1 /*
2 * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
3 *
4 * cm4000_cs.c support.linux@omnikey.com
5 *
6 * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
7 * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
8 * Thu Nov 14 16:34:11 GMT 2002 mh - added PPS functionality
9 * Tue Nov 19 16:36:27 GMT 2002 mh - added SUSPEND/RESUME functionailty
10 * Wed Jul 28 12:55:01 CEST 2004 mh - kernel 2.6 adjustments
11 *
12 * current version: 2.4.0gm4
13 *
14 * (C) 2000,2001,2002,2003,2004 Omnikey AG
15 *
16 * (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
17 * - Adhere to Kernel process/coding-style.rst
18 * - Port to 2.6.13 "new" style PCMCIA
19 * - Check for copy_{from,to}_user return values
20 * - Use nonseekable_open()
21 * - add class interface for udev device creation
22 *
23 * All rights reserved. Licensed under dual BSD/GPL license.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/init.h>
30 #include <linux/fs.h>
31 #include <linux/delay.h>
32 #include <linux/bitrev.h>
33 #include <linux/mutex.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36
37 #include <pcmcia/cistpl.h>
38 #include <pcmcia/cisreg.h>
39 #include <pcmcia/ciscode.h>
40 #include <pcmcia/ds.h>
41
42 #include <linux/cm4000_cs.h>
43
44 /* #define ATR_CSUM */
45
46 #define reader_to_dev(x) (&x->p_dev->dev)
47
48 /* n (debug level) is ignored */
49 /* additional debug output may be enabled by re-compiling with
50 * CM4000_DEBUG set */
51 /* #define CM4000_DEBUG */
52 #define DEBUGP(n, rdr, x, args...) do { \
53 dev_dbg(reader_to_dev(rdr), "%s:" x, \
54 __func__ , ## args); \
55 } while (0)
56
57 static DEFINE_MUTEX(cmm_mutex);
58
59 #define T_1SEC (HZ)
60 #define T_10MSEC msecs_to_jiffies(10)
61 #define T_20MSEC msecs_to_jiffies(20)
62 #define T_40MSEC msecs_to_jiffies(40)
63 #define T_50MSEC msecs_to_jiffies(50)
64 #define T_100MSEC msecs_to_jiffies(100)
65 #define T_500MSEC msecs_to_jiffies(500)
66
67 static void cm4000_release(struct pcmcia_device *link);
68
69 static int major; /* major number we get from the kernel */
70
71 /* note: the first state has to have number 0 always */
72
73 #define M_FETCH_ATR 0
74 #define M_TIMEOUT_WAIT 1
75 #define M_READ_ATR_LEN 2
76 #define M_READ_ATR 3
77 #define M_ATR_PRESENT 4
78 #define M_BAD_CARD 5
79 #define M_CARDOFF 6
80
81 #define LOCK_IO 0
82 #define LOCK_MONITOR 1
83
84 #define IS_AUTOPPS_ACT 6
85 #define IS_PROCBYTE_PRESENT 7
86 #define IS_INVREV 8
87 #define IS_ANY_T0 9
88 #define IS_ANY_T1 10
89 #define IS_ATR_PRESENT 11
90 #define IS_ATR_VALID 12
91 #define IS_CMM_ABSENT 13
92 #define IS_BAD_LENGTH 14
93 #define IS_BAD_CSUM 15
94 #define IS_BAD_CARD 16
95
96 #define REG_FLAGS0(x) (x + 0)
97 #define REG_FLAGS1(x) (x + 1)
98 #define REG_NUM_BYTES(x) (x + 2)
99 #define REG_BUF_ADDR(x) (x + 3)
100 #define REG_BUF_DATA(x) (x + 4)
101 #define REG_NUM_SEND(x) (x + 5)
102 #define REG_BAUDRATE(x) (x + 6)
103 #define REG_STOPBITS(x) (x + 7)
104
105 struct cm4000_dev {
106 struct pcmcia_device *p_dev;
107
108 unsigned char atr[MAX_ATR];
109 unsigned char rbuf[512];
110 unsigned char sbuf[512];
111
112 wait_queue_head_t devq; /* when removing cardman must not be
113 zeroed! */
114
115 wait_queue_head_t ioq; /* if IO is locked, wait on this Q */
116 wait_queue_head_t atrq; /* wait for ATR valid */
117 wait_queue_head_t readq; /* used by write to wake blk.read */
118
119 /* warning: do not move this fields.
120 * initialising to zero depends on it - see ZERO_DEV below. */
121 unsigned char atr_csum;
122 unsigned char atr_len_retry;
123 unsigned short atr_len;
124 unsigned short rlen; /* bytes avail. after write */
125 unsigned short rpos; /* latest read pos. write zeroes */
126 unsigned char procbyte; /* T=0 procedure byte */
127 unsigned char mstate; /* state of card monitor */
128 unsigned char cwarn; /* slow down warning */
129 unsigned char flags0; /* cardman IO-flags 0 */
130 unsigned char flags1; /* cardman IO-flags 1 */
131 unsigned int mdelay; /* variable monitor speeds, in jiffies */
132
133 unsigned int baudv; /* baud value for speed */
134 unsigned char ta1;
135 unsigned char proto; /* T=0, T=1, ... */
136 unsigned long flags; /* lock+flags (MONITOR,IO,ATR) * for concurrent
137 access */
138
139 unsigned char pts[4];
140
141 struct timer_list timer; /* used to keep monitor running */
142 int monitor_running;
143 };
144
145 #define ZERO_DEV(dev) \
146 memset(&dev->atr_csum,0, \
147 sizeof(struct cm4000_dev) - \
148 offsetof(struct cm4000_dev, atr_csum))
149
150 static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
151 static struct class *cmm_class;
152
153 /* This table doesn't use spaces after the comma between fields and thus
154 * violates process/coding-style.rst. However, I don't really think wrapping it around will
155 * make it any clearer to read -HW */
156 static unsigned char fi_di_table[10][14] = {
157 /*FI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 */
158 /*DI */
159 /* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
160 /* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
161 /* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
162 /* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
163 /* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
164 /* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
165 /* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
166 /* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
167 /* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
168 /* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
169 };
170
171 #ifndef CM4000_DEBUG
172 #define xoutb outb
173 #define xinb inb
174 #else
xoutb(unsigned char val,unsigned short port)175 static inline void xoutb(unsigned char val, unsigned short port)
176 {
177 pr_debug("outb(val=%.2x,port=%.4x)\n", val, port);
178 outb(val, port);
179 }
xinb(unsigned short port)180 static inline unsigned char xinb(unsigned short port)
181 {
182 unsigned char val;
183
184 val = inb(port);
185 pr_debug("%.2x=inb(%.4x)\n", val, port);
186
187 return val;
188 }
189 #endif
190
invert_revert(unsigned char ch)191 static inline unsigned char invert_revert(unsigned char ch)
192 {
193 return bitrev8(~ch);
194 }
195
str_invert_revert(unsigned char * b,int len)196 static void str_invert_revert(unsigned char *b, int len)
197 {
198 int i;
199
200 for (i = 0; i < len; i++)
201 b[i] = invert_revert(b[i]);
202 }
203
204 #define ATRLENCK(dev,pos) \
205 if (pos>=dev->atr_len || pos>=MAX_ATR) \
206 goto return_0;
207
calc_baudv(unsigned char fidi)208 static unsigned int calc_baudv(unsigned char fidi)
209 {
210 unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;
211
212 fi_rfu = 372;
213 di_rfu = 1;
214
215 /* FI */
216 switch ((fidi >> 4) & 0x0F) {
217 case 0x00:
218 wcrcf = 372;
219 break;
220 case 0x01:
221 wcrcf = 372;
222 break;
223 case 0x02:
224 wcrcf = 558;
225 break;
226 case 0x03:
227 wcrcf = 744;
228 break;
229 case 0x04:
230 wcrcf = 1116;
231 break;
232 case 0x05:
233 wcrcf = 1488;
234 break;
235 case 0x06:
236 wcrcf = 1860;
237 break;
238 case 0x07:
239 wcrcf = fi_rfu;
240 break;
241 case 0x08:
242 wcrcf = fi_rfu;
243 break;
244 case 0x09:
245 wcrcf = 512;
