• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49#ifdef CONFIG_PARAVIRT_XXL
50SYM_CODE_START(native_usergs_sysret64)
51	UNWIND_HINT_EMPTY
52	swapgs
53	sysretq
54SYM_CODE_END(native_usergs_sysret64)
55#endif /* CONFIG_PARAVIRT_XXL */
56
57/*
58 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
59 *
60 * This is the only entry point used for 64-bit system calls.  The
61 * hardware interface is reasonably well designed and the register to
62 * argument mapping Linux uses fits well with the registers that are
63 * available when SYSCALL is used.
64 *
65 * SYSCALL instructions can be found inlined in libc implementations as
66 * well as some other programs and libraries.  There are also a handful
67 * of SYSCALL instructions in the vDSO used, for example, as a
68 * clock_gettimeofday fallback.
69 *
70 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
71 * then loads new ss, cs, and rip from previously programmed MSRs.
72 * rflags gets masked by a value from another MSR (so CLD and CLAC
73 * are not needed). SYSCALL does not save anything on the stack
74 * and does not change rsp.
75 *
76 * Registers on entry:
77 * rax  system call number
78 * rcx  return address
79 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
80 * rdi  arg0
81 * rsi  arg1
82 * rdx  arg2
83 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
84 * r8   arg4
85 * r9   arg5
86 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
87 *
88 * Only called from user space.
89 *
90 * When user can change pt_regs->foo always force IRET. That is because
91 * it deals with uncanonical addresses better. SYSRET has trouble
92 * with them due to bugs in both AMD and Intel CPUs.
93 */
94
95SYM_CODE_START(entry_SYSCALL_64)
96	UNWIND_HINT_ENTRY
97
98	swapgs
99	/* tss.sp2 is scratch space. */
100	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
101	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
102	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
103
104SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
105
106	/* Construct struct pt_regs on stack */
107	pushq	$__USER_DS				/* pt_regs->ss */
108	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
109	pushq	%r11					/* pt_regs->flags */
110	pushq	$__USER_CS				/* pt_regs->cs */
111	pushq	%rcx					/* pt_regs->ip */
112SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
113	pushq	%rax					/* pt_regs->orig_ax */
114
115	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
116
117	/* IRQs are off. */
118	movq	%rax, %rdi
119	movq	%rsp, %rsi
120
121	/* clobbers %rax, make sure it is after saving the syscall nr */
122	IBRS_ENTER
123	UNTRAIN_RET
124
125	call	do_syscall_64		/* returns with IRQs disabled */
126
127	/*
128	 * Try to use SYSRET instead of IRET if we're returning to
129	 * a completely clean 64-bit userspace context.  If we're not,
130	 * go to the slow exit path.
131	 */
132	movq	RCX(%rsp), %rcx
133	movq	RIP(%rsp), %r11
134
135	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
136	jne	swapgs_restore_regs_and_return_to_usermode
137
138	/*
139	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
140	 * in kernel space.  This essentially lets the user take over
141	 * the kernel, since userspace controls RSP.
142	 *
143	 * If width of "canonical tail" ever becomes variable, this will need
144	 * to be updated to remain correct on both old and new CPUs.
145	 *
146	 * Change top bits to match most significant bit (47th or 56th bit
147	 * depending on paging mode) in the address.
148	 */
149#ifdef CONFIG_X86_5LEVEL
150	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
151		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
152#else
153	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
154	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
155#endif
156
157	/* If this changed %rcx, it was not canonical */
158	cmpq	%rcx, %r11
159	jne	swapgs_restore_regs_and_return_to_usermode
160
161	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
162	jne	swapgs_restore_regs_and_return_to_usermode
163
164	movq	R11(%rsp), %r11
165	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
166	jne	swapgs_restore_regs_and_return_to_usermode
167
168	/*
169	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
170	 * restore RF properly. If the slowpath sets it for whatever reason, we
171	 * need to restore it correctly.
172	 *
173	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
174	 * trap from userspace immediately after SYSRET.  This would cause an
175	 * infinite loop whenever #DB happens with register state that satisfies
176	 * the opportunistic SYSRET conditions.  For example, single-stepping
177	 * this user code:
178	 *
179	 *           movq	$stuck_here, %rcx
180	 *           pushfq
181	 *           popq %r11
182	 *   stuck_here:
183	 *
184	 * would never get past 'stuck_here'.
185	 */
186	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
187	jnz	swapgs_restore_regs_and_return_to_usermode
188
189	/* nothing to check for RSP */
190
191	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
192	jne	swapgs_restore_regs_and_return_to_usermode
193
194	/*
195	 * We win! This label is here just for ease of understanding
196	 * perf profiles. Nothing jumps here.
197	 */
198syscall_return_via_sysret:
199	IBRS_EXIT
200	POP_REGS pop_rdi=0
201
202	/*
203	 * Now all regs are restored except RSP and RDI.
204	 * Save old stack pointer and switch to trampoline stack.
205	 */
206	movq	%rsp, %rdi
207	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
208	UNWIND_HINT_EMPTY
209
210	pushq	RSP-RDI(%rdi)	/* RSP */
211	pushq	(%rdi)		/* RDI */
212
213	/*
214	 * We are on the trampoline stack.  All regs except RDI are live.
215	 * We can do future final exit work right here.
216	 */
217	STACKLEAK_ERASE_NOCLOBBER
218
219	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
220
221	popq	%rdi
222	popq	%rsp
223	USERGS_SYSRET64
224SYM_CODE_END(entry_SYSCALL_64)
225
226/*
227 * %rdi: prev task
228 * %rsi: next task
229 */
230.pushsection .text, "ax"
231SYM_FUNC_START(__switch_to_asm)
232	/*
233	 * Save callee-saved registers
234	 * This must match the order in inactive_task_frame
235	 */
236	pushq	%rbp
237	pushq	%rbx
238	pushq	%r12
239	pushq	%r13
240	pushq	%r14
241	pushq	%r15
242
243	/* switch stack */
244	movq	%rsp, TASK_threadsp(%rdi)
245	movq	TASK_threadsp(%rsi), %rsp
246
247#ifdef CONFIG_STACKPROTECTOR
248	movq	TASK_stack_canary(%rsi), %rbx
249	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
250#endif
251
252	/*
253	 * When switching from a shallower to a deeper call stack
254	 * the RSB may either underflow or use entries populated
255	 * with userspace addresses. On CPUs where those concerns
256	 * exist, overwrite the RSB with entries which capture
257	 * speculative execution to prevent attack.
