1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/sched/deadline.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 #undef CREATE_TRACE_POINTS
66
67 #include <trace/hooks/cgroup.h>
68
69 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
70 MAX_CFTYPE_NAME + 2)
71 /* let's not notify more than 100 times per second */
72 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 DEFINE_MUTEX(cgroup_mutex);
85 DEFINE_SPINLOCK(css_set_lock);
86
87 #ifdef CONFIG_PROVE_RCU
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_lock);
90 #endif
91
92 DEFINE_SPINLOCK(trace_cgroup_path_lock);
93 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
94 bool cgroup_debug __read_mostly;
95
96 /*
97 * Protects cgroup_idr and css_idr so that IDs can be released without
98 * grabbing cgroup_mutex.
99 */
100 static DEFINE_SPINLOCK(cgroup_idr_lock);
101
102 /*
103 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
104 * against file removal/re-creation across css hiding.
105 */
106 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
107
108 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
109
110 #define cgroup_assert_mutex_or_rcu_locked() \
111 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
112 !lockdep_is_held(&cgroup_mutex), \
113 "cgroup_mutex or RCU read lock required");
114
115 /*
116 * cgroup destruction makes heavy use of work items and there can be a lot
117 * of concurrent destructions. Use a separate workqueue so that cgroup
118 * destruction work items don't end up filling up max_active of system_wq
119 * which may lead to deadlock.
120 */
121 static struct workqueue_struct *cgroup_destroy_wq;
122
123 /* generate an array of cgroup subsystem pointers */
124 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
125 struct cgroup_subsys *cgroup_subsys[] = {
126 #include <linux/cgroup_subsys.h>
127 };
128 #undef SUBSYS
129
130 /* array of cgroup subsystem names */
131 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
132 static const char *cgroup_subsys_name[] = {
133 #include <linux/cgroup_subsys.h>
134 };
135 #undef SUBSYS
136
137 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
138 #define SUBSYS(_x) \
139 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
140 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
141 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
142 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
143 #include <linux/cgroup_subsys.h>
144 #undef SUBSYS
145
146 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
147 static struct static_key_true *cgroup_subsys_enabled_key[] = {
148 #include <linux/cgroup_subsys.h>
149 };
150 #undef SUBSYS
151
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
153 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157
158 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
159
160 /* the default hierarchy */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163
164 /*
165 * The default hierarchy always exists but is hidden until mounted for the
166 * first time. This is for backward compatibility.
167 */
168 static bool cgrp_dfl_visible;
169
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185
186 /*
187 * Assign a monotonically increasing serial number to csses. It guarantees
188 * cgroups with bigger numbers are newer than those with smaller numbers.
189 * Also, as csses are always appended to the parent's ->children list, it
190 * guarantees that sibling csses are always sorted in the ascending serial
191 * number order on the list. Protected by cgroup_mutex.
192 */
193 static u64 css_serial_nr_next = 1;
194
195 /*
196 * These bitmasks identify subsystems with specific features to avoid
197 * having to do iterative checks repeatedly.
198 */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 .count = REFCOUNT_INIT(2),
207 .user_ns = &init_user_ns,
208 .ns.ops = &cgroupns_operations,
209 .ns.inum = PROC_CGROUP_INIT_INO,
210 .root_cset = &init_css_set,
211 };
212
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215
216 /* cgroup optional features */
217 enum cgroup_opt_features {
218 #ifdef CONFIG_PSI
219 OPT_FEATURE_PRESSURE,
220 #endif
221 OPT_FEATURE_COUNT
222 };
223
224 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
225 #ifdef CONFIG_PSI
226 "pressure",
227 #endif
228 };
229
230 static u16 cgroup_feature_disable_mask __read_mostly;
231
232 static int cgroup_apply_control(struct cgroup *cgrp);
233 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
234 static void css_task_iter_skip(struct css_task_iter *it,
235 struct task_struct *task);
236 static int cgroup_destroy_locked(struct cgroup *cgrp);
237 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
238 struct cgroup_subsys *ss);
239 static void css_release(struct percpu_ref *ref);
240 static void kill_css(struct cgroup_subsys_state *css);
241 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
242 struct cgroup *cgrp, struct cftype cfts[],
243 bool is_add);
244
245 /**
246 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
247 * @ssid: subsys ID of interest
248 *
249 * cgroup_subsys_enabled() can only be used with literal subsys names which
250 * is fine for individual subsystems but unsuitable for cgroup core. This
251 * is slower static_key_enabled() based test indexed by @ssid.
252 */
cgroup_ssid_enabled(int ssid)253 bool cgroup_ssid_enabled(int ssid)
254 {
255 if (CGROUP_SUBSYS_COUNT == 0)
256 return false;
257
258 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
259 }
260
261 /**
262 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
263 * @cgrp: the cgroup of interest
264 *
265 * The default hierarchy is the v2 interface of cgroup and this function
266 * can be used to test whether a cgroup is on the default hierarchy for
267 * cases where a subsystem should behave differnetly depending on the
268 * interface version.
269 *
270 * List of changed behaviors:
271 *
272 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
273 * and "name" are disallowed.
274 *
275 * - When mounting an existing superblock, mount options should match.
276 *
277 * - Remount is disallowed.
278 *
279 * - rename(2) is disallowed.
280 *
281 * - "tasks" is removed. Everything should be at process granularity. Use
282 * "cgroup.procs" instead.
283 *
284 * - "cgroup.procs" is not sorted. pids will be unique unless they got
285 * recycled inbetween reads.
286 *
287 * - "release_agent" and "notify_on_release" are removed. Replacement
288 * notification mechanism will be implemented.
289 *
290 * - "cgroup.clone_children" is removed.
291 *
292 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
293 * and its descendants contain no task; otherwise, 1. The file also
294 * generates kernfs notification which can be monitored through poll and
295 * [di]notify when the value of the file changes.
296 *
297 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
298 * take masks of ancestors with non-empty cpus/mems, instead of being
299 * moved to an ancestor.
300 *
301 * - cpuset: a task can be moved into an empty cpuset, and again it takes
302 * masks of ancestors.
303 *
304 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
305 * is not created.
306 *
307 * - blkcg: blk-throttle becomes properly hierarchical.
308 *
309 * - debug: disallowed on the default hierarchy.
310 */
cgroup_on_dfl(const struct cgroup * cgrp)311 bool cgroup_on_dfl(const struct cgroup *cgrp)
312 {
313 return cgrp->root == &cgrp_dfl_root;
314 }
315
316 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)317 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
318 gfp_t gfp_mask)
319 {
320 int ret;
321
322 idr_preload(gfp_mask);
323 spin_lock_bh(&cgroup_idr_lock);
324 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
325 spin_unlock_bh(&cgroup_idr_lock);
326 idr_preload_end();
327 return ret;
328 }
329
cgroup_idr_replace(struct idr * idr,void * ptr,int id)330 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
331 {
332 void *ret;
333
334 spin_lock_bh(&cgroup_idr_lock);
335 ret = idr_replace(idr, ptr, id);
336 spin_unlock_bh(&cgroup_idr_lock);
337 return ret;
338 }
339
cgroup_idr_remove(struct idr * idr,int id)340 static void cgroup_idr_remove(struct idr *idr, int id)
341 {
342 spin_lock_bh(&cgroup_idr_lock);
343 idr_remove(idr, id);
344 spin_unlock_bh(&cgroup_idr_lock);
345 }
346
cgroup_has_tasks(struct cgroup * cgrp)347 static bool cgroup_has_tasks(struct cgroup *cgrp)
348 {
349 return cgrp->nr_populated_csets;
350 }
351
cgroup_is_threaded(struct cgroup * cgrp)352 bool cgroup_is_threaded(struct cgroup *cgrp)
353 {
354 return cgrp->dom_cgrp != cgrp;
355 }
356
357 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)358 static bool cgroup_is_mixable(struct cgroup *cgrp)
359 {
360 /*
361 * Root isn't under domain level resource control exempting it from
362 * the no-internal-process constraint, so it can serve as a thread
363 * root and a parent of resource domains at the same time.
364 */
365 return !cgroup_parent(cgrp);
366 }
367
368 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)369 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
370 {
371 /* mixables don't care */
372 if (cgroup_is_mixable(cgrp))
373 return true;
374
375 /* domain roots can't be nested under threaded */
376 if (cgroup_is_threaded(cgrp))
377 return false;
378
379 /* can only have either domain or threaded children */
380 if (cgrp->nr_populated_domain_children)
381 return false;
382
383 /* and no domain controllers can be enabled */
384 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
385 return false;
386
387 return true;
388 }
389
390 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)391 bool cgroup_is_thread_root(struct cgroup *cgrp)
392 {
393 /* thread root should be a domain */
394 if (cgroup_is_threaded(cgrp))
395 return false;
396
397 /* a domain w/ threaded children is a thread root */
398 if (cgrp->nr_threaded_children)
399 return true;
400
401 /*
402 * A domain which has tasks and explicit threaded controllers
403 * enabled is a thread root.
404 */
405 if (cgroup_has_tasks(cgrp) &&
406 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
407 return true;
408
409 return false;
410 }
411
412 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)413 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
414 {
415 /* the cgroup itself can be a thread root */
416 if (cgroup_is_threaded(cgrp))
417 return false;
418
419 /* but the ancestors can't be unless mixable */
420 while ((cgrp = cgroup_parent(cgrp))) {
421 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
422 return false;
423 if (cgroup_is_threaded(cgrp))
424 return false;
425 }
426
427 return true;
428 }
429
430 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)431 static u16 cgroup_control(struct cgroup *cgrp)
432 {
433 struct cgroup *parent = cgroup_parent(cgrp);
434 u16 root_ss_mask = cgrp->root->subsys_mask;
435
436 if (parent) {
437 u16 ss_mask = parent->subtree_control;
438
439 /* threaded cgroups can only have threaded controllers */
440 if (cgroup_is_threaded(cgrp))
441 ss_mask &= cgrp_dfl_threaded_ss_mask;
442 return ss_mask;
443 }
444
445 if (cgroup_on_dfl(cgrp))
446 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
447 cgrp_dfl_implicit_ss_mask);
448 return root_ss_mask;
449 }
450
451 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)452 static u16 cgroup_ss_mask(struct cgroup *cgrp)
453 {
454 struct cgroup *parent = cgroup_parent(cgrp);
455
456 if (parent) {
457 u16 ss_mask = parent->subtree_ss_mask;
458
459 /* threaded cgroups can only have threaded controllers */
460 if (cgroup_is_threaded(cgrp))
461 ss_mask &= cgrp_dfl_threaded_ss_mask;
462 return ss_mask;
463 }
464
465 return cgrp->root->subsys_mask;
466 }
467
468 /**
469 * cgroup_css - obtain a cgroup's css for the specified subsystem
470 * @cgrp: the cgroup of interest
471 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
472 *
473 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
474 * function must be called either under cgroup_mutex or rcu_read_lock() and
475 * the caller is responsible for pinning the returned css if it wants to
476 * keep accessing it outside the said locks. This function may return
477 * %NULL if @cgrp doesn't have @subsys_id enabled.
478 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)479 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
480 struct cgroup_subsys *ss)
481 {
482 if (ss)
483 return rcu_dereference_check(cgrp->subsys[ss->id],
484 lockdep_is_held(&cgroup_mutex));
485 else
486 return &cgrp->self;
487 }
488
489 /**
490 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
491 * @cgrp: the cgroup of interest
492 * @ss: the subsystem of interest
493 *
494 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
495 * or is offline, %NULL is returned.
496 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)497 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
498 struct cgroup_subsys *ss)
499 {
500 struct cgroup_subsys_state *css;
501
502 rcu_read_lock();
503 css = cgroup_css(cgrp, ss);
504 if (css && !css_tryget_online(css))
505 css = NULL;
506 rcu_read_unlock();
507
508 return css;
509 }
510
511 /**
512 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
513 * @cgrp: the cgroup of interest
514 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
515 *
516 * Similar to cgroup_css() but returns the effective css, which is defined
517 * as the matching css of the nearest ancestor including self which has @ss
518 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
519 * function is guaranteed to return non-NULL css.
520 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)521 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
522 struct cgroup_subsys *ss)
523 {
524 lockdep_assert_held(&cgroup_mutex);
525
526 if (!ss)
527 return &cgrp->self;
528
529 /*
530 * This function is used while updating css associations and thus
531 * can't test the csses directly. Test ss_mask.
532 */
533 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
534 cgrp = cgroup_parent(cgrp);
535 if (!cgrp)
536 return NULL;
537 }
538
539 return cgroup_css(cgrp, ss);
540 }
541
542 /**
543 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
544 * @cgrp: the cgroup of interest
545 * @ss: the subsystem of interest
546 *
547 * Find and get the effective css of @cgrp for @ss. The effective css is
548 * defined as the matching css of the nearest ancestor including self which
549 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
550 * the root css is returned, so this function always returns a valid css.
551 *
552 * The returned css is not guaranteed to be online, and therefore it is the
553 * callers responsiblity to tryget a reference for it.
554 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)555 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
556 struct cgroup_subsys *ss)
557 {
558 struct cgroup_subsys_state *css;
559
560 do {
561 css = cgroup_css(cgrp, ss);
562
563 if (css)
564 return css;
565 cgrp = cgroup_parent(cgrp);
566 } while (cgrp);
567
568 return init_css_set.subsys[ss->id];
569 }
570
571 /**
572 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
573 * @cgrp: the cgroup of interest
574 * @ss: the subsystem of interest
575 *
576 * Find and get the effective css of @cgrp for @ss. The effective css is
577 * defined as the matching css of the nearest ancestor including self which
578 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
579 * the root css is returned, so this function always returns a valid css.
580 * The returned css must be put using css_put().
581 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)582 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
583 struct cgroup_subsys *ss)
584 {
585 struct cgroup_subsys_state *css;
586
587 rcu_read_lock();
588
589 do {
590 css = cgroup_css(cgrp, ss);
591
592 if (css && css_tryget_online(css))
593 goto out_unlock;
594 cgrp = cgroup_parent(cgrp);
595 } while (cgrp);
596
597 css = init_css_set.subsys[ss->id];
598 css_get(css);
599 out_unlock:
600 rcu_read_unlock();
601 return css;
602 }
603
cgroup_get_live(struct cgroup * cgrp)604 static void cgroup_get_live(struct cgroup *cgrp)
605 {
606 WARN_ON_ONCE(cgroup_is_dead(cgrp));
607 css_get(&cgrp->self);
608 }
609
610 /**
611 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
612 * is responsible for taking the css_set_lock.
613 * @cgrp: the cgroup in question
614 */
__cgroup_task_count(const struct cgroup * cgrp)615 int __cgroup_task_count(const struct cgroup *cgrp)
616 {
617 int count = 0;
618 struct cgrp_cset_link *link;
619
620 lockdep_assert_held(&css_set_lock);
621
622 list_for_each_entry(link, &cgrp->cset_links, cset_link)
623 count += link->cset->nr_tasks;
624
625 return count;
626 }
627
628 /**
629 * cgroup_task_count - count the number of tasks in a cgroup.
630 * @cgrp: the cgroup in question
631 */
cgroup_task_count(const struct cgroup * cgrp)632 int cgroup_task_count(const struct cgroup *cgrp)
633 {
634 int count;
635
636 spin_lock_irq(&css_set_lock);
637 count = __cgroup_task_count(cgrp);
638 spin_unlock_irq(&css_set_lock);
639
640 return count;
641 }
642
of_css(struct kernfs_open_file * of)643 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
644 {
645 struct cgroup *cgrp = of->kn->parent->priv;
646 struct cftype *cft = of_cft(of);
647
648 /*
649 * This is open and unprotected implementation of cgroup_css().
650 * seq_css() is only called from a kernfs file operation which has
651 * an active reference on the file. Because all the subsystem
652 * files are drained before a css is disassociated with a cgroup,
653 * the matching css from the cgroup's subsys table is guaranteed to
654 * be and stay valid until the enclosing operation is complete.
655 */
656 if (cft->ss)
657 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
658 else
659 return &cgrp->self;
660 }
661 EXPORT_SYMBOL_GPL(of_css);
662
663 /**
664 * for_each_css - iterate all css's of a cgroup
665 * @css: the iteration cursor
666 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
667 * @cgrp: the target cgroup to iterate css's of
668 *
669 * Should be called under cgroup_[tree_]mutex.
670 */
671 #define for_each_css(css, ssid, cgrp) \
672 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
673 if (!((css) = rcu_dereference_check( \
674 (cgrp)->subsys[(ssid)], \
675 lockdep_is_held(&cgroup_mutex)))) { } \
676 else
677
678 /**
679 * for_each_e_css - iterate all effective css's of a cgroup
680 * @css: the iteration cursor
681 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
682 * @cgrp: the target cgroup to iterate css's of
683 *
684 * Should be called under cgroup_[tree_]mutex.