246 break;
247 case 0x0A:
248 wcrcf = 768;
249 break;
250 case 0x0B:
251 wcrcf = 1024;
252 break;
253 case 0x0C:
254 wcrcf = 1536;
255 break;
256 case 0x0D:
257 wcrcf = 2048;
258 break;
259 default:
260 wcrcf = fi_rfu;
261 break;
262 }
263
264 /* DI */
265 switch (fidi & 0x0F) {
266 case 0x00:
267 wbrcf = di_rfu;
268 break;
269 case 0x01:
270 wbrcf = 1;
271 break;
272 case 0x02:
273 wbrcf = 2;
274 break;
275 case 0x03:
276 wbrcf = 4;
277 break;
278 case 0x04:
279 wbrcf = 8;
280 break;
281 case 0x05:
282 wbrcf = 16;
283 break;
284 case 0x06:
285 wbrcf = 32;
286 break;
287 case 0x07:
288 wbrcf = di_rfu;
289 break;
290 case 0x08:
291 wbrcf = 12;
292 break;
293 case 0x09:
294 wbrcf = 20;
295 break;
296 default:
297 wbrcf = di_rfu;
298 break;
299 }
300
301 return (wcrcf / wbrcf);
302 }
303
io_read_num_rec_bytes(unsigned int iobase,unsigned short * s)304 static unsigned short io_read_num_rec_bytes(unsigned int iobase,
305 unsigned short *s)
306 {
307 unsigned short tmp;
308
309 tmp = *s = 0;
310 do {
311 *s = tmp;
312 tmp = inb(REG_NUM_BYTES(iobase)) |
313 (inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
314 } while (tmp != *s);
315
316 return *s;
317 }
318
parse_atr(struct cm4000_dev * dev)319 static int parse_atr(struct cm4000_dev *dev)
320 {
321 unsigned char any_t1, any_t0;
322 unsigned char ch, ifno;
323 int ix, done;
324
325 DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);
326
327 if (dev->atr_len < 3) {
328 DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
329 return 0;
330 }
331
332 if (dev->atr[0] == 0x3f)
333 set_bit(IS_INVREV, &dev->flags);
334 else
335 clear_bit(IS_INVREV, &dev->flags);
336 ix = 1;
337 ifno = 1;
338 ch = dev->atr[1];
339 dev->proto = 0; /* XXX PROTO */
340 any_t1 = any_t0 = done = 0;
341 dev->ta1 = 0x11; /* defaults to 9600 baud */
342 do {
343 if (ifno == 1 && (ch & 0x10)) {
344 /* read first interface byte and TA1 is present */
345 dev->ta1 = dev->atr[2];
346 DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
347 ifno++;
348 } else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
349 dev->ta1 = 0x11;
350 ifno++;
351 }
352
353 DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
354 ix += ((ch & 0x10) >> 4) /* no of int.face chars */
355 +((ch & 0x20) >> 5)
356 + ((ch & 0x40) >> 6)
357 + ((ch & 0x80) >> 7);
358 /* ATRLENCK(dev,ix); */
359 if (ch & 0x80) { /* TDi */
360 ch = dev->atr[ix];
361 if ((ch & 0x0f)) {
362 any_t1 = 1;
363 DEBUGP(5, dev, "card is capable of T=1\n");
364 } else {
365 any_t0 = 1;
366 DEBUGP(5, dev, "card is capable of T=0\n");
367 }
368 } else
369 done = 1;
370 } while (!done);
371
372 DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
373 ix, dev->atr[1] & 15, any_t1);
374 if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
375 DEBUGP(5, dev, "length error\n");
376 return 0;
377 }
378 if (any_t0)
379 set_bit(IS_ANY_T0, &dev->flags);
380
381 if (any_t1) { /* compute csum */
382 dev->atr_csum = 0;
383 #ifdef ATR_CSUM
384 for (i = 1; i < dev->atr_len; i++)
385 dev->atr_csum ^= dev->atr[i];
386 if (dev->atr_csum) {
387 set_bit(IS_BAD_CSUM, &dev->flags);
388 DEBUGP(5, dev, "bad checksum\n");
389 goto return_0;
390 }
391 #endif
392 if (any_t0 == 0)
393 dev->proto = 1; /* XXX PROTO */
394 set_bit(IS_ANY_T1, &dev->flags);
395 }
396
397 return 1;
398 }
399
400 struct card_fixup {
401 char atr[12];
402 u_int8_t atr_len;
403 u_int8_t stopbits;
404 };
405
406 static struct card_fixup card_fixups[] = {
407 { /* ACOS */
408 .atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
409 .atr_len = 7,
410 .stopbits = 0x03,
411 },
412 { /* Motorola */
413 .atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
414 0x41, 0x81, 0x81 },
415 .atr_len = 11,
416 .stopbits = 0x04,
417 },
418 };
419
set_cardparameter(struct cm4000_dev * dev)420 static void set_cardparameter(struct cm4000_dev *dev)
421 {
422 int i;
423 unsigned int iobase = dev->p_dev->resource[0]->start;
424 u_int8_t stopbits = 0x02; /* ISO default */
425
426 DEBUGP(3, dev, "-> set_cardparameter\n");
427
428 dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
429 xoutb(dev->flags1, REG_FLAGS1(iobase));
430 DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);
431
432 /* set baudrate */
433 xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));
434
435 DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
436 ((dev->baudv - 1) & 0xFF));
437
438 /* set stopbits */
439 for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
440 if (!memcmp(dev->atr, card_fixups[i].atr,
441 card_fixups[i].atr_len))
442 stopbits = card_fixups[i].stopbits;
443 }
444 xoutb(stopbits, REG_STOPBITS(iobase));
445
446 DEBUGP(3, dev, "<- set_cardparameter\n");
447 }
448
set_protocol(struct cm4000_dev * dev,struct ptsreq * ptsreq)449 static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
450 {
451
452 unsigned long tmp, i;
453 unsigned short num_bytes_read;
454 unsigned char pts_reply[4];
455 ssize_t rc;
456 unsigned int iobase = dev->p_dev->resource[0]->start;
457
458 rc = 0;
459
460 DEBUGP(3, dev, "-> set_protocol\n");
461 DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
462 "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
463 "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
464 (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
465 ptsreq->pts3);
466
467 /* Fill PTS structure */
468 dev->pts[0] = 0xff;
469 dev->pts[1] = 0x00;
470 tmp = ptsreq->protocol;
471 while ((tmp = (tmp >> 1)) > 0)
472 dev->pts[1]++;
473 dev->proto = dev->pts[1]; /* Set new protocol */
474 dev->pts[1] = (0x01 << 4) | (dev->pts[1]);
475
476 /* Correct Fi/Di according to CM4000 Fi/Di table */
477 DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
478 /* set Fi/Di according to ATR TA(1) */
479 dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];
480
481 /* Calculate PCK character */
482 dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];
483
484 DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
485 dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);
486
487 /* check card convention */
488 if (test_bit(IS_INVREV, &dev->flags))
489 str_invert_revert(dev->pts, 4);
490
491 /* reset SM */
492 xoutb(0x80, REG_FLAGS0(iobase));
493
494 /* Enable access to the message buffer */
495 DEBUGP(5, dev, "Enable access to the messages buffer\n");
496 dev->flags1 = 0x20 /* T_Active */
497 | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
498 | ((dev->baudv >> 8) & 0x01); /* MSB-baud */
499 xoutb(dev->flags1, REG_FLAGS1(iobase));
500
501 DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
502 dev->flags1);
503
504 /* write challenge to the buffer */
505 DEBUGP(5, dev, "Write challenge to buffer: ");
506 for (i = 0; i < 4; i++) {
507 xoutb(i, REG_BUF_ADDR(iobase));
508 xoutb(dev->pts[i], REG_BUF_DATA(iobase)); /* buf data */
509 #ifdef CM4000_DEBUG
510 pr_debug("0x%.2x ", dev->pts[i]);
511 }
512 pr_debug("\n");
513 #else
514 }
515 #endif
516
517 /* set number of bytes to write */
518 DEBUGP(5, dev, "Set number of bytes to write\n");
519 xoutb(0x04, REG_NUM_SEND(iobase));
520
521 /* Trigger CARDMAN CONTROLLER */
522 xoutb(0x50, REG_FLAGS0(iobase));
523
524 /* Monitor progress */