258	 */
259	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
260
261	/* restore callee-saved registers */
262	popq	%r15
263	popq	%r14
264	popq	%r13
265	popq	%r12
266	popq	%rbx
267	popq	%rbp
268
269	jmp	__switch_to
270SYM_FUNC_END(__switch_to_asm)
271.popsection
272
273/*
274 * A newly forked process directly context switches into this address.
275 *
276 * rax: prev task we switched from
277 * rbx: kernel thread func (NULL for user thread)
278 * r12: kernel thread arg
279 */
280.pushsection .text, "ax"
281SYM_CODE_START(ret_from_fork)
282	UNWIND_HINT_EMPTY
283	movq	%rax, %rdi
284	call	schedule_tail			/* rdi: 'prev' task parameter */
285
286	testq	%rbx, %rbx			/* from kernel_thread? */
287	jnz	1f				/* kernel threads are uncommon */
288
2892:
290	UNWIND_HINT_REGS
291	movq	%rsp, %rdi
292	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
293	jmp	swapgs_restore_regs_and_return_to_usermode
294
2951:
296	/* kernel thread */
297	UNWIND_HINT_EMPTY
298	movq	%r12, %rdi
299	CALL_NOSPEC rbx
300	/*
301	 * A kernel thread is allowed to return here after successfully
302	 * calling kernel_execve().  Exit to userspace to complete the execve()
303	 * syscall.
304	 */
305	movq	$0, RAX(%rsp)
306	jmp	2b
307SYM_CODE_END(ret_from_fork)
308.popsection
309
310.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
311#ifdef CONFIG_DEBUG_ENTRY
312	pushq %rax
313	SAVE_FLAGS(CLBR_RAX)
314	testl $X86_EFLAGS_IF, %eax
315	jz .Lokay_\@
316	ud2
317.Lokay_\@:
318	popq %rax
319#endif
320.endm
321
322/**
323 * idtentry_body - Macro to emit code calling the C function
324 * @cfunc:		C function to be called
325 * @has_error_code:	Hardware pushed error code on stack
326 */
327.macro idtentry_body cfunc has_error_code:req
328
329	call	error_entry
330	UNWIND_HINT_REGS
331
332	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
333
334	.if \has_error_code == 1
335		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
336		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
337	.endif
338
339	call	\cfunc
340
341	jmp	error_return
342.endm
343
344/**
345 * idtentry - Macro to generate entry stubs for simple IDT entries
346 * @vector:		Vector number
347 * @asmsym:		ASM symbol for the entry point
348 * @cfunc:		C function to be called
349 * @has_error_code:	Hardware pushed error code on stack
350 *
351 * The macro emits code to set up the kernel context for straight forward
352 * and simple IDT entries. No IST stack, no paranoid entry checks.
353 */
354.macro idtentry vector asmsym cfunc has_error_code:req
355SYM_CODE_START(\asmsym)
356	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
357	ASM_CLAC
358
359	.if \has_error_code == 0
360		pushq	$-1			/* ORIG_RAX: no syscall to restart */
361	.endif
362
363	.if \vector == X86_TRAP_BP
364		/*
365		 * If coming from kernel space, create a 6-word gap to allow the
366		 * int3 handler to emulate a call instruction.
367		 */
368		testb	$3, CS-ORIG_RAX(%rsp)
369		jnz	.Lfrom_usermode_no_gap_\@
370		.rept	6
371		pushq	5*8(%rsp)
372		.endr
373		UNWIND_HINT_IRET_REGS offset=8
374.Lfrom_usermode_no_gap_\@:
375	.endif
376
377	idtentry_body \cfunc \has_error_code
378
379_ASM_NOKPROBE(\asmsym)
380SYM_CODE_END(\asmsym)
381.endm
382
383/*
384 * Interrupt entry/exit.
385 *
386 + The interrupt stubs push (vector) onto the stack, which is the error_code
387 * position of idtentry exceptions, and jump to one of the two idtentry points
388 * (common/spurious).
389 *
390 * common_interrupt is a hotpath, align it to a cache line
391 */
392.macro idtentry_irq vector cfunc
393	.p2align CONFIG_X86_L1_CACHE_SHIFT
394	idtentry \vector asm_\cfunc \cfunc has_error_code=1
395.endm
396
397/*
398 * System vectors which invoke their handlers directly and are not
399 * going through the regular common device interrupt handling code.
400 */
401.macro idtentry_sysvec vector cfunc
402	idtentry \vector asm_\cfunc \cfunc has_error_code=0
403.endm
404
405/**
406 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
407 * @vector:		Vector number
408 * @asmsym:		ASM symbol for the entry point
409 * @cfunc:		C function to be called
410 *
411 * The macro emits code to set up the kernel context for #MC and #DB
412 *
413 * If the entry comes from user space it uses the normal entry path
414 * including the return to user space work and preemption checks on
415 * exit.
416 *
417 * If hits in kernel mode then it needs to go through the paranoid
418 * entry as the exception can hit any random state. No preemption
419 * check on exit to keep the paranoid path simple.
420 */
421.macro idtentry_mce_db vector asmsym cfunc
422SYM_CODE_START(\asmsym)
423	UNWIND_HINT_IRET_REGS
424	ASM_CLAC
425
426	pushq	$-1			/* ORIG_RAX: no syscall to restart */
427
428	/*
429	 * If the entry is from userspace, switch stacks and treat it as
430	 * a normal entry.
431	 */
432	testb	$3, CS-ORIG_RAX(%rsp)
433	jnz	.Lfrom_usermode_switch_stack_\@
434
435	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
436	call	paranoid_entry
437
438	UNWIND_HINT_REGS
439
440	movq	%rsp, %rdi		/* pt_regs pointer */
441
442	call	\cfunc
443
444	jmp	paranoid_exit
445
446	/* Switch to the regular task stack and use the noist entry point */
447.Lfrom_usermode_switch_stack_\@:
448	idtentry_body noist_\cfunc, has_error_code=0
449
450_ASM_NOKPROBE(\asmsym)
451SYM_CODE_END(\asmsym)
452.endm
453
454#ifdef CONFIG_AMD_MEM_ENCRYPT
455/**
456 * idtentry_vc - Macro to generate entry stub for #VC
457 * @vector:		Vector number
458 * @asmsym:		ASM symbol for the entry point
459 * @cfunc:		C function to be called
460 *
461 * The macro emits code to set up the kernel context for #VC. The #VC handler
462 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
463 *
464 * To make this work the #VC entry code tries its best to pretend it doesn't use
465 * an IST stack by switching to the task stack if coming from user-space (which
466 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
467 * entered from kernel-mode.
