1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice_sched.h"
5
6 /**
7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
8 * @pi: port information structure
9 * @info: Scheduler element information from firmware
10 *
11 * This function inserts the root node of the scheduling tree topology
12 * to the SW DB.
13 */
14 static enum ice_status
ice_sched_add_root_node(struct ice_port_info * pi,struct ice_aqc_txsched_elem_data * info)15 ice_sched_add_root_node(struct ice_port_info *pi,
16 struct ice_aqc_txsched_elem_data *info)
17 {
18 struct ice_sched_node *root;
19 struct ice_hw *hw;
20
21 if (!pi)
22 return ICE_ERR_PARAM;
23
24 hw = pi->hw;
25
26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
27 if (!root)
28 return ICE_ERR_NO_MEMORY;
29
30 /* coverity[suspicious_sizeof] */
31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 sizeof(*root), GFP_KERNEL);
33 if (!root->children) {
34 devm_kfree(ice_hw_to_dev(hw), root);
35 return ICE_ERR_NO_MEMORY;
36 }
37
38 memcpy(&root->info, info, sizeof(*info));
39 pi->root = root;
40 return 0;
41 }
42
43 /**
44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46 * @teid: node TEID to search
47 *
48 * This function searches for a node matching the TEID in the scheduling tree
49 * from the SW DB. The search is recursive and is restricted by the number of
50 * layers it has searched through; stopping at the max supported layer.
51 *
52 * This function needs to be called when holding the port_info->sched_lock
53 */
54 struct ice_sched_node *
ice_sched_find_node_by_teid(struct ice_sched_node * start_node,u32 teid)55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56 {
57 u16 i;
58
59 /* The TEID is same as that of the start_node */
60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 return start_node;
62
63 /* The node has no children or is at the max layer */
64 if (!start_node->num_children ||
65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 return NULL;
68
69 /* Check if TEID matches to any of the children nodes */
70 for (i = 0; i < start_node->num_children; i++)
71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 return start_node->children[i];
73
74 /* Search within each child's sub-tree */
75 for (i = 0; i < start_node->num_children; i++) {
76 struct ice_sched_node *tmp;
77
78 tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 teid);
80 if (tmp)
81 return tmp;
82 }
83
84 return NULL;
85 }
86
87 /**
88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
89 * @hw: pointer to the HW struct
90 * @cmd_opc: cmd opcode
91 * @elems_req: number of elements to request
92 * @buf: pointer to buffer
93 * @buf_size: buffer size in bytes
94 * @elems_resp: returns total number of elements response
95 * @cd: pointer to command details structure or NULL
96 *
97 * This function sends a scheduling elements cmd (cmd_opc)
98 */
99 static enum ice_status
ice_aqc_send_sched_elem_cmd(struct ice_hw * hw,enum ice_adminq_opc cmd_opc,u16 elems_req,void * buf,u16 buf_size,u16 * elems_resp,struct ice_sq_cd * cd)100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
101 u16 elems_req, void *buf, u16 buf_size,
102 u16 *elems_resp, struct ice_sq_cd *cd)
103 {
104 struct ice_aqc_sched_elem_cmd *cmd;
105 struct ice_aq_desc desc;
106 enum ice_status status;
107
108 cmd = &desc.params.sched_elem_cmd;
109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
110 cmd->num_elem_req = cpu_to_le16(elems_req);
111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
113 if (!status && elems_resp)
114 *elems_resp = le16_to_cpu(cmd->num_elem_resp);
115
116 return status;
117 }
118
119 /**
120 * ice_aq_query_sched_elems - query scheduler elements
121 * @hw: pointer to the HW struct
122 * @elems_req: number of elements to query
123 * @buf: pointer to buffer
124 * @buf_size: buffer size in bytes
125 * @elems_ret: returns total number of elements returned
126 * @cd: pointer to command details structure or NULL
127 *
128 * Query scheduling elements (0x0404)
129 */
130 enum ice_status
ice_aq_query_sched_elems(struct ice_hw * hw,u16 elems_req,struct ice_aqc_txsched_elem_data * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
132 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
133 u16 *elems_ret, struct ice_sq_cd *cd)
134 {
135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
136 elems_req, (void *)buf, buf_size,
137 elems_ret, cd);
138 }
139
140 /**
141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
142 * @pi: port information structure
143 * @layer: Scheduler layer of the node
144 * @info: Scheduler element information from firmware
145 *
146 * This function inserts a scheduler node to the SW DB.
147 */
148 enum ice_status
ice_sched_add_node(struct ice_port_info * pi,u8 layer,struct ice_aqc_txsched_elem_data * info)149 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
150 struct ice_aqc_txsched_elem_data *info)
151 {
152 struct ice_aqc_txsched_elem_data elem;
153 struct ice_sched_node *parent;
154 struct ice_sched_node *node;
155 enum ice_status status;
156 struct ice_hw *hw;
157
158 if (!pi)
159 return ICE_ERR_PARAM;
160
161 hw = pi->hw;
162
163 /* A valid parent node should be there */
164 parent = ice_sched_find_node_by_teid(pi->root,
165 le32_to_cpu(info->parent_teid));
166 if (!parent) {
167 ice_debug(hw, ICE_DBG_SCHED,
168 "Parent Node not found for parent_teid=0x%x\n",
169 le32_to_cpu(info->parent_teid));
170 return ICE_ERR_PARAM;
171 }
172
173 /* query the current node information from FW before adding it
174 * to the SW DB
175 */
176 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
177 if (status)
178 return status;
179
180 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
181 if (!node)
182 return ICE_ERR_NO_MEMORY;
183 if (hw->max_children[layer]) {
184 /* coverity[suspicious_sizeof] */
185 node->children = devm_kcalloc(ice_hw_to_dev(hw),
186 hw->max_children[layer],
187 sizeof(*node), GFP_KERNEL);
188 if (!node->children) {
189 devm_kfree(ice_hw_to_dev(hw), node);
190 return ICE_ERR_NO_MEMORY;
191 }
192 }
193
194 node->in_use = true;
195 node->parent = parent;
196 node->tx_sched_layer = layer;
197 parent->children[parent->num_children++] = node;
198 node->info = elem;
199 return 0;
200 }
201
202 /**
203 * ice_aq_delete_sched_elems - delete scheduler elements
204 * @hw: pointer to the HW struct
205 * @grps_req: number of groups to delete
206 * @buf: pointer to buffer
207 * @buf_size: buffer size in bytes
208 * @grps_del: returns total number of elements deleted
209 * @cd: pointer to command details structure or NULL
210 *
211 * Delete scheduling elements (0x040F)
212 */
213 static enum ice_status
ice_aq_delete_sched_elems(struct ice_hw * hw,u16 grps_req,struct ice_aqc_delete_elem * buf,u16 buf_size,u16 * grps_del,struct ice_sq_cd * cd)214 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
215 struct ice_aqc_delete_elem *buf, u16 buf_size,
216 u16 *grps_del, struct ice_sq_cd *cd)
217 {
218 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
219 grps_req, (void *)buf, buf_size,
220 grps_del, cd);
221 }
222
223 /**
224 * ice_sched_remove_elems - remove nodes from HW
225 * @hw: pointer to the HW struct
226 * @parent: pointer to the parent node
227 * @num_nodes: number of nodes
228 * @node_teids: array of node teids to be deleted
229 *
230 * This function remove nodes from HW
231 */
232 static enum ice_status
ice_sched_remove_elems(struct ice_hw * hw,struct ice_sched_node * parent,u16 num_nodes,u32 * node_teids)233 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
234 u16 num_nodes, u32 *node_teids)
235 {
236 struct ice_aqc_delete_elem *buf;
237 u16 i, num_groups_removed = 0;
238 enum ice_status status;
239 u16 buf_size;
240
241 buf_size = struct_size(buf, teid, num_nodes);
242 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
243 if (!buf)
244 return ICE_ERR_NO_MEMORY;
245
246 buf->hdr.parent_teid = parent->info.node_teid;
247 buf->hdr.num_elems = cpu_to_le16(num_nodes);
248 for (i = 0; i < num_nodes; i++)
249 buf->teid[i] = cpu_to_le32(node_teids[i]);
250
251 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
252 &num_groups_removed, NULL);
253 if (status || num_groups_removed != 1)
254 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
255 hw->adminq.sq_last_status);
256
257 devm_kfree(ice_hw_to_dev(hw), buf);
258 return status;
259 }
260
261 /**
262 * ice_sched_get_first_node - get the first node of the given layer
263 * @pi: port information structure
264 * @parent: pointer the base node of the subtree
265 * @layer: layer number
266 *
267 * This function retrieves the first node of the given layer from the subtree
268 */
269 static struct ice_sched_node *
ice_sched_get_first_node(struct ice_port_info * pi,struct ice_sched_node * parent,u8 layer)270 ice_sched_get_first_node(struct ice_port_info *pi,
271 struct ice_sched_node *parent, u8 layer)
272 {
273 return pi->sib_head[parent->tc_num][layer];
274 }
275
276 /**
277 * ice_sched_get_tc_node - get pointer to TC node
278 * @pi: port information structure
279 * @tc: TC number
280 *
281 * This function returns the TC node pointer
282 */
ice_sched_get_tc_node(struct ice_port_info * pi,u8 tc)283 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
284 {
285 u8 i;
286
287 if (!pi || !pi->root)
288 return NULL;
289 for (i = 0; i < pi->root->num_children; i++)
290 if (pi->root->children[i]->tc_num == tc)
291 return pi->root->children[i];
292 return NULL;
293 }
294
295 /**
296 * ice_free_sched_node - Free a Tx scheduler node from SW DB
297 * @pi: port information structure
298 * @node: pointer to the ice_sched_node struct
299 *
300 * This function frees up a node from SW DB as well as from HW
301 *
302 * This function needs to be called with the port_info->sched_lock held
303 */
ice_free_sched_node(struct ice_port_info * pi,struct ice_sched_node * node)304 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
305 {
306 struct ice_sched_node *parent;
307 struct ice_hw *hw = pi->hw;
308 u8 i, j;
309
310 /* Free the children before freeing up the parent node
311 * The parent array is updated below and that shifts the nodes
312 * in the array. So always pick the first child if num children > 0
313 */
314 while (node->num_children)
315 ice_free_sched_node(pi, node->children[0]);
316
317 /* Leaf, TC and root nodes can't be deleted by SW */
318 if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
319 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
320 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
321 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
322 u32 teid = le32_to_cpu(node->info.node_teid);
323
324 ice_sched_remove_elems(hw, node->parent, 1, &teid);
325 }
326 parent = node->parent;
327 /* root has no parent */
328 if (parent) {
329 struct ice_sched_node *p;
330
331 /* update the parent */
332 for (i = 0; i < parent->num_children; i++)
333 if (parent->children[i] == node) {
334 for (j = i + 1; j < parent->num_children; j++)
335 parent->children[j - 1] =
336 parent->children[j];
337 parent->num_children--;
338 break;
339 }
340
341 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
342 while (p) {
343 if (p->sibling == node) {
344 p->sibling = node->sibling;
345 break;
346 }
347 p = p->sibling;
348 }
349
350 /* update the sibling head if head is getting removed */
351 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
352 pi->sib_head[node->tc_num][node->tx_sched_layer] =
353 node->sibling;
354 }
355
356 /* leaf nodes have no children */
357 if (node->children)
358 devm_kfree(ice_hw_to_dev(hw), node->children);
359 devm_kfree(ice_hw_to_dev(hw), node);
360 }
361
362 /**
363 * ice_aq_get_dflt_topo - gets default scheduler topology
364 * @hw: pointer to the HW struct
365 * @lport: logical port number
366 * @buf: pointer to buffer
367 * @buf_size: buffer size in bytes
368 * @num_branches: returns total number of queue to port branches
369 * @cd: pointer to command details structure or NULL
370 *
371 * Get default scheduler topology (0x400)
372 */
373 static enum ice_status
ice_aq_get_dflt_topo(struct ice_hw * hw,u8 lport,struct ice_aqc_get_topo_elem * buf,u16 buf_size,u8 * num_branches,struct ice_sq_cd * cd)374 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
375 struct ice_aqc_get_topo_elem *buf, u16 buf_size,
376 u8 *num_branches, struct ice_sq_cd *cd)
377 {
378 struct ice_aqc_get_topo *cmd;
379 struct ice_aq_desc desc;
380 enum ice_status status;