685 */
686 #define for_each_e_css(css, ssid, cgrp) \
687 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
688 if (!((css) = cgroup_e_css_by_mask(cgrp, \
689 cgroup_subsys[(ssid)]))) \
690 ; \
691 else
692
693 /**
694 * do_each_subsys_mask - filter for_each_subsys with a bitmask
695 * @ss: the iteration cursor
696 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
697 * @ss_mask: the bitmask
698 *
699 * The block will only run for cases where the ssid-th bit (1 << ssid) of
700 * @ss_mask is set.
701 */
702 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
703 unsigned long __ss_mask = (ss_mask); \
704 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
705 (ssid) = 0; \
706 break; \
707 } \
708 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
709 (ss) = cgroup_subsys[ssid]; \
710 {
711
712 #define while_each_subsys_mask() \
713 } \
714 } \
715 } while (false)
716
717 /* iterate over child cgrps, lock should be held throughout iteration */
718 #define cgroup_for_each_live_child(child, cgrp) \
719 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
720 if (({ lockdep_assert_held(&cgroup_mutex); \
721 cgroup_is_dead(child); })) \
722 ; \
723 else
724
725 /* walk live descendants in preorder */
726 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
727 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
728 if (({ lockdep_assert_held(&cgroup_mutex); \
729 (dsct) = (d_css)->cgroup; \
730 cgroup_is_dead(dsct); })) \
731 ; \
732 else
733
734 /* walk live descendants in postorder */
735 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
736 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
737 if (({ lockdep_assert_held(&cgroup_mutex); \
738 (dsct) = (d_css)->cgroup; \
739 cgroup_is_dead(dsct); })) \
740 ; \
741 else
742
743 /*
744 * The default css_set - used by init and its children prior to any
745 * hierarchies being mounted. It contains a pointer to the root state
746 * for each subsystem. Also used to anchor the list of css_sets. Not
747 * reference-counted, to improve performance when child cgroups
748 * haven't been created.
749 */
750 struct ext_css_set init_ext_css_set = {
751 .cset = {
752 .refcount = REFCOUNT_INIT(1),
753 .dom_cset = &init_css_set,
754 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
755 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
756 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
757 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
758 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
759 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
760 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
761 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
762 /*
763 * The following field is re-initialized when this cset gets linked
764 * in cgroup_init(). However, let's initialize the field
765 * statically too so that the default cgroup can be accessed safely
766 * early during boot.
767 */
768 .dfl_cgrp = &cgrp_dfl_root.cgrp,
769 },
770 .mg_src_preload_node = LIST_HEAD_INIT(init_ext_css_set.mg_src_preload_node),
771 .mg_dst_preload_node = LIST_HEAD_INIT(init_ext_css_set.mg_dst_preload_node),
772 };
773
774 static int css_set_count = 1; /* 1 for init_css_set */
775
css_set_threaded(struct css_set * cset)776 static bool css_set_threaded(struct css_set *cset)
777 {
778 return cset->dom_cset != cset;
779 }
780
781 /**
782 * css_set_populated - does a css_set contain any tasks?
783 * @cset: target css_set
784 *
785 * css_set_populated() should be the same as !!cset->nr_tasks at steady
786 * state. However, css_set_populated() can be called while a task is being
787 * added to or removed from the linked list before the nr_tasks is
788 * properly updated. Hence, we can't just look at ->nr_tasks here.
789 */
css_set_populated(struct css_set * cset)790 static bool css_set_populated(struct css_set *cset)
791 {
792 lockdep_assert_held(&css_set_lock);
793
794 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
795 }
796
797 /**
798 * cgroup_update_populated - update the populated count of a cgroup
799 * @cgrp: the target cgroup
800 * @populated: inc or dec populated count
801 *
802 * One of the css_sets associated with @cgrp is either getting its first
803 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
804 * count is propagated towards root so that a given cgroup's
805 * nr_populated_children is zero iff none of its descendants contain any
806 * tasks.
807 *
808 * @cgrp's interface file "cgroup.populated" is zero if both
809 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
810 * 1 otherwise. When the sum changes from or to zero, userland is notified
811 * that the content of the interface file has changed. This can be used to
812 * detect when @cgrp and its descendants become populated or empty.
813 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)814 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
815 {
816 struct cgroup *child = NULL;
817 int adj = populated ? 1 : -1;
818
819 lockdep_assert_held(&css_set_lock);
820
821 do {
822 bool was_populated = cgroup_is_populated(cgrp);
823
824 if (!child) {
825 cgrp->nr_populated_csets += adj;
826 } else {
827 if (cgroup_is_threaded(child))
828 cgrp->nr_populated_threaded_children += adj;
829 else
830 cgrp->nr_populated_domain_children += adj;
831 }
832
833 if (was_populated == cgroup_is_populated(cgrp))
834 break;
835
836 cgroup1_check_for_release(cgrp);
837 TRACE_CGROUP_PATH(notify_populated, cgrp,
838 cgroup_is_populated(cgrp));
839 cgroup_file_notify(&cgrp->events_file);
840
841 child = cgrp;
842 cgrp = cgroup_parent(cgrp);
843 } while (cgrp);
844 }
845
846 /**
847 * css_set_update_populated - update populated state of a css_set
848 * @cset: target css_set
849 * @populated: whether @cset is populated or depopulated
850 *
851 * @cset is either getting the first task or losing the last. Update the
852 * populated counters of all associated cgroups accordingly.
853 */
css_set_update_populated(struct css_set * cset,bool populated)854 static void css_set_update_populated(struct css_set *cset, bool populated)
855 {
856 struct cgrp_cset_link *link;
857
858 lockdep_assert_held(&css_set_lock);
859
860 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
861 cgroup_update_populated(link->cgrp, populated);
862 }
863
864 /*
865 * @task is leaving, advance task iterators which are pointing to it so
866 * that they can resume at the next position. Advancing an iterator might
867 * remove it from the list, use safe walk. See css_task_iter_skip() for
868 * details.
869 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)870 static void css_set_skip_task_iters(struct css_set *cset,
871 struct task_struct *task)
872 {
873 struct css_task_iter *it, *pos;
874
875 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
876 css_task_iter_skip(it, task);
877 }
878
879 /**
880 * css_set_move_task - move a task from one css_set to another
881 * @task: task being moved
882 * @from_cset: css_set @task currently belongs to (may be NULL)
883 * @to_cset: new css_set @task is being moved to (may be NULL)
884 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
885 *
886 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
887 * css_set, @from_cset can be NULL. If @task is being disassociated
888 * instead of moved, @to_cset can be NULL.
889 *
890 * This function automatically handles populated counter updates and
891 * css_task_iter adjustments but the caller is responsible for managing
892 * @from_cset and @to_cset's reference counts.
893 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)894 static void css_set_move_task(struct task_struct *task,
895 struct css_set *from_cset, struct css_set *to_cset,
896 bool use_mg_tasks)
897 {
898 lockdep_assert_held(&css_set_lock);
899
900 if (to_cset && !css_set_populated(to_cset))
901 css_set_update_populated(to_cset, true);
902
903 if (from_cset) {
904 WARN_ON_ONCE(list_empty(&task->cg_list));
905
906 css_set_skip_task_iters(from_cset, task);
907 list_del_init(&task->cg_list);
908 if (!css_set_populated(from_cset))
909 css_set_update_populated(from_cset, false);
910 } else {
911 WARN_ON_ONCE(!list_empty(&task->cg_list));
912 }
913
914 if (to_cset) {
915 /*
916 * We are synchronized through cgroup_threadgroup_rwsem
917 * against PF_EXITING setting such that we can't race
918 * against cgroup_exit()/cgroup_free() dropping the css_set.
919 */
920 WARN_ON_ONCE(task->flags & PF_EXITING);
921
922 cgroup_move_task(task, to_cset);
923 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
924 &to_cset->tasks);
925 }
926 }
927
928 /*
929 * hash table for cgroup groups. This improves the performance to find
930 * an existing css_set. This hash doesn't (currently) take into
931 * account cgroups in empty hierarchies.
932 */
933 #define CSS_SET_HASH_BITS 7
934 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
935
css_set_hash(struct cgroup_subsys_state * css[])936 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
937 {
938 unsigned long key = 0UL;
939 struct cgroup_subsys *ss;
940 int i;
941
942 for_each_subsys(ss, i)
943 key += (unsigned long)css[i];
944 key = (key >> 16) ^ key;
945
946 return key;
947 }
948
put_css_set_locked(struct css_set * cset)949 void put_css_set_locked(struct css_set *cset)
950 {
951 struct cgrp_cset_link *link, *tmp_link;
952 struct cgroup_subsys *ss;
953 int ssid;
954
955 lockdep_assert_held(&css_set_lock);
956
957 if (!refcount_dec_and_test(&cset->refcount))
958 return;
959
960 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
961
962 /* This css_set is dead. unlink it and release cgroup and css refs */
963 for_each_subsys(ss, ssid) {
964 list_del(&cset->e_cset_node[ssid]);
965 css_put(cset->subsys[ssid]);
966 }
967 hash_del(&cset->hlist);
968 css_set_count--;
969
970 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
971 list_del(&link->cset_link);
972 list_del(&link->cgrp_link);
973 if (cgroup_parent(link->cgrp))
974 cgroup_put(link->cgrp);
975 kfree(link);
976 }
977
978 if (css_set_threaded(cset)) {
979 list_del(&cset->threaded_csets_node);
980 put_css_set_locked(cset->dom_cset);
981 }
982
983 kfree_rcu(cset, rcu_head);
984 }
985
986 /**
987 * compare_css_sets - helper function for find_existing_css_set().
988 * @cset: candidate css_set being tested
989 * @old_cset: existing css_set for a task
990 * @new_cgrp: cgroup that's being entered by the task
991 * @template: desired set of css pointers in css_set (pre-calculated)
992 *
993 * Returns true if "cset" matches "old_cset" except for the hierarchy
994 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
995 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])996 static bool compare_css_sets(struct css_set *cset,
997 struct css_set *old_cset,
998 struct cgroup *new_cgrp,
999 struct cgroup_subsys_state *template[])
1000 {
1001 struct cgroup *new_dfl_cgrp;
1002 struct list_head *l1, *l2;
1003
1004 /*
1005 * On the default hierarchy, there can be csets which are
1006 * associated with the same set of cgroups but different csses.
1007 * Let's first ensure that csses match.
1008 */
1009 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1010 return false;
1011
1012
1013 /* @cset's domain should match the default cgroup's */
1014 if (cgroup_on_dfl(new_cgrp))
1015 new_dfl_cgrp = new_cgrp;
1016 else
1017 new_dfl_cgrp = old_cset->dfl_cgrp;
1018
1019 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1020 return false;
1021
1022 /*
1023 * Compare cgroup pointers in order to distinguish between
1024 * different cgroups in hierarchies. As different cgroups may
1025 * share the same effective css, this comparison is always
1026 * necessary.
1027 */
1028 l1 = &cset->cgrp_links;
1029 l2 = &old_cset->cgrp_links;
1030 while (1) {
1031 struct cgrp_cset_link *link1, *link2;
1032 struct cgroup *cgrp1, *cgrp2;
1033
1034 l1 = l1->next;
1035 l2 = l2->next;
1036 /* See if we reached the end - both lists are equal length. */
1037 if (l1 == &cset->cgrp_links) {
1038 BUG_ON(l2 != &old_cset->cgrp_links);
1039 break;
1040 } else {
1041 BUG_ON(l2 == &old_cset->cgrp_links);
1042 }
1043 /* Locate the cgroups associated with these links. */
1044 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1045 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1046 cgrp1 = link1->cgrp;
1047 cgrp2 = link2->cgrp;
1048 /* Hierarchies should be linked in the same order. */
1049 BUG_ON(cgrp1->root != cgrp2->root);
1050
1051 /*
1052 * If this hierarchy is the hierarchy of the cgroup
1053 * that's changing, then we need to check that this
1054 * css_set points to the new cgroup; if it's any other
1055 * hierarchy, then this css_set should point to the
1056 * same cgroup as the old css_set.
1057 */
1058 if (cgrp1->root == new_cgrp->root) {
1059 if (cgrp1 != new_cgrp)
1060 return false;
1061 } else {
1062 if (cgrp1 != cgrp2)
1063 return false;
1064 }
1065 }
1066 return true;
1067 }
1068
1069 /**
1070 * find_existing_css_set - init css array and find the matching css_set
1071 * @old_cset: the css_set that we're using before the cgroup transition
1072 * @cgrp: the cgroup that we're moving into
1073 * @template: out param for the new set of csses, should be clear on entry
1074 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1075 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1076 struct cgroup *cgrp,
1077 struct cgroup_subsys_state *template[])
1078 {
1079 struct cgroup_root *root = cgrp->root;
1080 struct cgroup_subsys *ss;
1081 struct css_set *cset;
1082 unsigned long key;
1083 int i;
1084
1085 /*
1086 * Build the set of subsystem state objects that we want to see in the
1087 * new css_set. while subsystems can change globally, the entries here
1088 * won't change, so no need for locking.
1089 */
1090 for_each_subsys(ss, i) {
1091 if (root->subsys_mask & (1UL << i)) {
1092 /*
1093 * @ss is in this hierarchy, so we want the
1094 * effective css from @cgrp.
1095 */
1096 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1097 } else {
1098 /*
1099 * @ss is not in this hierarchy, so we don't want
1100 * to change the css.
1101 */
1102 template[i] = old_cset->subsys[i];
1103 }
1104 }
1105
1106 key = css_set_hash(template);
1107 hash_for_each_possible(css_set_table, cset, hlist, key) {
1108 if (!compare_css_sets(cset, old_cset, cgrp, template))
1109 continue;
1110
1111 /* This css_set matches what we need */
1112 return cset;
1113 }
1114
1115 /* No existing cgroup group matched */
1116 return NULL;
1117 }
1118
free_cgrp_cset_links(struct list_head * links_to_free)1119 static void free_cgrp_cset_links(struct list_head *links_to_free)
1120 {
1121 struct cgrp_cset_link *link, *tmp_link;
1122
1123 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1124 list_del(&link->cset_link);
1125 kfree(link);
1126 }
1127 }
1128
1129 /**
1130 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1131 * @count: the number of links to allocate
1132 * @tmp_links: list_head the allocated links are put on
1133 *
1134 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1135 * through ->cset_link. Returns 0 on success or -errno.
1136 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1137 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1138 {
1139 struct cgrp_cset_link *link;
1140 int i;
1141
1142 INIT_LIST_HEAD(tmp_links);
1143
1144 for (i = 0; i < count; i++) {
1145 link = kzalloc(sizeof(*link), GFP_KERNEL);
1146 if (!link) {
1147 free_cgrp_cset_links(tmp_links);
1148 return -ENOMEM;
1149 }
1150 list_add(&link->cset_link, tmp_links);
1151 }
1152 return 0;
1153 }
1154
1155 /**
1156 * link_css_set - a helper function to link a css_set to a cgroup
1157 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1158 * @cset: the css_set to be linked
1159 * @cgrp: the destination cgroup
1160 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1161 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1162 struct cgroup *cgrp)
1163 {
1164 struct cgrp_cset_link *link;
1165
1166 BUG_ON(list_empty(tmp_links));
1167
1168 if (cgroup_on_dfl(cgrp))
1169 cset->dfl_cgrp = cgrp;
1170
1171 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1172 link->cset = cset;
1173 link->cgrp = cgrp;
1174
1175 /*
1176 * Always add links to the tail of the lists so that the lists are
1177 * in choronological order.
1178 */
1179 list_move_tail(&link->cset_link, &cgrp->cset_links);
1180 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1181
1182 if (cgroup_parent(cgrp))
1183 cgroup_get_live(cgrp);
1184 }
1185
1186 /**
1187 * find_css_set - return a new css_set with one cgroup updated
1188 * @old_cset: the baseline css_set
1189 * @cgrp: the cgroup to be updated
1190 *
1191 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1192 * substituted into the appropriate hierarchy.