468 *
469 * If entered from kernel-mode the return stack is validated first, and if it is
470 * not safe to use (e.g. because it points to the entry stack) the #VC handler
471 * will switch to a fall-back stack (VC2) and call a special handler function.
472 *
473 * The macro is only used for one vector, but it is planned to be extended in
474 * the future for the #HV exception.
475 */
476.macro idtentry_vc vector asmsym cfunc
477SYM_CODE_START(\asmsym)
478	UNWIND_HINT_IRET_REGS
479	ASM_CLAC
480
481	/*
482	 * If the entry is from userspace, switch stacks and treat it as
483	 * a normal entry.
484	 */
485	testb	$3, CS-ORIG_RAX(%rsp)
486	jnz	.Lfrom_usermode_switch_stack_\@
487
488	/*
489	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
490	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
491	 */
492	call	paranoid_entry
493
494	UNWIND_HINT_REGS
495
496	/*
497	 * Switch off the IST stack to make it free for nested exceptions. The
498	 * vc_switch_off_ist() function will switch back to the interrupted
499	 * stack if it is safe to do so. If not it switches to the VC fall-back
500	 * stack.
501	 */
502	movq	%rsp, %rdi		/* pt_regs pointer */
503	call	vc_switch_off_ist
504	movq	%rax, %rsp		/* Switch to new stack */
505
506	ENCODE_FRAME_POINTER
507	UNWIND_HINT_REGS
508
509	/* Update pt_regs */
510	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
511	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
512
513	movq	%rsp, %rdi		/* pt_regs pointer */
514
515	call	kernel_\cfunc
516
517	/*
518	 * No need to switch back to the IST stack. The current stack is either
519	 * identical to the stack in the IRET frame or the VC fall-back stack,
520	 * so it is definitly mapped even with PTI enabled.
521	 */
522	jmp	paranoid_exit
523
524	/* Switch to the regular task stack */
525.Lfrom_usermode_switch_stack_\@:
526	idtentry_body user_\cfunc, has_error_code=1
527
528_ASM_NOKPROBE(\asmsym)
529SYM_CODE_END(\asmsym)
530.endm
531#endif
532
533/*
534 * Double fault entry. Straight paranoid. No checks from which context
535 * this comes because for the espfix induced #DF this would do the wrong
536 * thing.
537 */
538.macro idtentry_df vector asmsym cfunc
539SYM_CODE_START(\asmsym)
540	UNWIND_HINT_IRET_REGS offset=8
541	ASM_CLAC
542
543	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
544	call	paranoid_entry
545	UNWIND_HINT_REGS
546
547	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
548	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
549	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
550	call	\cfunc
551
552	jmp	paranoid_exit
553
554_ASM_NOKPROBE(\asmsym)
555SYM_CODE_END(\asmsym)
556.endm
557
558/*
559 * Include the defines which emit the idt entries which are shared
560 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
561 * so the stacktrace boundary checks work.
562 */
563	.align 16
564	.globl __irqentry_text_start
565__irqentry_text_start:
566
567#include <asm/idtentry.h>
568
569	.align 16
570	.globl __irqentry_text_end
571__irqentry_text_end:
572
573SYM_CODE_START_LOCAL(common_interrupt_return)
574SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
575	IBRS_EXIT
576#ifdef CONFIG_DEBUG_ENTRY
577	/* Assert that pt_regs indicates user mode. */
578	testb	$3, CS(%rsp)
579	jnz	1f
580	ud2
5811:
582#endif
583#ifdef CONFIG_XEN_PV
584	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
585#endif
586
587	POP_REGS pop_rdi=0
588
589	/*
590	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
591	 * Save old stack pointer and switch to trampoline stack.
592	 */
593	movq	%rsp, %rdi
594	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
595	UNWIND_HINT_EMPTY
596
597	/* Copy the IRET frame to the trampoline stack. */
598	pushq	6*8(%rdi)	/* SS */
599	pushq	5*8(%rdi)	/* RSP */
600	pushq	4*8(%rdi)	/* EFLAGS */
601	pushq	3*8(%rdi)	/* CS */
602	pushq	2*8(%rdi)	/* RIP */
603
604	/* Push user RDI on the trampoline stack. */
605	pushq	(%rdi)
606
607	/*
608	 * We are on the trampoline stack.  All regs except RDI are live.
609	 * We can do future final exit work right here.
610	 */
611	STACKLEAK_ERASE_NOCLOBBER
612
613	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
614
615	/* Restore RDI. */
616	popq	%rdi
617	SWAPGS
618	INTERRUPT_RETURN
619
620
621SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
622#ifdef CONFIG_DEBUG_ENTRY
623	/* Assert that pt_regs indicates kernel mode. */
624	testb	$3, CS(%rsp)
625	jz	1f
626	ud2
6271:
628#endif
629	POP_REGS
630	addq	$8, %rsp	/* skip regs->orig_ax */
631	/*
632	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
633	 * when returning from IPI handler.
634	 */
635	INTERRUPT_RETURN
636
637SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
638	UNWIND_HINT_IRET_REGS
639	/*
640	 * Are we returning to a stack segment from the LDT?  Note: in
641	 * 64-bit mode SS:RSP on the exception stack is always valid.
642	 */
643#ifdef CONFIG_X86_ESPFIX64
644	testb	$4, (SS-RIP)(%rsp)
645	jnz	native_irq_return_ldt
646#endif
647
648SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
649	/*
650	 * This may fault.  Non-paranoid faults on return to userspace are
651	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
652	 * Double-faults due to espfix64 are handled in exc_double_fault.
653	 * Other faults here are fatal.