381
382 cmd = &desc.params.get_topo;
383 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
384 cmd->port_num = lport;
385 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
386 if (!status && num_branches)
387 *num_branches = cmd->num_branches;
388
389 return status;
390 }
391
392 /**
393 * ice_aq_add_sched_elems - adds scheduling element
394 * @hw: pointer to the HW struct
395 * @grps_req: the number of groups that are requested to be added
396 * @buf: pointer to buffer
397 * @buf_size: buffer size in bytes
398 * @grps_added: returns total number of groups added
399 * @cd: pointer to command details structure or NULL
400 *
401 * Add scheduling elements (0x0401)
402 */
403 static enum ice_status
ice_aq_add_sched_elems(struct ice_hw * hw,u16 grps_req,struct ice_aqc_add_elem * buf,u16 buf_size,u16 * grps_added,struct ice_sq_cd * cd)404 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
405 struct ice_aqc_add_elem *buf, u16 buf_size,
406 u16 *grps_added, struct ice_sq_cd *cd)
407 {
408 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
409 grps_req, (void *)buf, buf_size,
410 grps_added, cd);
411 }
412
413 /**
414 * ice_aq_cfg_sched_elems - configures scheduler elements
415 * @hw: pointer to the HW struct
416 * @elems_req: number of elements to configure
417 * @buf: pointer to buffer
418 * @buf_size: buffer size in bytes
419 * @elems_cfgd: returns total number of elements configured
420 * @cd: pointer to command details structure or NULL
421 *
422 * Configure scheduling elements (0x0403)
423 */
424 static enum ice_status
ice_aq_cfg_sched_elems(struct ice_hw * hw,u16 elems_req,struct ice_aqc_txsched_elem_data * buf,u16 buf_size,u16 * elems_cfgd,struct ice_sq_cd * cd)425 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
426 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
427 u16 *elems_cfgd, struct ice_sq_cd *cd)
428 {
429 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
430 elems_req, (void *)buf, buf_size,
431 elems_cfgd, cd);
432 }
433
434 /**
435 * ice_aq_suspend_sched_elems - suspend scheduler elements
436 * @hw: pointer to the HW struct
437 * @elems_req: number of elements to suspend
438 * @buf: pointer to buffer
439 * @buf_size: buffer size in bytes
440 * @elems_ret: returns total number of elements suspended
441 * @cd: pointer to command details structure or NULL
442 *
443 * Suspend scheduling elements (0x0409)
444 */
445 static enum ice_status
ice_aq_suspend_sched_elems(struct ice_hw * hw,u16 elems_req,__le32 * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)446 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
447 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
448 {
449 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
450 elems_req, (void *)buf, buf_size,
451 elems_ret, cd);
452 }
453
454 /**
455 * ice_aq_resume_sched_elems - resume scheduler elements
456 * @hw: pointer to the HW struct
457 * @elems_req: number of elements to resume
458 * @buf: pointer to buffer
459 * @buf_size: buffer size in bytes
460 * @elems_ret: returns total number of elements resumed
461 * @cd: pointer to command details structure or NULL
462 *
463 * resume scheduling elements (0x040A)
464 */
465 static enum ice_status
ice_aq_resume_sched_elems(struct ice_hw * hw,u16 elems_req,__le32 * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)466 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
467 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
468 {
469 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
470 elems_req, (void *)buf, buf_size,
471 elems_ret, cd);
472 }
473
474 /**
475 * ice_aq_query_sched_res - query scheduler resource
476 * @hw: pointer to the HW struct
477 * @buf_size: buffer size in bytes
478 * @buf: pointer to buffer
479 * @cd: pointer to command details structure or NULL
480 *
481 * Query scheduler resource allocation (0x0412)
482 */
483 static enum ice_status
ice_aq_query_sched_res(struct ice_hw * hw,u16 buf_size,struct ice_aqc_query_txsched_res_resp * buf,struct ice_sq_cd * cd)484 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
485 struct ice_aqc_query_txsched_res_resp *buf,
486 struct ice_sq_cd *cd)
487 {
488 struct ice_aq_desc desc;
489
490 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
491 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
492 }
493
494 /**
495 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
496 * @hw: pointer to the HW struct
497 * @num_nodes: number of nodes
498 * @node_teids: array of node teids to be suspended or resumed
499 * @suspend: true means suspend / false means resume
500 *
501 * This function suspends or resumes HW nodes
502 */
503 static enum ice_status
ice_sched_suspend_resume_elems(struct ice_hw * hw,u8 num_nodes,u32 * node_teids,bool suspend)504 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
505 bool suspend)
506 {
507 u16 i, buf_size, num_elem_ret = 0;
508 enum ice_status status;
509 __le32 *buf;
510
511 buf_size = sizeof(*buf) * num_nodes;
512 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
513 if (!buf)
514 return ICE_ERR_NO_MEMORY;
515
516 for (i = 0; i < num_nodes; i++)
517 buf[i] = cpu_to_le32(node_teids[i]);
518
519 if (suspend)
520 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
521 buf_size, &num_elem_ret,
522 NULL);
523 else
524 status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
525 buf_size, &num_elem_ret,
526 NULL);
527 if (status || num_elem_ret != num_nodes)
528 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
529
530 devm_kfree(ice_hw_to_dev(hw), buf);
531 return status;
532 }
533
534 /**
535 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
536 * @hw: pointer to the HW struct
537 * @vsi_handle: VSI handle
538 * @tc: TC number
539 * @new_numqs: number of queues
540 */
541 static enum ice_status
ice_alloc_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 new_numqs)542 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
543 {
544 struct ice_vsi_ctx *vsi_ctx;
545 struct ice_q_ctx *q_ctx;
546
547 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
548 if (!vsi_ctx)
549 return ICE_ERR_PARAM;
550 /* allocate LAN queue contexts */
551 if (!vsi_ctx->lan_q_ctx[tc]) {
552 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
553 new_numqs,
554 sizeof(*q_ctx),
555 GFP_KERNEL);
556 if (!vsi_ctx->lan_q_ctx[tc])
557 return ICE_ERR_NO_MEMORY;
558 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
559 return 0;
560 }
561 /* num queues are increased, update the queue contexts */
562 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
563 u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
564
565 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
566 sizeof(*q_ctx), GFP_KERNEL);
567 if (!q_ctx)
568 return ICE_ERR_NO_MEMORY;
569 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
570 prev_num * sizeof(*q_ctx));
571 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
572 vsi_ctx->lan_q_ctx[tc] = q_ctx;
573 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
574 }
575 return 0;
576 }
577
578 /**
579 * ice_aq_rl_profile - performs a rate limiting task
580 * @hw: pointer to the HW struct
581 * @opcode: opcode for add, query, or remove profile(s)
582 * @num_profiles: the number of profiles
583 * @buf: pointer to buffer
584 * @buf_size: buffer size in bytes
585 * @num_processed: number of processed add or remove profile(s) to return
586 * @cd: pointer to command details structure
587 *
588 * RL profile function to add, query, or remove profile(s)
589 */
590 static enum ice_status
ice_aq_rl_profile(struct ice_hw * hw,enum ice_adminq_opc opcode,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_processed,struct ice_sq_cd * cd)591 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
592 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
593 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
594 {
595 struct ice_aqc_rl_profile *cmd;
596 struct ice_aq_desc desc;
597 enum ice_status status;
598
599 cmd = &desc.params.rl_profile;
600
601 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
602 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
603 cmd->num_profiles = cpu_to_le16(num_profiles);
604 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
605 if (!status && num_processed)
606 *num_processed = le16_to_cpu(cmd->num_processed);
607 return status;
608 }
609
610 /**
611 * ice_aq_add_rl_profile - adds rate limiting profile(s)
612 * @hw: pointer to the HW struct
613 * @num_profiles: the number of profile(s) to be add
614 * @buf: pointer to buffer
615 * @buf_size: buffer size in bytes
616 * @num_profiles_added: total number of profiles added to return
617 * @cd: pointer to command details structure
618 *
619 * Add RL profile (0x0410)
620 */
621 static enum ice_status
ice_aq_add_rl_profile(struct ice_hw * hw,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_profiles_added,struct ice_sq_cd * cd)622 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
623 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
624 u16 *num_profiles_added, struct ice_sq_cd *cd)
625 {
626 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
627 buf, buf_size, num_profiles_added, cd);
628 }
629
630 /**
631 * ice_aq_remove_rl_profile - removes RL profile(s)
632 * @hw: pointer to the HW struct
633 * @num_profiles: the number of profile(s) to remove
634 * @buf: pointer to buffer
635 * @buf_size: buffer size in bytes
636 * @num_profiles_removed: total number of profiles removed to return
637 * @cd: pointer to command details structure or NULL
638 *
639 * Remove RL profile (0x0415)
640 */
641 static enum ice_status
ice_aq_remove_rl_profile(struct ice_hw * hw,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_profiles_removed,struct ice_sq_cd * cd)642 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
643 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
644 u16 *num_profiles_removed, struct ice_sq_cd *cd)
645 {
646 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
647 num_profiles, buf, buf_size,
648 num_profiles_removed, cd);
649 }
650
651 /**
652 * ice_sched_del_rl_profile - remove RL profile
653 * @hw: pointer to the HW struct
654 * @rl_info: rate limit profile information
655 *
656 * If the profile ID is not referenced anymore, it removes profile ID with
657 * its associated parameters from HW DB,and locally. The caller needs to
658 * hold scheduler lock.
659 */
660 static enum ice_status
ice_sched_del_rl_profile(struct ice_hw * hw,struct ice_aqc_rl_profile_info * rl_info)661 ice_sched_del_rl_profile(struct ice_hw *hw,
662 struct ice_aqc_rl_profile_info *rl_info)
663 {
664 struct ice_aqc_rl_profile_elem *buf;
665 u16 num_profiles_removed;
666 enum ice_status status;
667 u16 num_profiles = 1;
668
669 if (rl_info->prof_id_ref != 0)
670 return ICE_ERR_IN_USE;
671
672 /* Safe to remove profile ID */
673 buf = &rl_info->profile;
674 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
675 &num_profiles_removed, NULL);
676 if (status || num_profiles_removed != num_profiles)
677 return ICE_ERR_CFG;
678
679 /* Delete stale entry now */
680 list_del(&rl_info->list_entry);
681 devm_kfree(ice_hw_to_dev(hw), rl_info);
682 return status;
683 }
684
685 /**
686 * ice_sched_clear_rl_prof - clears RL prof entries
687 * @pi: port information structure
688 *
689 * This function removes all RL profile from HW as well as from SW DB.
690 */
ice_sched_clear_rl_prof(struct ice_port_info * pi)691 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
692 {
693 u16 ln;
694
695 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
696 struct ice_aqc_rl_profile_info *rl_prof_elem;
697 struct ice_aqc_rl_profile_info *rl_prof_tmp;
698
699 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
700 &pi->rl_prof_list[ln], list_entry) {
701 struct ice_hw *hw = pi->hw;
702 enum ice_status status;
703
704 rl_prof_elem->prof_id_ref = 0;
705 status = ice_sched_del_rl_profile(hw, rl_prof_elem);
706 if (status) {
707 ice_debug(hw, ICE_DBG_SCHED,
708 "Remove rl profile failed\n");
709 /* On error, free mem required */
710 list_del(&rl_prof_elem->list_entry);
711 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
712 }
713 }
714 }
715 }
716
717 /**
718 * ice_sched_clear_agg - clears the aggregator related information
719 * @hw: pointer to the hardware structure
720 *
721 * This function removes aggregator list and free up aggregator related memory
722 * previously allocated.