1193 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1194 static struct css_set *find_css_set(struct css_set *old_cset,
1195 struct cgroup *cgrp)
1196 {
1197 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1198 struct ext_css_set *ext_cset;
1199 struct css_set *cset;
1200 struct list_head tmp_links;
1201 struct cgrp_cset_link *link;
1202 struct cgroup_subsys *ss;
1203 unsigned long key;
1204 int ssid;
1205
1206 lockdep_assert_held(&cgroup_mutex);
1207
1208 /* First see if we already have a cgroup group that matches
1209 * the desired set */
1210 spin_lock_irq(&css_set_lock);
1211 cset = find_existing_css_set(old_cset, cgrp, template);
1212 if (cset)
1213 get_css_set(cset);
1214 spin_unlock_irq(&css_set_lock);
1215
1216 if (cset)
1217 return cset;
1218
1219 ext_cset = kzalloc(sizeof(*ext_cset), GFP_KERNEL);
1220 if (!ext_cset)
1221 return NULL;
1222 cset = &ext_cset->cset;
1223
1224 /* Allocate all the cgrp_cset_link objects that we'll need */
1225 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1226 kfree(cset);
1227 return NULL;
1228 }
1229
1230 refcount_set(&cset->refcount, 1);
1231 cset->dom_cset = cset;
1232 INIT_LIST_HEAD(&cset->tasks);
1233 INIT_LIST_HEAD(&cset->mg_tasks);
1234 INIT_LIST_HEAD(&cset->dying_tasks);
1235 INIT_LIST_HEAD(&cset->task_iters);
1236 INIT_LIST_HEAD(&cset->threaded_csets);
1237 INIT_HLIST_NODE(&cset->hlist);
1238 INIT_LIST_HEAD(&cset->cgrp_links);
1239 INIT_LIST_HEAD(&cset->mg_preload_node);
1240 INIT_LIST_HEAD(&ext_cset->mg_src_preload_node);
1241 INIT_LIST_HEAD(&ext_cset->mg_dst_preload_node);
1242 INIT_LIST_HEAD(&cset->mg_node);
1243
1244 /* Copy the set of subsystem state objects generated in
1245 * find_existing_css_set() */
1246 memcpy(cset->subsys, template, sizeof(cset->subsys));
1247
1248 spin_lock_irq(&css_set_lock);
1249 /* Add reference counts and links from the new css_set. */
1250 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1251 struct cgroup *c = link->cgrp;
1252
1253 if (c->root == cgrp->root)
1254 c = cgrp;
1255 link_css_set(&tmp_links, cset, c);
1256 }
1257
1258 BUG_ON(!list_empty(&tmp_links));
1259
1260 css_set_count++;
1261
1262 /* Add @cset to the hash table */
1263 key = css_set_hash(cset->subsys);
1264 hash_add(css_set_table, &cset->hlist, key);
1265
1266 for_each_subsys(ss, ssid) {
1267 struct cgroup_subsys_state *css = cset->subsys[ssid];
1268
1269 list_add_tail(&cset->e_cset_node[ssid],
1270 &css->cgroup->e_csets[ssid]);
1271 css_get(css);
1272 }
1273
1274 spin_unlock_irq(&css_set_lock);
1275
1276 /*
1277 * If @cset should be threaded, look up the matching dom_cset and
1278 * link them up. We first fully initialize @cset then look for the
1279 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1280 * to stay empty until we return.
1281 */
1282 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1283 struct css_set *dcset;
1284
1285 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1286 if (!dcset) {
1287 put_css_set(cset);
1288 return NULL;
1289 }
1290
1291 spin_lock_irq(&css_set_lock);
1292 cset->dom_cset = dcset;
1293 list_add_tail(&cset->threaded_csets_node,
1294 &dcset->threaded_csets);
1295 spin_unlock_irq(&css_set_lock);
1296 }
1297
1298 return cset;
1299 }
1300
cgroup_root_from_kf(struct kernfs_root * kf_root)1301 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1302 {
1303 struct cgroup *root_cgrp = kf_root->kn->priv;
1304
1305 return root_cgrp->root;
1306 }
1307
cgroup_init_root_id(struct cgroup_root * root)1308 static int cgroup_init_root_id(struct cgroup_root *root)
1309 {
1310 int id;
1311
1312 lockdep_assert_held(&cgroup_mutex);
1313
1314 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1315 if (id < 0)
1316 return id;
1317
1318 root->hierarchy_id = id;
1319 return 0;
1320 }
1321
cgroup_exit_root_id(struct cgroup_root * root)1322 static void cgroup_exit_root_id(struct cgroup_root *root)
1323 {
1324 lockdep_assert_held(&cgroup_mutex);
1325
1326 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1327 }
1328
cgroup_free_root(struct cgroup_root * root)1329 void cgroup_free_root(struct cgroup_root *root)
1330 {
1331 kfree(root);
1332 }
1333
cgroup_destroy_root(struct cgroup_root * root)1334 static void cgroup_destroy_root(struct cgroup_root *root)
1335 {
1336 struct cgroup *cgrp = &root->cgrp;
1337 struct cgrp_cset_link *link, *tmp_link;
1338
1339 trace_cgroup_destroy_root(root);
1340
1341 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1342
1343 BUG_ON(atomic_read(&root->nr_cgrps));
1344 BUG_ON(!list_empty(&cgrp->self.children));
1345
1346 /* Rebind all subsystems back to the default hierarchy */
1347 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1348
1349 /*
1350 * Release all the links from cset_links to this hierarchy's
1351 * root cgroup
1352 */
1353 spin_lock_irq(&css_set_lock);
1354
1355 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1356 list_del(&link->cset_link);
1357 list_del(&link->cgrp_link);
1358 kfree(link);
1359 }
1360
1361 spin_unlock_irq(&css_set_lock);
1362
1363 if (!list_empty(&root->root_list)) {
1364 list_del(&root->root_list);
1365 cgroup_root_count--;
1366 }
1367
1368 cgroup_exit_root_id(root);
1369
1370 mutex_unlock(&cgroup_mutex);
1371
1372 kernfs_destroy_root(root->kf_root);
1373 cgroup_free_root(root);
1374 }
1375
1376 /*
1377 * look up cgroup associated with current task's cgroup namespace on the
1378 * specified hierarchy
1379 */
1380 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1381 current_cgns_cgroup_from_root(struct cgroup_root *root)
1382 {
1383 struct cgroup *res = NULL;
1384 struct css_set *cset;
1385
1386 lockdep_assert_held(&css_set_lock);
1387
1388 rcu_read_lock();
1389
1390 cset = current->nsproxy->cgroup_ns->root_cset;
1391 if (cset == &init_css_set) {
1392 res = &root->cgrp;
1393 } else if (root == &cgrp_dfl_root) {
1394 res = cset->dfl_cgrp;
1395 } else {
1396 struct cgrp_cset_link *link;
1397
1398 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1399 struct cgroup *c = link->cgrp;
1400
1401 if (c->root == root) {
1402 res = c;
1403 break;
1404 }
1405 }
1406 }
1407 rcu_read_unlock();
1408
1409 BUG_ON(!res);
1410 return res;
1411 }
1412
1413 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1414 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1415 struct cgroup_root *root)
1416 {
1417 struct cgroup *res = NULL;
1418
1419 lockdep_assert_held(&cgroup_mutex);
1420 lockdep_assert_held(&css_set_lock);
1421
1422 if (cset == &init_css_set) {
1423 res = &root->cgrp;
1424 } else if (root == &cgrp_dfl_root) {
1425 res = cset->dfl_cgrp;
1426 } else {
1427 struct cgrp_cset_link *link;
1428
1429 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1430 struct cgroup *c = link->cgrp;
1431
1432 if (c->root == root) {
1433 res = c;
1434 break;
1435 }
1436 }
1437 }
1438
1439 BUG_ON(!res);
1440 return res;
1441 }
1442
1443 /*
1444 * Return the cgroup for "task" from the given hierarchy. Must be
1445 * called with cgroup_mutex and css_set_lock held.
1446 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1447 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1448 struct cgroup_root *root)
1449 {
1450 /*
1451 * No need to lock the task - since we hold css_set_lock the
1452 * task can't change groups.
1453 */
1454 return cset_cgroup_from_root(task_css_set(task), root);
1455 }
1456
1457 /*
1458 * A task must hold cgroup_mutex to modify cgroups.
1459 *
1460 * Any task can increment and decrement the count field without lock.
1461 * So in general, code holding cgroup_mutex can't rely on the count
1462 * field not changing. However, if the count goes to zero, then only
1463 * cgroup_attach_task() can increment it again. Because a count of zero
1464 * means that no tasks are currently attached, therefore there is no
1465 * way a task attached to that cgroup can fork (the other way to
1466 * increment the count). So code holding cgroup_mutex can safely
1467 * assume that if the count is zero, it will stay zero. Similarly, if
1468 * a task holds cgroup_mutex on a cgroup with zero count, it
1469 * knows that the cgroup won't be removed, as cgroup_rmdir()
1470 * needs that mutex.
1471 *
1472 * A cgroup can only be deleted if both its 'count' of using tasks
1473 * is zero, and its list of 'children' cgroups is empty. Since all
1474 * tasks in the system use _some_ cgroup, and since there is always at
1475 * least one task in the system (init, pid == 1), therefore, root cgroup
1476 * always has either children cgroups and/or using tasks. So we don't
1477 * need a special hack to ensure that root cgroup cannot be deleted.
1478 *
1479 * P.S. One more locking exception. RCU is used to guard the
1480 * update of a tasks cgroup pointer by cgroup_attach_task()
1481 */
1482
1483 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1484
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1485 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1486 char *buf)
1487 {
1488 struct cgroup_subsys *ss = cft->ss;
1489
1490 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1491 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1492 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1493
1494 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1495 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1496 cft->name);
1497 } else {
1498 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1499 }
1500 return buf;
1501 }
1502
1503 /**
1504 * cgroup_file_mode - deduce file mode of a control file
1505 * @cft: the control file in question
1506 *
1507 * S_IRUGO for read, S_IWUSR for write.
1508 */
cgroup_file_mode(const struct cftype * cft)1509 static umode_t cgroup_file_mode(const struct cftype *cft)
1510 {
1511 umode_t mode = 0;
1512
1513 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1514 mode |= S_IRUGO;
1515
1516 if (cft->write_u64 || cft->write_s64 || cft->write) {
1517 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1518 mode |= S_IWUGO;
1519 else
1520 mode |= S_IWUSR;
1521 }
1522
1523 return mode;
1524 }
1525
1526 /**
1527 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1528 * @subtree_control: the new subtree_control mask to consider
1529 * @this_ss_mask: available subsystems
1530 *
1531 * On the default hierarchy, a subsystem may request other subsystems to be
1532 * enabled together through its ->depends_on mask. In such cases, more
1533 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1534 *
1535 * This function calculates which subsystems need to be enabled if
1536 * @subtree_control is to be applied while restricted to @this_ss_mask.
1537 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1538 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1539 {
1540 u16 cur_ss_mask = subtree_control;
1541 struct cgroup_subsys *ss;
1542 int ssid;
1543
1544 lockdep_assert_held(&cgroup_mutex);
1545
1546 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1547
1548 while (true) {
1549 u16 new_ss_mask = cur_ss_mask;
1550
1551 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1552 new_ss_mask |= ss->depends_on;
1553 } while_each_subsys_mask();
1554
1555 /*
1556 * Mask out subsystems which aren't available. This can
1557 * happen only if some depended-upon subsystems were bound
1558 * to non-default hierarchies.
1559 */
1560 new_ss_mask &= this_ss_mask;
1561
1562 if (new_ss_mask == cur_ss_mask)
1563 break;
1564 cur_ss_mask = new_ss_mask;
1565 }
1566
1567 return cur_ss_mask;
1568 }
1569
1570 /**
1571 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1572 * @kn: the kernfs_node being serviced
1573 *
1574 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1575 * the method finishes if locking succeeded. Note that once this function
1576 * returns the cgroup returned by cgroup_kn_lock_live() may become
1577 * inaccessible any time. If the caller intends to continue to access the
1578 * cgroup, it should pin it before invoking this function.
1579 */
cgroup_kn_unlock(struct kernfs_node * kn)1580 void cgroup_kn_unlock(struct kernfs_node *kn)
1581 {
1582 struct cgroup *cgrp;
1583
1584 if (kernfs_type(kn) == KERNFS_DIR)
1585 cgrp = kn->priv;
1586 else
1587 cgrp = kn->parent->priv;
1588
1589 mutex_unlock(&cgroup_mutex);
1590
1591 kernfs_unbreak_active_protection(kn);
1592 cgroup_put(cgrp);
1593 }
1594
1595 /**
1596 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1597 * @kn: the kernfs_node being serviced
1598 * @drain_offline: perform offline draining on the cgroup
1599 *
1600 * This helper is to be used by a cgroup kernfs method currently servicing
1601 * @kn. It breaks the active protection, performs cgroup locking and
1602 * verifies that the associated cgroup is alive. Returns the cgroup if
1603 * alive; otherwise, %NULL. A successful return should be undone by a
1604 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1605 * cgroup is drained of offlining csses before return.
1606 *
1607 * Any cgroup kernfs method implementation which requires locking the
1608 * associated cgroup should use this helper. It avoids nesting cgroup
1609 * locking under kernfs active protection and allows all kernfs operations
1610 * including self-removal.
1611 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1612 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1613 {
1614 struct cgroup *cgrp;
1615
1616 if (kernfs_type(kn) == KERNFS_DIR)
1617 cgrp = kn->priv;
1618 else
1619 cgrp = kn->parent->priv;
1620
1621 /*
1622 * We're gonna grab cgroup_mutex which nests outside kernfs
1623 * active_ref. cgroup liveliness check alone provides enough
1624 * protection against removal. Ensure @cgrp stays accessible and
1625 * break the active_ref protection.
1626 */
1627 if (!cgroup_tryget(cgrp))
1628 return NULL;
1629 kernfs_break_active_protection(kn);
1630
1631 if (drain_offline)
1632 cgroup_lock_and_drain_offline(cgrp);
1633 else
1634 mutex_lock(&cgroup_mutex);
1635
1636 if (!cgroup_is_dead(cgrp))
1637 return cgrp;
1638
1639 cgroup_kn_unlock(kn);
1640 return NULL;
1641 }
1642
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1643 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1644 {
1645 char name[CGROUP_FILE_NAME_MAX];
1646
1647 lockdep_assert_held(&cgroup_mutex);
1648
1649 if (cft->file_offset) {
1650 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1651 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1652
1653 spin_lock_irq(&cgroup_file_kn_lock);
1654 cfile->kn = NULL;
1655 spin_unlock_irq(&cgroup_file_kn_lock);
1656
1657 del_timer_sync(&cfile->notify_timer);
1658 }
1659
1660 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1661 }
1662
1663 /**
1664 * css_clear_dir - remove subsys files in a cgroup directory
1665 * @css: taget css
1666 */
css_clear_dir(struct cgroup_subsys_state * css)1667 static void css_clear_dir(struct cgroup_subsys_state *css)
1668 {
1669 struct cgroup *cgrp = css->cgroup;
1670 struct cftype *cfts;
1671
1672 if (!(css->flags & CSS_VISIBLE))
1673 return;
1674
1675 css->flags &= ~CSS_VISIBLE;
1676
1677 if (!css->ss) {
1678 if (cgroup_on_dfl(cgrp))
1679 cfts = cgroup_base_files;
1680 else
1681 cfts = cgroup1_base_files;
1682
1683 cgroup_addrm_files(css, cgrp, cfts, false);
1684 } else {
1685 list_for_each_entry(cfts, &css->ss->cfts, node)
1686 cgroup_addrm_files(css, cgrp, cfts, false);
1687 }
1688 }
1689
1690 /**
1691 * css_populate_dir - create subsys files in a cgroup directory
1692 * @css: target css
1693 *
1694 * On failure, no file is added.
1695 */
css_populate_dir(struct cgroup_subsys_state * css)1696 static int css_populate_dir(struct cgroup_subsys_state *css)
1697 {
1698 struct cgroup *cgrp = css->cgroup;
1699 struct cftype *cfts, *failed_cfts;
1700 int ret;
1701
1702 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1703 return 0;
1704
1705 if (!css->ss) {
1706 if (cgroup_on_dfl(cgrp))
1707 cfts = cgroup_base_files;
1708 else
1709 cfts = cgroup1_base_files;
1710
1711 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1712 if (ret < 0)
1713 return ret;
1714 } else {
1715 list_for_each_entry(cfts, &css->ss->cfts, node) {
1716 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1717 if (ret < 0) {
1718 failed_cfts = cfts;
1719 goto err;
1720 }
1721 }
1722 }
1723
1724 css->flags |= CSS_VISIBLE;
1725
1726 return 0;
1727 err:
1728 list_for_each_entry(cfts, &css->ss->cfts, node) {
1729 if (cfts == failed_cfts)
1730 break;
1731 cgroup_addrm_files(css, cgrp, cfts, false);
1732 }
1733 return ret;
1734 }
1735
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1736 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1737 {
1738 struct cgroup *dcgrp = &dst_root->cgrp;
1739 struct cgroup_subsys *ss;
1740 int ssid, ret;
1741 u16 dfl_disable_ss_mask = 0;
1742
1743 lockdep_assert_held(&cgroup_mutex);
1744
1745 do_each_subsys_mask(ss, ssid, ss_mask) {
1746 /*
1747 * If @ss has non-root csses attached to it, can't move.
1748 * If @ss is an implicit controller, it is exempt from this
1749 * rule and can be stolen.
1750 */
1751 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1752 !ss->implicit_on_dfl)
1753 return -EBUSY;
1754
1755 /* can't move between two non-dummy roots either */
1756 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1757 return -EBUSY;
1758
1759 /*
1760 * Collect ssid's that need to be disabled from default
1761 * hierarchy.