654	 */
655	iretq
656
657#ifdef CONFIG_X86_ESPFIX64
658native_irq_return_ldt:
659	/*
660	 * We are running with user GSBASE.  All GPRs contain their user
661	 * values.  We have a percpu ESPFIX stack that is eight slots
662	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
663	 * of the ESPFIX stack.
664	 *
665	 * We clobber RAX and RDI in this code.  We stash RDI on the
666	 * normal stack and RAX on the ESPFIX stack.
667	 *
668	 * The ESPFIX stack layout we set up looks like this:
669	 *
670	 * --- top of ESPFIX stack ---
671	 * SS
672	 * RSP
673	 * RFLAGS
674	 * CS
675	 * RIP  <-- RSP points here when we're done
676	 * RAX  <-- espfix_waddr points here
677	 * --- bottom of ESPFIX stack ---
678	 */
679
680	pushq	%rdi				/* Stash user RDI */
681	swapgs					/* to kernel GS */
682	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
683	UNTRAIN_RET
684
685	movq	PER_CPU_VAR(espfix_waddr), %rdi
686	movq	%rax, (0*8)(%rdi)		/* user RAX */
687	movq	(1*8)(%rsp), %rax		/* user RIP */
688	movq	%rax, (1*8)(%rdi)
689	movq	(2*8)(%rsp), %rax		/* user CS */
690	movq	%rax, (2*8)(%rdi)
691	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
692	movq	%rax, (3*8)(%rdi)
693	movq	(5*8)(%rsp), %rax		/* user SS */
694	movq	%rax, (5*8)(%rdi)
695	movq	(4*8)(%rsp), %rax		/* user RSP */
696	movq	%rax, (4*8)(%rdi)
697	/* Now RAX == RSP. */
698
699	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
700
701	/*
702	 * espfix_stack[31:16] == 0.  The page tables are set up such that
703	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
704	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
705	 * the same page.  Set up RSP so that RSP[31:16] contains the
706	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
707	 * still points to an RO alias of the ESPFIX stack.
708	 */
709	orq	PER_CPU_VAR(espfix_stack), %rax
710
711	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
712	swapgs					/* to user GS */
713	popq	%rdi				/* Restore user RDI */
714
715	movq	%rax, %rsp
716	UNWIND_HINT_IRET_REGS offset=8
717
718	/*
719	 * At this point, we cannot write to the stack any more, but we can
720	 * still read.
721	 */
722	popq	%rax				/* Restore user RAX */
723
724	/*
725	 * RSP now points to an ordinary IRET frame, except that the page
726	 * is read-only and RSP[31:16] are preloaded with the userspace
727	 * values.  We can now IRET back to userspace.
728	 */
729	jmp	native_irq_return_iret
730#endif
731SYM_CODE_END(common_interrupt_return)
732_ASM_NOKPROBE(common_interrupt_return)
733
734/*
735 * Reload gs selector with exception handling
736 * edi:  new selector
737 *
738 * Is in entry.text as it shouldn't be instrumented.
739 */
740SYM_FUNC_START(asm_load_gs_index)
741	FRAME_BEGIN
742	swapgs
743.Lgs_change:
744	movl	%edi, %gs
7452:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
746	swapgs
747	FRAME_END
748	RET
749SYM_FUNC_END(asm_load_gs_index)
750EXPORT_SYMBOL(asm_load_gs_index)
751
752	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
753	.section .fixup, "ax"
754	/* running with kernelgs */
755SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
756	swapgs					/* switch back to user gs */
757.macro ZAP_GS
758	/* This can't be a string because the preprocessor needs to see it. */
759	movl $__USER_DS, %eax
760	movl %eax, %gs
761.endm
762	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
763	xorl	%eax, %eax
764	movl	%eax, %gs
765	jmp	2b
766SYM_CODE_END(.Lbad_gs)
767	.previous
768
769/*
770 * rdi: New stack pointer points to the top word of the stack
771 * rsi: Function pointer
772 * rdx: Function argument (can be NULL if none)
773 */
774SYM_FUNC_START(asm_call_on_stack)
775SYM_INNER_LABEL(asm_call_sysvec_on_stack, SYM_L_GLOBAL)
776SYM_INNER_LABEL(asm_call_irq_on_stack, SYM_L_GLOBAL)
777	/*
778	 * Save the frame pointer unconditionally. This allows the ORC
779	 * unwinder to handle the stack switch.
780	 */
781	pushq		%rbp
782	mov		%rsp, %rbp
783
784	/*
785	 * The unwinder relies on the word at the top of the new stack
786	 * page linking back to the previous RSP.
787	 */
788	mov		%rsp, (%rdi)
789	mov		%rdi, %rsp
790	/* Move the argument to the right place */
791	mov		%rdx, %rdi
792
7931:
794	.pushsection .discard.instr_begin
795	.long 1b - .
796	.popsection
797
798	CALL_NOSPEC	rsi
799
8002:
801	.pushsection .discard.instr_end
802	.long 2b - .
803	.popsection
804
805	/* Restore the previous stack pointer from RBP. */
806	leaveq
807	RET
808SYM_FUNC_END(asm_call_on_stack)
809
810#ifdef CONFIG_XEN_PV
811/*
812 * A note on the "critical region" in our callback handler.
813 * We want to avoid stacking callback handlers due to events occurring
814 * during handling of the last event. To do this, we keep events disabled
815 * until we've done all processing. HOWEVER, we must enable events before
816 * popping the stack frame (can't be done atomically) and so it would still
817 * be possible to get enough handler activations to overflow the stack.
818 * Although unlikely, bugs of that kind are hard to track down, so we'd
819 * like to avoid the possibility.
820 * So, on entry to the handler we detect whether we interrupted an
821 * existing activation in its critical region -- if so, we pop the current
822 * activation and restart the handler using the previous one.
823 *
824 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
825 */
826SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
827
828/*
829 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
830 * see the correct pointer to the pt_regs
831 */
832	UNWIND_HINT_FUNC
833	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
834	UNWIND_HINT_REGS
835
836	call	xen_pv_evtchn_do_upcall
837
838	jmp	error_return
839SYM_CODE_END(exc_xen_hypervisor_callback)
840
841/*
842 * Hypervisor uses this for application faults while it executes.
843 * We get here for two reasons:
844 *  1. Fault while reloading DS, ES, FS or GS
845 *  2. Fault while executing IRET
846 * Category 1 we do not need to fix up as Xen has already reloaded all segment
847 * registers that could be reloaded and zeroed the others.