723 */
ice_sched_clear_agg(struct ice_hw * hw)724 void ice_sched_clear_agg(struct ice_hw *hw)
725 {
726 struct ice_sched_agg_info *agg_info;
727 struct ice_sched_agg_info *atmp;
728
729 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
730 struct ice_sched_agg_vsi_info *agg_vsi_info;
731 struct ice_sched_agg_vsi_info *vtmp;
732
733 list_for_each_entry_safe(agg_vsi_info, vtmp,
734 &agg_info->agg_vsi_list, list_entry) {
735 list_del(&agg_vsi_info->list_entry);
736 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
737 }
738 list_del(&agg_info->list_entry);
739 devm_kfree(ice_hw_to_dev(hw), agg_info);
740 }
741 }
742
743 /**
744 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
745 * @pi: port information structure
746 *
747 * This function removes all the nodes from HW as well as from SW DB.
748 */
ice_sched_clear_tx_topo(struct ice_port_info * pi)749 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
750 {
751 if (!pi)
752 return;
753 /* remove RL profiles related lists */
754 ice_sched_clear_rl_prof(pi);
755 if (pi->root) {
756 ice_free_sched_node(pi, pi->root);
757 pi->root = NULL;
758 }
759 }
760
761 /**
762 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
763 * @pi: port information structure
764 *
765 * Cleanup scheduling elements from SW DB
766 */
ice_sched_clear_port(struct ice_port_info * pi)767 void ice_sched_clear_port(struct ice_port_info *pi)
768 {
769 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
770 return;
771
772 pi->port_state = ICE_SCHED_PORT_STATE_INIT;
773 mutex_lock(&pi->sched_lock);
774 ice_sched_clear_tx_topo(pi);
775 mutex_unlock(&pi->sched_lock);
776 mutex_destroy(&pi->sched_lock);
777 }
778
779 /**
780 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
781 * @hw: pointer to the HW struct
782 *
783 * Cleanup scheduling elements from SW DB for all the ports
784 */
ice_sched_cleanup_all(struct ice_hw * hw)785 void ice_sched_cleanup_all(struct ice_hw *hw)
786 {
787 if (!hw)
788 return;
789
790 if (hw->layer_info) {
791 devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
792 hw->layer_info = NULL;
793 }
794
795 ice_sched_clear_port(hw->port_info);
796
797 hw->num_tx_sched_layers = 0;
798 hw->num_tx_sched_phys_layers = 0;
799 hw->flattened_layers = 0;
800 hw->max_cgds = 0;
801 }
802
803 /**
804 * ice_sched_add_elems - add nodes to HW and SW DB
805 * @pi: port information structure
806 * @tc_node: pointer to the branch node
807 * @parent: pointer to the parent node
808 * @layer: layer number to add nodes
809 * @num_nodes: number of nodes
810 * @num_nodes_added: pointer to num nodes added
811 * @first_node_teid: if new nodes are added then return the TEID of first node
812 *
813 * This function add nodes to HW as well as to SW DB for a given layer
814 */
815 static enum ice_status
ice_sched_add_elems(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u16 * num_nodes_added,u32 * first_node_teid)816 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
817 struct ice_sched_node *parent, u8 layer, u16 num_nodes,
818 u16 *num_nodes_added, u32 *first_node_teid)
819 {
820 struct ice_sched_node *prev, *new_node;
821 struct ice_aqc_add_elem *buf;
822 u16 i, num_groups_added = 0;
823 enum ice_status status = 0;
824 struct ice_hw *hw = pi->hw;
825 size_t buf_size;
826 u32 teid;
827
828 buf_size = struct_size(buf, generic, num_nodes);
829 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
830 if (!buf)
831 return ICE_ERR_NO_MEMORY;
832
833 buf->hdr.parent_teid = parent->info.node_teid;
834 buf->hdr.num_elems = cpu_to_le16(num_nodes);
835 for (i = 0; i < num_nodes; i++) {
836 buf->generic[i].parent_teid = parent->info.node_teid;
837 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
838 buf->generic[i].data.valid_sections =
839 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
840 ICE_AQC_ELEM_VALID_EIR;
841 buf->generic[i].data.generic = 0;
842 buf->generic[i].data.cir_bw.bw_profile_idx =
843 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
844 buf->generic[i].data.cir_bw.bw_alloc =
845 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
846 buf->generic[i].data.eir_bw.bw_profile_idx =
847 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
848 buf->generic[i].data.eir_bw.bw_alloc =
849 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
850 }
851
852 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
853 &num_groups_added, NULL);
854 if (status || num_groups_added != 1) {
855 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
856 hw->adminq.sq_last_status);
857 devm_kfree(ice_hw_to_dev(hw), buf);
858 return ICE_ERR_CFG;
859 }
860
861 *num_nodes_added = num_nodes;
862 /* add nodes to the SW DB */
863 for (i = 0; i < num_nodes; i++) {
864 status = ice_sched_add_node(pi, layer, &buf->generic[i]);
865 if (status) {
866 ice_debug(hw, ICE_DBG_SCHED,
867 "add nodes in SW DB failed status =%d\n",
868 status);
869 break;
870 }
871
872 teid = le32_to_cpu(buf->generic[i].node_teid);
873 new_node = ice_sched_find_node_by_teid(parent, teid);
874 if (!new_node) {
875 ice_debug(hw, ICE_DBG_SCHED,
876 "Node is missing for teid =%d\n", teid);
877 break;
878 }
879
880 new_node->sibling = NULL;
881 new_node->tc_num = tc_node->tc_num;
882
883 /* add it to previous node sibling pointer */
884 /* Note: siblings are not linked across branches */
885 prev = ice_sched_get_first_node(pi, tc_node, layer);
886 if (prev && prev != new_node) {
887 while (prev->sibling)
888 prev = prev->sibling;
889 prev->sibling = new_node;
890 }
891
892 /* initialize the sibling head */
893 if (!pi->sib_head[tc_node->tc_num][layer])
894 pi->sib_head[tc_node->tc_num][layer] = new_node;
895
896 if (i == 0)
897 *first_node_teid = teid;
898 }
899
900 devm_kfree(ice_hw_to_dev(hw), buf);
901 return status;
902 }
903
904 /**
905 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
906 * @pi: port information structure
907 * @tc_node: pointer to TC node
908 * @parent: pointer to parent node
909 * @layer: layer number to add nodes
910 * @num_nodes: number of nodes to be added
911 * @first_node_teid: pointer to the first node TEID
912 * @num_nodes_added: pointer to number of nodes added
913 *
914 * This function add nodes to a given layer.
915 */
916 static enum ice_status
ice_sched_add_nodes_to_layer(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u32 * first_node_teid,u16 * num_nodes_added)917 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
918 struct ice_sched_node *tc_node,
919 struct ice_sched_node *parent, u8 layer,
920 u16 num_nodes, u32 *first_node_teid,
921 u16 *num_nodes_added)
922 {
923 u32 *first_teid_ptr = first_node_teid;
924 u16 new_num_nodes, max_child_nodes;
925 enum ice_status status = 0;
926 struct ice_hw *hw = pi->hw;
927 u16 num_added = 0;
928 u32 temp;
929
930 *num_nodes_added = 0;
931
932 if (!num_nodes)
933 return status;
934
935 if (!parent || layer < hw->sw_entry_point_layer)
936 return ICE_ERR_PARAM;
937
938 /* max children per node per layer */
939 max_child_nodes = hw->max_children[parent->tx_sched_layer];
940
941 /* current number of children + required nodes exceed max children ? */
942 if ((parent->num_children + num_nodes) > max_child_nodes) {
943 /* Fail if the parent is a TC node */
944 if (parent == tc_node)
945 return ICE_ERR_CFG;
946
947 /* utilize all the spaces if the parent is not full */
948 if (parent->num_children < max_child_nodes) {
949 new_num_nodes = max_child_nodes - parent->num_children;
950 /* this recursion is intentional, and wouldn't
951 * go more than 2 calls
952 */
953 status = ice_sched_add_nodes_to_layer(pi, tc_node,
954 parent, layer,
955 new_num_nodes,
956 first_node_teid,
957 &num_added);
958 if (status)
959 return status;
960
961 *num_nodes_added += num_added;
962 }
963 /* Don't modify the first node TEID memory if the first node was
964 * added already in the above call. Instead send some temp
965 * memory for all other recursive calls.
966 */
967 if (num_added)
968 first_teid_ptr = &temp;
969
970 new_num_nodes = num_nodes - num_added;
971
972 /* This parent is full, try the next sibling */
973 parent = parent->sibling;
974
975 /* this recursion is intentional, for 1024 queues
976 * per VSI, it goes max of 16 iterations.
977 * 1024 / 8 = 128 layer 8 nodes
978 * 128 /8 = 16 (add 8 nodes per iteration)
979 */
980 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
981 layer, new_num_nodes,
982 first_teid_ptr,
983 &num_added);
984 *num_nodes_added += num_added;
985 return status;
986 }
987
988 status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
989 num_nodes_added, first_node_teid);
990 return status;
991 }
992
993 /**
994 * ice_sched_get_qgrp_layer - get the current queue group layer number
995 * @hw: pointer to the HW struct
996 *
997 * This function returns the current queue group layer number
998 */
ice_sched_get_qgrp_layer(struct ice_hw * hw)999 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1000 {
1001 /* It's always total layers - 1, the array is 0 relative so -2 */
1002 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1003 }
1004
1005 /**
1006 * ice_sched_get_vsi_layer - get the current VSI layer number
1007 * @hw: pointer to the HW struct
1008 *
1009 * This function returns the current VSI layer number
1010 */
ice_sched_get_vsi_layer(struct ice_hw * hw)1011 static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1012 {
1013 /* Num Layers VSI layer
1014 * 9 6
1015 * 7 4
1016 * 5 or less sw_entry_point_layer
1017 */
1018 /* calculate the VSI layer based on number of layers. */
1019 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1020 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1021
1022 if (layer > hw->sw_entry_point_layer)
1023 return layer;
1024 }
1025 return hw->sw_entry_point_layer;
1026 }
1027
1028 /**
1029 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1030 * @pi: port information structure
1031 *
1032 * This function removes the leaf node that was created by the FW
1033 * during initialization
1034 */
ice_rm_dflt_leaf_node(struct ice_port_info * pi)1035 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1036 {
1037 struct ice_sched_node *node;
1038
1039 node = pi->root;
1040 while (node) {
1041 if (!node->num_children)
1042 break;
1043 node = node->children[0];
1044 }
1045 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1046 u32 teid = le32_to_cpu(node->info.node_teid);
1047 enum ice_status status;
1048
1049 /* remove the default leaf node */
1050 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1051 if (!status)
1052 ice_free_sched_node(pi, node);
1053 }
1054 }
1055
1056 /**
1057 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1058 * @pi: port information structure
1059 *
1060 * This function frees all the nodes except root and TC that were created by
1061 * the FW during initialization
1062 */
ice_sched_rm_dflt_nodes(struct ice_port_info * pi)1063 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1064 {
1065 struct ice_sched_node *node;
1066
1067 ice_rm_dflt_leaf_node(pi);
1068
1069 /* remove the default nodes except TC and root nodes */
1070 node = pi->root;
1071 while (node) {
1072 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1073 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1074 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1075 ice_free_sched_node(pi, node);
1076 break;
1077 }
1078
1079 if (!node->num_children)
1080 break;
1081 node = node->children[0];
1082 }
1083 }
1084
1085 /**
1086 * ice_sched_init_port - Initialize scheduler by querying information from FW
1087 * @pi: port info structure for the tree to cleanup
1088 *
1089 * This function is the initial call to find the total number of Tx scheduler
1090 * resources, default topology created by firmware and storing the information
1091 * in SW DB.
1092 */
ice_sched_init_port(struct ice_port_info * pi)1093 enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1094 {
1095 struct ice_aqc_get_topo_elem *buf;
1096 enum ice_status status;
1097 struct ice_hw *hw;
1098 u8 num_branches;
1099 u16 num_elems;
1100 u8 i, j;
1101
1102 if (!pi)
1103 return ICE_ERR_PARAM;
1104 hw = pi->hw;
1105
1106 /* Query the Default Topology from FW */
1107 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1108 if (!buf)
1109 return ICE_ERR_NO_MEMORY;
1110
1111 /* Query default scheduling tree topology */
1112 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1113 &num_branches, NULL);
1114 if (status)
1115 goto err_init_port;
1116
1117 /* num_branches should be between 1-8 */
1118 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1119 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1120 num_branches);
1121 status = ICE_ERR_PARAM;
1122 goto err_init_port;
1123 }
1124
1125 /* get the number of elements on the default/first branch */
1126 num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1127
1128 /* num_elems should always be between 1-9 */
1129 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1130 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1131 num_elems);
1132 status = ICE_ERR_PARAM;
1133 goto err_init_port;
1134 }
1135
1136 /* If the last node is a leaf node then the index of the queue group
1137 * layer is two less than the number of elements.