525 /* wait for xmit done */
526 DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");
527
528 for (i = 0; i < 100; i++) {
529 if (inb(REG_FLAGS0(iobase)) & 0x08) {
530 DEBUGP(5, dev, "NumRecBytes is valid\n");
531 break;
532 }
533 usleep_range(10000, 11000);
534 }
535 if (i == 100) {
536 DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
537 "valid\n");
538 rc = -EIO;
539 goto exit_setprotocol;
540 }
541
542 DEBUGP(5, dev, "Reading NumRecBytes\n");
543 for (i = 0; i < 100; i++) {
544 io_read_num_rec_bytes(iobase, &num_bytes_read);
545 if (num_bytes_read >= 4) {
546 DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
547 if (num_bytes_read > 4) {
548 rc = -EIO;
549 goto exit_setprotocol;
550 }
551 break;
552 }
553 usleep_range(10000, 11000);
554 }
555
556 /* check whether it is a short PTS reply? */
557 if (num_bytes_read == 3)
558 i = 0;
559
560 if (i == 100) {
561 DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
562 rc = -EIO;
563 goto exit_setprotocol;
564 }
565
566 DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
567 xoutb(0x80, REG_FLAGS0(iobase));
568
569 /* Read PPS reply */
570 DEBUGP(5, dev, "Read PPS reply\n");
571 for (i = 0; i < num_bytes_read; i++) {
572 xoutb(i, REG_BUF_ADDR(iobase));
573 pts_reply[i] = inb(REG_BUF_DATA(iobase));
574 }
575
576 #ifdef CM4000_DEBUG
577 DEBUGP(2, dev, "PTSreply: ");
578 for (i = 0; i < num_bytes_read; i++) {
579 pr_debug("0x%.2x ", pts_reply[i]);
580 }
581 pr_debug("\n");
582 #endif /* CM4000_DEBUG */
583
584 DEBUGP(5, dev, "Clear Tactive in Flags1\n");
585 xoutb(0x20, REG_FLAGS1(iobase));
586
587 /* Compare ptsreq and ptsreply */
588 if ((dev->pts[0] == pts_reply[0]) &&
589 (dev->pts[1] == pts_reply[1]) &&
590 (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
591 /* setcardparameter according to PPS */
592 dev->baudv = calc_baudv(dev->pts[2]);
593 set_cardparameter(dev);
594 } else if ((dev->pts[0] == pts_reply[0]) &&
595 ((dev->pts[1] & 0xef) == pts_reply[1]) &&
596 ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
597 /* short PTS reply, set card parameter to default values */
598 dev->baudv = calc_baudv(0x11);
599 set_cardparameter(dev);
600 } else
601 rc = -EIO;
602
603 exit_setprotocol:
604 DEBUGP(3, dev, "<- set_protocol\n");
605 return rc;
606 }
607
io_detect_cm4000(unsigned int iobase,struct cm4000_dev * dev)608 static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev)
609 {
610
611 /* note: statemachine is assumed to be reset */
612 if (inb(REG_FLAGS0(iobase)) & 8) {
613 clear_bit(IS_ATR_VALID, &dev->flags);
614 set_bit(IS_CMM_ABSENT, &dev->flags);
615 return 0; /* detect CMM = 1 -> failure */
616 }
617 /* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
618 xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
619 if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
620 clear_bit(IS_ATR_VALID, &dev->flags);
621 set_bit(IS_CMM_ABSENT, &dev->flags);
622 return 0; /* detect CMM=0 -> failure */
623 }
624 /* clear detectCMM again by restoring original flags1 */
625 xoutb(dev->flags1, REG_FLAGS1(iobase));
626 return 1;
627 }
628
terminate_monitor(struct cm4000_dev * dev)629 static void terminate_monitor(struct cm4000_dev *dev)
630 {
631
632 /* tell the monitor to stop and wait until
633 * it terminates.
634 */
635 DEBUGP(3, dev, "-> terminate_monitor\n");
636 wait_event_interruptible(dev->devq,
637 test_and_set_bit(LOCK_MONITOR,
638 (void *)&dev->flags));
639
640 /* now, LOCK_MONITOR has been set.
641 * allow a last cycle in the monitor.
642 * the monitor will indicate that it has
643 * finished by clearing this bit.
644 */
645 DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
646 while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
647 msleep(25);
648
649 DEBUGP(5, dev, "Delete timer\n");
650 del_timer_sync(&dev->timer);
651 #ifdef CM4000_DEBUG
652 dev->monitor_running = 0;
653 #endif
654
655 DEBUGP(3, dev, "<- terminate_monitor\n");
656 }
657
658 /*
659 * monitor the card every 50msec. as a side-effect, retrieve the
660 * atr once a card is inserted. another side-effect of retrieving the
661 * atr is that the card will be powered on, so there is no need to
662 * power on the card explicitly from the application: the driver
663 * is already doing that for you.
664 */
665
monitor_card(struct timer_list * t)666 static void monitor_card(struct timer_list *t)
667 {
668 struct cm4000_dev *dev = from_timer(dev, t, timer);
669 unsigned int iobase = dev->p_dev->resource[0]->start;
670 unsigned short s;
671 struct ptsreq ptsreq;
672 int i, atrc;
673
674 DEBUGP(7, dev, "-> monitor_card\n");
675
676 /* if someone has set the lock for us: we're done! */
677 if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
678 DEBUGP(4, dev, "About to stop monitor\n");
679 /* no */
680 dev->rlen =
681 dev->rpos =
682 dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
683 dev->mstate = M_FETCH_ATR;
684 clear_bit(LOCK_MONITOR, &dev->flags);
685 /* close et al. are sleeping on devq, so wake it */
686 wake_up_interruptible(&dev->devq);
687 DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
688 return;
689 }
690
691 /* try to lock io: if it is already locked, just add another timer */
692 if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
693 DEBUGP(4, dev, "Couldn't get IO lock\n");
694 goto return_with_timer;
695 }
696
697 /* is a card/a reader inserted at all ? */
698 dev->flags0 = xinb(REG_FLAGS0(iobase));
699 DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
700 DEBUGP(7, dev, "smartcard present: %s\n",
701 dev->flags0 & 1 ? "yes" : "no");
702 DEBUGP(7, dev, "cardman present: %s\n",
703 dev->flags0 == 0xff ? "no" : "yes");
704
705 if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
706 || dev->flags0 == 0xff) { /* no cardman inserted */
707 /* no */
708 dev->rlen =
709 dev->rpos =
710 dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
711 dev->mstate = M_FETCH_ATR;
712
713 dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */
714
715 if (dev->flags0 == 0xff) {
716 DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
717 set_bit(IS_CMM_ABSENT, &dev->flags);
718 } else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
719 DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
720 "(card is removed)\n");
721 clear_bit(IS_CMM_ABSENT, &dev->flags);
722 }
723
724 goto release_io;
725 } else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
726 /* cardman and card present but cardman was absent before
727 * (after suspend with inserted card) */
728 DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
729 clear_bit(IS_CMM_ABSENT, &dev->flags);
730 }
731
732 if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
733 DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
734 goto release_io;
735 }
736
737 switch (dev->mstate) {
738 case M_CARDOFF: {
739 unsigned char flags0;
740
741 DEBUGP(4, dev, "M_CARDOFF\n");
742 flags0 = inb(REG_FLAGS0(iobase));
743 if (flags0 & 0x02) {
744 /* wait until Flags0 indicate power is off */
745 dev->mdelay = T_10MSEC;
746 } else {
747 /* Flags0 indicate power off and no card inserted now;
748 * Reset CARDMAN CONTROLLER */
749 xoutb(0x80, REG_FLAGS0(iobase));
750