848 * Category 2 we fix up by killing the current process. We cannot use the
849 * normal Linux return path in this case because if we use the IRET hypercall
850 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
851 * We distinguish between categories by comparing each saved segment register
852 * with its current contents: any discrepancy means we in category 1.
853 */
854SYM_CODE_START(xen_failsafe_callback)
855	UNWIND_HINT_EMPTY
856	movl	%ds, %ecx
857	cmpw	%cx, 0x10(%rsp)
858	jne	1f
859	movl	%es, %ecx
860	cmpw	%cx, 0x18(%rsp)
861	jne	1f
862	movl	%fs, %ecx
863	cmpw	%cx, 0x20(%rsp)
864	jne	1f
865	movl	%gs, %ecx
866	cmpw	%cx, 0x28(%rsp)
867	jne	1f
868	/* All segments match their saved values => Category 2 (Bad IRET). */
869	movq	(%rsp), %rcx
870	movq	8(%rsp), %r11
871	addq	$0x30, %rsp
872	pushq	$0				/* RIP */
873	UNWIND_HINT_IRET_REGS offset=8
874	jmp	asm_exc_general_protection
8751:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
876	movq	(%rsp), %rcx
877	movq	8(%rsp), %r11
878	addq	$0x30, %rsp
879	UNWIND_HINT_IRET_REGS
880	pushq	$-1 /* orig_ax = -1 => not a system call */
881	PUSH_AND_CLEAR_REGS
882	ENCODE_FRAME_POINTER
883	jmp	error_return
884SYM_CODE_END(xen_failsafe_callback)
885#endif /* CONFIG_XEN_PV */
886
887/*
888 * Save all registers in pt_regs. Return GSBASE related information
889 * in EBX depending on the availability of the FSGSBASE instructions:
890 *
891 * FSGSBASE	R/EBX
892 *     N        0 -> SWAPGS on exit
893 *              1 -> no SWAPGS on exit
894 *
895 *     Y        GSBASE value at entry, must be restored in paranoid_exit
896 *
897 * R14 - old CR3
898 * R15 - old SPEC_CTRL
899 */
900SYM_CODE_START_LOCAL(paranoid_entry)
901	UNWIND_HINT_FUNC
902	cld
903	PUSH_AND_CLEAR_REGS save_ret=1
904	ENCODE_FRAME_POINTER 8
905
906	/*
907	 * Always stash CR3 in %r14.  This value will be restored,
908	 * verbatim, at exit.  Needed if paranoid_entry interrupted
909	 * another entry that already switched to the user CR3 value
910	 * but has not yet returned to userspace.
911	 *
912	 * This is also why CS (stashed in the "iret frame" by the
913	 * hardware at entry) can not be used: this may be a return
914	 * to kernel code, but with a user CR3 value.
915	 *
916	 * Switching CR3 does not depend on kernel GSBASE so it can
917	 * be done before switching to the kernel GSBASE. This is
918	 * required for FSGSBASE because the kernel GSBASE has to
919	 * be retrieved from a kernel internal table.
920	 */
921	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
922
923	/*
924	 * Handling GSBASE depends on the availability of FSGSBASE.
925	 *
926	 * Without FSGSBASE the kernel enforces that negative GSBASE
927	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
928	 * can be made about the GSBASE value when entering from user
929	 * space.
930	 */
931	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
932
933	/*
934	 * Read the current GSBASE and store it in %rbx unconditionally,
935	 * retrieve and set the current CPUs kernel GSBASE. The stored value
936	 * has to be restored in paranoid_exit unconditionally.
937	 *
938	 * The unconditional write to GS base below ensures that no subsequent
939	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
940	 * is needed here.
941	 */
942	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
943	jmp .Lparanoid_gsbase_done
944
945.Lparanoid_entry_checkgs:
946	/* EBX = 1 -> kernel GSBASE active, no restore required */
947	movl	$1, %ebx
948
949	/*
950	 * The kernel-enforced convention is a negative GSBASE indicates
951	 * a kernel value. No SWAPGS needed on entry and exit.
952	 */
953	movl	$MSR_GS_BASE, %ecx
954	rdmsr
955	testl	%edx, %edx
956	js	.Lparanoid_kernel_gsbase
957
958	/* EBX = 0 -> SWAPGS required on exit */
959	xorl	%ebx, %ebx
960	swapgs
961.Lparanoid_kernel_gsbase:
962	FENCE_SWAPGS_KERNEL_ENTRY
963.Lparanoid_gsbase_done:
964
965	/*
966	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
967	 * CR3 above, keep the old value in a callee saved register.
968	 */
969	IBRS_ENTER save_reg=%r15
970	UNTRAIN_RET
971
972	RET
973SYM_CODE_END(paranoid_entry)
974
975/*
976 * "Paranoid" exit path from exception stack.  This is invoked
977 * only on return from non-NMI IST interrupts that came
978 * from kernel space.
979 *
980 * We may be returning to very strange contexts (e.g. very early
981 * in syscall entry), so checking for preemption here would
982 * be complicated.  Fortunately, there's no good reason to try
983 * to handle preemption here.
984 *
985 * R/EBX contains the GSBASE related information depending on the
986 * availability of the FSGSBASE instructions:
987 *
988 * FSGSBASE	R/EBX
989 *     N        0 -> SWAPGS on exit
990 *              1 -> no SWAPGS on exit
991 *
992 *     Y        User space GSBASE, must be restored unconditionally
993 *
994 * R14 - old CR3
995 * R15 - old SPEC_CTRL
996 */
997SYM_CODE_START_LOCAL(paranoid_exit)
998	UNWIND_HINT_REGS
999
1000	/*
1001	 * Must restore IBRS state before both CR3 and %GS since we need access
1002	 * to the per-CPU x86_spec_ctrl_shadow variable.
1003	 */
1004	IBRS_EXIT save_reg=%r15
1005
1006	/*
1007	 * The order of operations is important. RESTORE_CR3 requires
1008	 * kernel GSBASE.
1009	 *
1010	 * NB to anyone to try to optimize this code: this code does
1011	 * not execute at all for exceptions from user mode. Those
1012	 * exceptions go through error_exit instead.