1762 */
1763 if (ss->root == &cgrp_dfl_root)
1764 dfl_disable_ss_mask |= 1 << ssid;
1765
1766 } while_each_subsys_mask();
1767
1768 if (dfl_disable_ss_mask) {
1769 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1770
1771 /*
1772 * Controllers from default hierarchy that need to be rebound
1773 * are all disabled together in one go.
1774 */
1775 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1776 WARN_ON(cgroup_apply_control(scgrp));
1777 cgroup_finalize_control(scgrp, 0);
1778 }
1779
1780 do_each_subsys_mask(ss, ssid, ss_mask) {
1781 struct cgroup_root *src_root = ss->root;
1782 struct cgroup *scgrp = &src_root->cgrp;
1783 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1784 struct css_set *cset, *cset_pos;
1785 struct css_task_iter *it;
1786
1787 WARN_ON(!css || cgroup_css(dcgrp, ss));
1788
1789 if (src_root != &cgrp_dfl_root) {
1790 /* disable from the source */
1791 src_root->subsys_mask &= ~(1 << ssid);
1792 WARN_ON(cgroup_apply_control(scgrp));
1793 cgroup_finalize_control(scgrp, 0);
1794 }
1795
1796 /* rebind */
1797 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1798 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1799 ss->root = dst_root;
1800 css->cgroup = dcgrp;
1801
1802 spin_lock_irq(&css_set_lock);
1803 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1804 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1805 e_cset_node[ss->id]) {
1806 list_move_tail(&cset->e_cset_node[ss->id],
1807 &dcgrp->e_csets[ss->id]);
1808 /*
1809 * all css_sets of scgrp together in same order to dcgrp,
1810 * patch in-flight iterators to preserve correct iteration.
1811 * since the iterator is always advanced right away and
1812 * finished when it->cset_pos meets it->cset_head, so only
1813 * update it->cset_head is enough here.
1814 */
1815 list_for_each_entry(it, &cset->task_iters, iters_node)
1816 if (it->cset_head == &scgrp->e_csets[ss->id])
1817 it->cset_head = &dcgrp->e_csets[ss->id];
1818 }
1819 spin_unlock_irq(&css_set_lock);
1820
1821 /* default hierarchy doesn't enable controllers by default */
1822 dst_root->subsys_mask |= 1 << ssid;
1823 if (dst_root == &cgrp_dfl_root) {
1824 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1825 } else {
1826 dcgrp->subtree_control |= 1 << ssid;
1827 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1828 }
1829
1830 ret = cgroup_apply_control(dcgrp);
1831 if (ret)
1832 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1833 ss->name, ret);
1834
1835 if (ss->bind)
1836 ss->bind(css);
1837 } while_each_subsys_mask();
1838
1839 kernfs_activate(dcgrp->kn);
1840 return 0;
1841 }
1842
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1843 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1844 struct kernfs_root *kf_root)
1845 {
1846 int len = 0;
1847 char *buf = NULL;
1848 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1849 struct cgroup *ns_cgroup;
1850
1851 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1852 if (!buf)
1853 return -ENOMEM;
1854
1855 spin_lock_irq(&css_set_lock);
1856 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1857 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1858 spin_unlock_irq(&css_set_lock);
1859
1860 if (len >= PATH_MAX)
1861 len = -ERANGE;
1862 else if (len > 0) {
1863 seq_escape(sf, buf, " \t\n\\");
1864 len = 0;
1865 }
1866 kfree(buf);
1867 return len;
1868 }
1869
1870 enum cgroup2_param {
1871 Opt_nsdelegate,
1872 Opt_memory_localevents,
1873 Opt_memory_recursiveprot,
1874 nr__cgroup2_params
1875 };
1876
1877 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1878 fsparam_flag("nsdelegate", Opt_nsdelegate),
1879 fsparam_flag("memory_localevents", Opt_memory_localevents),
1880 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1881 {}
1882 };
1883
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1884 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1885 {
1886 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1887 struct fs_parse_result result;
1888 int opt;
1889
1890 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1891 if (opt < 0)
1892 return opt;
1893
1894 switch (opt) {
1895 case Opt_nsdelegate:
1896 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1897 return 0;
1898 case Opt_memory_localevents:
1899 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1900 return 0;
1901 case Opt_memory_recursiveprot:
1902 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1903 return 0;
1904 }
1905 return -EINVAL;
1906 }
1907
apply_cgroup_root_flags(unsigned int root_flags)1908 static void apply_cgroup_root_flags(unsigned int root_flags)
1909 {
1910 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1911 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1912 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1913 else
1914 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1915
1916 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1917 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1918 else
1919 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1920
1921 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1922 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1923 else
1924 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1925 }
1926 }
1927
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1928 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1929 {
1930 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1931 seq_puts(seq, ",nsdelegate");
1932 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1933 seq_puts(seq, ",memory_localevents");
1934 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1935 seq_puts(seq, ",memory_recursiveprot");
1936 return 0;
1937 }
1938
cgroup_reconfigure(struct fs_context * fc)1939 static int cgroup_reconfigure(struct fs_context *fc)
1940 {
1941 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1942
1943 apply_cgroup_root_flags(ctx->flags);
1944 return 0;
1945 }
1946
init_cgroup_housekeeping(struct cgroup * cgrp)1947 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1948 {
1949 struct cgroup_subsys *ss;
1950 int ssid;
1951
1952 INIT_LIST_HEAD(&cgrp->self.sibling);
1953 INIT_LIST_HEAD(&cgrp->self.children);
1954 INIT_LIST_HEAD(&cgrp->cset_links);
1955 INIT_LIST_HEAD(&cgrp->pidlists);
1956 mutex_init(&cgrp->pidlist_mutex);
1957 cgrp->self.cgroup = cgrp;
1958 cgrp->self.flags |= CSS_ONLINE;
1959 cgrp->dom_cgrp = cgrp;
1960 cgrp->max_descendants = INT_MAX;
1961 cgrp->max_depth = INT_MAX;
1962 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1963 prev_cputime_init(&cgrp->prev_cputime);
1964
1965 for_each_subsys(ss, ssid)
1966 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1967
1968 init_waitqueue_head(&cgrp->offline_waitq);
1969 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1970 }
1971
init_cgroup_root(struct cgroup_fs_context * ctx)1972 void init_cgroup_root(struct cgroup_fs_context *ctx)
1973 {
1974 struct cgroup_root *root = ctx->root;
1975 struct cgroup *cgrp = &root->cgrp;
1976
1977 INIT_LIST_HEAD(&root->root_list);
1978 atomic_set(&root->nr_cgrps, 1);
1979 cgrp->root = root;
1980 init_cgroup_housekeeping(cgrp);
1981
1982 root->flags = ctx->flags;
1983 if (ctx->release_agent)
1984 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1985 if (ctx->name)
1986 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1987 if (ctx->cpuset_clone_children)
1988 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1989 }
1990
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1991 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1992 {
1993 LIST_HEAD(tmp_links);
1994 struct cgroup *root_cgrp = &root->cgrp;
1995 struct kernfs_syscall_ops *kf_sops;
1996 struct css_set *cset;
1997 int i, ret;
1998
1999 lockdep_assert_held(&cgroup_mutex);
2000
2001 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2002 0, GFP_KERNEL);
2003 if (ret)
2004 goto out;
2005
2006 /*
2007 * We're accessing css_set_count without locking css_set_lock here,
2008 * but that's OK - it can only be increased by someone holding
2009 * cgroup_lock, and that's us. Later rebinding may disable
2010 * controllers on the default hierarchy and thus create new csets,
2011 * which can't be more than the existing ones. Allocate 2x.
2012 */
2013 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2014 if (ret)
2015 goto cancel_ref;
2016
2017 ret = cgroup_init_root_id(root);
2018 if (ret)
2019 goto cancel_ref;
2020
2021 kf_sops = root == &cgrp_dfl_root ?
2022 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2023
2024 root->kf_root = kernfs_create_root(kf_sops,
2025 KERNFS_ROOT_CREATE_DEACTIVATED |
2026 KERNFS_ROOT_SUPPORT_EXPORTOP |
2027 KERNFS_ROOT_SUPPORT_USER_XATTR,
2028 root_cgrp);
2029 if (IS_ERR(root->kf_root)) {
2030 ret = PTR_ERR(root->kf_root);
2031 goto exit_root_id;
2032 }
2033 root_cgrp->kn = root->kf_root->kn;
2034 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2035 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2036
2037 ret = css_populate_dir(&root_cgrp->self);
2038 if (ret)
2039 goto destroy_root;
2040
2041 ret = rebind_subsystems(root, ss_mask);
2042 if (ret)
2043 goto destroy_root;
2044
2045 ret = cgroup_bpf_inherit(root_cgrp);
2046 WARN_ON_ONCE(ret);
2047
2048 trace_cgroup_setup_root(root);
2049
2050 /*
2051 * There must be no failure case after here, since rebinding takes
2052 * care of subsystems' refcounts, which are explicitly dropped in
2053 * the failure exit path.
2054 */
2055 list_add(&root->root_list, &cgroup_roots);
2056 cgroup_root_count++;
2057
2058 /*
2059 * Link the root cgroup in this hierarchy into all the css_set
2060 * objects.
2061 */
2062 spin_lock_irq(&css_set_lock);
2063 hash_for_each(css_set_table, i, cset, hlist) {
2064 link_css_set(&tmp_links, cset, root_cgrp);
2065 if (css_set_populated(cset))
2066 cgroup_update_populated(root_cgrp, true);
2067 }
2068 spin_unlock_irq(&css_set_lock);
2069
2070 BUG_ON(!list_empty(&root_cgrp->self.children));
2071 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2072
2073 ret = 0;
2074 goto out;
2075
2076 destroy_root:
2077 kernfs_destroy_root(root->kf_root);
2078 root->kf_root = NULL;
2079 exit_root_id:
2080 cgroup_exit_root_id(root);
2081 cancel_ref:
2082 percpu_ref_exit(&root_cgrp->self.refcnt);
2083 out:
2084 free_cgrp_cset_links(&tmp_links);
2085 return ret;
2086 }
2087
cgroup_do_get_tree(struct fs_context * fc)2088 int cgroup_do_get_tree(struct fs_context *fc)
2089 {
2090 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2091 int ret;
2092
2093 ctx->kfc.root = ctx->root->kf_root;
2094 if (fc->fs_type == &cgroup2_fs_type)
2095 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2096 else
2097 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2098 ret = kernfs_get_tree(fc);
2099
2100 /*
2101 * In non-init cgroup namespace, instead of root cgroup's dentry,
2102 * we return the dentry corresponding to the cgroupns->root_cgrp.
2103 */
2104 if (!ret && ctx->ns != &init_cgroup_ns) {
2105 struct dentry *nsdentry;
2106 struct super_block *sb = fc->root->d_sb;
2107 struct cgroup *cgrp;
2108
2109 mutex_lock(&cgroup_mutex);
2110 spin_lock_irq(&css_set_lock);
2111
2112 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2113
2114 spin_unlock_irq(&css_set_lock);
2115 mutex_unlock(&cgroup_mutex);
2116
2117 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2118 dput(fc->root);
2119 if (IS_ERR(nsdentry)) {
2120 deactivate_locked_super(sb);
2121 ret = PTR_ERR(nsdentry);
2122 nsdentry = NULL;
2123 }
2124 fc->root = nsdentry;
2125 }
2126
2127 if (!ctx->kfc.new_sb_created)
2128 cgroup_put(&ctx->root->cgrp);
2129
2130 return ret;
2131 }
2132
2133 /*
2134 * Destroy a cgroup filesystem context.
2135 */
cgroup_fs_context_free(struct fs_context * fc)2136 static void cgroup_fs_context_free(struct fs_context *fc)
2137 {
2138 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2139
2140 kfree(ctx->name);
2141 kfree(ctx->release_agent);
2142 put_cgroup_ns(ctx->ns);
2143 kernfs_free_fs_context(fc);
2144 kfree(ctx);
2145 }
2146
cgroup_get_tree(struct fs_context * fc)2147 static int cgroup_get_tree(struct fs_context *fc)
2148 {
2149 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2150 int ret;
2151
2152 cgrp_dfl_visible = true;
2153 cgroup_get_live(&cgrp_dfl_root.cgrp);
2154 ctx->root = &cgrp_dfl_root;
2155
2156 ret = cgroup_do_get_tree(fc);
2157 if (!ret)
2158 apply_cgroup_root_flags(ctx->flags);
2159 return ret;
2160 }
2161
2162 static const struct fs_context_operations cgroup_fs_context_ops = {
2163 .free = cgroup_fs_context_free,
2164 .parse_param = cgroup2_parse_param,
2165 .get_tree = cgroup_get_tree,
2166 .reconfigure = cgroup_reconfigure,
2167 };
2168
2169 static const struct fs_context_operations cgroup1_fs_context_ops = {
2170 .free = cgroup_fs_context_free,
2171 .parse_param = cgroup1_parse_param,
2172 .get_tree = cgroup1_get_tree,
2173 .reconfigure = cgroup1_reconfigure,
2174 };
2175
2176 /*
2177 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2178 * we select the namespace we're going to use.
2179 */
cgroup_init_fs_context(struct fs_context * fc)2180 static int cgroup_init_fs_context(struct fs_context *fc)
2181 {
2182 struct cgroup_fs_context *ctx;
2183
2184 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2185 if (!ctx)
2186 return -ENOMEM;
2187
2188 ctx->ns = current->nsproxy->cgroup_ns;
2189 get_cgroup_ns(ctx->ns);
2190 fc->fs_private = &ctx->kfc;
2191 if (fc->fs_type == &cgroup2_fs_type)
2192 fc->ops = &cgroup_fs_context_ops;
2193 else
2194 fc->ops = &cgroup1_fs_context_ops;
2195 put_user_ns(fc->user_ns);
2196 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2197 fc->global = true;
2198 return 0;
2199 }
2200
cgroup_kill_sb(struct super_block * sb)2201 static void cgroup_kill_sb(struct super_block *sb)
2202 {
2203 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2204 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2205
2206 /*
2207 * If @root doesn't have any children, start killing it.
2208 * This prevents new mounts by disabling percpu_ref_tryget_live().
2209 * cgroup_mount() may wait for @root's release.
2210 *
2211 * And don't kill the default root.
2212 */
2213 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2214 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2215 cgroup_bpf_offline(&root->cgrp);
2216 percpu_ref_kill(&root->cgrp.self.refcnt);
2217 }
2218 cgroup_put(&root->cgrp);
2219 kernfs_kill_sb(sb);
2220 }
2221
2222 struct file_system_type cgroup_fs_type = {
2223 .name = "cgroup",
2224 .init_fs_context = cgroup_init_fs_context,
2225 .parameters = cgroup1_fs_parameters,
2226 .kill_sb = cgroup_kill_sb,
2227 .fs_flags = FS_USERNS_MOUNT,
2228 };
2229
2230 static struct file_system_type cgroup2_fs_type = {
2231 .name = "cgroup2",
2232 .init_fs_context = cgroup_init_fs_context,
2233 .parameters = cgroup2_fs_parameters,
2234 .kill_sb = cgroup_kill_sb,
2235 .fs_flags = FS_USERNS_MOUNT,
2236 };
2237
2238 #ifdef CONFIG_CPUSETS
2239 static const struct fs_context_operations cpuset_fs_context_ops = {
2240 .get_tree = cgroup1_get_tree,
2241 .free = cgroup_fs_context_free,
2242 };
2243
2244 /*
2245 * This is ugly, but preserves the userspace API for existing cpuset
2246 * users. If someone tries to mount the "cpuset" filesystem, we
2247 * silently switch it to mount "cgroup" instead
2248 */
cpuset_init_fs_context(struct fs_context * fc)2249 static int cpuset_init_fs_context(struct fs_context *fc)
2250 {
2251 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2252 struct cgroup_fs_context *ctx;
2253 int err;
2254
2255 err = cgroup_init_fs_context(fc);
2256 if (err) {
2257 kfree(agent);
2258 return err;
2259 }
2260
2261 fc->ops = &cpuset_fs_context_ops;
2262
2263 ctx = cgroup_fc2context(fc);
2264 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2265 ctx->flags |= CGRP_ROOT_NOPREFIX;
2266 ctx->release_agent = agent;
2267
2268 get_filesystem(&cgroup_fs_type);
2269 put_filesystem(fc->fs_type);
2270 fc->fs_type = &cgroup_fs_type;
2271
2272 return 0;
2273 }
2274
2275 static struct file_system_type cpuset_fs_type = {
2276 .name = "cpuset",
2277 .init_fs_context = cpuset_init_fs_context,
2278 .fs_flags = FS_USERNS_MOUNT,
2279 };
2280 #endif
2281
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2282 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2283 struct cgroup_namespace *ns)
2284 {
2285 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2286
2287 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2288 }
2289
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2290 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2291 struct cgroup_namespace *ns)
2292 {
2293 int ret;
2294
2295 mutex_lock(&cgroup_mutex);
2296 spin_lock_irq(&css_set_lock);
2297
2298 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2299
2300 spin_unlock_irq(&css_set_lock);
2301 mutex_unlock(&cgroup_mutex);
2302
2303 return ret;
2304 }
2305 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2306
2307 /**
2308 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2309 * @task: target task
2310 * @buf: the buffer to write the path into
2311 * @buflen: the length of the buffer
2312 *
2313 * Determine @task's cgroup on the first (the one with the lowest non-zero
2314 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2315 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2316 * cgroup controller callbacks.