1138 */
1139 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1140 ICE_AQC_ELEM_TYPE_LEAF)
1141 pi->last_node_teid =
1142 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1143 else
1144 pi->last_node_teid =
1145 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1146
1147 /* Insert the Tx Sched root node */
1148 status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1149 if (status)
1150 goto err_init_port;
1151
1152 /* Parse the default tree and cache the information */
1153 for (i = 0; i < num_branches; i++) {
1154 num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1155
1156 /* Skip root element as already inserted */
1157 for (j = 1; j < num_elems; j++) {
1158 /* update the sw entry point */
1159 if (buf[0].generic[j].data.elem_type ==
1160 ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1161 hw->sw_entry_point_layer = j;
1162
1163 status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1164 if (status)
1165 goto err_init_port;
1166 }
1167 }
1168
1169 /* Remove the default nodes. */
1170 if (pi->root)
1171 ice_sched_rm_dflt_nodes(pi);
1172
1173 /* initialize the port for handling the scheduler tree */
1174 pi->port_state = ICE_SCHED_PORT_STATE_READY;
1175 mutex_init(&pi->sched_lock);
1176 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1177 INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1178
1179 err_init_port:
1180 if (status && pi->root) {
1181 ice_free_sched_node(pi, pi->root);
1182 pi->root = NULL;
1183 }
1184
1185 devm_kfree(ice_hw_to_dev(hw), buf);
1186 return status;
1187 }
1188
1189 /**
1190 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1191 * @hw: pointer to the HW struct
1192 *
1193 * query FW for allocated scheduler resources and store in HW struct
1194 */
ice_sched_query_res_alloc(struct ice_hw * hw)1195 enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1196 {
1197 struct ice_aqc_query_txsched_res_resp *buf;
1198 enum ice_status status = 0;
1199 __le16 max_sibl;
1200 u16 i;
1201
1202 if (hw->layer_info)
1203 return status;
1204
1205 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1206 if (!buf)
1207 return ICE_ERR_NO_MEMORY;
1208
1209 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1210 if (status)
1211 goto sched_query_out;
1212
1213 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1214 hw->num_tx_sched_phys_layers =
1215 le16_to_cpu(buf->sched_props.phys_levels);
1216 hw->flattened_layers = buf->sched_props.flattening_bitmap;
1217 hw->max_cgds = buf->sched_props.max_pf_cgds;
1218
1219 /* max sibling group size of current layer refers to the max children
1220 * of the below layer node.
1221 * layer 1 node max children will be layer 2 max sibling group size
1222 * layer 2 node max children will be layer 3 max sibling group size
1223 * and so on. This array will be populated from root (index 0) to
1224 * qgroup layer 7. Leaf node has no children.
1225 */
1226 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1227 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1228 hw->max_children[i] = le16_to_cpu(max_sibl);
1229 }
1230
1231 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1232 (hw->num_tx_sched_layers *
1233 sizeof(*hw->layer_info)),
1234 GFP_KERNEL);
1235 if (!hw->layer_info) {
1236 status = ICE_ERR_NO_MEMORY;
1237 goto sched_query_out;
1238 }
1239
1240 sched_query_out:
1241 devm_kfree(ice_hw_to_dev(hw), buf);
1242 return status;
1243 }
1244
1245 /**
1246 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1247 * @hw: pointer to the HW struct
1248 * @base: pointer to the base node
1249 * @node: pointer to the node to search
1250 *
1251 * This function checks whether a given node is part of the base node
1252 * subtree or not
1253 */
1254 static bool
ice_sched_find_node_in_subtree(struct ice_hw * hw,struct ice_sched_node * base,struct ice_sched_node * node)1255 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1256 struct ice_sched_node *node)
1257 {
1258 u8 i;
1259
1260 for (i = 0; i < base->num_children; i++) {
1261 struct ice_sched_node *child = base->children[i];
1262
1263 if (node == child)
1264 return true;
1265
1266 if (child->tx_sched_layer > node->tx_sched_layer)
1267 return false;
1268
1269 /* this recursion is intentional, and wouldn't
1270 * go more than 8 calls
1271 */
1272 if (ice_sched_find_node_in_subtree(hw, child, node))
1273 return true;
1274 }
1275 return false;
1276 }
1277
1278 /**
1279 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1280 * @pi: port information structure
1281 * @vsi_node: software VSI handle
1282 * @qgrp_node: first queue group node identified for scanning
1283 * @owner: LAN or RDMA
1284 *
1285 * This function retrieves a free LAN or RDMA queue group node by scanning
1286 * qgrp_node and its siblings for the queue group with the fewest number
1287 * of queues currently assigned.
1288 */
1289 static struct ice_sched_node *
ice_sched_get_free_qgrp(struct ice_port_info * pi,struct ice_sched_node * vsi_node,struct ice_sched_node * qgrp_node,u8 owner)1290 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1291 struct ice_sched_node *vsi_node,
1292 struct ice_sched_node *qgrp_node, u8 owner)
1293 {
1294 struct ice_sched_node *min_qgrp;
1295 u8 min_children;
1296
1297 if (!qgrp_node)
1298 return qgrp_node;
1299 min_children = qgrp_node->num_children;
1300 if (!min_children)
1301 return qgrp_node;
1302 min_qgrp = qgrp_node;
1303 /* scan all queue groups until find a node which has less than the
1304 * minimum number of children. This way all queue group nodes get
1305 * equal number of shares and active. The bandwidth will be equally
1306 * distributed across all queues.
1307 */
1308 while (qgrp_node) {
1309 /* make sure the qgroup node is part of the VSI subtree */
1310 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1311 if (qgrp_node->num_children < min_children &&
1312 qgrp_node->owner == owner) {
1313 /* replace the new min queue group node */
1314 min_qgrp = qgrp_node;
1315 min_children = min_qgrp->num_children;
1316 /* break if it has no children, */
1317 if (!min_children)
1318 break;
1319 }
1320 qgrp_node = qgrp_node->sibling;
1321 }
1322 return min_qgrp;
1323 }
1324
1325 /**
1326 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1327 * @pi: port information structure
1328 * @vsi_handle: software VSI handle
1329 * @tc: branch number
1330 * @owner: LAN or RDMA
1331 *
1332 * This function retrieves a free LAN or RDMA queue group node
1333 */
1334 struct ice_sched_node *
ice_sched_get_free_qparent(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 owner)1335 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1336 u8 owner)
1337 {
1338 struct ice_sched_node *vsi_node, *qgrp_node;
1339 struct ice_vsi_ctx *vsi_ctx;
1340 u16 max_children;
1341 u8 qgrp_layer;
1342
1343 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1344 max_children = pi->hw->max_children[qgrp_layer];
1345
1346 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1347 if (!vsi_ctx)
1348 return NULL;
1349 vsi_node = vsi_ctx->sched.vsi_node[tc];
1350 /* validate invalid VSI ID */
1351 if (!vsi_node)
1352 return NULL;
1353
1354 /* get the first queue group node from VSI sub-tree */
1355 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1356 while (qgrp_node) {
1357 /* make sure the qgroup node is part of the VSI subtree */
1358 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1359 if (qgrp_node->num_children < max_children &&
1360 qgrp_node->owner == owner)
1361 break;
1362 qgrp_node = qgrp_node->sibling;
1363 }
1364
1365 /* Select the best queue group */
1366 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1367 }
1368
1369 /**
1370 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1371 * @hw: pointer to the HW struct
1372 * @tc_node: pointer to the TC node
1373 * @vsi_handle: software VSI handle
1374 *
1375 * This function retrieves a VSI node for a given VSI ID from a given
1376 * TC branch
1377 */
1378 static struct ice_sched_node *
ice_sched_get_vsi_node(struct ice_hw * hw,struct ice_sched_node * tc_node,u16 vsi_handle)1379 ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node,
1380 u16 vsi_handle)
1381 {
1382 struct ice_sched_node *node;
1383 u8 vsi_layer;
1384
1385 vsi_layer = ice_sched_get_vsi_layer(hw);
1386 node = ice_sched_get_first_node(hw->port_info, tc_node, vsi_layer);
1387
1388 /* Check whether it already exists */
1389 while (node) {
1390 if (node->vsi_handle == vsi_handle)
1391 return node;
1392 node = node->sibling;
1393 }
1394
1395 return node;
1396 }
1397
1398 /**
1399 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1400 * @hw: pointer to the HW struct
1401 * @num_qs: number of queues
1402 * @num_nodes: num nodes array
1403 *
1404 * This function calculates the number of VSI child nodes based on the
1405 * number of queues.
1406 */
1407 static void
ice_sched_calc_vsi_child_nodes(struct ice_hw * hw,u16 num_qs,u16 * num_nodes)1408 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1409 {
1410 u16 num = num_qs;
1411 u8 i, qgl, vsil;
1412
1413 qgl = ice_sched_get_qgrp_layer(hw);
1414 vsil = ice_sched_get_vsi_layer(hw);
1415
1416 /* calculate num nodes from queue group to VSI layer */
1417 for (i = qgl; i > vsil; i--) {
1418 /* round to the next integer if there is a remainder */
1419 num = DIV_ROUND_UP(num, hw->max_children[i]);
1420
1421 /* need at least one node */
1422 num_nodes[i] = num ? num : 1;
1423 }
1424 }
1425
1426 /**
1427 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1428 * @pi: port information structure
1429 * @vsi_handle: software VSI handle
1430 * @tc_node: pointer to the TC node
1431 * @num_nodes: pointer to the num nodes that needs to be added per layer
1432 * @owner: node owner (LAN or RDMA)
1433 *
1434 * This function adds the VSI child nodes to tree. It gets called for
1435 * LAN and RDMA separately.
1436 */
1437 static enum ice_status
ice_sched_add_vsi_child_nodes(struct ice_port_info * pi,u16 vsi_handle,struct ice_sched_node * tc_node,u16 * num_nodes,u8 owner)1438 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1439 struct ice_sched_node *tc_node, u16 *num_nodes,
1440 u8 owner)
1441 {
1442 struct ice_sched_node *parent, *node;
1443 struct ice_hw *hw = pi->hw;
1444 enum ice_status status;
1445 u32 first_node_teid;
1446 u16 num_added = 0;
1447 u8 i, qgl, vsil;
1448
1449 qgl = ice_sched_get_qgrp_layer(hw);
1450 vsil = ice_sched_get_vsi_layer(hw);
1451 parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1452 for (i = vsil + 1; i <= qgl; i++) {
1453 if (!parent)
1454 return ICE_ERR_CFG;
1455
1456 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1457 num_nodes[i],
1458 &first_node_teid,
1459 &num_added);
1460 if (status || num_nodes[i] != num_added)
1461 return ICE_ERR_CFG;
1462
1463 /* The newly added node can be a new parent for the next
1464 * layer nodes
1465 */
1466 if (num_added) {
1467 parent = ice_sched_find_node_by_teid(tc_node,
1468 first_node_teid);
1469 node = parent;
1470 while (node) {
1471 node->owner = owner;
1472 node = node->sibling;
1473 }
1474 } else {
1475 parent = parent->children[0];
1476 }
1477 }
1478
1479 return 0;
1480 }
1481
1482 /**
1483 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1484 * @hw: pointer to the HW struct
1485 * @tc_node: pointer to TC node
1486 * @num_nodes: pointer to num nodes array
1487 *
1488 * This function calculates the number of supported nodes needed to add this
1489 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1490 * layers
1491 */
1492 static void
ice_sched_calc_vsi_support_nodes(struct ice_hw * hw,struct ice_sched_node * tc_node,u16 * num_nodes)1493 ice_sched_calc_vsi_support_nodes(struct ice_hw *hw,
1494 struct ice_sched_node *tc_node, u16 *num_nodes)
1495 {
1496 struct ice_sched_node *node;
1497 u8 vsil;
1498 int i;
1499
1500 vsil = ice_sched_get_vsi_layer(hw);
1501 for (i = vsil; i >= hw->sw_entry_point_layer; i--)
1502 /* Add intermediate nodes if TC has no children and
1503 * need at least one node for VSI
1504 */
1505 if (!tc_node->num_children || i == vsil) {
1506 num_nodes[i]++;
1507 } else {
1508 /* If intermediate nodes are reached max children
1509 * then add a new one.
