rdrain.done);
2769 }
2770
2771 /**
2772 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2773 * application.
2774 * @qp: queue pair to drain
2775 *
2776 * If the device has a provider-specific drain function, then
2777 * call that. Otherwise call the generic drain function
2778 * __ib_drain_sq().
2779 *
2780 * The caller must:
2781 *
2782 * ensure there is room in the CQ and SQ for the drain work request and
2783 * completion.
2784 *
2785 * allocate the CQ using ib_alloc_cq().
2786 *
2787 * ensure that there are no other contexts that are posting WRs concurrently.
2788 * Otherwise the drain is not guaranteed.
2789 */
ib_drain_sq(struct ib_qp * qp)2790 void ib_drain_sq(struct ib_qp *qp)
2791 {
2792 if (qp->device->ops.drain_sq)
2793 qp->device->ops.drain_sq(qp);
2794 else
2795 __ib_drain_sq(qp);
2796 trace_cq_drain_complete(qp->send_cq);
2797 }
2798 EXPORT_SYMBOL(ib_drain_sq);
2799
2800 /**
2801 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2802 * application.
2803 * @qp: queue pair to drain
2804 *
2805 * If the device has a provider-specific drain function, then
2806 * call that. Otherwise call the generic drain function
2807 * __ib_drain_rq().
2808 *
2809 * The caller must:
2810 *
2811 * ensure there is room in the CQ and RQ for the drain work request and
2812 * completion.
2813 *
2814 * allocate the CQ using ib_alloc_cq().
2815 *
2816 * ensure that there are no other contexts that are posting WRs concurrently.
2817 * Otherwise the drain is not guaranteed.
2818 */
ib_drain_rq(struct ib_qp * qp)2819 void ib_drain_rq(struct ib_qp *qp)
2820 {
2821 if (qp->device->ops.drain_rq)
2822 qp->device->ops.drain_rq(qp);
2823 else
2824 __ib_drain_rq(qp);
2825 trace_cq_drain_complete(qp->recv_cq);
2826 }
2827 EXPORT_SYMBOL(ib_drain_rq);
2828
2829 /**
2830 * ib_drain_qp() - Block until all CQEs have been consumed by the
2831 * application on both the RQ and SQ.
2832 * @qp: queue pair to drain
2833 *
2834 * The caller must:
2835 *
2836 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2837 * and completions.
2838 *
2839 * allocate the CQs using ib_alloc_cq().
2840 *
2841 * ensure that there are no other contexts that are posting WRs concurrently.
2842 * Otherwise the drain is not guaranteed.
2843 */
ib_drain_qp(struct ib_qp * qp)2844 void ib_drain_qp(struct ib_qp *qp)
2845 {
2846 ib_drain_sq(qp);
2847 if (!qp->srq)
2848 ib_drain_rq(qp);
2849 }
2850 EXPORT_SYMBOL(ib_drain_qp);
2851
rdma_alloc_netdev(struct ib_device * device,u8 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *))2852 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2853 enum rdma_netdev_t type, const char *name,
2854 unsigned char name_assign_type,
2855 void (*setup)(struct net_device *))
2856 {
2857 struct rdma_netdev_alloc_params params;
2858 struct net_device *netdev;
2859 int rc;
2860
2861 if (!device->ops.rdma_netdev_get_params)
2862 return ERR_PTR(-EOPNOTSUPP);
2863
2864 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2865 ¶ms);
2866 if (rc)
2867 return ERR_PTR(rc);
2868
2869 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2870 setup, params.txqs, params.rxqs);
2871 if (!netdev)
2872 return ERR_PTR(-ENOMEM);
2873
2874 return netdev;
2875 }
2876 EXPORT_SYMBOL(rdma_alloc_netdev);
2877
rdma_init_netdev(struct ib_device * device,u8 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),struct net_device * netdev)2878 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2879 enum rdma_netdev_t type, const char *name,
2880 unsigned char name_assign_type,
2881 void (*setup)(struct net_device *),
2882 struct net_device *netdev)
2883 {
2884 struct rdma_netdev_alloc_params params;
2885 int rc;
2886
2887 if (!device->ops.rdma_netdev_get_params)
2888 return -EOPNOTSUPP;
2889
2890 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2891 ¶ms);
2892 if (rc)
2893 return rc;
2894
2895 return params.initialize_rdma_netdev(device, port_num,
2896 netdev, params.param);
2897 }
2898 EXPORT_SYMBOL(rdma_init_netdev);
2899
__rdma_block_iter_start(struct ib_block_iter * biter,struct scatterlist * sglist,unsigned int nents,unsigned long pgsz)2900 void __rdma_block_iter_start(struct ib_block_iter *biter,
2901 struct scatterlist *sglist, unsigned int nents,
2902 unsigned long pgsz)
2903 {
2904 memset(biter, 0, sizeof(struct ib_block_iter));
2905 biter->__sg = sglist;
2906 biter->__sg_nents = nents;
2907
2908 /* Driver provides best block size to use */
2909 biter->__pg_bit = __fls(pgsz);
2910 }
2911 EXPORT_SYMBOL(__rdma_block_iter_start);
2912
__rdma_block_iter_next(struct ib_block_iter * biter)2913 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2914 {
2915 unsigned int block_offset;
2916 unsigned int sg_delta;
2917
2918 if (!biter->__sg_nents || !biter->__sg)
2919 return false;
2920
2921 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2922 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2923 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
2924
2925 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
2926 biter->__sg_advance += sg_delta;
2927 } else {
2928 biter->__sg_advance = 0;
2929 biter->__sg = sg_next(biter->__sg);
2930 biter->__sg_nents--;
2931 }
2932
2933 return true;
2934 }
2935 EXPORT_SYMBOL(__rdma_block_iter_next);
2936