2317 *
2318 * Return value is the same as kernfs_path().
2319 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2320 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2321 {
2322 struct cgroup_root *root;
2323 struct cgroup *cgrp;
2324 int hierarchy_id = 1;
2325 int ret;
2326
2327 mutex_lock(&cgroup_mutex);
2328 spin_lock_irq(&css_set_lock);
2329
2330 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2331
2332 if (root) {
2333 cgrp = task_cgroup_from_root(task, root);
2334 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2335 } else {
2336 /* if no hierarchy exists, everyone is in "/" */
2337 ret = strlcpy(buf, "/", buflen);
2338 }
2339
2340 spin_unlock_irq(&css_set_lock);
2341 mutex_unlock(&cgroup_mutex);
2342 return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(task_cgroup_path);
2345
2346 /**
2347 * cgroup_attach_lock - Lock for ->attach()
2348 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2349 *
2350 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2351 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2352 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2353 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2354 * lead to deadlocks.
2355 *
2356 * Bringing up a CPU may involve creating and destroying tasks which requires
2357 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2358 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2359 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2360 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2361 * the threadgroup_rwsem to be released to create new tasks. For more details:
2362 *
2363 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2364 *
2365 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2366 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2367 * CPU hotplug is disabled on entry.
2368 */
cgroup_attach_lock(bool lock_threadgroup)2369 static void cgroup_attach_lock(bool lock_threadgroup)
2370 {
2371 cpus_read_lock();
2372 if (lock_threadgroup)
2373 percpu_down_write(&cgroup_threadgroup_rwsem);
2374 }
2375
2376 /**
2377 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2378 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2379 */
cgroup_attach_unlock(bool lock_threadgroup)2380 static void cgroup_attach_unlock(bool lock_threadgroup)
2381 {
2382 if (lock_threadgroup)
2383 percpu_up_write(&cgroup_threadgroup_rwsem);
2384 cpus_read_unlock();
2385 }
2386
2387 /**
2388 * cgroup_migrate_add_task - add a migration target task to a migration context
2389 * @task: target task
2390 * @mgctx: target migration context
2391 *
2392 * Add @task, which is a migration target, to @mgctx->tset. This function
2393 * becomes noop if @task doesn't need to be migrated. @task's css_set
2394 * should have been added as a migration source and @task->cg_list will be
2395 * moved from the css_set's tasks list to mg_tasks one.
2396 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2397 static void cgroup_migrate_add_task(struct task_struct *task,
2398 struct cgroup_mgctx *mgctx)
2399 {
2400 struct css_set *cset;
2401
2402 lockdep_assert_held(&css_set_lock);
2403
2404 /* @task either already exited or can't exit until the end */
2405 if (task->flags & PF_EXITING)
2406 return;
2407
2408 /* cgroup_threadgroup_rwsem protects racing against forks */
2409 WARN_ON_ONCE(list_empty(&task->cg_list));
2410
2411 cset = task_css_set(task);
2412 if (!cset->mg_src_cgrp)
2413 return;
2414
2415 mgctx->tset.nr_tasks++;
2416
2417 list_move_tail(&task->cg_list, &cset->mg_tasks);
2418 if (list_empty(&cset->mg_node))
2419 list_add_tail(&cset->mg_node,
2420 &mgctx->tset.src_csets);
2421 if (list_empty(&cset->mg_dst_cset->mg_node))
2422 list_add_tail(&cset->mg_dst_cset->mg_node,
2423 &mgctx->tset.dst_csets);
2424 }
2425
2426 /**
2427 * cgroup_taskset_first - reset taskset and return the first task
2428 * @tset: taskset of interest
2429 * @dst_cssp: output variable for the destination css
2430 *
2431 * @tset iteration is initialized and the first task is returned.
2432 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2433 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2434 struct cgroup_subsys_state **dst_cssp)
2435 {
2436 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2437 tset->cur_task = NULL;
2438
2439 return cgroup_taskset_next(tset, dst_cssp);
2440 }
2441 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
2442
2443 /**
2444 * cgroup_taskset_next - iterate to the next task in taskset
2445 * @tset: taskset of interest
2446 * @dst_cssp: output variable for the destination css
2447 *
2448 * Return the next task in @tset. Iteration must have been initialized
2449 * with cgroup_taskset_first().
2450 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2451 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2452 struct cgroup_subsys_state **dst_cssp)
2453 {
2454 struct css_set *cset = tset->cur_cset;
2455 struct task_struct *task = tset->cur_task;
2456
2457 while (&cset->mg_node != tset->csets) {
2458 if (!task)
2459 task = list_first_entry(&cset->mg_tasks,
2460 struct task_struct, cg_list);
2461 else
2462 task = list_next_entry(task, cg_list);
2463
2464 if (&task->cg_list != &cset->mg_tasks) {
2465 tset->cur_cset = cset;
2466 tset->cur_task = task;
2467
2468 /*
2469 * This function may be called both before and
2470 * after cgroup_taskset_migrate(). The two cases
2471 * can be distinguished by looking at whether @cset
2472 * has its ->mg_dst_cset set.
2473 */
2474 if (cset->mg_dst_cset)
2475 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2476 else
2477 *dst_cssp = cset->subsys[tset->ssid];
2478
2479 return task;
2480 }
2481
2482 cset = list_next_entry(cset, mg_node);
2483 task = NULL;
2484 }
2485
2486 return NULL;
2487 }
2488 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
2489
2490 /**
2491 * cgroup_taskset_migrate - migrate a taskset
2492 * @mgctx: migration context
2493 *
2494 * Migrate tasks in @mgctx as setup by migration preparation functions.
2495 * This function fails iff one of the ->can_attach callbacks fails and
2496 * guarantees that either all or none of the tasks in @mgctx are migrated.
2497 * @mgctx is consumed regardless of success.
2498 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2499 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2500 {
2501 struct cgroup_taskset *tset = &mgctx->tset;
2502 struct cgroup_subsys *ss;
2503 struct task_struct *task, *tmp_task;
2504 struct css_set *cset, *tmp_cset;
2505 int ssid, failed_ssid, ret;
2506
2507 /* check that we can legitimately attach to the cgroup */
2508 if (tset->nr_tasks) {
2509 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2510 if (ss->can_attach) {
2511 tset->ssid = ssid;
2512 ret = ss->can_attach(tset);
2513 if (ret) {
2514 failed_ssid = ssid;
2515 goto out_cancel_attach;
2516 }
2517 }
2518 } while_each_subsys_mask();
2519 }
2520
2521 /*
2522 * Now that we're guaranteed success, proceed to move all tasks to
2523 * the new cgroup. There are no failure cases after here, so this
2524 * is the commit point.
2525 */
2526 spin_lock_irq(&css_set_lock);
2527 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2528 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2529 struct css_set *from_cset = task_css_set(task);
2530 struct css_set *to_cset = cset->mg_dst_cset;
2531
2532 get_css_set(to_cset);
2533 to_cset->nr_tasks++;
2534 css_set_move_task(task, from_cset, to_cset, true);
2535 from_cset->nr_tasks--;
2536 /*
2537 * If the source or destination cgroup is frozen,
2538 * the task might require to change its state.
2539 */
2540 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2541 to_cset->dfl_cgrp);
2542 put_css_set_locked(from_cset);
2543
2544 }
2545 }
2546 spin_unlock_irq(&css_set_lock);
2547
2548 /*
2549 * Migration is committed, all target tasks are now on dst_csets.
2550 * Nothing is sensitive to fork() after this point. Notify
2551 * controllers that migration is complete.
2552 */
2553 tset->csets = &tset->dst_csets;
2554
2555 if (tset->nr_tasks) {
2556 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2557 if (ss->attach) {
2558 tset->ssid = ssid;
2559 trace_android_vh_cgroup_attach(ss, tset);
2560 ss->attach(tset);
2561 }
2562 } while_each_subsys_mask();
2563 }
2564
2565 ret = 0;
2566 goto out_release_tset;
2567
2568 out_cancel_attach:
2569 if (tset->nr_tasks) {
2570 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2571 if (ssid == failed_ssid)
2572 break;
2573 if (ss->cancel_attach) {
2574 tset->ssid = ssid;
2575 ss->cancel_attach(tset);
2576 }
2577 } while_each_subsys_mask();
2578 }
2579 out_release_tset:
2580 spin_lock_irq(&css_set_lock);
2581 list_splice_init(&tset->dst_csets, &tset->src_csets);
2582 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2583 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2584 list_del_init(&cset->mg_node);
2585 }
2586 spin_unlock_irq(&css_set_lock);
2587
2588 /*
2589 * Re-initialize the cgroup_taskset structure in case it is reused
2590 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2591 * iteration.
2592 */
2593 tset->nr_tasks = 0;
2594 tset->csets = &tset->src_csets;
2595 return ret;
2596 }
2597
2598 /**
2599 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2600 * @dst_cgrp: destination cgroup to test
2601 *
2602 * On the default hierarchy, except for the mixable, (possible) thread root
2603 * and threaded cgroups, subtree_control must be zero for migration
2604 * destination cgroups with tasks so that child cgroups don't compete
2605 * against tasks.
2606 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2607 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2608 {
2609 /* v1 doesn't have any restriction */
2610 if (!cgroup_on_dfl(dst_cgrp))
2611 return 0;
2612
2613 /* verify @dst_cgrp can host resources */
2614 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2615 return -EOPNOTSUPP;
2616
2617 /* mixables don't care */
2618 if (cgroup_is_mixable(dst_cgrp))
2619 return 0;
2620
2621 /*
2622 * If @dst_cgrp is already or can become a thread root or is
2623 * threaded, it doesn't matter.
2624 */
2625 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2626 return 0;
2627
2628 /* apply no-internal-process constraint */
2629 if (dst_cgrp->subtree_control)
2630 return -EBUSY;
2631
2632 return 0;
2633 }
2634
2635 /**
2636 * cgroup_migrate_finish - cleanup after attach
2637 * @mgctx: migration context
2638 *
2639 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2640 * those functions for details.
2641 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2642 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2643 {
2644 struct ext_css_set *cset, *tmp_cset;
2645
2646 lockdep_assert_held(&cgroup_mutex);
2647
2648 spin_lock_irq(&css_set_lock);
2649
2650 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2651 mg_src_preload_node) {
2652 cset->cset.mg_src_cgrp = NULL;
2653 cset->cset.mg_dst_cgrp = NULL;
2654 cset->cset.mg_dst_cset = NULL;
2655 list_del_init(&cset->mg_src_preload_node);
2656 put_css_set_locked(&cset->cset);
2657 }
2658
2659 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2660 mg_dst_preload_node) {
2661 cset->cset.mg_src_cgrp = NULL;
2662 cset->cset.mg_dst_cgrp = NULL;
2663 cset->cset.mg_dst_cset = NULL;
2664 list_del_init(&cset->mg_dst_preload_node);
2665 put_css_set_locked(&cset->cset);
2666 }
2667
2668 spin_unlock_irq(&css_set_lock);
2669 }
2670
2671 /**
2672 * cgroup_migrate_add_src - add a migration source css_set
2673 * @src_cset: the source css_set to add
2674 * @dst_cgrp: the destination cgroup
2675 * @mgctx: migration context
2676 *
2677 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2678 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2679 * up by cgroup_migrate_finish().
2680 *
2681 * This function may be called without holding cgroup_threadgroup_rwsem
2682 * even if the target is a process. Threads may be created and destroyed
2683 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2684 * into play and the preloaded css_sets are guaranteed to cover all
2685 * migrations.
2686 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2687 void cgroup_migrate_add_src(struct css_set *src_cset,
2688 struct cgroup *dst_cgrp,
2689 struct cgroup_mgctx *mgctx)
2690 {
2691 struct cgroup *src_cgrp;
2692 struct ext_css_set *ext_src_cset;
2693
2694 lockdep_assert_held(&cgroup_mutex);
2695 lockdep_assert_held(&css_set_lock);
2696
2697 /*
2698 * If ->dead, @src_set is associated with one or more dead cgroups
2699 * and doesn't contain any migratable tasks. Ignore it early so
2700 * that the rest of migration path doesn't get confused by it.
2701 */
2702 if (src_cset->dead)
2703 return;
2704
2705 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2706 ext_src_cset = container_of(src_cset, struct ext_css_set, cset);
2707
2708 if (!list_empty(&ext_src_cset->mg_src_preload_node))
2709 return;
2710
2711 WARN_ON(src_cset->mg_src_cgrp);
2712 WARN_ON(src_cset->mg_dst_cgrp);
2713 WARN_ON(!list_empty(&src_cset->mg_tasks));
2714 WARN_ON(!list_empty(&src_cset->mg_node));
2715
2716 src_cset->mg_src_cgrp = src_cgrp;
2717 src_cset->mg_dst_cgrp = dst_cgrp;
2718 get_css_set(src_cset);
2719 list_add_tail(&ext_src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2720 }
2721
2722 /**
2723 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2724 * @mgctx: migration context
2725 *
2726 * Tasks are about to be moved and all the source css_sets have been
2727 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2728 * pins all destination css_sets, links each to its source, and append them
2729 * to @mgctx->preloaded_dst_csets.
2730 *
2731 * This function must be called after cgroup_migrate_add_src() has been
2732 * called on each migration source css_set. After migration is performed
2733 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2734 * @mgctx.
2735 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2736 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2737 {
2738 struct ext_css_set *ext_src_set, *tmp_cset;
2739
2740 lockdep_assert_held(&cgroup_mutex);
2741
2742 /* look up the dst cset for each src cset and link it to src */
2743 list_for_each_entry_safe(ext_src_set, tmp_cset, &mgctx->preloaded_src_csets,
2744 mg_src_preload_node) {
2745 struct css_set *src_cset = &ext_src_set->cset;
2746 struct css_set *dst_cset;
2747 struct ext_css_set *ext_dst_cset;
2748 struct cgroup_subsys *ss;
2749 int ssid;
2750
2751 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2752 if (!dst_cset)
2753 return -ENOMEM;
2754 ext_dst_cset = container_of(dst_cset, struct ext_css_set, cset);
2755
2756 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2757
2758 /*
2759 * If src cset equals dst, it's noop. Drop the src.
2760 * cgroup_migrate() will skip the cset too. Note that we
2761 * can't handle src == dst as some nodes are used by both.
2762 */
2763 if (src_cset == dst_cset) {
2764 src_cset->mg_src_cgrp = NULL;
2765 src_cset->mg_dst_cgrp = NULL;
2766 list_del_init(&ext_src_set->mg_src_preload_node);
2767 put_css_set(src_cset);
2768 put_css_set(dst_cset);
2769 continue;
2770 }
2771
2772 src_cset->mg_dst_cset = dst_cset;
2773
2774 if (list_empty(&ext_dst_cset->mg_dst_preload_node))
2775 list_add_tail(&ext_dst_cset->mg_dst_preload_node,
2776 &mgctx->preloaded_dst_csets);
2777 else
2778 put_css_set(dst_cset);
2779
2780 for_each_subsys(ss, ssid)
2781 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2782 mgctx->ss_mask |= 1 << ssid;
2783 }
2784
2785 return 0;
2786 }
2787
2788 /**
2789 * cgroup_migrate - migrate a process or task to a cgroup
2790 * @leader: the leader of the process or the task to migrate
2791 * @threadgroup: whether @leader points to the whole process or a single task
2792 * @mgctx: migration context
2793 *
2794 * Migrate a process or task denoted by @leader. If migrating a process,
2795 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2796 * responsible for invoking cgroup_migrate_add_src() and
2797 * cgroup_migrate_prepare_dst() on the targets before invoking this
2798 * function and following up with cgroup_migrate_finish().
2799 *
2800 * As long as a controller's ->can_attach() doesn't fail, this function is
2801 * guaranteed to succeed. This means that, excluding ->can_attach()
2802 * failure, when migrating multiple targets, the success or failure can be
2803 * decided for all targets by invoking group_migrate_prepare_dst() before
2804 * actually starting migrating.
2805 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2806 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2807 struct cgroup_mgctx *mgctx)
2808 {
2809 struct task_struct *task;
2810
2811 /*
2812 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2813 * already PF_EXITING could be freed from underneath us unless we
2814 * take an rcu_read_lock.