1510 */
1511 node = ice_sched_get_first_node(hw->port_info, tc_node,
1512 (u8)i);
1513 /* scan all the siblings */
1514 while (node) {
1515 if (node->num_children < hw->max_children[i])
1516 break;
1517 node = node->sibling;
1518 }
1519
1520 /* tree has one intermediate node to add this new VSI.
1521 * So no need to calculate supported nodes for below
1522 * layers.
1523 */
1524 if (node)
1525 break;
1526 /* all the nodes are full, allocate a new one */
1527 num_nodes[i]++;
1528 }
1529 }
1530
1531 /**
1532 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1533 * @pi: port information structure
1534 * @vsi_handle: software VSI handle
1535 * @tc_node: pointer to TC node
1536 * @num_nodes: pointer to num nodes array
1537 *
1538 * This function adds the VSI supported nodes into Tx tree including the
1539 * VSI, its parent and intermediate nodes in below layers
1540 */
1541 static enum ice_status
ice_sched_add_vsi_support_nodes(struct ice_port_info * pi,u16 vsi_handle,struct ice_sched_node * tc_node,u16 * num_nodes)1542 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1543 struct ice_sched_node *tc_node, u16 *num_nodes)
1544 {
1545 struct ice_sched_node *parent = tc_node;
1546 enum ice_status status;
1547 u32 first_node_teid;
1548 u16 num_added = 0;
1549 u8 i, vsil;
1550
1551 if (!pi)
1552 return ICE_ERR_PARAM;
1553
1554 vsil = ice_sched_get_vsi_layer(pi->hw);
1555 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1556 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1557 i, num_nodes[i],
1558 &first_node_teid,
1559 &num_added);
1560 if (status || num_nodes[i] != num_added)
1561 return ICE_ERR_CFG;
1562
1563 /* The newly added node can be a new parent for the next
1564 * layer nodes
1565 */
1566 if (num_added)
1567 parent = ice_sched_find_node_by_teid(tc_node,
1568 first_node_teid);
1569 else
1570 parent = parent->children[0];
1571
1572 if (!parent)
1573 return ICE_ERR_CFG;
1574
1575 if (i == vsil)
1576 parent->vsi_handle = vsi_handle;
1577 }
1578
1579 return 0;
1580 }
1581
1582 /**
1583 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1584 * @pi: port information structure
1585 * @vsi_handle: software VSI handle
1586 * @tc: TC number
1587 *
1588 * This function adds a new VSI into scheduler tree
1589 */
1590 static enum ice_status
ice_sched_add_vsi_to_topo(struct ice_port_info * pi,u16 vsi_handle,u8 tc)1591 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1592 {
1593 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1594 struct ice_sched_node *tc_node;
1595 struct ice_hw *hw = pi->hw;
1596
1597 tc_node = ice_sched_get_tc_node(pi, tc);
1598 if (!tc_node)
1599 return ICE_ERR_PARAM;
1600
1601 /* calculate number of supported nodes needed for this VSI */
1602 ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes);
1603
1604 /* add VSI supported nodes to TC subtree */
1605 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1606 num_nodes);
1607 }
1608
1609 /**
1610 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1611 * @pi: port information structure
1612 * @vsi_handle: software VSI handle
1613 * @tc: TC number
1614 * @new_numqs: new number of max queues
1615 * @owner: owner of this subtree
1616 *
1617 * This function updates the VSI child nodes based on the number of queues
1618 */
1619 static enum ice_status
ice_sched_update_vsi_child_nodes(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 new_numqs,u8 owner)1620 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1621 u8 tc, u16 new_numqs, u8 owner)
1622 {
1623 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1624 struct ice_sched_node *vsi_node;
1625 struct ice_sched_node *tc_node;
1626 struct ice_vsi_ctx *vsi_ctx;
1627 enum ice_status status = 0;
1628 struct ice_hw *hw = pi->hw;
1629 u16 prev_numqs;
1630
1631 tc_node = ice_sched_get_tc_node(pi, tc);
1632 if (!tc_node)
1633 return ICE_ERR_CFG;
1634
1635 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1636 if (!vsi_node)
1637 return ICE_ERR_CFG;
1638
1639 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1640 if (!vsi_ctx)
1641 return ICE_ERR_PARAM;
1642
1643 prev_numqs = vsi_ctx->sched.max_lanq[tc];
1644 /* num queues are not changed or less than the previous number */
1645 if (new_numqs <= prev_numqs)
1646 return status;
1647 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1648 if (status)
1649 return status;
1650
1651 if (new_numqs)
1652 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1653 /* Keep the max number of queue configuration all the time. Update the
1654 * tree only if number of queues > previous number of queues. This may
1655 * leave some extra nodes in the tree if number of queues < previous
1656 * number but that wouldn't harm anything. Removing those extra nodes
1657 * may complicate the code if those nodes are part of SRL or
1658 * individually rate limited.
1659 */
1660 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1661 new_num_nodes, owner);
1662 if (status)
1663 return status;
1664 vsi_ctx->sched.max_lanq[tc] = new_numqs;
1665
1666 return 0;
1667 }
1668
1669 /**
1670 * ice_sched_cfg_vsi - configure the new/existing VSI
1671 * @pi: port information structure
1672 * @vsi_handle: software VSI handle
1673 * @tc: TC number
1674 * @maxqs: max number of queues
1675 * @owner: LAN or RDMA
1676 * @enable: TC enabled or disabled
1677 *
1678 * This function adds/updates VSI nodes based on the number of queues. If TC is
1679 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1680 * disabled then suspend the VSI if it is not already.
1681 */
1682 enum ice_status
ice_sched_cfg_vsi(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 maxqs,u8 owner,bool enable)1683 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1684 u8 owner, bool enable)
1685 {
1686 struct ice_sched_node *vsi_node, *tc_node;
1687 struct ice_vsi_ctx *vsi_ctx;
1688 enum ice_status status = 0;
1689 struct ice_hw *hw = pi->hw;
1690
1691 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1692 tc_node = ice_sched_get_tc_node(pi, tc);
1693 if (!tc_node)
1694 return ICE_ERR_PARAM;
1695 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1696 if (!vsi_ctx)
1697 return ICE_ERR_PARAM;
1698 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1699
1700 /* suspend the VSI if TC is not enabled */
1701 if (!enable) {
1702 if (vsi_node && vsi_node->in_use) {
1703 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1704
1705 status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1706 true);
1707 if (!status)
1708 vsi_node->in_use = false;
1709 }
1710 return status;
1711 }
1712
1713 /* TC is enabled, if it is a new VSI then add it to the tree */
1714 if (!vsi_node) {
1715 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1716 if (status)
1717 return status;
1718
1719 vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1720 if (!vsi_node)
1721 return ICE_ERR_CFG;
1722
1723 vsi_ctx->sched.vsi_node[tc] = vsi_node;
1724 vsi_node->in_use = true;
1725 /* invalidate the max queues whenever VSI gets added first time
1726 * into the scheduler tree (boot or after reset). We need to
1727 * recreate the child nodes all the time in these cases.
1728 */
1729 vsi_ctx->sched.max_lanq[tc] = 0;
1730 }
1731
1732 /* update the VSI child nodes */
1733 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1734 owner);
1735 if (status)
1736 return status;
1737
1738 /* TC is enabled, resume the VSI if it is in the suspend state */
1739 if (!vsi_node->in_use) {
1740 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1741
1742 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1743 if (!status)
1744 vsi_node->in_use = true;
1745 }
1746
1747 return status;
1748 }
1749
1750 /**
1751 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
1752 * @pi: port information structure
1753 * @vsi_handle: software VSI handle
1754 *
1755 * This function removes single aggregator VSI info entry from
1756 * aggregator list.
1757 */
ice_sched_rm_agg_vsi_info(struct ice_port_info * pi,u16 vsi_handle)1758 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1759 {
1760 struct ice_sched_agg_info *agg_info;
1761 struct ice_sched_agg_info *atmp;
1762
1763 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1764 list_entry) {
1765 struct ice_sched_agg_vsi_info *agg_vsi_info;
1766 struct ice_sched_agg_vsi_info *vtmp;
1767
1768 list_for_each_entry_safe(agg_vsi_info, vtmp,
1769 &agg_info->agg_vsi_list, list_entry)
1770 if (agg_vsi_info->vsi_handle == vsi_handle) {
1771 list_del(&agg_vsi_info->list_entry);
1772 devm_kfree(ice_hw_to_dev(pi->hw),
1773 agg_vsi_info);
1774 return;
1775 }
1776 }
1777 }
1778
1779 /**
1780 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1781 * @node: pointer to the sub-tree node
1782 *
1783 * This function checks for a leaf node presence in a given sub-tree node.
1784 */
ice_sched_is_leaf_node_present(struct ice_sched_node * node)1785 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
1786 {
1787 u8 i;
1788
1789 for (i = 0; i < node->num_children; i++)
1790 if (ice_sched_is_leaf_node_present(node->children[i]))
1791 return true;
1792 /* check for a leaf node */
1793 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
1794 }
1795
1796 /**
1797 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
1798 * @pi: port information structure
1799 * @vsi_handle: software VSI handle
1800 * @owner: LAN or RDMA
1801 *
1802 * This function removes the VSI and its LAN or RDMA children nodes from the
1803 * scheduler tree.
1804 */
1805 static enum ice_status
ice_sched_rm_vsi_cfg(struct ice_port_info * pi,u16 vsi_handle,u8 owner)1806 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
1807 {
1808 enum ice_status status = ICE_ERR_PARAM;
1809 struct ice_vsi_ctx *vsi_ctx;
1810 u8 i;
1811
1812 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
1813 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
1814 return status;
1815 mutex_lock(&pi->sched_lock);
1816 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1817 if (!vsi_ctx)
1818 goto exit_sched_rm_vsi_cfg;
1819
1820 ice_for_each_traffic_class(i) {
1821 struct ice_sched_node *vsi_node, *tc_node;
1822 u8 j = 0;
1823
1824 tc_node = ice_sched_get_tc_node(pi, i);
1825 if (!tc_node)
1826 continue;
1827
1828 vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle);
1829 if (!vsi_node)
1830 continue;
1831
1832 if (ice_sched_is_leaf_node_present(vsi_node)) {
1833 ice_debug(pi->hw, ICE_DBG_SCHED,
1834 "VSI has leaf nodes in TC %d\n", i);
1835 status = ICE_ERR_IN_USE;
1836 goto exit_sched_rm_vsi_cfg;
1837 }
1838 while (j < vsi_node->num_children) {
1839 if (vsi_node->children[j]->owner == owner) {
1840 ice_free_sched_node(pi, vsi_node->children[j]);
1841
1842 /* reset the counter again since the num
1843 * children will be updated after node removal
1844 */
1845 j = 0;
1846 } else {
1847 j++;
1848 }
1849 }
1850 /* remove the VSI if it has no children */
1851 if (!vsi_node->num_children) {
1852 ice_free_sched_node(pi, vsi_node);
1853 vsi_ctx->sched.vsi_node[i] = NULL;
1854
1855 /* clean up aggregator related VSI info if any */
1856 ice_sched_rm_agg_vsi_info(pi, vsi_handle);
1857 }
1858 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1859 vsi_ctx->sched.max_lanq[i] = 0;
1860 }
1861 status = 0;
1862
1863 exit_sched_rm_vsi_cfg:
1864 mutex_unlock(&pi->sched_lock);
1865 return status;
1866 }
1867
1868 /**
1869 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
1870 * @pi: port information structure
1871 * @vsi_handle: software VSI handle
1872 *
1873 * This function clears the VSI and its LAN children nodes from scheduler tree
1874 * for all TCs.