751 /* prepare for fetching ATR again: after card off ATR
752 * is read again automatically */
753 dev->rlen =
754 dev->rpos =
755 dev->atr_csum =
756 dev->atr_len_retry = dev->cwarn = 0;
757 dev->mstate = M_FETCH_ATR;
758
759 /* minimal gap between CARDOFF and read ATR is 50msec */
760 dev->mdelay = T_50MSEC;
761 }
762 break;
763 }
764 case M_FETCH_ATR:
765 DEBUGP(4, dev, "M_FETCH_ATR\n");
766 xoutb(0x80, REG_FLAGS0(iobase));
767 DEBUGP(4, dev, "Reset BAUDV to 9600\n");
768 dev->baudv = 0x173; /* 9600 */
769 xoutb(0x02, REG_STOPBITS(iobase)); /* stopbits=2 */
770 xoutb(0x73, REG_BAUDRATE(iobase)); /* baud value */
771 xoutb(0x21, REG_FLAGS1(iobase)); /* T_Active=1, baud
772 value */
773 /* warm start vs. power on: */
774 xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
775 dev->mdelay = T_40MSEC;
776 dev->mstate = M_TIMEOUT_WAIT;
777 break;
778 case M_TIMEOUT_WAIT:
779 DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
780 /* numRecBytes */
781 io_read_num_rec_bytes(iobase, &dev->atr_len);
782 dev->mdelay = T_10MSEC;
783 dev->mstate = M_READ_ATR_LEN;
784 break;
785 case M_READ_ATR_LEN:
786 DEBUGP(4, dev, "M_READ_ATR_LEN\n");
787 /* infinite loop possible, since there is no timeout */
788
789 #define MAX_ATR_LEN_RETRY 100
790
791 if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
792 if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) { /* + XX msec */
793 dev->mdelay = T_10MSEC;
794 dev->mstate = M_READ_ATR;
795 }
796 } else {
797 dev->atr_len = s;
798 dev->atr_len_retry = 0; /* set new timeout */
799 }
800
801 DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
802 break;
803 case M_READ_ATR:
804 DEBUGP(4, dev, "M_READ_ATR\n");
805 xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
806 for (i = 0; i < dev->atr_len; i++) {
807 xoutb(i, REG_BUF_ADDR(iobase));
808 dev->atr[i] = inb(REG_BUF_DATA(iobase));
809 }
810 /* Deactivate T_Active flags */
811 DEBUGP(4, dev, "Deactivate T_Active flags\n");
812 dev->flags1 = 0x01;
813 xoutb(dev->flags1, REG_FLAGS1(iobase));
814
815 /* atr is present (which doesn't mean it's valid) */
816 set_bit(IS_ATR_PRESENT, &dev->flags);
817 if (dev->atr[0] == 0x03)
818 str_invert_revert(dev->atr, dev->atr_len);
819 atrc = parse_atr(dev);
820 if (atrc == 0) { /* atr invalid */
821 dev->mdelay = 0;
822 dev->mstate = M_BAD_CARD;
823 } else {
824 dev->mdelay = T_50MSEC;
825 dev->mstate = M_ATR_PRESENT;
826 set_bit(IS_ATR_VALID, &dev->flags);
827 }
828
829 if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
830 DEBUGP(4, dev, "monitor_card: ATR valid\n");
831 /* if ta1 == 0x11, no PPS necessary (default values) */
832 /* do not do PPS with multi protocol cards */
833 if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
834 (dev->ta1 != 0x11) &&
835 !(test_bit(IS_ANY_T0, &dev->flags) &&
836 test_bit(IS_ANY_T1, &dev->flags))) {
837 DEBUGP(4, dev, "Perform AUTOPPS\n");
838 set_bit(IS_AUTOPPS_ACT, &dev->flags);
839 ptsreq.protocol = (0x01 << dev->proto);
840 ptsreq.flags = 0x01;
841 ptsreq.pts1 = 0x00;
842 ptsreq.pts2 = 0x00;
843 ptsreq.pts3 = 0x00;
844 if (set_protocol(dev, &ptsreq) == 0) {
845 DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
846 clear_bit(IS_AUTOPPS_ACT, &dev->flags);
847 wake_up_interruptible(&dev->atrq);
848 } else {
849 DEBUGP(4, dev, "AUTOPPS failed: "
850 "repower using defaults\n");
851 /* prepare for repowering */
852 clear_bit(IS_ATR_PRESENT, &dev->flags);
853 clear_bit(IS_ATR_VALID, &dev->flags);
854 dev->rlen =
855 dev->rpos =
856 dev->atr_csum =
857 dev->atr_len_retry = dev->cwarn = 0;
858 dev->mstate = M_FETCH_ATR;
859
860 dev->mdelay = T_50MSEC;
861 }
862 } else {
863 /* for cards which use slightly different
864 * params (extra guard time) */
865 set_cardparameter(dev);
866 if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
867 DEBUGP(4, dev, "AUTOPPS already active "
868 "2nd try:use default values\n");
869 if (dev->ta1 == 0x11)
870 DEBUGP(4, dev, "No AUTOPPS necessary "
871 "TA(1)==0x11\n");
872 if (test_bit(IS_ANY_T0, &dev->flags)
873 && test_bit(IS_ANY_T1, &dev->flags))
874 DEBUGP(4, dev, "Do NOT perform AUTOPPS "
875 "with multiprotocol cards\n");
876 clear_bit(IS_AUTOPPS_ACT, &dev->flags);
877 wake_up_interruptible(&dev->atrq);
878 }
879 } else {
880 DEBUGP(4, dev, "ATR invalid\n");
881 wake_up_interruptible(&dev->atrq);
882 }
883 break;
884 case M_BAD_CARD:
885 DEBUGP(4, dev, "M_BAD_CARD\n");
886 /* slow down warning, but prompt immediately after insertion */
887 if (dev->cwarn == 0 || dev->cwarn == 10) {
888 set_bit(IS_BAD_CARD, &dev->flags);
889 dev_warn(&dev->p_dev->dev, MODULE_NAME ": ");
890 if (test_bit(IS_BAD_CSUM, &dev->flags)) {
891 DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
892 "be zero) failed\n", dev->atr_csum);
893 }
894 #ifdef CM4000_DEBUG
895 else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
896 DEBUGP(4, dev, "ATR length error\n");
897 } else {
898 DEBUGP(4, dev, "card damaged or wrong way "
899 "inserted\n");
900 }
901 #endif
902 dev->cwarn = 0;
903 wake_up_interruptible(&dev->atrq); /* wake open */
904 }
905 dev->cwarn++;
906 dev->mdelay = T_100MSEC;
907 dev->mstate = M_FETCH_ATR;
908 break;
909 default:
910 DEBUGP(7, dev, "Unknown action\n");
911 break; /* nothing */
912 }
913
914 release_io:
915 DEBUGP(7, dev, "release_io\n");
916 clear_bit(LOCK_IO, &dev->flags);
917 wake_up_interruptible(&dev->ioq); /* whoever needs IO */
918
919 return_with_timer:
920 DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
921 mod_timer(&dev->timer, jiffies + dev->mdelay);
922 clear_bit(LOCK_MONITOR, &dev->flags);
923 }
924
925 /* Interface to userland (file_operations) */
926
cmm_read(struct file * filp,__user char * buf,size_t count,loff_t * ppos)927 static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
928 loff_t *ppos)
929 {
930 struct cm4000_dev *dev = filp->private_data;
931 unsigned int iobase = dev->p_dev->resource[0]->start;
932 ssize_t rc;
933 int i, j, k;
934
935 DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);
936
937 if (count == 0) /* according to manpage */
938 return 0;
939
940 if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
941 test_bit(IS_CMM_ABSENT, &dev->flags))
942 return -ENODEV;
943
944 if (test_bit(IS_BAD_CSUM, &dev->flags))
945 return -EIO;
946
947 /* also see the note about this in cmm_write */
948 if (wait_event_interruptible
949 (dev->atrq,
950 ((filp->f_flags & O_NONBLOCK)
951 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
952 if (filp->f_flags & O_NONBLOCK)
953 return -EAGAIN;
954 return -ERESTARTSYS;
955 }
956
957 if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
958 return -EIO;
959
960 /* this one implements blocking IO */
961 if (wait_event_interruptible
962 (dev->readq,
963 ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
964 if (filp->f_flags & O_NONBLOCK)
965 return -EAGAIN;
966 return -ERESTARTSYS;
967 }
968
969 /* lock io */
970 if (wait_event_interruptible
971 (dev->ioq,
972 ((filp->f_flags & O_NONBLOCK)
973 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
974 if (filp->f_flags & O_NONBLOCK)
975 return -EAGAIN;
976 return -ERESTARTSYS;
977 }
978
979 rc = 0;
980 dev->flags0 = inb(REG_FLAGS0(iobase));