2815 */
2816 spin_lock_irq(&css_set_lock);
2817 rcu_read_lock();
2818 task = leader;
2819 do {
2820 cgroup_migrate_add_task(task, mgctx);
2821 if (!threadgroup)
2822 break;
2823 } while_each_thread(leader, task);
2824 rcu_read_unlock();
2825 spin_unlock_irq(&css_set_lock);
2826
2827 return cgroup_migrate_execute(mgctx);
2828 }
2829
2830 /**
2831 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2832 * @dst_cgrp: the cgroup to attach to
2833 * @leader: the task or the leader of the threadgroup to be attached
2834 * @threadgroup: attach the whole threadgroup?
2835 *
2836 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2837 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2838 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2839 bool threadgroup)
2840 {
2841 DEFINE_CGROUP_MGCTX(mgctx);
2842 struct task_struct *task;
2843 int ret = 0;
2844
2845 /* look up all src csets */
2846 spin_lock_irq(&css_set_lock);
2847 rcu_read_lock();
2848 task = leader;
2849 do {
2850 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2851 if (!threadgroup)
2852 break;
2853 } while_each_thread(leader, task);
2854 rcu_read_unlock();
2855 spin_unlock_irq(&css_set_lock);
2856
2857 /* prepare dst csets and commit */
2858 ret = cgroup_migrate_prepare_dst(&mgctx);
2859 if (!ret)
2860 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2861
2862 cgroup_migrate_finish(&mgctx);
2863
2864 if (!ret)
2865 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2866
2867 return ret;
2868 }
2869
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked,struct cgroup * dst_cgrp)2870 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2871 bool *threadgroup_locked,
2872 struct cgroup *dst_cgrp)
2873 {
2874 struct task_struct *tsk;
2875 pid_t pid;
2876 bool force_migration = false;
2877
2878 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2879 return ERR_PTR(-EINVAL);
2880
2881 /*
2882 * If we migrate a single thread, we don't care about threadgroup
2883 * stability. If the thread is `current`, it won't exit(2) under our
2884 * hands or change PID through exec(2). We exclude
2885 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2886 * callers by cgroup_mutex.
2887 * Therefore, we can skip the global lock.
2888 */
2889 lockdep_assert_held(&cgroup_mutex);
2890 *threadgroup_locked = pid || threadgroup;
2891 cgroup_attach_lock(*threadgroup_locked);
2892
2893 rcu_read_lock();
2894 if (pid) {
2895 tsk = find_task_by_vpid(pid);
2896 if (!tsk) {
2897 tsk = ERR_PTR(-ESRCH);
2898 goto out_unlock_threadgroup;
2899 }
2900 } else {
2901 tsk = current;
2902 }
2903
2904 if (threadgroup)
2905 tsk = tsk->group_leader;
2906
2907 if (tsk->flags & PF_KTHREAD)
2908 trace_android_rvh_cgroup_force_kthread_migration(tsk, dst_cgrp, &force_migration);
2909
2910 /*
2911 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2912 * If userland migrates such a kthread to a non-root cgroup, it can
2913 * become trapped in a cpuset, or RT kthread may be born in a
2914 * cgroup with no rt_runtime allocated. Just say no.
2915 */
2916 if (!force_migration && (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY))) {
2917 tsk = ERR_PTR(-EINVAL);
2918 goto out_unlock_threadgroup;
2919 }
2920
2921 get_task_struct(tsk);
2922 goto out_unlock_rcu;
2923
2924 out_unlock_threadgroup:
2925 cgroup_attach_unlock(*threadgroup_locked);
2926 *threadgroup_locked = false;
2927 out_unlock_rcu:
2928 rcu_read_unlock();
2929 return tsk;
2930 }
2931
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2932 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2933 {
2934 struct cgroup_subsys *ss;
2935 int ssid;
2936
2937 /* release reference from cgroup_procs_write_start() */
2938 put_task_struct(task);
2939
2940 cgroup_attach_unlock(threadgroup_locked);
2941
2942 for_each_subsys(ss, ssid)
2943 if (ss->post_attach)
2944 ss->post_attach();
2945 }
2946
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2947 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2948 {
2949 struct cgroup_subsys *ss;
2950 bool printed = false;
2951 int ssid;
2952
2953 do_each_subsys_mask(ss, ssid, ss_mask) {
2954 if (printed)
2955 seq_putc(seq, ' ');
2956 seq_puts(seq, ss->name);
2957 printed = true;
2958 } while_each_subsys_mask();
2959 if (printed)
2960 seq_putc(seq, '\n');
2961 }
2962
2963 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2964 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2965 {
2966 struct cgroup *cgrp = seq_css(seq)->cgroup;
2967
2968 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2969 return 0;
2970 }
2971
2972 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2973 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2974 {
2975 struct cgroup *cgrp = seq_css(seq)->cgroup;
2976
2977 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2978 return 0;
2979 }
2980
2981 /**
2982 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2983 * @cgrp: root of the subtree to update csses for
2984 *
2985 * @cgrp's control masks have changed and its subtree's css associations
2986 * need to be updated accordingly. This function looks up all css_sets
2987 * which are attached to the subtree, creates the matching updated css_sets
2988 * and migrates the tasks to the new ones.
2989 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2990 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2991 {
2992 DEFINE_CGROUP_MGCTX(mgctx);
2993 struct cgroup_subsys_state *d_css;
2994 struct cgroup *dsct;
2995 struct ext_css_set *ext_src_set;
2996 bool has_tasks;
2997 int ret;
2998
2999 lockdep_assert_held(&cgroup_mutex);
3000
3001 /* look up all csses currently attached to @cgrp's subtree */
3002 spin_lock_irq(&css_set_lock);
3003 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3004 struct cgrp_cset_link *link;
3005
3006 list_for_each_entry(link, &dsct->cset_links, cset_link)
3007 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3008 }
3009 spin_unlock_irq(&css_set_lock);
3010
3011 /*
3012 * We need to write-lock threadgroup_rwsem while migrating tasks.
3013 * However, if there are no source csets for @cgrp, changing its
3014 * controllers isn't gonna produce any task migrations and the
3015 * write-locking can be skipped safely.
3016 */
3017 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3018 cgroup_attach_lock(has_tasks);
3019
3020 /* NULL dst indicates self on default hierarchy */
3021 ret = cgroup_migrate_prepare_dst(&mgctx);
3022 if (ret)
3023 goto out_finish;
3024
3025 spin_lock_irq(&css_set_lock);
3026 list_for_each_entry(ext_src_set, &mgctx.preloaded_src_csets,
3027 mg_src_preload_node) {
3028 struct task_struct *task, *ntask;
3029
3030 /* all tasks in src_csets need to be migrated */
3031 list_for_each_entry_safe(task, ntask, &ext_src_set->cset.tasks, cg_list)
3032 cgroup_migrate_add_task(task, &mgctx);
3033 }
3034 spin_unlock_irq(&css_set_lock);
3035
3036 ret = cgroup_migrate_execute(&mgctx);
3037 out_finish:
3038 cgroup_migrate_finish(&mgctx);
3039 cgroup_attach_unlock(has_tasks);
3040 return ret;
3041 }
3042
3043 /**
3044 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3045 * @cgrp: root of the target subtree
3046 *
3047 * Because css offlining is asynchronous, userland may try to re-enable a
3048 * controller while the previous css is still around. This function grabs
3049 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3050 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3051 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3052 __acquires(&cgroup_mutex)
3053 {
3054 struct cgroup *dsct;
3055 struct cgroup_subsys_state *d_css;
3056 struct cgroup_subsys *ss;
3057 int ssid;
3058
3059 restart:
3060 mutex_lock(&cgroup_mutex);
3061
3062 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3063 for_each_subsys(ss, ssid) {
3064 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3065 DEFINE_WAIT(wait);
3066
3067 if (!css || !percpu_ref_is_dying(&css->refcnt))
3068 continue;
3069
3070 cgroup_get_live(dsct);
3071 prepare_to_wait(&dsct->offline_waitq, &wait,
3072 TASK_UNINTERRUPTIBLE);
3073
3074 mutex_unlock(&cgroup_mutex);
3075 schedule();
3076 finish_wait(&dsct->offline_waitq, &wait);
3077
3078 cgroup_put(dsct);
3079 goto restart;
3080 }
3081 }
3082 }
3083
3084 /**
3085 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3086 * @cgrp: root of the target subtree
3087 *
3088 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3089 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3090 * itself.
3091 */
cgroup_save_control(struct cgroup * cgrp)3092 static void cgroup_save_control(struct cgroup *cgrp)
3093 {
3094 struct cgroup *dsct;
3095 struct cgroup_subsys_state *d_css;
3096
3097 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3098 dsct->old_subtree_control = dsct->subtree_control;
3099 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3100 dsct->old_dom_cgrp = dsct->dom_cgrp;
3101 }
3102 }
3103
3104 /**
3105 * cgroup_propagate_control - refresh control masks of a subtree
3106 * @cgrp: root of the target subtree
3107 *
3108 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3109 * ->subtree_control and propagate controller availability through the
3110 * subtree so that descendants don't have unavailable controllers enabled.
3111 */
cgroup_propagate_control(struct cgroup * cgrp)3112 static void cgroup_propagate_control(struct cgroup *cgrp)
3113 {
3114 struct cgroup *dsct;
3115 struct cgroup_subsys_state *d_css;
3116
3117 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3118 dsct->subtree_control &= cgroup_control(dsct);
3119 dsct->subtree_ss_mask =
3120 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3121 cgroup_ss_mask(dsct));
3122 }
3123 }
3124
3125 /**
3126 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3127 * @cgrp: root of the target subtree
3128 *
3129 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3130 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3131 * itself.
3132 */
cgroup_restore_control(struct cgroup * cgrp)3133 static void cgroup_restore_control(struct cgroup *cgrp)
3134 {
3135 struct cgroup *dsct;
3136 struct cgroup_subsys_state *d_css;
3137
3138 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3139 dsct->subtree_control = dsct->old_subtree_control;
3140 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3141 dsct->dom_cgrp = dsct->old_dom_cgrp;
3142 }
3143 }
3144
css_visible(struct cgroup_subsys_state * css)3145 static bool css_visible(struct cgroup_subsys_state *css)
3146 {
3147 struct cgroup_subsys *ss = css->ss;
3148 struct cgroup *cgrp = css->cgroup;
3149
3150 if (cgroup_control(cgrp) & (1 << ss->id))
3151 return true;
3152 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3153 return false;
3154 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3155 }
3156
3157 /**
3158 * cgroup_apply_control_enable - enable or show csses according to control
3159 * @cgrp: root of the target subtree
3160 *
3161 * Walk @cgrp's subtree and create new csses or make the existing ones
3162 * visible. A css is created invisible if it's being implicitly enabled
3163 * through dependency. An invisible css is made visible when the userland
3164 * explicitly enables it.
3165 *
3166 * Returns 0 on success, -errno on failure. On failure, csses which have
3167 * been processed already aren't cleaned up. The caller is responsible for
3168 * cleaning up with cgroup_apply_control_disable().
3169 */
cgroup_apply_control_enable(struct cgroup * cgrp)3170 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3171 {
3172 struct cgroup *dsct;
3173 struct cgroup_subsys_state *d_css;
3174 struct cgroup_subsys *ss;
3175 int ssid, ret;
3176
3177 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3178 for_each_subsys(ss, ssid) {
3179 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3180
3181 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3182 continue;
3183
3184 if (!css) {
3185 css = css_create(dsct, ss);
3186 if (IS_ERR(css))
3187 return PTR_ERR(css);
3188 }
3189
3190 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3191
3192 if (css_visible(css)) {
3193 ret = css_populate_dir(css);
3194 if (ret)
3195 return ret;
3196 }
3197 }
3198 }
3199
3200 return 0;
3201 }
3202
3203 /**
3204 * cgroup_apply_control_disable - kill or hide csses according to control
3205 * @cgrp: root of the target subtree
3206 *
3207 * Walk @cgrp's subtree and kill and hide csses so that they match
3208 * cgroup_ss_mask() and cgroup_visible_mask().
3209 *
3210 * A css is hidden when the userland requests it to be disabled while other
3211 * subsystems are still depending on it. The css must not actively control
3212 * resources and be in the vanilla state if it's made visible again later.
3213 * Controllers which may be depended upon should provide ->css_reset() for
3214 * this purpose.
3215 */
cgroup_apply_control_disable(struct cgroup * cgrp)3216 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3217 {
3218 struct cgroup *dsct;
3219 struct cgroup_subsys_state *d_css;
3220 struct cgroup_subsys *ss;
3221 int ssid;
3222
3223 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3224 for_each_subsys(ss, ssid) {
3225 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3226
3227 if (!css)
3228 continue;
3229
3230 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3231
3232 if (css->parent &&
3233 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3234 kill_css(css);
3235 } else if (!css_visible(css)) {
3236 css_clear_dir(css);
3237 if (ss->css_reset)
3238 ss->css_reset(css);
3239 }
3240 }
3241 }
3242 }
3243
3244 /**
3245 * cgroup_apply_control - apply control mask updates to the subtree
3246 * @cgrp: root of the target subtree
3247 *
3248 * subsystems can be enabled and disabled in a subtree using the following
3249 * steps.
3250 *
3251 * 1. Call cgroup_save_control() to stash the current state.
3252 * 2. Update ->subtree_control masks in the subtree as desired.
3253 * 3. Call cgroup_apply_control() to apply the changes.
3254 * 4. Optionally perform other related operations.
3255 * 5. Call cgroup_finalize_control() to finish up.
3256 *
3257 * This function implements step 3 and propagates the mask changes
3258 * throughout @cgrp's subtree, updates csses accordingly and perform
3259 * process migrations.
3260 */
cgroup_apply_control(struct cgroup * cgrp)3261 static int cgroup_apply_control(struct cgroup *cgrp)
3262 {
3263 int ret;
3264
3265 cgroup_propagate_control(cgrp);
3266
3267 ret = cgroup_apply_control_enable(cgrp);
3268 if (ret)
3269 return ret;
3270
3271 /*
3272 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3273 * making the following cgroup_update_dfl_csses() properly update
3274 * css associations of all tasks in the subtree.
3275 */
3276 ret = cgroup_update_dfl_csses(cgrp);
3277 if (ret)
3278 return ret;
3279
3280 return 0;
3281 }
3282
3283 /**
3284 * cgroup_finalize_control - finalize control mask update
3285 * @cgrp: root of the target subtree
3286 * @ret: the result of the update
3287 *
3288 * Finalize control mask update. See cgroup_apply_control() for more info.
3289 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3290 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3291 {
3292 if (ret) {
3293 cgroup_restore_control(cgrp);
3294 cgroup_propagate_control(cgrp);
3295 }
3296
3297 cgroup_apply_control_disable(cgrp);
3298 }
3299
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3300 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3301 {
3302 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3303
3304 /* if nothing is getting enabled, nothing to worry about */
3305 if (!enable)
3306 return 0;
3307
3308 /* can @cgrp host any resources? */
3309 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3310 return -EOPNOTSUPP;
3311
3312 /* mixables don't care */
3313 if (cgroup_is_mixable(cgrp))
3314 return 0;
3315
3316 if (domain_enable) {
3317 /* can't enable domain controllers inside a thread subtree */
3318 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3319 return -EOPNOTSUPP;
3320 } else {
3321 /*
3322 * Threaded controllers can handle internal competitions
3323 * and are always allowed inside a (prospective) thread
3324 * subtree.
3325 */
3326 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3327 return 0;
3328 }
3329
3330 /*
3331 * Controllers can't be enabled for a cgroup with tasks to avoid
3332 * child cgroups competing against tasks.
3333 */
3334 if (cgroup_has_tasks(cgrp))
3335 return -EBUSY;
3336
3337 return 0;
3338 }
3339
3340 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3341 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3342 char *buf, size_t nbytes,
3343 loff_t off)
3344 {
3345 u16 enable = 0, disable = 0;
3346 struct cgroup *cgrp, *child;
3347 struct cgroup_subsys *ss;
3348 char *tok;
3349 int ssid, ret;
3350
3351 /*
3352 * Parse input - space separated list of subsystem names prefixed
3353 * with either + or -.