1875 */
ice_rm_vsi_lan_cfg(struct ice_port_info * pi,u16 vsi_handle)1876 enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
1877 {
1878 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
1879 }
1880
1881 /**
1882 * ice_sched_rm_unused_rl_prof - remove unused RL profile
1883 * @pi: port information structure
1884 *
1885 * This function removes unused rate limit profiles from the HW and
1886 * SW DB. The caller needs to hold scheduler lock.
1887 */
ice_sched_rm_unused_rl_prof(struct ice_port_info * pi)1888 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
1889 {
1890 u16 ln;
1891
1892 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
1893 struct ice_aqc_rl_profile_info *rl_prof_elem;
1894 struct ice_aqc_rl_profile_info *rl_prof_tmp;
1895
1896 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
1897 &pi->rl_prof_list[ln], list_entry) {
1898 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
1899 ice_debug(pi->hw, ICE_DBG_SCHED,
1900 "Removed rl profile\n");
1901 }
1902 }
1903 }
1904
1905 /**
1906 * ice_sched_update_elem - update element
1907 * @hw: pointer to the HW struct
1908 * @node: pointer to node
1909 * @info: node info to update
1910 *
1911 * Update the HW DB, and local SW DB of node. Update the scheduling
1912 * parameters of node from argument info data buffer (Info->data buf) and
1913 * returns success or error on config sched element failure. The caller
1914 * needs to hold scheduler lock.
1915 */
1916 static enum ice_status
ice_sched_update_elem(struct ice_hw * hw,struct ice_sched_node * node,struct ice_aqc_txsched_elem_data * info)1917 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
1918 struct ice_aqc_txsched_elem_data *info)
1919 {
1920 struct ice_aqc_txsched_elem_data buf;
1921 enum ice_status status;
1922 u16 elem_cfgd = 0;
1923 u16 num_elems = 1;
1924
1925 buf = *info;
1926 /* Parent TEID is reserved field in this aq call */
1927 buf.parent_teid = 0;
1928 /* Element type is reserved field in this aq call */
1929 buf.data.elem_type = 0;
1930 /* Flags is reserved field in this aq call */
1931 buf.data.flags = 0;
1932
1933 /* Update HW DB */
1934 /* Configure element node */
1935 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
1936 &elem_cfgd, NULL);
1937 if (status || elem_cfgd != num_elems) {
1938 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
1939 return ICE_ERR_CFG;
1940 }
1941
1942 /* Config success case */
1943 /* Now update local SW DB */
1944 /* Only copy the data portion of info buffer */
1945 node->info.data = info->data;
1946 return status;
1947 }
1948
1949 /**
1950 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
1951 * @hw: pointer to the HW struct
1952 * @node: sched node to configure
1953 * @rl_type: rate limit type CIR, EIR, or shared
1954 * @bw_alloc: BW weight/allocation
1955 *
1956 * This function configures node element's BW allocation.
1957 */
1958 static enum ice_status
ice_sched_cfg_node_bw_alloc(struct ice_hw * hw,struct ice_sched_node * node,enum ice_rl_type rl_type,u16 bw_alloc)1959 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
1960 enum ice_rl_type rl_type, u16 bw_alloc)
1961 {
1962 struct ice_aqc_txsched_elem_data buf;
1963 struct ice_aqc_txsched_elem *data;
1964 enum ice_status status;
1965
1966 buf = node->info;
1967 data = &buf.data;
1968 if (rl_type == ICE_MIN_BW) {
1969 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
1970 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1971 } else if (rl_type == ICE_MAX_BW) {
1972 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
1973 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1974 } else {
1975 return ICE_ERR_PARAM;
1976 }
1977
1978 /* Configure element */
1979 status = ice_sched_update_elem(hw, node, &buf);
1980 return status;
1981 }
1982
1983 /**
1984 * ice_set_clear_cir_bw - set or clear CIR BW
1985 * @bw_t_info: bandwidth type information structure
1986 * @bw: bandwidth in Kbps - Kilo bits per sec
1987 *
1988 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
1989 */
ice_set_clear_cir_bw(struct ice_bw_type_info * bw_t_info,u32 bw)1990 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
1991 {
1992 if (bw == ICE_SCHED_DFLT_BW) {
1993 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1994 bw_t_info->cir_bw.bw = 0;
1995 } else {
1996 /* Save type of BW information */
1997 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1998 bw_t_info->cir_bw.bw = bw;
1999 }
2000 }
2001
2002 /**
2003 * ice_set_clear_eir_bw - set or clear EIR BW
2004 * @bw_t_info: bandwidth type information structure
2005 * @bw: bandwidth in Kbps - Kilo bits per sec
2006 *
2007 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2008 */
ice_set_clear_eir_bw(struct ice_bw_type_info * bw_t_info,u32 bw)2009 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2010 {
2011 if (bw == ICE_SCHED_DFLT_BW) {
2012 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2013 bw_t_info->eir_bw.bw = 0;
2014 } else {
2015 /* EIR BW and Shared BW profiles are mutually exclusive and
2016 * hence only one of them may be set for any given element.
2017 * First clear earlier saved shared BW information.
2018 */
2019 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2020 bw_t_info->shared_bw = 0;
2021 /* save EIR BW information */
2022 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2023 bw_t_info->eir_bw.bw = bw;
2024 }
2025 }
2026
2027 /**
2028 * ice_set_clear_shared_bw - set or clear shared BW
2029 * @bw_t_info: bandwidth type information structure
2030 * @bw: bandwidth in Kbps - Kilo bits per sec
2031 *
2032 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
2033 */
ice_set_clear_shared_bw(struct ice_bw_type_info * bw_t_info,u32 bw)2034 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2035 {
2036 if (bw == ICE_SCHED_DFLT_BW) {
2037 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2038 bw_t_info->shared_bw = 0;
2039 } else {
2040 /* EIR BW and Shared BW profiles are mutually exclusive and
2041 * hence only one of them may be set for any given element.
2042 * First clear earlier saved EIR BW information.
2043 */
2044 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2045 bw_t_info->eir_bw.bw = 0;
2046 /* save shared BW information */
2047 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2048 bw_t_info->shared_bw = bw;
2049 }
2050 }
2051
2052 /**
2053 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
2054 * @bw: bandwidth in Kbps
2055 *
2056 * This function calculates the wakeup parameter of RL profile.
2057 */
ice_sched_calc_wakeup(s32 bw)2058 static u16 ice_sched_calc_wakeup(s32 bw)
2059 {
2060 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
2061 s32 wakeup_f_int;
2062 u16 wakeup = 0;
2063
2064 /* Get the wakeup integer value */
2065 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2066 wakeup_int = div64_long(ICE_RL_PROF_FREQUENCY, bytes_per_sec);
2067 if (wakeup_int > 63) {
2068 wakeup = (u16)((1 << 15) | wakeup_int);
2069 } else {
2070 /* Calculate fraction value up to 4 decimals
2071 * Convert Integer value to a constant multiplier
2072 */
2073 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
2074 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
2075 ICE_RL_PROF_FREQUENCY,
2076 bytes_per_sec);
2077
2078 /* Get Fraction value */
2079 wakeup_f = wakeup_a - wakeup_b;
2080
2081 /* Round up the Fractional value via Ceil(Fractional value) */
2082 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
2083 wakeup_f += 1;
2084
2085 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
2086 ICE_RL_PROF_MULTIPLIER);
2087 wakeup |= (u16)(wakeup_int << 9);
2088 wakeup |= (u16)(0x1ff & wakeup_f_int);
2089 }
2090
2091 return wakeup;
2092 }
2093
2094 /**
2095 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
2096 * @bw: bandwidth in Kbps
2097 * @profile: profile parameters to return
2098 *
2099 * This function converts the BW to profile structure format.
2100 */
2101 static enum ice_status
ice_sched_bw_to_rl_profile(u32 bw,struct ice_aqc_rl_profile_elem * profile)2102 ice_sched_bw_to_rl_profile(u32 bw, struct ice_aqc_rl_profile_elem *profile)
2103 {
2104 enum ice_status status = ICE_ERR_PARAM;
2105 s64 bytes_per_sec, ts_rate, mv_tmp;
2106 bool found = false;
2107 s32 encode = 0;
2108 s64 mv = 0;
2109 s32 i;
2110
2111 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
2112 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
2113 return status;
2114
2115 /* Bytes per second from Kbps */
2116 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2117
2118 /* encode is 6 bits but really useful are 5 bits */
2119 for (i = 0; i < 64; i++) {
2120 u64 pow_result = BIT_ULL(i);
2121
2122 ts_rate = div64_long((s64)ICE_RL_PROF_FREQUENCY,
2123 pow_result * ICE_RL_PROF_TS_MULTIPLIER);
2124 if (ts_rate <= 0)
2125 continue;
2126
2127 /* Multiplier value */
2128 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
2129 ts_rate);
2130
2131 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */
2132 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
2133
2134 /* First multiplier value greater than the given
2135 * accuracy bytes
2136 */
2137 if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
2138 encode = i;
2139 found = true;
2140 break;
2141 }
2142 }
2143 if (found) {
2144 u16 wm;
2145
2146 wm = ice_sched_calc_wakeup(bw);
2147 profile->rl_multiply = cpu_to_le16(mv);
2148 profile->wake_up_calc = cpu_to_le16(wm);
2149 profile->rl_encode = cpu_to_le16(encode);
2150 status = 0;
2151 } else {
2152 status = ICE_ERR_DOES_NOT_EXIST;
2153 }
2154
2155 return status;
2156 }
2157
2158 /**
2159 * ice_sched_add_rl_profile - add RL profile
2160 * @pi: port information structure
2161 * @rl_type: type of rate limit BW - min, max, or shared
2162 * @bw: bandwidth in Kbps - Kilo bits per sec
2163 * @layer_num: specifies in which layer to create profile
2164 *
2165 * This function first checks the existing list for corresponding BW
2166 * parameter. If it exists, it returns the associated profile otherwise
2167 * it creates a new rate limit profile for requested BW, and adds it to
2168 * the HW DB and local list. It returns the new profile or null on error.
2169 * The caller needs to hold the scheduler lock.
2170 */
2171 static struct ice_aqc_rl_profile_info *
ice_sched_add_rl_profile(struct ice_port_info * pi,enum ice_rl_type rl_type,u32 bw,u8 layer_num)2172 ice_sched_add_rl_profile(struct ice_port_info *pi,
2173 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2174 {
2175 struct ice_aqc_rl_profile_info *rl_prof_elem;
2176 u16 profiles_added = 0, num_profiles = 1;
2177 struct ice_aqc_rl_profile_elem *buf;
2178 enum ice_status status;
2179 struct ice_hw *hw;
2180 u8 profile_type;
2181
2182 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2183 return NULL;
2184 switch (rl_type) {
2185 case ICE_MIN_BW:
2186 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2187 break;
2188 case ICE_MAX_BW:
2189 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2190 break;
2191 case ICE_SHARED_BW:
2192 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2193 break;
2194 default:
2195 return NULL;
2196 }
2197
2198 if (!pi)
2199 return NULL;
2200 hw = pi->hw;
2201 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2202 list_entry)
2203 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2204 profile_type && rl_prof_elem->bw == bw)
2205 /* Return existing profile ID info */
2206 return rl_prof_elem;
2207
2208 /* Create new profile ID */
2209 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
2210 GFP_KERNEL);
2211
2212 if (!rl_prof_elem)
2213 return NULL;
2214
2215 status = ice_sched_bw_to_rl_profile(bw, &rl_prof_elem->profile);
2216 if (status)
2217 goto exit_add_rl_prof;
2218
2219 rl_prof_elem->bw = bw;
2220 /* layer_num is zero relative, and fw expects level from 1 to 9 */
2221 rl_prof_elem->profile.level = layer_num + 1;
2222 rl_prof_elem->profile.flags = profile_type;
2223 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
2224
2225 /* Create new entry in HW DB */
2226 buf = &rl_prof_elem->profile;
2227 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
2228 &profiles_added, NULL);
2229 if (status || profiles_added != num_profiles)
2230 goto exit_add_rl_prof;
2231
2232 /* Good entry - add in the list */
2233 rl_prof_elem->prof_id_ref = 0;
2234 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
2235 return rl_prof_elem;
2236
2237 exit_add_rl_prof:
2238 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
2239 return NULL;
2240 }
2241
2242 /**
2243 * ice_sched_cfg_node_bw_lmt - configure node sched params
2244 * @hw: pointer to the HW struct
2245 * @node: sched node to configure
2246 * @rl_type: rate limit type CIR, EIR, or shared
2247 * @rl_prof_id: rate limit profile ID
2248 *
2249 * This function configures node element's BW limit.