981 if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
982 || dev->flags0 == 0xff) { /* no cardman inserted */
983 clear_bit(IS_ATR_VALID, &dev->flags);
984 if (dev->flags0 & 1) {
985 set_bit(IS_CMM_ABSENT, &dev->flags);
986 rc = -ENODEV;
987 } else {
988 rc = -EIO;
989 }
990 goto release_io;
991 }
992
993 DEBUGP(4, dev, "begin read answer\n");
994 j = min(count, (size_t)(dev->rlen - dev->rpos));
995 k = dev->rpos;
996 if (k + j > 255)
997 j = 256 - k;
998 DEBUGP(4, dev, "read1 j=%d\n", j);
999 for (i = 0; i < j; i++) {
1000 xoutb(k++, REG_BUF_ADDR(iobase));
1001 dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
1002 }
1003 j = min(count, (size_t)(dev->rlen - dev->rpos));
1004 if (k + j > 255) {
1005 DEBUGP(4, dev, "read2 j=%d\n", j);
1006 dev->flags1 |= 0x10; /* MSB buf addr set */
1007 xoutb(dev->flags1, REG_FLAGS1(iobase));
1008 for (; i < j; i++) {
1009 xoutb(k++, REG_BUF_ADDR(iobase));
1010 dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
1011 }
1012 }
1013
1014 if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) {
1015 DEBUGP(4, dev, "T=0 and count > buffer\n");
1016 dev->rbuf[i] = dev->rbuf[i - 1];
1017 dev->rbuf[i - 1] = dev->procbyte;
1018 j++;
1019 }
1020 count = j;
1021
1022 dev->rpos = dev->rlen + 1;
1023
1024 /* Clear T1Active */
1025 DEBUGP(4, dev, "Clear T1Active\n");
1026 dev->flags1 &= 0xdf;
1027 xoutb(dev->flags1, REG_FLAGS1(iobase));
1028
1029 xoutb(0, REG_FLAGS1(iobase)); /* clear detectCMM */
1030 /* last check before exit */
1031 if (!io_detect_cm4000(iobase, dev)) {
1032 rc = -ENODEV;
1033 goto release_io;
1034 }
1035
1036 if (test_bit(IS_INVREV, &dev->flags) && count > 0)
1037 str_invert_revert(dev->rbuf, count);
1038
1039 if (copy_to_user(buf, dev->rbuf, count))
1040 rc = -EFAULT;
1041
1042 release_io:
1043 clear_bit(LOCK_IO, &dev->flags);
1044 wake_up_interruptible(&dev->ioq);
1045
1046 DEBUGP(2, dev, "<- cmm_read returns: rc = %zi\n",
1047 (rc < 0 ? rc : count));
1048 return rc < 0 ? rc : count;
1049 }
1050
cmm_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1051 static ssize_t cmm_write(struct file *filp, const char __user *buf,
1052 size_t count, loff_t *ppos)
1053 {
1054 struct cm4000_dev *dev = filp->private_data;
1055 unsigned int iobase = dev->p_dev->resource[0]->start;
1056 unsigned short s;
1057 unsigned char tmp;
1058 unsigned char infolen;
1059 unsigned char sendT0;
1060 unsigned short nsend;
1061 unsigned short nr;
1062 ssize_t rc;
1063 int i;
1064
1065 DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);
1066
1067 if (count == 0) /* according to manpage */
1068 return 0;
1069
1070 if (dev->proto == 0 && count < 4) {
1071 /* T0 must have at least 4 bytes */
1072 DEBUGP(4, dev, "T0 short write\n");
1073 return -EIO;
1074 }
1075
1076 nr = count & 0x1ff; /* max bytes to write */
1077
1078 sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;
1079
1080 if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
1081 test_bit(IS_CMM_ABSENT, &dev->flags))
1082 return -ENODEV;
1083
1084 if (test_bit(IS_BAD_CSUM, &dev->flags)) {
1085 DEBUGP(4, dev, "bad csum\n");
1086 return -EIO;
1087 }
1088
1089 /*
1090 * wait for atr to become valid.
1091 * note: it is important to lock this code. if we dont, the monitor
1092 * could be run between test_bit and the call to sleep on the
1093 * atr-queue. if *then* the monitor detects atr valid, it will wake up
1094 * any process on the atr-queue, *but* since we have been interrupted,
1095 * we do not yet sleep on this queue. this would result in a missed
1096 * wake_up and the calling process would sleep forever (until
1097 * interrupted). also, do *not* restore_flags before sleep_on, because
1098 * this could result in the same situation!
1099 */
1100 if (wait_event_interruptible
1101 (dev->atrq,
1102 ((filp->f_flags & O_NONBLOCK)
1103 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
1104 if (filp->f_flags & O_NONBLOCK)
1105 return -EAGAIN;
1106 return -ERESTARTSYS;
1107 }
1108
1109 if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { /* invalid atr */
1110 DEBUGP(4, dev, "invalid ATR\n");
1111 return -EIO;
1112 }
1113
1114 /* lock io */
1115 if (wait_event_interruptible
1116 (dev->ioq,
1117 ((filp->f_flags & O_NONBLOCK)
1118 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
1119 if (filp->f_flags & O_NONBLOCK)
1120 return -EAGAIN;
1121 return -ERESTARTSYS;
1122 }
1123
1124 if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
1125 return -EFAULT;
1126
1127 rc = 0;
1128 dev->flags0 = inb(REG_FLAGS0(iobase));
1129 if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
1130 || dev->flags0 == 0xff) { /* no cardman inserted */
1131 clear_bit(IS_ATR_VALID, &dev->flags);
1132 if (dev->flags0 & 1) {
1133 set_bit(IS_CMM_ABSENT, &dev->flags);
1134 rc = -ENODEV;
1135 } else {
1136 DEBUGP(4, dev, "IO error\n");
1137 rc = -EIO;
1138 }
1139 goto release_io;
1140 }
1141
1142 xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
1143
1144 if (!io_detect_cm4000(iobase, dev)) {
1145 rc = -ENODEV;
1146 goto release_io;
1147 }
1148
1149 /* reflect T=0 send/read mode in flags1 */
1150 dev->flags1 |= (sendT0);
1151
1152 set_cardparameter(dev);
1153
1154 /* dummy read, reset flag procedure received */
1155 tmp = inb(REG_FLAGS1(iobase));
1156
1157 dev->flags1 = 0x20 /* T_Active */
1158 | (sendT0)
1159 | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity */
1160 | (((dev->baudv - 1) & 0x0100) >> 8); /* MSB-Baud */
1161 DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
1162 xoutb(dev->flags1, REG_FLAGS1(iobase));
1163
1164 /* xmit data */
1165 DEBUGP(4, dev, "Xmit data\n");
1166 for (i = 0; i < nr; i++) {
1167 if (i >= 256) {
1168 dev->flags1 = 0x20 /* T_Active */
1169 | (sendT0) /* SendT0 */
1170 /* inverse parity: */
1171 | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
1172 | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
1173 | 0x10; /* set address high */
1174 DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
1175 "high\n", dev->flags1);
1176 xoutb(dev->flags1, REG_FLAGS1(iobase));
1177 }
1178 if (test_bit(IS_INVREV, &dev->flags)) {
1179 DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
1180 "-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
1181 invert_revert(dev->sbuf[i]));
1182 xoutb(i, REG_BUF_ADDR(iobase));
1183 xoutb(invert_revert(dev->sbuf[i]),
1184 REG_BUF_DATA(iobase));
1185 } else {
1186 xoutb(i, REG_BUF_ADDR(iobase));
1187 xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
1188 }
1189 }
1190 DEBUGP(4, dev, "Xmit done\n");
1191
1192 if (dev->proto == 0) {
1193 /* T=0 proto: 0 byte reply */
1194 if (nr == 4) {
1195 DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
1196 xoutb(i, REG_BUF_ADDR(iobase));
1197 if (test_bit(IS_INVREV, &dev->flags))
1198 xoutb(0xff, REG_BUF_DATA(iobase));
1199 else
1200 xoutb(0x00, REG_BUF_DATA(iobase));
1201 }
1202
1203 /* numSendBytes */
1204 if (sendT0)
1205 nsend = nr;
1206 else {
1207 if (nr == 4)
1208 nsend = 5;
1209 else {
1210 nsend = 5 + (unsigned char)dev->sbuf[4];
1211 if (dev->sbuf[4] == 0)
1212 nsend += 0x100;
1213 }
1214 }
1215 } else
1216 nsend = nr;
1217
1218 /* T0: output procedure byte */