3354 */
3355 buf = strstrip(buf);
3356 while ((tok = strsep(&buf, " "))) {
3357 if (tok[0] == '\0')
3358 continue;
3359 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3360 if (!cgroup_ssid_enabled(ssid) ||
3361 strcmp(tok + 1, ss->name))
3362 continue;
3363
3364 if (*tok == '+') {
3365 enable |= 1 << ssid;
3366 disable &= ~(1 << ssid);
3367 } else if (*tok == '-') {
3368 disable |= 1 << ssid;
3369 enable &= ~(1 << ssid);
3370 } else {
3371 return -EINVAL;
3372 }
3373 break;
3374 } while_each_subsys_mask();
3375 if (ssid == CGROUP_SUBSYS_COUNT)
3376 return -EINVAL;
3377 }
3378
3379 cgrp = cgroup_kn_lock_live(of->kn, true);
3380 if (!cgrp)
3381 return -ENODEV;
3382
3383 for_each_subsys(ss, ssid) {
3384 if (enable & (1 << ssid)) {
3385 if (cgrp->subtree_control & (1 << ssid)) {
3386 enable &= ~(1 << ssid);
3387 continue;
3388 }
3389
3390 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3391 ret = -ENOENT;
3392 goto out_unlock;
3393 }
3394 } else if (disable & (1 << ssid)) {
3395 if (!(cgrp->subtree_control & (1 << ssid))) {
3396 disable &= ~(1 << ssid);
3397 continue;
3398 }
3399
3400 /* a child has it enabled? */
3401 cgroup_for_each_live_child(child, cgrp) {
3402 if (child->subtree_control & (1 << ssid)) {
3403 ret = -EBUSY;
3404 goto out_unlock;
3405 }
3406 }
3407 }
3408 }
3409
3410 if (!enable && !disable) {
3411 ret = 0;
3412 goto out_unlock;
3413 }
3414
3415 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3416 if (ret)
3417 goto out_unlock;
3418
3419 /* save and update control masks and prepare csses */
3420 cgroup_save_control(cgrp);
3421
3422 cgrp->subtree_control |= enable;
3423 cgrp->subtree_control &= ~disable;
3424
3425 ret = cgroup_apply_control(cgrp);
3426 cgroup_finalize_control(cgrp, ret);
3427 if (ret)
3428 goto out_unlock;
3429
3430 kernfs_activate(cgrp->kn);
3431 out_unlock:
3432 cgroup_kn_unlock(of->kn);
3433 return ret ?: nbytes;
3434 }
3435
3436 /**
3437 * cgroup_enable_threaded - make @cgrp threaded
3438 * @cgrp: the target cgroup
3439 *
3440 * Called when "threaded" is written to the cgroup.type interface file and
3441 * tries to make @cgrp threaded and join the parent's resource domain.
3442 * This function is never called on the root cgroup as cgroup.type doesn't
3443 * exist on it.
3444 */
cgroup_enable_threaded(struct cgroup * cgrp)3445 static int cgroup_enable_threaded(struct cgroup *cgrp)
3446 {
3447 struct cgroup *parent = cgroup_parent(cgrp);
3448 struct cgroup *dom_cgrp = parent->dom_cgrp;
3449 struct cgroup *dsct;
3450 struct cgroup_subsys_state *d_css;
3451 int ret;
3452
3453 lockdep_assert_held(&cgroup_mutex);
3454
3455 /* noop if already threaded */
3456 if (cgroup_is_threaded(cgrp))
3457 return 0;
3458
3459 /*
3460 * If @cgroup is populated or has domain controllers enabled, it
3461 * can't be switched. While the below cgroup_can_be_thread_root()
3462 * test can catch the same conditions, that's only when @parent is
3463 * not mixable, so let's check it explicitly.
3464 */
3465 if (cgroup_is_populated(cgrp) ||
3466 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3467 return -EOPNOTSUPP;
3468
3469 /* we're joining the parent's domain, ensure its validity */
3470 if (!cgroup_is_valid_domain(dom_cgrp) ||
3471 !cgroup_can_be_thread_root(dom_cgrp))
3472 return -EOPNOTSUPP;
3473
3474 /*
3475 * The following shouldn't cause actual migrations and should
3476 * always succeed.
3477 */
3478 cgroup_save_control(cgrp);
3479
3480 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3481 if (dsct == cgrp || cgroup_is_threaded(dsct))
3482 dsct->dom_cgrp = dom_cgrp;
3483
3484 ret = cgroup_apply_control(cgrp);
3485 if (!ret)
3486 parent->nr_threaded_children++;
3487
3488 cgroup_finalize_control(cgrp, ret);
3489 return ret;
3490 }
3491
cgroup_type_show(struct seq_file * seq,void * v)3492 static int cgroup_type_show(struct seq_file *seq, void *v)
3493 {
3494 struct cgroup *cgrp = seq_css(seq)->cgroup;
3495
3496 if (cgroup_is_threaded(cgrp))
3497 seq_puts(seq, "threaded\n");
3498 else if (!cgroup_is_valid_domain(cgrp))
3499 seq_puts(seq, "domain invalid\n");
3500 else if (cgroup_is_thread_root(cgrp))
3501 seq_puts(seq, "domain threaded\n");
3502 else
3503 seq_puts(seq, "domain\n");
3504
3505 return 0;
3506 }
3507
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3508 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3509 size_t nbytes, loff_t off)
3510 {
3511 struct cgroup *cgrp;
3512 int ret;
3513
3514 /* only switching to threaded mode is supported */
3515 if (strcmp(strstrip(buf), "threaded"))
3516 return -EINVAL;
3517
3518 /* drain dying csses before we re-apply (threaded) subtree control */
3519 cgrp = cgroup_kn_lock_live(of->kn, true);
3520 if (!cgrp)
3521 return -ENOENT;
3522
3523 /* threaded can only be enabled */
3524 ret = cgroup_enable_threaded(cgrp);
3525
3526 cgroup_kn_unlock(of->kn);
3527 return ret ?: nbytes;
3528 }
3529
cgroup_max_descendants_show(struct seq_file * seq,void * v)3530 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3531 {
3532 struct cgroup *cgrp = seq_css(seq)->cgroup;
3533 int descendants = READ_ONCE(cgrp->max_descendants);
3534
3535 if (descendants == INT_MAX)
3536 seq_puts(seq, "max\n");
3537 else
3538 seq_printf(seq, "%d\n", descendants);
3539
3540 return 0;
3541 }
3542
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3543 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3544 char *buf, size_t nbytes, loff_t off)
3545 {
3546 struct cgroup *cgrp;
3547 int descendants;
3548 ssize_t ret;
3549
3550 buf = strstrip(buf);
3551 if (!strcmp(buf, "max")) {
3552 descendants = INT_MAX;
3553 } else {
3554 ret = kstrtoint(buf, 0, &descendants);
3555 if (ret)
3556 return ret;
3557 }
3558
3559 if (descendants < 0)
3560 return -ERANGE;
3561
3562 cgrp = cgroup_kn_lock_live(of->kn, false);
3563 if (!cgrp)
3564 return -ENOENT;
3565
3566 cgrp->max_descendants = descendants;
3567
3568 cgroup_kn_unlock(of->kn);
3569
3570 return nbytes;
3571 }
3572
cgroup_max_depth_show(struct seq_file * seq,void * v)3573 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3574 {
3575 struct cgroup *cgrp = seq_css(seq)->cgroup;
3576 int depth = READ_ONCE(cgrp->max_depth);
3577
3578 if (depth == INT_MAX)
3579 seq_puts(seq, "max\n");
3580 else
3581 seq_printf(seq, "%d\n", depth);
3582
3583 return 0;
3584 }
3585
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3586 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3587 char *buf, size_t nbytes, loff_t off)
3588 {
3589 struct cgroup *cgrp;
3590 ssize_t ret;
3591 int depth;
3592
3593 buf = strstrip(buf);
3594 if (!strcmp(buf, "max")) {
3595 depth = INT_MAX;
3596 } else {
3597 ret = kstrtoint(buf, 0, &depth);
3598 if (ret)
3599 return ret;
3600 }
3601
3602 if (depth < 0)
3603 return -ERANGE;
3604
3605 cgrp = cgroup_kn_lock_live(of->kn, false);
3606 if (!cgrp)
3607 return -ENOENT;
3608
3609 cgrp->max_depth = depth;
3610
3611 cgroup_kn_unlock(of->kn);
3612
3613 return nbytes;
3614 }
3615
cgroup_events_show(struct seq_file * seq,void * v)3616 static int cgroup_events_show(struct seq_file *seq, void *v)
3617 {
3618 struct cgroup *cgrp = seq_css(seq)->cgroup;
3619
3620 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3621 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3622
3623 return 0;
3624 }
3625
cgroup_stat_show(struct seq_file * seq,void * v)3626 static int cgroup_stat_show(struct seq_file *seq, void *v)
3627 {
3628 struct cgroup *cgroup = seq_css(seq)->cgroup;
3629
3630 seq_printf(seq, "nr_descendants %d\n",
3631 cgroup->nr_descendants);
3632 seq_printf(seq, "nr_dying_descendants %d\n",
3633 cgroup->nr_dying_descendants);
3634
3635 return 0;
3636 }
3637
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3638 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3639 struct cgroup *cgrp, int ssid)
3640 {
3641 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3642 struct cgroup_subsys_state *css;
3643 int ret;
3644
3645 if (!ss->css_extra_stat_show)
3646 return 0;
3647
3648 css = cgroup_tryget_css(cgrp, ss);
3649 if (!css)
3650 return 0;
3651
3652 ret = ss->css_extra_stat_show(seq, css);
3653 css_put(css);
3654 return ret;
3655 }
3656
cpu_stat_show(struct seq_file * seq,void * v)3657 static int cpu_stat_show(struct seq_file *seq, void *v)
3658 {
3659 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3660 int ret = 0;
3661
3662 cgroup_base_stat_cputime_show(seq);
3663 #ifdef CONFIG_CGROUP_SCHED
3664 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3665 #endif
3666 return ret;
3667 }
3668
3669 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3670 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3671 {
3672 struct cgroup *cgrp = seq_css(seq)->cgroup;
3673 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3674
3675 return psi_show(seq, psi, PSI_IO);
3676 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3677 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3678 {
3679 struct cgroup *cgrp = seq_css(seq)->cgroup;
3680 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3681
3682 return psi_show(seq, psi, PSI_MEM);
3683 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3684 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3685 {
3686 struct cgroup *cgrp = seq_css(seq)->cgroup;
3687 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3688
3689 return psi_show(seq, psi, PSI_CPU);
3690 }
3691
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3692 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3693 size_t nbytes, enum psi_res res)
3694 {
3695 struct cgroup_file_ctx *ctx = of->priv;
3696 struct psi_trigger *new;
3697 struct cgroup *cgrp;
3698 struct psi_group *psi;
3699
3700 cgrp = cgroup_kn_lock_live(of->kn, false);
3701 if (!cgrp)
3702 return -ENODEV;
3703
3704 cgroup_get(cgrp);
3705 cgroup_kn_unlock(of->kn);
3706
3707 /* Allow only one trigger per file descriptor */
3708 if (ctx->psi.trigger) {
3709 cgroup_put(cgrp);
3710 return -EBUSY;
3711 }
3712
3713 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3714 new = psi_trigger_create(psi, buf, nbytes, res);
3715 if (IS_ERR(new)) {
3716 cgroup_put(cgrp);
3717 return PTR_ERR(new);
3718 }
3719
3720 smp_store_release(&ctx->psi.trigger, new);
3721 cgroup_put(cgrp);
3722
3723 return nbytes;
3724 }
3725
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3726 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3727 char *buf, size_t nbytes,
3728 loff_t off)
3729 {
3730 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3731 }
3732
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3733 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3734 char *buf, size_t nbytes,
3735 loff_t off)
3736 {
3737 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3738 }
3739
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3740 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3741 char *buf, size_t nbytes,
3742 loff_t off)
3743 {
3744 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3745 }
3746
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3747 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3748 poll_table *pt)
3749 {
3750 struct cgroup_file_ctx *ctx = of->priv;
3751 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3752 }
3753
cgroup_pressure_release(struct kernfs_open_file * of)3754 static void cgroup_pressure_release(struct kernfs_open_file *of)
3755 {
3756 struct cgroup_file_ctx *ctx = of->priv;
3757
3758 psi_trigger_destroy(ctx->psi.trigger);
3759 }
3760
cgroup_psi_enabled(void)3761 bool cgroup_psi_enabled(void)
3762 {
3763 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3764 }
3765
3766 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3767 bool cgroup_psi_enabled(void)
3768 {
3769 return false;
3770 }
3771
3772 #endif /* CONFIG_PSI */
3773
cgroup_freeze_show(struct seq_file * seq,void * v)3774 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3775 {
3776 struct cgroup *cgrp = seq_css(seq)->cgroup;
3777
3778 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3779
3780 return 0;
3781 }
3782
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3783 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3784 char *buf, size_t nbytes, loff_t off)
3785 {
3786 struct cgroup *cgrp;
3787 ssize_t ret;
3788 int freeze;
3789
3790 ret = kstrtoint(strstrip(buf), 0, &freeze);
3791 if (ret)
3792 return ret;
3793
3794 if (freeze < 0 || freeze > 1)
3795 return -ERANGE;
3796
3797 cgrp = cgroup_kn_lock_live(of->kn, false);
3798 if (!cgrp)
3799 return -ENOENT;
3800
3801 cgroup_freeze(cgrp, freeze);
3802
3803 cgroup_kn_unlock(of->kn);
3804
3805 return nbytes;
3806 }
3807
cgroup_file_open(struct kernfs_open_file * of)3808 static int cgroup_file_open(struct kernfs_open_file *of)
3809 {
3810 struct cftype *cft = of->kn->priv;
3811 struct cgroup_file_ctx *ctx;
3812 int ret;
3813
3814 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3815 if (!ctx)
3816 return -ENOMEM;
3817
3818 ctx->ns = current->nsproxy->cgroup_ns;
3819 get_cgroup_ns(ctx->ns);
3820 of->priv = ctx;
3821
3822 if (!cft->open)
3823 return 0;
3824
3825 ret = cft->open(of);
3826 if (ret) {
3827 put_cgroup_ns(ctx->ns);
3828 kfree(ctx);
3829 }
3830 return ret;
3831 }
3832
cgroup_file_release(struct kernfs_open_file * of)3833 static void cgroup_file_release(struct kernfs_open_file *of)
3834 {
3835 struct cftype *cft = of->kn->priv;
3836 struct cgroup_file_ctx *ctx = of->priv;
3837
3838 if (cft->release)
3839 cft->release(of);
3840 put_cgroup_ns(ctx->ns);
3841 kfree(ctx);
3842 }
3843
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3844 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3845 size_t nbytes, loff_t off)
3846 {
3847 struct cgroup_file_ctx *ctx = of->priv;
3848 struct cgroup *cgrp = of->kn->parent->priv;
3849 struct cftype *cft = of->kn->priv;
3850 struct cgroup_subsys_state *css;
3851 int ret;
3852
3853 if (!nbytes)
3854 return 0;
3855
3856 /*
3857 * If namespaces are delegation boundaries, disallow writes to
3858 * files in an non-init namespace root from inside the namespace
3859 * except for the files explicitly marked delegatable -
3860 * cgroup.procs and cgroup.subtree_control.
3861 */
3862 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3863 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3864 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3865 return -EPERM;
3866
3867 if (cft->write)
3868 return cft->write(of, buf, nbytes, off);
3869
3870 /*
3871 * kernfs guarantees that a file isn't deleted with operations in
3872 * flight, which means that the matching css is and stays alive and
3873 * doesn't need to be pinned. The RCU locking is not necessary
3874 * either. It's just for the convenience of using cgroup_css().