1013	 */
1014	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
1015
1016	/* Handle the three GSBASE cases */
1017	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
1018
1019	/* With FSGSBASE enabled, unconditionally restore GSBASE */
1020	wrgsbase	%rbx
1021	jmp		restore_regs_and_return_to_kernel
1022
1023.Lparanoid_exit_checkgs:
1024	/* On non-FSGSBASE systems, conditionally do SWAPGS */
1025	testl		%ebx, %ebx
1026	jnz		restore_regs_and_return_to_kernel
1027
1028	/* We are returning to a context with user GSBASE */
1029	swapgs
1030	jmp		restore_regs_and_return_to_kernel
1031SYM_CODE_END(paranoid_exit)
1032
1033/*
1034 * Save all registers in pt_regs, and switch GS if needed.
1035 */
1036SYM_CODE_START_LOCAL(error_entry)
1037	UNWIND_HINT_FUNC
1038	cld
1039	PUSH_AND_CLEAR_REGS save_ret=1
1040	ENCODE_FRAME_POINTER 8
1041	testb	$3, CS+8(%rsp)
1042	jz	.Lerror_kernelspace
1043
1044	/*
1045	 * We entered from user mode or we're pretending to have entered
1046	 * from user mode due to an IRET fault.
1047	 */
1048	SWAPGS
1049	FENCE_SWAPGS_USER_ENTRY
1050	/* We have user CR3.  Change to kernel CR3. */
1051	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1052	IBRS_ENTER
1053	UNTRAIN_RET
1054
1055.Lerror_entry_from_usermode_after_swapgs:
1056
1057	/* Put us onto the real thread stack. */
1058	popq	%r12				/* save return addr in %12 */
1059	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1060	call	sync_regs
1061	movq	%rax, %rsp			/* switch stack */
1062	ENCODE_FRAME_POINTER
1063	pushq	%r12
1064	RET
1065
1066	/*
1067	 * There are two places in the kernel that can potentially fault with
1068	 * usergs. Handle them here.  B stepping K8s sometimes report a
1069	 * truncated RIP for IRET exceptions returning to compat mode. Check
1070	 * for these here too.
1071	 */
1072.Lerror_kernelspace:
1073	leaq	native_irq_return_iret(%rip), %rcx
1074	cmpq	%rcx, RIP+8(%rsp)
1075	je	.Lerror_bad_iret
1076	movl	%ecx, %eax			/* zero extend */
1077	cmpq	%rax, RIP+8(%rsp)
1078	je	.Lbstep_iret
1079	cmpq	$.Lgs_change, RIP+8(%rsp)
1080	jne	.Lerror_entry_done_lfence
1081
1082	/*
1083	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1084	 * gsbase and proceed.  We'll fix up the exception and land in
1085	 * .Lgs_change's error handler with kernel gsbase.
1086	 */
1087	SWAPGS
1088
1089	/*
1090	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1091	 * kernel or user gsbase.
1092	 */
1093.Lerror_entry_done_lfence:
1094	FENCE_SWAPGS_KERNEL_ENTRY
1095	ANNOTATE_UNRET_END
1096	RET
1097
1098.Lbstep_iret:
1099	/* Fix truncated RIP */
1100	movq	%rcx, RIP+8(%rsp)
1101	/* fall through */
1102
1103.Lerror_bad_iret:
1104	/*
1105	 * We came from an IRET to user mode, so we have user
1106	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1107	 */
1108	SWAPGS
1109	FENCE_SWAPGS_USER_ENTRY
1110	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1111	IBRS_ENTER
1112	UNTRAIN_RET
1113
1114	/*
1115	 * Pretend that the exception came from user mode: set up pt_regs
1116	 * as if we faulted immediately after IRET.
1117	 */
1118	mov	%rsp, %rdi
1119	call	fixup_bad_iret
1120	mov	%rax, %rsp
1121	jmp	.Lerror_entry_from_usermode_after_swapgs
1122SYM_CODE_END(error_entry)
1123
1124SYM_CODE_START_LOCAL(error_return)
1125	UNWIND_HINT_REGS
1126	DEBUG_ENTRY_ASSERT_IRQS_OFF
1127	testb	$3, CS(%rsp)
1128	jz	restore_regs_and_return_to_kernel
1129	jmp	swapgs_restore_regs_and_return_to_usermode
1130SYM_CODE_END(error_return)
1131
1132/*
1133 * Runs on exception stack.  Xen PV does not go through this path at all,
1134 * so we can use real assembly here.
1135 *
1136 * Registers:
1137 *	%r14: Used to save/restore the CR3 of the interrupted context
1138 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1139 */
1140SYM_CODE_START(asm_exc_nmi)
1141	UNWIND_HINT_IRET_REGS
1142
1143	/*
1144	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1145	 * the iretq it performs will take us out of NMI context.
1146	 * This means that we can have nested NMIs where the next
1147	 * NMI is using the top of the stack of the previous NMI. We
1148	 * can't let it execute because the nested NMI will corrupt the
1149	 * stack of the previous NMI. NMI handlers are not re-entrant
1150	 * anyway.
1151	 *
1152	 * To handle this case we do the following:
1153	 *  Check the a special location on the stack that contains
1154	 *  a variable that is set when NMIs are executing.
1155	 *  The interrupted task's stack is also checked to see if it
1156	 *  is an NMI stack.
1157	 *  If the variable is not set and the stack is not the NMI
1158	 *  stack then:
1159	 *    o Set the special variable on the stack
1160	 *    o Copy the interrupt frame into an "outermost" location on the
1161	 *      stack
1162	 *    o Copy the interrupt frame into an "iret" location on the stack
1163	 *    o Continue processing the NMI
1164	 *  If the variable is set or the previous stack is the NMI stack:
1165	 *    o Modify the "iret" location to jump to the repeat_nmi
1166	 *    o return back to the first NMI
1167	 *
1168	 * Now on exit of the first NMI, we first clear the stack variable
1169	 * The NMI stack will tell any nested NMIs at that point that it is
1170	 * nested. Then we pop the stack normally with iret, and if there was
1171	 * a nested NMI that updated the copy interrupt stack frame, a
1172	 * jump will be made to the repeat_nmi code that will handle the second
1173	 * NMI.