1219 if (test_bit(IS_INVREV, &dev->flags)) {
1220 DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
1221 "0x%.2x\n", invert_revert(dev->sbuf[1]));
1222 xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
1223 } else {
1224 DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
1225 xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
1226 }
1227
1228 DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
1229 (unsigned char)(nsend & 0xff));
1230 xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));
1231
1232 DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
1233 0x40 /* SM_Active */
1234 | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
1235 |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
1236 |(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
1237 xoutb(0x40 /* SM_Active */
1238 | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
1239 |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
1240 |(nsend & 0x100) >> 8, /* MSB numSendBytes */
1241 REG_FLAGS0(iobase));
1242
1243 /* wait for xmit done */
1244 if (dev->proto == 1) {
1245 DEBUGP(4, dev, "Wait for xmit done\n");
1246 for (i = 0; i < 1000; i++) {
1247 if (inb(REG_FLAGS0(iobase)) & 0x08)
1248 break;
1249 msleep_interruptible(10);
1250 }
1251 if (i == 1000) {
1252 DEBUGP(4, dev, "timeout waiting for xmit done\n");
1253 rc = -EIO;
1254 goto release_io;
1255 }
1256 }
1257
1258 /* T=1: wait for infoLen */
1259
1260 infolen = 0;
1261 if (dev->proto) {
1262 /* wait until infoLen is valid */
1263 for (i = 0; i < 6000; i++) { /* max waiting time of 1 min */
1264 io_read_num_rec_bytes(iobase, &s);
1265 if (s >= 3) {
1266 infolen = inb(REG_FLAGS1(iobase));
1267 DEBUGP(4, dev, "infolen=%d\n", infolen);
1268 break;
1269 }
1270 msleep_interruptible(10);
1271 }
1272 if (i == 6000) {
1273 DEBUGP(4, dev, "timeout waiting for infoLen\n");
1274 rc = -EIO;
1275 goto release_io;
1276 }
1277 } else
1278 clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);
1279
1280 /* numRecBytes | bit9 of numRecytes */
1281 io_read_num_rec_bytes(iobase, &dev->rlen);
1282 for (i = 0; i < 600; i++) { /* max waiting time of 2 sec */
1283 if (dev->proto) {
1284 if (dev->rlen >= infolen + 4)
1285 break;
1286 }
1287 msleep_interruptible(10);
1288 /* numRecBytes | bit9 of numRecytes */
1289 io_read_num_rec_bytes(iobase, &s);
1290 if (s > dev->rlen) {
1291 DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
1292 i = 0; /* reset timeout */
1293 dev->rlen = s;
1294 }
1295 /* T=0: we are done when numRecBytes doesn't
1296 * increment any more and NoProcedureByte
1297 * is set and numRecBytes == bytes sent + 6
1298 * (header bytes + data + 1 for sw2)
1299 * except when the card replies an error
1300 * which means, no data will be sent back.
1301 */
1302 else if (dev->proto == 0) {
1303 if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
1304 /* no procedure byte received since last read */
1305 DEBUGP(1, dev, "NoProcedure byte set\n");
1306 /* i=0; */
1307 } else {
1308 /* procedure byte received since last read */
1309 DEBUGP(1, dev, "NoProcedure byte unset "
1310 "(reset timeout)\n");
1311 dev->procbyte = inb(REG_FLAGS1(iobase));
1312 DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
1313 dev->procbyte);
1314 i = 0; /* resettimeout */
1315 }
1316 if (inb(REG_FLAGS0(iobase)) & 0x08) {
1317 DEBUGP(1, dev, "T0Done flag (read reply)\n");
1318 break;
1319 }
1320 }
1321 if (dev->proto)
1322 infolen = inb(REG_FLAGS1(iobase));
1323 }
1324 if (i == 600) {
1325 DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
1326 rc = -EIO;
1327 goto release_io;
1328 } else {
1329 if (dev->proto == 0) {
1330 DEBUGP(1, dev, "Wait for T0Done bit to be set\n");
1331 for (i = 0; i < 1000; i++) {
1332 if (inb(REG_FLAGS0(iobase)) & 0x08)
1333 break;
1334 msleep_interruptible(10);
1335 }
1336 if (i == 1000) {
1337 DEBUGP(1, dev, "timeout waiting for T0Done\n");
1338 rc = -EIO;
1339 goto release_io;
1340 }
1341
1342 dev->procbyte = inb(REG_FLAGS1(iobase));
1343 DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
1344 dev->procbyte);
1345
1346 io_read_num_rec_bytes(iobase, &dev->rlen);
1347 DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);
1348
1349 }
1350 }
1351 /* T=1: read offset=zero, T=0: read offset=after challenge */
1352 dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
1353 DEBUGP(4, dev, "dev->rlen = %i, dev->rpos = %i, nr = %i\n",
1354 dev->rlen, dev->rpos, nr);
1355
1356 release_io:
1357 DEBUGP(4, dev, "Reset SM\n");
1358 xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
1359
1360 if (rc < 0) {
1361 DEBUGP(4, dev, "Write failed but clear T_Active\n");
1362 dev->flags1 &= 0xdf;
1363 xoutb(dev->flags1, REG_FLAGS1(iobase));
1364 }
1365
1366 clear_bit(LOCK_IO, &dev->flags);
1367 wake_up_interruptible(&dev->ioq);
1368 wake_up_interruptible(&dev->readq); /* tell read we have data */
1369
1370 /* ITSEC E2: clear write buffer */
1371 memset((char *)dev->sbuf, 0, 512);
1372
1373 /* return error or actually written bytes */
1374 DEBUGP(2, dev, "<- cmm_write\n");
1375 return rc < 0 ? rc : nr;
1376 }
1377
start_monitor(struct cm4000_dev * dev)1378 static void start_monitor(struct cm4000_dev *dev)
1379 {
1380 DEBUGP(3, dev, "-> start_monitor\n");
1381 if (!dev->monitor_running) {
1382 DEBUGP(5, dev, "create, init and add timer\n");
1383 timer_setup(&dev->timer, monitor_card, 0);
1384 dev->monitor_running = 1;
1385 mod_timer(&dev->timer, jiffies);
1386 } else
1387 DEBUGP(5, dev, "monitor already running\n");
1388 DEBUGP(3, dev, "<- start_monitor\n");
1389 }
1390
stop_monitor(struct cm4000_dev * dev)1391 static void stop_monitor(struct cm4000_dev *dev)
1392 {
1393 DEBUGP(3, dev, "-> stop_monitor\n");
1394 if (dev->monitor_running) {
1395 DEBUGP(5, dev, "stopping monitor\n");
1396 terminate_monitor(dev);
1397 /* reset monitor SM */
1398 clear_bit(IS_ATR_VALID, &dev->flags);
1399 clear_bit(IS_ATR_PRESENT, &dev->flags);
1400 } else
1401 DEBUGP(5, dev, "monitor already stopped\n");
1402 DEBUGP(3, dev, "<- stop_monitor\n");
1403 }
1404
cmm_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1405 static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1406 {
1407 struct cm4000_dev *dev = filp->private_data;
1408 unsigned int iobase = dev->p_dev->resource[0]->start;
1409 struct inode *inode = file_inode(filp);
1410 struct pcmcia_device *link;
1411 int rc;
1412 void __user *argp = (void __user *)arg;
1413 #ifdef CM4000_DEBUG
1414 char *ioctl_names[CM_IOC_MAXNR + 1] = {
1415 [_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
1416 [_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
1417 [_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
1418 [_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
1419 [_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
1420 };
1421 DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
1422 iminor(inode), ioctl_names[_IOC_NR(cmd)]);
1423 #endif
1424
1425 mutex_lock(&cmm_mutex);
1426 rc = -ENODEV;
1427 link = dev_table[iminor(inode)];
1428 if (!pcmcia_dev_present(link)) {
1429 DEBUGP(4, dev, "DEV_OK false\n");
1430 goto out;
1431 }
1432
1433 if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
1434 DEBUGP(4, dev, "CMM_ABSENT flag set\n");