2250 */
2251 static enum ice_status
ice_sched_cfg_node_bw_lmt(struct ice_hw * hw,struct ice_sched_node * node,enum ice_rl_type rl_type,u16 rl_prof_id)2252 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
2253 enum ice_rl_type rl_type, u16 rl_prof_id)
2254 {
2255 struct ice_aqc_txsched_elem_data buf;
2256 struct ice_aqc_txsched_elem *data;
2257
2258 buf = node->info;
2259 data = &buf.data;
2260 switch (rl_type) {
2261 case ICE_MIN_BW:
2262 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2263 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2264 break;
2265 case ICE_MAX_BW:
2266 /* EIR BW and Shared BW profiles are mutually exclusive and
2267 * hence only one of them may be set for any given element
2268 */
2269 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2270 return ICE_ERR_CFG;
2271 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2272 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2273 break;
2274 case ICE_SHARED_BW:
2275 /* Check for removing shared BW */
2276 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
2277 /* remove shared profile */
2278 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
2279 data->srl_id = 0; /* clear SRL field */
2280
2281 /* enable back EIR to default profile */
2282 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2283 data->eir_bw.bw_profile_idx =
2284 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
2285 break;
2286 }
2287 /* EIR BW and Shared BW profiles are mutually exclusive and
2288 * hence only one of them may be set for any given element
2289 */
2290 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
2291 (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
2292 ICE_SCHED_DFLT_RL_PROF_ID))
2293 return ICE_ERR_CFG;
2294 /* EIR BW is set to default, disable it */
2295 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
2296 /* Okay to enable shared BW now */
2297 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
2298 data->srl_id = cpu_to_le16(rl_prof_id);
2299 break;
2300 default:
2301 /* Unknown rate limit type */
2302 return ICE_ERR_PARAM;
2303 }
2304
2305 /* Configure element */
2306 return ice_sched_update_elem(hw, node, &buf);
2307 }
2308
2309 /**
2310 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
2311 * @node: sched node
2312 * @rl_type: rate limit type
2313 *
2314 * If existing profile matches, it returns the corresponding rate
2315 * limit profile ID, otherwise it returns an invalid ID as error.
2316 */
2317 static u16
ice_sched_get_node_rl_prof_id(struct ice_sched_node * node,enum ice_rl_type rl_type)2318 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
2319 enum ice_rl_type rl_type)
2320 {
2321 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
2322 struct ice_aqc_txsched_elem *data;
2323
2324 data = &node->info.data;
2325 switch (rl_type) {
2326 case ICE_MIN_BW:
2327 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
2328 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
2329 break;
2330 case ICE_MAX_BW:
2331 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
2332 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
2333 break;
2334 case ICE_SHARED_BW:
2335 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2336 rl_prof_id = le16_to_cpu(data->srl_id);
2337 break;
2338 default:
2339 break;
2340 }
2341
2342 return rl_prof_id;
2343 }
2344
2345 /**
2346 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
2347 * @pi: port information structure
2348 * @rl_type: type of rate limit BW - min, max, or shared
2349 * @layer_index: layer index
2350 *
2351 * This function returns requested profile creation layer.
2352 */
2353 static u8
ice_sched_get_rl_prof_layer(struct ice_port_info * pi,enum ice_rl_type rl_type,u8 layer_index)2354 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
2355 u8 layer_index)
2356 {
2357 struct ice_hw *hw = pi->hw;
2358
2359 if (layer_index >= hw->num_tx_sched_layers)
2360 return ICE_SCHED_INVAL_LAYER_NUM;
2361 switch (rl_type) {
2362 case ICE_MIN_BW:
2363 if (hw->layer_info[layer_index].max_cir_rl_profiles)
2364 return layer_index;
2365 break;
2366 case ICE_MAX_BW:
2367 if (hw->layer_info[layer_index].max_eir_rl_profiles)
2368 return layer_index;
2369 break;
2370 case ICE_SHARED_BW:
2371 /* if current layer doesn't support SRL profile creation
2372 * then try a layer up or down.
2373 */
2374 if (hw->layer_info[layer_index].max_srl_profiles)
2375 return layer_index;
2376 else if (layer_index < hw->num_tx_sched_layers - 1 &&
2377 hw->layer_info[layer_index + 1].max_srl_profiles)
2378 return layer_index + 1;
2379 else if (layer_index > 0 &&
2380 hw->layer_info[layer_index - 1].max_srl_profiles)
2381 return layer_index - 1;
2382 break;
2383 default:
2384 break;
2385 }
2386 return ICE_SCHED_INVAL_LAYER_NUM;
2387 }
2388
2389 /**
2390 * ice_sched_get_srl_node - get shared rate limit node
2391 * @node: tree node
2392 * @srl_layer: shared rate limit layer
2393 *
2394 * This function returns SRL node to be used for shared rate limit purpose.
2395 * The caller needs to hold scheduler lock.
2396 */
2397 static struct ice_sched_node *
ice_sched_get_srl_node(struct ice_sched_node * node,u8 srl_layer)2398 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
2399 {
2400 if (srl_layer > node->tx_sched_layer)
2401 return node->children[0];
2402 else if (srl_layer < node->tx_sched_layer)
2403 /* Node can't be created without a parent. It will always
2404 * have a valid parent except root node.
2405 */
2406 return node->parent;
2407 else
2408 return node;
2409 }
2410
2411 /**
2412 * ice_sched_rm_rl_profile - remove RL profile ID
2413 * @pi: port information structure
2414 * @layer_num: layer number where profiles are saved
2415 * @profile_type: profile type like EIR, CIR, or SRL
2416 * @profile_id: profile ID to remove
2417 *
2418 * This function removes rate limit profile from layer 'layer_num' of type
2419 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
2420 * scheduler lock.
2421 */
2422 static enum ice_status
ice_sched_rm_rl_profile(struct ice_port_info * pi,u8 layer_num,u8 profile_type,u16 profile_id)2423 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
2424 u16 profile_id)
2425 {
2426 struct ice_aqc_rl_profile_info *rl_prof_elem;
2427 enum ice_status status = 0;
2428
2429 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2430 return ICE_ERR_PARAM;
2431 /* Check the existing list for RL profile */
2432 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2433 list_entry)
2434 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2435 profile_type &&
2436 le16_to_cpu(rl_prof_elem->profile.profile_id) ==
2437 profile_id) {
2438 if (rl_prof_elem->prof_id_ref)
2439 rl_prof_elem->prof_id_ref--;
2440
2441 /* Remove old profile ID from database */
2442 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
2443 if (status && status != ICE_ERR_IN_USE)
2444 ice_debug(pi->hw, ICE_DBG_SCHED,
2445 "Remove rl profile failed\n");
2446 break;
2447 }
2448 if (status == ICE_ERR_IN_USE)
2449 status = 0;
2450 return status;
2451 }
2452
2453 /**
2454 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
2455 * @pi: port information structure
2456 * @node: pointer to node structure
2457 * @rl_type: rate limit type min, max, or shared
2458 * @layer_num: layer number where RL profiles are saved
2459 *
2460 * This function configures node element's BW rate limit profile ID of
2461 * type CIR, EIR, or SRL to default. This function needs to be called
2462 * with the scheduler lock held.
2463 */
2464 static enum ice_status
ice_sched_set_node_bw_dflt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u8 layer_num)2465 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
2466 struct ice_sched_node *node,
2467 enum ice_rl_type rl_type, u8 layer_num)
2468 {
2469 enum ice_status status;
2470 struct ice_hw *hw;
2471 u8 profile_type;
2472 u16 rl_prof_id;
2473 u16 old_id;
2474
2475 hw = pi->hw;
2476 switch (rl_type) {
2477 case ICE_MIN_BW:
2478 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2479 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2480 break;
2481 case ICE_MAX_BW:
2482 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2483 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2484 break;
2485 case ICE_SHARED_BW:
2486 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2487 /* No SRL is configured for default case */
2488 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
2489 break;
2490 default:
2491 return ICE_ERR_PARAM;
2492 }
2493 /* Save existing RL prof ID for later clean up */
2494 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2495 /* Configure BW scheduling parameters */
2496 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2497 if (status)
2498 return status;
2499
2500 /* Remove stale RL profile ID */
2501 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
2502 old_id == ICE_SCHED_INVAL_PROF_ID)
2503 return 0;
2504
2505 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
2506 }
2507
2508 /**
2509 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
2510 * @pi: port information structure
2511 * @node: pointer to node structure
2512 * @layer_num: layer number where rate limit profiles are saved
2513 * @rl_type: rate limit type min, max, or shared
2514 * @bw: bandwidth value
2515 *
2516 * This function prepares node element's bandwidth to SRL or EIR exclusively.
2517 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
2518 * them may be set for any given element. This function needs to be called
2519 * with the scheduler lock held.
2520 */
2521 static enum ice_status
ice_sched_set_eir_srl_excl(struct ice_port_info * pi,struct ice_sched_node * node,u8 layer_num,enum ice_rl_type rl_type,u32 bw)2522 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
2523 struct ice_sched_node *node,
2524 u8 layer_num, enum ice_rl_type rl_type, u32 bw)
2525 {
2526 if (rl_type == ICE_SHARED_BW) {
2527 /* SRL node passed in this case, it may be different node */
2528 if (bw == ICE_SCHED_DFLT_BW)
2529 /* SRL being removed, ice_sched_cfg_node_bw_lmt()
2530 * enables EIR to default. EIR is not set in this
2531 * case, so no additional action is required.
2532 */
2533 return 0;
2534
2535 /* SRL being configured, set EIR to default here.
2536 * ice_sched_cfg_node_bw_lmt() disables EIR when it
2537 * configures SRL
2538 */
2539 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
2540 layer_num);
2541 } else if (rl_type == ICE_MAX_BW &&
2542 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
2543 /* Remove Shared profile. Set default shared BW call
2544 * removes shared profile for a node.
2545 */
2546 return ice_sched_set_node_bw_dflt(pi, node,
2547 ICE_SHARED_BW,
2548 layer_num);
2549 }
2550 return 0;
2551 }
2552
2553 /**
2554 * ice_sched_set_node_bw - set node's bandwidth
2555 * @pi: port information structure
2556 * @node: tree node
2557 * @rl_type: rate limit type min, max, or shared
2558 * @bw: bandwidth in Kbps - Kilo bits per sec
2559 * @layer_num: layer number
2560 *
2561 * This function adds new profile corresponding to requested BW, configures
2562 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
2563 * ID from local database. The caller needs to hold scheduler lock.
2564 */
2565 static enum ice_status
ice_sched_set_node_bw(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u32 bw,u8 layer_num)2566 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
2567 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2568 {
2569 struct ice_aqc_rl_profile_info *rl_prof_info;
2570 enum ice_status status = ICE_ERR_PARAM;
2571 struct ice_hw *hw = pi->hw;
2572 u16 old_id, rl_prof_id;
2573
2574 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
2575 if (!rl_prof_info)
2576 return status;
2577
2578 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
2579
2580 /* Save existing RL prof ID for later clean up */
2581 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2582 /* Configure BW scheduling parameters */
2583 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2584 if (status)
2585 return status;
2586
2587 /* New changes has been applied */
2588 /* Increment the profile ID reference count */
2589 rl_prof_info->prof_id_ref++;
2590
2591 /* Check for old ID removal */
2592 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
2593 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
2594 return 0;
2595
2596 return ice_sched_rm_rl_profile(pi, layer_num,
2597 rl_prof_info->profile.flags &
2598 ICE_AQC_RL_PROFILE_TYPE_M, old_id);
2599 }
2600
2601 /**
2602 * ice_sched_set_node_bw_lmt - set node's BW limit
2603 * @pi: port information structure
2604 * @node: tree node
2605 * @rl_type: rate limit type min, max, or shared
2606 * @bw: bandwidth in Kbps - Kilo bits per sec
2607 *
2608 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
2609 * EIR, or SRL. The caller needs to hold scheduler lock.