1174	 *
1175	 * However, espfix prevents us from directly returning to userspace
1176	 * with a single IRET instruction.  Similarly, IRET to user mode
1177	 * can fault.  We therefore handle NMIs from user space like
1178	 * other IST entries.
1179	 */
1180
1181	ASM_CLAC
1182
1183	/* Use %rdx as our temp variable throughout */
1184	pushq	%rdx
1185
1186	testb	$3, CS-RIP+8(%rsp)
1187	jz	.Lnmi_from_kernel
1188
1189	/*
1190	 * NMI from user mode.  We need to run on the thread stack, but we
1191	 * can't go through the normal entry paths: NMIs are masked, and
1192	 * we don't want to enable interrupts, because then we'll end
1193	 * up in an awkward situation in which IRQs are on but NMIs
1194	 * are off.
1195	 *
1196	 * We also must not push anything to the stack before switching
1197	 * stacks lest we corrupt the "NMI executing" variable.
1198	 */
1199
1200	swapgs
1201	cld
1202	FENCE_SWAPGS_USER_ENTRY
1203	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1204	movq	%rsp, %rdx
1205	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1206	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1207	pushq	5*8(%rdx)	/* pt_regs->ss */
1208	pushq	4*8(%rdx)	/* pt_regs->rsp */
1209	pushq	3*8(%rdx)	/* pt_regs->flags */
1210	pushq	2*8(%rdx)	/* pt_regs->cs */
1211	pushq	1*8(%rdx)	/* pt_regs->rip */
1212	UNWIND_HINT_IRET_REGS
1213	pushq   $-1		/* pt_regs->orig_ax */
1214	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1215	ENCODE_FRAME_POINTER
1216
1217	IBRS_ENTER
1218	UNTRAIN_RET
1219
1220	/*
1221	 * At this point we no longer need to worry about stack damage
1222	 * due to nesting -- we're on the normal thread stack and we're
1223	 * done with the NMI stack.
1224	 */
1225
1226	movq	%rsp, %rdi
1227	movq	$-1, %rsi
1228	call	exc_nmi
1229
1230	/*
1231	 * Return back to user mode.  We must *not* do the normal exit
1232	 * work, because we don't want to enable interrupts.
1233	 */
1234	jmp	swapgs_restore_regs_and_return_to_usermode
1235
1236.Lnmi_from_kernel:
1237	/*
1238	 * Here's what our stack frame will look like:
1239	 * +---------------------------------------------------------+
1240	 * | original SS                                             |
1241	 * | original Return RSP                                     |
1242	 * | original RFLAGS                                         |
1243	 * | original CS                                             |
1244	 * | original RIP                                            |
1245	 * +---------------------------------------------------------+
1246	 * | temp storage for rdx                                    |
1247	 * +---------------------------------------------------------+
1248	 * | "NMI executing" variable                                |
1249	 * +---------------------------------------------------------+
1250	 * | iret SS          } Copied from "outermost" frame        |
1251	 * | iret Return RSP  } on each loop iteration; overwritten  |
1252	 * | iret RFLAGS      } by a nested NMI to force another     |
1253	 * | iret CS          } iteration if needed.                 |
1254	 * | iret RIP         }                                      |
1255	 * +---------------------------------------------------------+
1256	 * | outermost SS          } initialized in first_nmi;       |
1257	 * | outermost Return RSP  } will not be changed before      |
1258	 * | outermost RFLAGS      } NMI processing is done.         |
1259	 * | outermost CS          } Copied to "iret" frame on each  |
1260	 * | outermost RIP         } iteration.                      |
1261	 * +---------------------------------------------------------+
1262	 * | pt_regs                                                 |
1263	 * +---------------------------------------------------------+
1264	 *
1265	 * The "original" frame is used by hardware.  Before re-enabling
1266	 * NMIs, we need to be done with it, and we need to leave enough
1267	 * space for the asm code here.
1268	 *
1269	 * We return by executing IRET while RSP points to the "iret" frame.
1270	 * That will either return for real or it will loop back into NMI
1271	 * processing.
1272	 *
1273	 * The "outermost" frame is copied to the "iret" frame on each
1274	 * iteration of the loop, so each iteration starts with the "iret"
1275	 * frame pointing to the final return target.
1276	 */
1277
1278	/*
1279	 * Determine whether we're a nested NMI.
1280	 *
1281	 * If we interrupted kernel code between repeat_nmi and
1282	 * end_repeat_nmi, then we are a nested NMI.  We must not
1283	 * modify the "iret" frame because it's being written by
1284	 * the outer NMI.  That's okay; the outer NMI handler is
1285	 * about to about to call exc_nmi() anyway, so we can just
1286	 * resume the outer NMI.
1287	 */
1288
1289	movq	$repeat_nmi, %rdx
1290	cmpq	8(%rsp), %rdx
1291	ja	1f
1292	movq	$end_repeat_nmi, %rdx
1293	cmpq	8(%rsp), %rdx
1294	ja	nested_nmi_out
12951:
1296
1297	/*
1298	 * Now check "NMI executing".  If it's set, then we're nested.
1299	 * This will not detect if we interrupted an outer NMI just
1300	 * before IRET.
1301	 */
1302	cmpl	$1, -8(%rsp)
1303	je	nested_nmi
1304
1305	/*
1306	 * Now test if the previous stack was an NMI stack.  This covers
1307	 * the case where we interrupt an outer NMI after it clears
1308	 * "NMI executing" but before IRET.  We need to be careful, though:
1309	 * there is one case in which RSP could point to the NMI stack
1310	 * despite there being no NMI active: naughty userspace controls
1311	 * RSP at the very beginning of the SYSCALL targets.  We can
1312	 * pull a fast one on naughty userspace, though: we program
1313	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1314	 * if it controls the kernel's RSP.  We set DF before we clear
1315	 * "NMI executing".
1316	 */
1317	lea	6*8(%rsp), %rdx
1318	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1319	cmpq	%rdx, 4*8(%rsp)
1320	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1321	ja	first_nmi
1322
1323	subq	$EXCEPTION_STKSZ, %rdx
1324	cmpq	%rdx, 4*8(%rsp)
1325	/* If it is below the NMI stack, it is a normal NMI */
1326	jb	first_nmi
1327
1328	/* Ah, it is within the NMI stack. */
1329
1330	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1331	jz	first_nmi	/* RSP was user controlled. */
1332
1333	/* This is a nested NMI. */
1334
1335nested_nmi:
1336	/*
1337	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1338	 * iteration of NMI handling.