1435 goto out;
1436 }
1437 rc = -EINVAL;
1438
1439 if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
1440 DEBUGP(4, dev, "ioctype mismatch\n");
1441 goto out;
1442 }
1443 if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
1444 DEBUGP(4, dev, "iocnr mismatch\n");
1445 goto out;
1446 }
1447 rc = 0;
1448
1449 switch (cmd) {
1450 case CM_IOCGSTATUS:
1451 DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
1452 {
1453 int status;
1454
1455 /* clear other bits, but leave inserted & powered as
1456 * they are */
1457 status = dev->flags0 & 3;
1458 if (test_bit(IS_ATR_PRESENT, &dev->flags))
1459 status |= CM_ATR_PRESENT;
1460 if (test_bit(IS_ATR_VALID, &dev->flags))
1461 status |= CM_ATR_VALID;
1462 if (test_bit(IS_CMM_ABSENT, &dev->flags))
1463 status |= CM_NO_READER;
1464 if (test_bit(IS_BAD_CARD, &dev->flags))
1465 status |= CM_BAD_CARD;
1466 if (copy_to_user(argp, &status, sizeof(int)))
1467 rc = -EFAULT;
1468 }
1469 break;
1470 case CM_IOCGATR:
1471 DEBUGP(4, dev, "... in CM_IOCGATR\n");
1472 {
1473 struct atreq __user *atreq = argp;
1474 int tmp;
1475 /* allow nonblocking io and being interrupted */
1476 if (wait_event_interruptible
1477 (dev->atrq,
1478 ((filp->f_flags & O_NONBLOCK)
1479 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1480 != 0)))) {
1481 if (filp->f_flags & O_NONBLOCK)
1482 rc = -EAGAIN;
1483 else
1484 rc = -ERESTARTSYS;
1485 break;
1486 }
1487
1488 rc = -EFAULT;
1489 if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
1490 tmp = -1;
1491 if (copy_to_user(&(atreq->atr_len), &tmp,
1492 sizeof(int)))
1493 break;
1494 } else {
1495 if (copy_to_user(atreq->atr, dev->atr,
1496 dev->atr_len))
1497 break;
1498
1499 tmp = dev->atr_len;
1500 if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
1501 break;
1502 }
1503 rc = 0;
1504 break;
1505 }
1506 case CM_IOCARDOFF:
1507
1508 #ifdef CM4000_DEBUG
1509 DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
1510 if (dev->flags0 & 0x01) {
1511 DEBUGP(4, dev, " Card inserted\n");
1512 } else {
1513 DEBUGP(2, dev, " No card inserted\n");
1514 }
1515 if (dev->flags0 & 0x02) {
1516 DEBUGP(4, dev, " Card powered\n");
1517 } else {
1518 DEBUGP(2, dev, " Card not powered\n");
1519 }
1520 #endif
1521
1522 /* is a card inserted and powered? */
1523 if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {
1524
1525 /* get IO lock */
1526 if (wait_event_interruptible
1527 (dev->ioq,
1528 ((filp->f_flags & O_NONBLOCK)
1529 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1530 == 0)))) {
1531 if (filp->f_flags & O_NONBLOCK)
1532 rc = -EAGAIN;
1533 else
1534 rc = -ERESTARTSYS;
1535 break;
1536 }
1537 /* Set Flags0 = 0x42 */
1538 DEBUGP(4, dev, "Set Flags0=0x42 \n");
1539 xoutb(0x42, REG_FLAGS0(iobase));
1540 clear_bit(IS_ATR_PRESENT, &dev->flags);
1541 clear_bit(IS_ATR_VALID, &dev->flags);
1542 dev->mstate = M_CARDOFF;
1543 clear_bit(LOCK_IO, &dev->flags);
1544 if (wait_event_interruptible
1545 (dev->atrq,
1546 ((filp->f_flags & O_NONBLOCK)
1547 || (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
1548 0)))) {
1549 if (filp->f_flags & O_NONBLOCK)
1550 rc = -EAGAIN;
1551 else
1552 rc = -ERESTARTSYS;
1553 break;
1554 }
1555 }
1556 /* release lock */
1557 clear_bit(LOCK_IO, &dev->flags);
1558 wake_up_interruptible(&dev->ioq);
1559
1560 rc = 0;
1561 break;
1562 case CM_IOCSPTS:
1563 {
1564 struct ptsreq krnptsreq;
1565
1566 if (copy_from_user(&krnptsreq, argp,
1567 sizeof(struct ptsreq))) {
1568 rc = -EFAULT;
1569 break;
1570 }
1571
1572 rc = 0;
1573 DEBUGP(4, dev, "... in CM_IOCSPTS\n");
1574 /* wait for ATR to get valid */
1575 if (wait_event_interruptible
1576 (dev->atrq,
1577 ((filp->f_flags & O_NONBLOCK)
1578 || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
1579 != 0)))) {
1580 if (filp->f_flags & O_NONBLOCK)
1581 rc = -EAGAIN;
1582 else
1583 rc = -ERESTARTSYS;
1584 break;
1585 }
1586 /* get IO lock */
1587 if (wait_event_interruptible
1588 (dev->ioq,
1589 ((filp->f_flags & O_NONBLOCK)
1590 || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
1591 == 0)))) {
1592 if (filp->f_flags & O_NONBLOCK)
1593 rc = -EAGAIN;
1594 else
1595 rc = -ERESTARTSYS;
1596 break;
1597 }
1598
1599 if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
1600 /* auto power_on again */
1601 dev->mstate = M_FETCH_ATR;
1602 clear_bit(IS_ATR_VALID, &dev->flags);
1603 }
1604 /* release lock */
1605 clear_bit(LOCK_IO, &dev->flags);
1606 wake_up_interruptible(&dev->ioq);
1607
1608 }
1609 break;
1610 #ifdef CM4000_DEBUG
1611 case CM_IOSDBGLVL:
1612 rc = -ENOTTY;
1613 break;
1614 #endif
1615 default:
1616 DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
1617 rc = -ENOTTY;
1618 }
1619 out:
1620 mutex_unlock(&cmm_mutex);
1621 return rc;
1622 }
1623
cmm_open(struct inode * inode,struct file * filp)1624 static int cmm_open(struct inode *inode, struct file *filp)
1625 {
1626 struct cm4000_dev *dev;
1627 struct pcmcia_device *link;
1628 int minor = iminor(inode);
1629 int ret;
1630
1631 if (minor >= CM4000_MAX_DEV)
1632 return -ENODEV;
1633
1634 mutex_lock(&cmm_mutex);
1635 link = dev_table[minor];
1636 if (link == NULL || !pcmcia_dev_present(link)) {
1637 ret = -ENODEV;
1638 goto out;
1639 }
1640
1641 if (link->open) {
1642 ret = -EBUSY;
1643 goto out;
1644 }
1645
1646 dev = link->priv;
1647 filp->private_data = dev;
1648
1649 DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
1650 imajor(inode), minor, current->comm, current->pid);
1651
1652 /* init device variables, they may be "polluted" after close
1653 * or, the device may never have been closed (i.e. open failed)
1654 */
1655
1656 ZERO_DEV(dev);
1657
1658 /* opening will always block since the
1659 * monitor will be started by open, which
1660 * means we have to wait for ATR becoming
1661 * valid = block until valid (or card
1662 * inserted)
1663 */
1664 if (filp->f_flags & O_NONBLOCK) {
1665 ret = -EAGAIN;
1666 goto out;
1667 }
1668
1669 dev->mdelay = T_50MSEC;
1670
1671 /* start monitoring the cardstatus */
1672 start_monitor(dev);
1673
1674 link->open = 1; /* only one open per device */
1675
1676 DEBUGP(2, dev, "<- cmm_open\n");
1677 ret = stream_open(inode, filp);
1678 out:
1679 mutex_unlock(&cmm_mutex);
1680 return ret;
1681 }
1682
cmm_close(struct inode * inode,struct file * filp)1683 static int cmm_close(struct inode *inode, struct file *filp)
1684 {
1685 struct cm4000_dev *dev;
1686 struct pcmcia_device *link;
1687 int minor = iminor(inode);
1688
1689 if (minor >= CM4000_MAX_DEV)
1690 return -ENODEV;
1691
1692 link = dev_table[minor];
1693 if (link == NULL)
1694 return -ENODEV;
1695
1696 dev = link->priv;
1697
1698 DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
1699 imajor(inode), minor);
1700
1701 stop_monitor(dev);
1702
1703 ZERO_DEV(dev);
1704
1705 link->open = 0; /* only one open per device */
1706 wake_up(&dev->devq); /* socket removed? */
1707
1708 DEBUGP(2, dev, "cmm_close\n");
1709 return 0;
1710 }
1711
cmm_cm4000_release(struct pcmcia_device * link)1712 static void cmm_cm4000_release(struct pcmcia_device * link)
1713 {
1714 struct cm4000_dev *dev = link->priv;
1715
1716 /* dont terminate the monitor, rather rely on
1717 * close doing that for us.