2610 */
2611 static enum ice_status
ice_sched_set_node_bw_lmt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u32 bw)2612 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
2613 enum ice_rl_type rl_type, u32 bw)
2614 {
2615 struct ice_sched_node *cfg_node = node;
2616 enum ice_status status;
2617
2618 struct ice_hw *hw;
2619 u8 layer_num;
2620
2621 if (!pi)
2622 return ICE_ERR_PARAM;
2623 hw = pi->hw;
2624 /* Remove unused RL profile IDs from HW and SW DB */
2625 ice_sched_rm_unused_rl_prof(pi);
2626 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
2627 node->tx_sched_layer);
2628 if (layer_num >= hw->num_tx_sched_layers)
2629 return ICE_ERR_PARAM;
2630
2631 if (rl_type == ICE_SHARED_BW) {
2632 /* SRL node may be different */
2633 cfg_node = ice_sched_get_srl_node(node, layer_num);
2634 if (!cfg_node)
2635 return ICE_ERR_CFG;
2636 }
2637 /* EIR BW and Shared BW profiles are mutually exclusive and
2638 * hence only one of them may be set for any given element
2639 */
2640 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
2641 bw);
2642 if (status)
2643 return status;
2644 if (bw == ICE_SCHED_DFLT_BW)
2645 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
2646 layer_num);
2647 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
2648 }
2649
2650 /**
2651 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
2652 * @pi: port information structure
2653 * @node: pointer to node structure
2654 * @rl_type: rate limit type min, max, or shared
2655 *
2656 * This function configures node element's BW rate limit profile ID of
2657 * type CIR, EIR, or SRL to default. This function needs to be called
2658 * with the scheduler lock held.
2659 */
2660 static enum ice_status
ice_sched_set_node_bw_dflt_lmt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type)2661 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
2662 struct ice_sched_node *node,
2663 enum ice_rl_type rl_type)
2664 {
2665 return ice_sched_set_node_bw_lmt(pi, node, rl_type,
2666 ICE_SCHED_DFLT_BW);
2667 }
2668
2669 /**
2670 * ice_sched_validate_srl_node - Check node for SRL applicability
2671 * @node: sched node to configure
2672 * @sel_layer: selected SRL layer
2673 *
2674 * This function checks if the SRL can be applied to a selected layer node on
2675 * behalf of the requested node (first argument). This function needs to be
2676 * called with scheduler lock held.
2677 */
2678 static enum ice_status
ice_sched_validate_srl_node(struct ice_sched_node * node,u8 sel_layer)2679 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
2680 {
2681 /* SRL profiles are not available on all layers. Check if the
2682 * SRL profile can be applied to a node above or below the
2683 * requested node. SRL configuration is possible only if the
2684 * selected layer's node has single child.
2685 */
2686 if (sel_layer == node->tx_sched_layer ||
2687 ((sel_layer == node->tx_sched_layer + 1) &&
2688 node->num_children == 1) ||
2689 ((sel_layer == node->tx_sched_layer - 1) &&
2690 (node->parent && node->parent->num_children == 1)))
2691 return 0;
2692
2693 return ICE_ERR_CFG;
2694 }
2695
2696 /**
2697 * ice_sched_save_q_bw - save queue node's BW information
2698 * @q_ctx: queue context structure
2699 * @rl_type: rate limit type min, max, or shared
2700 * @bw: bandwidth in Kbps - Kilo bits per sec
2701 *
2702 * Save BW information of queue type node for post replay use.
2703 */
2704 static enum ice_status
ice_sched_save_q_bw(struct ice_q_ctx * q_ctx,enum ice_rl_type rl_type,u32 bw)2705 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
2706 {
2707 switch (rl_type) {
2708 case ICE_MIN_BW:
2709 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
2710 break;
2711 case ICE_MAX_BW:
2712 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
2713 break;
2714 case ICE_SHARED_BW:
2715 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
2716 break;
2717 default:
2718 return ICE_ERR_PARAM;
2719 }
2720 return 0;
2721 }
2722
2723 /**
2724 * ice_sched_set_q_bw_lmt - sets queue BW limit
2725 * @pi: port information structure
2726 * @vsi_handle: sw VSI handle
2727 * @tc: traffic class
2728 * @q_handle: software queue handle
2729 * @rl_type: min, max, or shared
2730 * @bw: bandwidth in Kbps
2731 *
2732 * This function sets BW limit of queue scheduling node.
2733 */
2734 static enum ice_status
ice_sched_set_q_bw_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type,u32 bw)2735 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2736 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2737 {
2738 enum ice_status status = ICE_ERR_PARAM;
2739 struct ice_sched_node *node;
2740 struct ice_q_ctx *q_ctx;
2741
2742 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2743 return ICE_ERR_PARAM;
2744 mutex_lock(&pi->sched_lock);
2745 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
2746 if (!q_ctx)
2747 goto exit_q_bw_lmt;
2748 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2749 if (!node) {
2750 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
2751 goto exit_q_bw_lmt;
2752 }
2753
2754 /* Return error if it is not a leaf node */
2755 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
2756 goto exit_q_bw_lmt;
2757
2758 /* SRL bandwidth layer selection */
2759 if (rl_type == ICE_SHARED_BW) {
2760 u8 sel_layer; /* selected layer */
2761
2762 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
2763 node->tx_sched_layer);
2764 if (sel_layer >= pi->hw->num_tx_sched_layers) {
2765 status = ICE_ERR_PARAM;
2766 goto exit_q_bw_lmt;
2767 }
2768 status = ice_sched_validate_srl_node(node, sel_layer);
2769 if (status)
2770 goto exit_q_bw_lmt;
2771 }
2772
2773 if (bw == ICE_SCHED_DFLT_BW)
2774 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
2775 else
2776 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
2777
2778 if (!status)
2779 status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
2780
2781 exit_q_bw_lmt:
2782 mutex_unlock(&pi->sched_lock);
2783 return status;
2784 }
2785
2786 /**
2787 * ice_cfg_q_bw_lmt - configure queue BW limit
2788 * @pi: port information structure
2789 * @vsi_handle: sw VSI handle
2790 * @tc: traffic class
2791 * @q_handle: software queue handle
2792 * @rl_type: min, max, or shared
2793 * @bw: bandwidth in Kbps
2794 *
2795 * This function configures BW limit of queue scheduling node.
2796 */
2797 enum ice_status
ice_cfg_q_bw_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type,u32 bw)2798 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2799 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2800 {
2801 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2802 bw);
2803 }
2804
2805 /**
2806 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
2807 * @pi: port information structure
2808 * @vsi_handle: sw VSI handle
2809 * @tc: traffic class
2810 * @q_handle: software queue handle
2811 * @rl_type: min, max, or shared
2812 *
2813 * This function configures BW default limit of queue scheduling node.
2814 */
2815 enum ice_status
ice_cfg_q_bw_dflt_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type)2816 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2817 u16 q_handle, enum ice_rl_type rl_type)
2818 {
2819 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2820 ICE_SCHED_DFLT_BW);
2821 }
2822
2823 /**
2824 * ice_cfg_rl_burst_size - Set burst size value
2825 * @hw: pointer to the HW struct
2826 * @bytes: burst size in bytes
2827 *
2828 * This function configures/set the burst size to requested new value. The new
2829 * burst size value is used for future rate limit calls. It doesn't change the
2830 * existing or previously created RL profiles.
2831 */
ice_cfg_rl_burst_size(struct ice_hw * hw,u32 bytes)2832 enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
2833 {
2834 u16 burst_size_to_prog;
2835
2836 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
2837 bytes > ICE_MAX_BURST_SIZE_ALLOWED)
2838 return ICE_ERR_PARAM;
2839 if (ice_round_to_num(bytes, 64) <=
2840 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
2841 /* 64 byte granularity case */
2842 /* Disable MSB granularity bit */
2843 burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
2844 /* round number to nearest 64 byte granularity */
2845 bytes = ice_round_to_num(bytes, 64);
2846 /* The value is in 64 byte chunks */
2847 burst_size_to_prog |= (u16)(bytes / 64);
2848 } else {
2849 /* k bytes granularity case */
2850 /* Enable MSB granularity bit */
2851 burst_size_to_prog = ICE_KBYTE_GRANULARITY;
2852 /* round number to nearest 1024 granularity */
2853 bytes = ice_round_to_num(bytes, 1024);
2854 /* check rounding doesn't go beyond allowed */
2855 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
2856 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
2857 /* The value is in k bytes */
2858 burst_size_to_prog |= (u16)(bytes / 1024);
2859 }
2860 hw->max_burst_size = burst_size_to_prog;
2861 return 0;
2862 }
2863
2864 /**
2865 * ice_sched_replay_node_prio - re-configure node priority
2866 * @hw: pointer to the HW struct
2867 * @node: sched node to configure
2868 * @priority: priority value
2869 *
2870 * This function configures node element's priority value. It
2871 * needs to be called with scheduler lock held.
2872 */
2873 static enum ice_status
ice_sched_replay_node_prio(struct ice_hw * hw,struct ice_sched_node * node,u8 priority)2874 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
2875 u8 priority)
2876 {
2877 struct ice_aqc_txsched_elem_data buf;
2878 struct ice_aqc_txsched_elem *data;
2879 enum ice_status status;
2880
2881 buf = node->info;
2882 data = &buf.data;
2883 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
2884 data->generic = priority;
2885
2886 /* Configure element */
2887 status = ice_sched_update_elem(hw, node, &buf);
2888 return status;
2889 }
2890
2891 /**
2892 * ice_sched_replay_node_bw - replay node(s) BW
2893 * @hw: pointer to the HW struct
2894 * @node: sched node to configure
2895 * @bw_t_info: BW type information
2896 *
2897 * This function restores node's BW from bw_t_info. The caller needs
2898 * to hold the scheduler lock.
2899 */
2900 static enum ice_status
ice_sched_replay_node_bw(struct ice_hw * hw,struct ice_sched_node * node,struct ice_bw_type_info * bw_t_info)2901 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
2902 struct ice_bw_type_info *bw_t_info)
2903 {
2904 struct ice_port_info *pi = hw->port_info;
2905 enum ice_status status = ICE_ERR_PARAM;
2906 u16 bw_alloc;
2907
2908 if (!node)
2909 return status;
2910 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
2911 return 0;
2912 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
2913 status = ice_sched_replay_node_prio(hw, node,
2914 bw_t_info->generic);
2915 if (status)
2916 return status;
2917 }
2918 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
2919 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
2920 bw_t_info->cir_bw.bw);
2921 if (status)
2922 return status;
2923 }
2924 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
2925 bw_alloc = bw_t_info->cir_bw.bw_alloc;
2926 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
2927 bw_alloc);
2928 if (status)
2929 return status;
2930 }
2931 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
2932 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
2933 bw_t_info->eir_bw.bw);
2934 if (status)
2935 return status;
2936 }
2937 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
2938 bw_alloc = bw_t_info->eir_bw.bw_alloc;
2939 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
2940 bw_alloc);
2941 if (status)
2942 return status;
2943 }
2944 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
2945 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
2946 bw_t_info->shared_bw);
2947 return status;
2948 }
2949
2950 /**
2951 * ice_sched_replay_q_bw - replay queue type node BW
2952 * @pi: port information structure
2953 * @q_ctx: queue context structure
2954 *
2955 * This function replays queue type node bandwidth. This function needs to be
2956 * called with scheduler lock held.
2957 */
2958 enum ice_status
ice_sched_replay_q_bw(struct ice_port_info * pi,struct ice_q_ctx * q_ctx)2959 ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
2960 {
2961 struct ice_sched_node *q_node;
2962
2963 /* Following also checks the presence of node in tree */
2964 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2965 if (!q_node)
2966 return ICE_ERR_PARAM;
2967 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
2968 }
2969