1339	 */
1340	subq	$8, %rsp
1341	leaq	-10*8(%rsp), %rdx
1342	pushq	$__KERNEL_DS
1343	pushq	%rdx
1344	pushfq
1345	pushq	$__KERNEL_CS
1346	pushq	$repeat_nmi
1347
1348	/* Put stack back */
1349	addq	$(6*8), %rsp
1350
1351nested_nmi_out:
1352	popq	%rdx
1353
1354	/* We are returning to kernel mode, so this cannot result in a fault. */
1355	iretq
1356
1357first_nmi:
1358	/* Restore rdx. */
1359	movq	(%rsp), %rdx
1360
1361	/* Make room for "NMI executing". */
1362	pushq	$0
1363
1364	/* Leave room for the "iret" frame */
1365	subq	$(5*8), %rsp
1366
1367	/* Copy the "original" frame to the "outermost" frame */
1368	.rept 5
1369	pushq	11*8(%rsp)
1370	.endr
1371	UNWIND_HINT_IRET_REGS
1372
1373	/* Everything up to here is safe from nested NMIs */
1374
1375#ifdef CONFIG_DEBUG_ENTRY
1376	/*
1377	 * For ease of testing, unmask NMIs right away.  Disabled by
1378	 * default because IRET is very expensive.
1379	 */
1380	pushq	$0		/* SS */
1381	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1382	addq	$8, (%rsp)	/* Fix up RSP */
1383	pushfq			/* RFLAGS */
1384	pushq	$__KERNEL_CS	/* CS */
1385	pushq	$1f		/* RIP */
1386	iretq			/* continues at repeat_nmi below */
1387	UNWIND_HINT_IRET_REGS
13881:
1389#endif
1390
1391repeat_nmi:
1392	/*
1393	 * If there was a nested NMI, the first NMI's iret will return
1394	 * here. But NMIs are still enabled and we can take another
1395	 * nested NMI. The nested NMI checks the interrupted RIP to see
1396	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1397	 * it will just return, as we are about to repeat an NMI anyway.
1398	 * This makes it safe to copy to the stack frame that a nested
1399	 * NMI will update.
1400	 *
1401	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1402	 * we're repeating an NMI, gsbase has the same value that it had on
1403	 * the first iteration.  paranoid_entry will load the kernel
1404	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1405	 * is zero.
1406	 */
1407	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1408
1409	/*
1410	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1411	 * here must not modify the "iret" frame while we're writing to
1412	 * it or it will end up containing garbage.
1413	 */
1414	addq	$(10*8), %rsp
1415	.rept 5
1416	pushq	-6*8(%rsp)
1417	.endr
1418	subq	$(5*8), %rsp
1419end_repeat_nmi:
1420
1421	/*
1422	 * Everything below this point can be preempted by a nested NMI.
1423	 * If this happens, then the inner NMI will change the "iret"
1424	 * frame to point back to repeat_nmi.
1425	 */
1426	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1427
1428	/*
1429	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1430	 * as we should not be calling schedule in NMI context.
1431	 * Even with normal interrupts enabled. An NMI should not be
1432	 * setting NEED_RESCHED or anything that normal interrupts and
1433	 * exceptions might do.
1434	 */
1435	call	paranoid_entry
1436	UNWIND_HINT_REGS
1437
1438	movq	%rsp, %rdi
1439	movq	$-1, %rsi
1440	call	exc_nmi
1441
1442	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1443	IBRS_EXIT save_reg=%r15
1444
1445	/* Always restore stashed CR3 value (see paranoid_entry) */
1446	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1447
1448	/*
1449	 * The above invocation of paranoid_entry stored the GSBASE
1450	 * related information in R/EBX depending on the availability
1451	 * of FSGSBASE.
1452	 *
1453	 * If FSGSBASE is enabled, restore the saved GSBASE value
1454	 * unconditionally, otherwise take the conditional SWAPGS path.
1455	 */
1456	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1457
1458	wrgsbase	%rbx
1459	jmp	nmi_restore
1460
1461nmi_no_fsgsbase:
1462	/* EBX == 0 -> invoke SWAPGS */
1463	testl	%ebx, %ebx
1464	jnz	nmi_restore
1465
1466nmi_swapgs:
1467	swapgs
1468
1469nmi_restore:
1470	POP_REGS
1471
1472	/*
1473	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1474	 * at the "iret" frame.
1475	 */
1476	addq	$6*8, %rsp
1477
1478	/*
1479	 * Clear "NMI executing".  Set DF first so that we can easily
1480	 * distinguish the remaining code between here and IRET from
1481	 * the SYSCALL entry and exit paths.
1482	 *
1483	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1484	 * this code when I had the misapprehension that Xen PV supported
1485	 * NMIs, and Xen PV would break that approach.
1486	 */
1487	std
1488	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1489
1490	/*
1491	 * iretq reads the "iret" frame and exits the NMI stack in a
1492	 * single instruction.  We are returning to kernel mode, so this
1493	 * cannot result in a fault.  Similarly, we don't need to worry
1494	 * about espfix64 on the way back to kernel mode.
1495	 */
1496	iretq
1497SYM_CODE_END(asm_exc_nmi)
1498
1499#ifndef CONFIG_IA32_EMULATION
1500/*
1501 * This handles SYSCALL from 32-bit code.  There is no way to program
1502 * MSRs to fully disable 32-bit SYSCALL.
1503 */
1504SYM_CODE_START(ignore_sysret)
1505	UNWIND_HINT_EMPTY
1506	mov	$-ENOSYS, %eax
1507	sysretl
1508SYM_CODE_END(ignore_sysret)
1509#endif
1510
1511.pushsection .text, "ax"
1512SYM_CODE_START(rewind_stack_and_make_dead)
1513	UNWIND_HINT_FUNC
1514	/* Prevent any naive code from trying to unwind to our caller. */
1515	xorl	%ebp, %ebp
1516
1517	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1518	leaq	-PTREGS_SIZE(%rax), %rsp
1519	UNWIND_HINT_REGS
1520
1521	call	make_task_dead
1522SYM_CODE_END(rewind_stack_and_make_dead)
1523.popsection
1524