1718 */
1719 DEBUGP(3, dev, "-> cmm_cm4000_release\n");
1720 while (link->open) {
1721 printk(KERN_INFO MODULE_NAME ": delaying release until "
1722 "process has terminated\n");
1723 /* note: don't interrupt us:
1724 * close the applications which own
1725 * the devices _first_ !
1726 */
1727 wait_event(dev->devq, (link->open == 0));
1728 }
1729 /* dev->devq=NULL; this cannot be zeroed earlier */
1730 DEBUGP(3, dev, "<- cmm_cm4000_release\n");
1731 return;
1732 }
1733
1734 /*==== Interface to PCMCIA Layer =======================================*/
1735
cm4000_config_check(struct pcmcia_device * p_dev,void * priv_data)1736 static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data)
1737 {
1738 return pcmcia_request_io(p_dev);
1739 }
1740
cm4000_config(struct pcmcia_device * link,int devno)1741 static int cm4000_config(struct pcmcia_device * link, int devno)
1742 {
1743 link->config_flags |= CONF_AUTO_SET_IO;
1744
1745 /* read the config-tuples */
1746 if (pcmcia_loop_config(link, cm4000_config_check, NULL))
1747 goto cs_release;
1748
1749 if (pcmcia_enable_device(link))
1750 goto cs_release;
1751
1752 return 0;
1753
1754 cs_release:
1755 cm4000_release(link);
1756 return -ENODEV;
1757 }
1758
cm4000_suspend(struct pcmcia_device * link)1759 static int cm4000_suspend(struct pcmcia_device *link)
1760 {
1761 struct cm4000_dev *dev;
1762
1763 dev = link->priv;
1764 stop_monitor(dev);
1765
1766 return 0;
1767 }
1768
cm4000_resume(struct pcmcia_device * link)1769 static int cm4000_resume(struct pcmcia_device *link)
1770 {
1771 struct cm4000_dev *dev;
1772
1773 dev = link->priv;
1774 if (link->open)
1775 start_monitor(dev);
1776
1777 return 0;
1778 }
1779
cm4000_release(struct pcmcia_device * link)1780 static void cm4000_release(struct pcmcia_device *link)
1781 {
1782 cmm_cm4000_release(link); /* delay release until device closed */
1783 pcmcia_disable_device(link);
1784 }
1785
cm4000_probe(struct pcmcia_device * link)1786 static int cm4000_probe(struct pcmcia_device *link)
1787 {
1788 struct cm4000_dev *dev;
1789 int i, ret;
1790
1791 for (i = 0; i < CM4000_MAX_DEV; i++)
1792 if (dev_table[i] == NULL)
1793 break;
1794
1795 if (i == CM4000_MAX_DEV) {
1796 printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
1797 return -ENODEV;
1798 }
1799
1800 /* create a new cm4000_cs device */
1801 dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
1802 if (dev == NULL)
1803 return -ENOMEM;
1804
1805 dev->p_dev = link;
1806 link->priv = dev;
1807 dev_table[i] = link;
1808
1809 init_waitqueue_head(&dev->devq);
1810 init_waitqueue_head(&dev->ioq);
1811 init_waitqueue_head(&dev->atrq);
1812 init_waitqueue_head(&dev->readq);
1813
1814 ret = cm4000_config(link, i);
1815 if (ret) {
1816 dev_table[i] = NULL;
1817 kfree(dev);
1818 return ret;
1819 }
1820
1821 device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i);
1822
1823 return 0;
1824 }
1825
cm4000_detach(struct pcmcia_device * link)1826 static void cm4000_detach(struct pcmcia_device *link)
1827 {
1828 struct cm4000_dev *dev = link->priv;
1829 int devno;
1830
1831 /* find device */
1832 for (devno = 0; devno < CM4000_MAX_DEV; devno++)
1833 if (dev_table[devno] == link)
1834 break;
1835 if (devno == CM4000_MAX_DEV)
1836 return;
1837
1838 stop_monitor(dev);
1839
1840 cm4000_release(link);
1841
1842 dev_table[devno] = NULL;
1843 kfree(dev);
1844
1845 device_destroy(cmm_class, MKDEV(major, devno));
1846
1847 return;
1848 }
1849
1850 static const struct file_operations cm4000_fops = {
1851 .owner = THIS_MODULE,
1852 .read = cmm_read,
1853 .write = cmm_write,
1854 .unlocked_ioctl = cmm_ioctl,
1855 .open = cmm_open,
1856 .release= cmm_close,
1857 .llseek = no_llseek,
1858 };
1859
1860 static const struct pcmcia_device_id cm4000_ids[] = {
1861 PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
1862 PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
1863 PCMCIA_DEVICE_NULL,
1864 };
1865 MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);
1866
1867 static struct pcmcia_driver cm4000_driver = {
1868 .owner = THIS_MODULE,
1869 .name = "cm4000_cs",
1870 .probe = cm4000_probe,
1871 .remove = cm4000_detach,
1872 .suspend = cm4000_suspend,
1873 .resume = cm4000_resume,
1874 .id_table = cm4000_ids,
1875 };
1876
cmm_init(void)1877 static int __init cmm_init(void)
1878 {
1879 int rc;
1880
1881 cmm_class = class_create(THIS_MODULE, "cardman_4000");
1882 if (IS_ERR(cmm_class))
1883 return PTR_ERR(cmm_class);
1884
1885 major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
1886 if (major < 0) {
1887 printk(KERN_WARNING MODULE_NAME
1888 ": could not get major number\n");
1889 class_destroy(cmm_class);
1890 return major;
1891 }
1892
1893 rc = pcmcia_register_driver(&cm4000_driver);
1894 if (rc < 0) {
1895 unregister_chrdev(major, DEVICE_NAME);
1896 class_destroy(cmm_class);
1897 return rc;
1898 }
1899
1900 return 0;
1901 }
1902
cmm_exit(void)1903 static void __exit cmm_exit(void)
1904 {
1905 pcmcia_unregister_driver(&cm4000_driver);
1906 unregister_chrdev(major, DEVICE_NAME);
1907 class_destroy(cmm_class);
1908 };
1909
1910 module_init(cmm_init);
1911 module_exit(cmm_exit);
1912 MODULE_LICENSE("Dual BSD/GPL");
1913