3875 */
3876 rcu_read_lock();
3877 css = cgroup_css(cgrp, cft->ss);
3878 rcu_read_unlock();
3879
3880 if (cft->write_u64) {
3881 unsigned long long v;
3882 ret = kstrtoull(buf, 0, &v);
3883 if (!ret)
3884 ret = cft->write_u64(css, cft, v);
3885 } else if (cft->write_s64) {
3886 long long v;
3887 ret = kstrtoll(buf, 0, &v);
3888 if (!ret)
3889 ret = cft->write_s64(css, cft, v);
3890 } else {
3891 ret = -EINVAL;
3892 }
3893
3894 return ret ?: nbytes;
3895 }
3896
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3897 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3898 {
3899 struct cftype *cft = of->kn->priv;
3900
3901 if (cft->poll)
3902 return cft->poll(of, pt);
3903
3904 return kernfs_generic_poll(of, pt);
3905 }
3906
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3907 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3908 {
3909 return seq_cft(seq)->seq_start(seq, ppos);
3910 }
3911
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3912 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3913 {
3914 return seq_cft(seq)->seq_next(seq, v, ppos);
3915 }
3916
cgroup_seqfile_stop(struct seq_file * seq,void * v)3917 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3918 {
3919 if (seq_cft(seq)->seq_stop)
3920 seq_cft(seq)->seq_stop(seq, v);
3921 }
3922
cgroup_seqfile_show(struct seq_file * m,void * arg)3923 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3924 {
3925 struct cftype *cft = seq_cft(m);
3926 struct cgroup_subsys_state *css = seq_css(m);
3927
3928 if (cft->seq_show)
3929 return cft->seq_show(m, arg);
3930
3931 if (cft->read_u64)
3932 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3933 else if (cft->read_s64)
3934 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3935 else
3936 return -EINVAL;
3937 return 0;
3938 }
3939
3940 static struct kernfs_ops cgroup_kf_single_ops = {
3941 .atomic_write_len = PAGE_SIZE,
3942 .open = cgroup_file_open,
3943 .release = cgroup_file_release,
3944 .write = cgroup_file_write,
3945 .poll = cgroup_file_poll,
3946 .seq_show = cgroup_seqfile_show,
3947 };
3948
3949 static struct kernfs_ops cgroup_kf_ops = {
3950 .atomic_write_len = PAGE_SIZE,
3951 .open = cgroup_file_open,
3952 .release = cgroup_file_release,
3953 .write = cgroup_file_write,
3954 .poll = cgroup_file_poll,
3955 .seq_start = cgroup_seqfile_start,
3956 .seq_next = cgroup_seqfile_next,
3957 .seq_stop = cgroup_seqfile_stop,
3958 .seq_show = cgroup_seqfile_show,
3959 };
3960
3961 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3962 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3963 {
3964 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3965 .ia_uid = current_fsuid(),
3966 .ia_gid = current_fsgid(), };
3967
3968 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3969 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3970 return 0;
3971
3972 return kernfs_setattr(kn, &iattr);
3973 }
3974
cgroup_file_notify_timer(struct timer_list * timer)3975 static void cgroup_file_notify_timer(struct timer_list *timer)
3976 {
3977 cgroup_file_notify(container_of(timer, struct cgroup_file,
3978 notify_timer));
3979 }
3980
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3981 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3982 struct cftype *cft)
3983 {
3984 char name[CGROUP_FILE_NAME_MAX];
3985 struct kernfs_node *kn;
3986 struct lock_class_key *key = NULL;
3987 int ret;
3988
3989 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3990 key = &cft->lockdep_key;
3991 #endif
3992 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3993 cgroup_file_mode(cft),
3994 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3995 0, cft->kf_ops, cft,
3996 NULL, key);
3997 if (IS_ERR(kn))
3998 return PTR_ERR(kn);
3999
4000 ret = cgroup_kn_set_ugid(kn);
4001 if (ret) {
4002 kernfs_remove(kn);
4003 return ret;
4004 }
4005
4006 if (cft->file_offset) {
4007 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4008
4009 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4010
4011 spin_lock_irq(&cgroup_file_kn_lock);
4012 cfile->kn = kn;
4013 spin_unlock_irq(&cgroup_file_kn_lock);
4014 }
4015
4016 return 0;
4017 }
4018
4019 /**
4020 * cgroup_addrm_files - add or remove files to a cgroup directory
4021 * @css: the target css
4022 * @cgrp: the target cgroup (usually css->cgroup)
4023 * @cfts: array of cftypes to be added
4024 * @is_add: whether to add or remove
4025 *
4026 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4027 * For removals, this function never fails.
4028 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4029 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4030 struct cgroup *cgrp, struct cftype cfts[],
4031 bool is_add)
4032 {
4033 struct cftype *cft, *cft_end = NULL;
4034 int ret = 0;
4035
4036 lockdep_assert_held(&cgroup_mutex);
4037
4038 restart:
4039 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4040 /* does cft->flags tell us to skip this file on @cgrp? */
4041 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4042 continue;
4043 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4044 continue;
4045 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4046 continue;
4047 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4048 continue;
4049 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4050 continue;
4051 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4052 continue;
4053 if (is_add) {
4054 ret = cgroup_add_file(css, cgrp, cft);
4055 if (ret) {
4056 pr_warn("%s: failed to add %s, err=%d\n",
4057 __func__, cft->name, ret);
4058 cft_end = cft;
4059 is_add = false;
4060 goto restart;
4061 }
4062 } else {
4063 cgroup_rm_file(cgrp, cft);
4064 }
4065 }
4066 return ret;
4067 }
4068
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4069 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4070 {
4071 struct cgroup_subsys *ss = cfts[0].ss;
4072 struct cgroup *root = &ss->root->cgrp;
4073 struct cgroup_subsys_state *css;
4074 int ret = 0;
4075
4076 lockdep_assert_held(&cgroup_mutex);
4077
4078 /* add/rm files for all cgroups created before */
4079 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4080 struct cgroup *cgrp = css->cgroup;
4081
4082 if (!(css->flags & CSS_VISIBLE))
4083 continue;
4084
4085 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4086 if (ret)
4087 break;
4088 }
4089
4090 if (is_add && !ret)
4091 kernfs_activate(root->kn);
4092 return ret;
4093 }
4094
cgroup_exit_cftypes(struct cftype * cfts)4095 static void cgroup_exit_cftypes(struct cftype *cfts)
4096 {
4097 struct cftype *cft;
4098
4099 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4100 /* free copy for custom atomic_write_len, see init_cftypes() */
4101 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4102 kfree(cft->kf_ops);
4103 cft->kf_ops = NULL;
4104 cft->ss = NULL;
4105
4106 /* revert flags set by cgroup core while adding @cfts */
4107 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4108 }
4109 }
4110
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4111 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4112 {
4113 struct cftype *cft;
4114
4115 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4116 struct kernfs_ops *kf_ops;
4117
4118 WARN_ON(cft->ss || cft->kf_ops);
4119
4120 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4121 continue;
4122
4123 if (cft->seq_start)
4124 kf_ops = &cgroup_kf_ops;
4125 else
4126 kf_ops = &cgroup_kf_single_ops;
4127
4128 /*
4129 * Ugh... if @cft wants a custom max_write_len, we need to
4130 * make a copy of kf_ops to set its atomic_write_len.
4131 */
4132 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4133 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4134 if (!kf_ops) {
4135 cgroup_exit_cftypes(cfts);
4136 return -ENOMEM;
4137 }
4138 kf_ops->atomic_write_len = cft->max_write_len;
4139 }
4140
4141 cft->kf_ops = kf_ops;
4142 cft->ss = ss;
4143 }
4144
4145 return 0;
4146 }
4147
cgroup_rm_cftypes_locked(struct cftype * cfts)4148 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4149 {
4150 lockdep_assert_held(&cgroup_mutex);
4151
4152 if (!cfts || !cfts[0].ss)
4153 return -ENOENT;
4154
4155 list_del(&cfts->node);
4156 cgroup_apply_cftypes(cfts, false);
4157 cgroup_exit_cftypes(cfts);
4158 return 0;
4159 }
4160
4161 /**
4162 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4163 * @cfts: zero-length name terminated array of cftypes
4164 *
4165 * Unregister @cfts. Files described by @cfts are removed from all
4166 * existing cgroups and all future cgroups won't have them either. This
4167 * function can be called anytime whether @cfts' subsys is attached or not.
4168 *
4169 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4170 * registered.
4171 */
cgroup_rm_cftypes(struct cftype * cfts)4172 int cgroup_rm_cftypes(struct cftype *cfts)
4173 {
4174 int ret;
4175
4176 mutex_lock(&cgroup_mutex);
4177 ret = cgroup_rm_cftypes_locked(cfts);
4178 mutex_unlock(&cgroup_mutex);
4179 return ret;
4180 }
4181
4182 /**
4183 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4184 * @ss: target cgroup subsystem
4185 * @cfts: zero-length name terminated array of cftypes
4186 *
4187 * Register @cfts to @ss. Files described by @cfts are created for all
4188 * existing cgroups to which @ss is attached and all future cgroups will
4189 * have them too. This function can be called anytime whether @ss is
4190 * attached or not.
4191 *
4192 * Returns 0 on successful registration, -errno on failure. Note that this
4193 * function currently returns 0 as long as @cfts registration is successful
4194 * even if some file creation attempts on existing cgroups fail.
4195 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4196 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4197 {
4198 int ret;
4199
4200 if (!cgroup_ssid_enabled(ss->id))
4201 return 0;
4202
4203 if (!cfts || cfts[0].name[0] == '\0')
4204 return 0;
4205
4206 ret = cgroup_init_cftypes(ss, cfts);
4207 if (ret)
4208 return ret;
4209
4210 mutex_lock(&cgroup_mutex);
4211
4212 list_add_tail(&cfts->node, &ss->cfts);
4213 ret = cgroup_apply_cftypes(cfts, true);
4214 if (ret)
4215 cgroup_rm_cftypes_locked(cfts);
4216
4217 mutex_unlock(&cgroup_mutex);
4218 return ret;
4219 }
4220
4221 /**
4222 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4223 * @ss: target cgroup subsystem
4224 * @cfts: zero-length name terminated array of cftypes
4225 *
4226 * Similar to cgroup_add_cftypes() but the added files are only used for
4227 * the default hierarchy.
4228 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4229 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4230 {
4231 struct cftype *cft;
4232
4233 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4234 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4235 return cgroup_add_cftypes(ss, cfts);
4236 }
4237 EXPORT_SYMBOL_GPL(cgroup_add_dfl_cftypes);
4238
4239 /**
4240 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4241 * @ss: target cgroup subsystem
4242 * @cfts: zero-length name terminated array of cftypes
4243 *
4244 * Similar to cgroup_add_cftypes() but the added files are only used for
4245 * the legacy hierarchies.
4246 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4247 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4248 {
4249 struct cftype *cft;
4250
4251 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4252 cft->flags |= __CFTYPE_NOT_ON_DFL;
4253 return cgroup_add_cftypes(ss, cfts);
4254 }
4255 EXPORT_SYMBOL_GPL(cgroup_add_legacy_cftypes);
4256
4257 /**
4258 * cgroup_file_notify - generate a file modified event for a cgroup_file
4259 * @cfile: target cgroup_file
4260 *
4261 * @cfile must have been obtained by setting cftype->file_offset.
4262 */
cgroup_file_notify(struct cgroup_file * cfile)4263 void cgroup_file_notify(struct cgroup_file *cfile)
4264 {
4265 unsigned long flags;
4266
4267 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4268 if (cfile->kn) {
4269 unsigned long last = cfile->notified_at;
4270 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4271
4272 if (time_in_range(jiffies, last, next)) {
4273 timer_reduce(&cfile->notify_timer, next);
4274 } else {
4275 kernfs_notify(cfile->kn);
4276 cfile->notified_at = jiffies;
4277 }
4278 }
4279 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4280 }
4281
4282 /**
4283 * css_next_child - find the next child of a given css
4284 * @pos: the current position (%NULL to initiate traversal)
4285 * @parent: css whose children to walk
4286 *
4287 * This function returns the next child of @parent and should be called
4288 * under either cgroup_mutex or RCU read lock. The only requirement is
4289 * that @parent and @pos are accessible. The next sibling is guaranteed to
4290 * be returned regardless of their states.
4291 *
4292 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4293 * css which finished ->css_online() is guaranteed to be visible in the
4294 * future iterations and will stay visible until the last reference is put.
4295 * A css which hasn't finished ->css_online() or already finished
4296 * ->css_offline() may show up during traversal. It's each subsystem's
4297 * responsibility to synchronize against on/offlining.
4298 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4299 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4300 struct cgroup_subsys_state *parent)
4301 {
4302 struct cgroup_subsys_state *next;
4303
4304 cgroup_assert_mutex_or_rcu_locked();
4305
4306 /*
4307 * @pos could already have been unlinked from the sibling list.
4308 * Once a cgroup is removed, its ->sibling.next is no longer
4309 * updated when its next sibling changes. CSS_RELEASED is set when
4310 * @pos is taken off list, at which time its next pointer is valid,
4311 * and, as releases are serialized, the one pointed to by the next
4312 * pointer is guaranteed to not have started release yet. This
4313 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4314 * critical section, the one pointed to by its next pointer is
4315 * guaranteed to not have finished its RCU grace period even if we
4316 * have dropped rcu_read_lock() inbetween iterations.
4317 *
4318 * If @pos has CSS_RELEASED set, its next pointer can't be
4319 * dereferenced; however, as each css is given a monotonically
4320 * increasing unique serial number and always appended to the
4321 * sibling list, the next one can be found by walking the parent's
4322 * children until the first css with higher serial number than
4323 * @pos's. While this path can be slower, it happens iff iteration
4324 * races against release and the race window is very small.
4325 */
4326 if (!pos) {
4327 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4328 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4329 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4330 } else {
4331 list_for_each_entry_rcu(next, &parent->children, sibling,
4332 lockdep_is_held(&cgroup_mutex))
4333 if (next->serial_nr > pos->serial_nr)
4334 break;
4335 }
4336
4337 /*
4338 * @next, if not pointing to the head, can be dereferenced and is
4339 * the next sibling.
4340 */
4341 if (&next->sibling != &parent->children)
4342 return next;
4343 return NULL;
4344 }
4345 EXPORT_SYMBOL_GPL(css_next_child);
4346
4347 /**
4348 * css_next_descendant_pre - find the next descendant for pre-order walk
4349 * @pos: the current position (%NULL to initiate traversal)
4350 * @root: css whose descendants to walk
4351 *
4352 * To be used by css_for_each_descendant_pre(). Find the next descendant
4353 * to visit for pre-order traversal of @root's descendants. @root is
4354 * included in the iteration and the first node to be visited.
4355 *
4356 * While this function requires cgroup_mutex or RCU read locking, it
4357 * doesn't require the whole traversal to be contained in a single critical
4358 * section. This function will return the correct next descendant as long
4359 * as both @pos and @root are accessible and @pos is a descendant of @root.
4360 *
4361 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4362 * css which finished ->css_online() is guaranteed to be visible in the
4363 * future iterations and will stay visible until the last reference is put.
4364 * A css which hasn't finished ->css_online() or already finished
4365 * ->css_offline() may show up during traversal. It's each subsystem's
4366 * responsibility to synchronize against on/offlining.
4367 */
4368 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4369 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4370 struct cgroup_subsys_state *root)
4371 {
4372 struct cgroup_subsys_state *next;
4373
4374 cgroup_assert_mutex_or_rcu_locked();
4375
4376 /* if first iteration, visit @root */
4377 if (!pos)
4378 return root;
4379
4380 /* visit the first child if exists */
4381 next = css_next_child(NULL, pos);
4382 if (next)
4383 return next;
4384
4385 /* no child, visit my or the closest ancestor's next sibling */
4386 while (pos != root) {
4387 next = css_next_child(pos, pos->parent);
4388 if (next)
4389 return next;
4390 pos = pos->parent;
4391 }
4392
4393 return NULL;
4394 }
4395 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4396
4397 /**
4398 * css_rightmost_descendant - return the rightmost descendant of a css
4399 * @pos: css of interest
4400 *
4401 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4402 * is returned. This can be used during pre-order traversal to skip
4403 * subtree of @pos.
4404 *
4405 * While this function requires cgroup_mutex or RCU read locking, it
4406 * doesn't require the whole traversal to be contained in a single critical
4407 * section. This function will return the correct rightmost descendant as
4408 * long as @pos is accessible.
4409 */
4410 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4411 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4412 {
4413 struct cgroup_subsys_state *last, *tmp;
4414
4415 cgroup_assert_mutex_or_rcu_locked();
4416
4417 do {
4418 last = pos;
4419 /* ->prev isn't RCU safe, walk ->next till the end */
4420 pos = NULL;
4421 css_for_each_child(tmp, last)
4422 pos = tmp;
4423 } while (pos);
4424
4425 return last;
4426 }
4427
4428 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4429 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4430 {
4431 struct cgroup_subsys_state *last;
4432
4433 do {
4434 last = pos;
4435 pos = css_next_child(NULL, pos);
4436 } while (pos);
4437
4438 return last;
4439 }
4440
4441 /**
4442 * css_next_descendant_post - find the next descendant for post-order walk
4443 * @pos: the current position (%NULL to initiate traversal)
4444 * @root: css whose descendants to walk
4445 *
4446 * To be used by css_for_each_descendant_post(). Find the next descendant
4447 * to visit for post-order traversal of @root's descendants. @root is
4448 * included in the iteration and the last node to be visited.
4449 *
4450 * While this function requires cgroup_mutex or RCU read locking, it
4451 * doesn't require the whole traversal to be contained in a single critical
4452 * section. This function will return the correct next descendant as long
4453 * as both @pos and @cgroup are accessible and @pos is a descendant of
4454 * @cgroup.
4455 *
4456 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4457 * css which finished ->css_online() is guaranteed to be visible in the
4458 * future iterations and will stay visible until the last reference is put.
4459 * A css which hasn't finished ->css_online() or already finished
4460 * ->css_offline() may show up during traversal. It's each subsystem's
4461 * responsibility to synchronize against on/offlining.
4462 */
4463 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4464 css_next_descendant_post(struct cgroup_subsys_state *pos,
4465 struct cgroup_subsys_state *root)
4466 {
4467 struct cgroup_subsys_state *next;
4468
4469 cgroup_assert_mutex_or_rcu_locked();
4470
4471 /* if first iteration, visit leftmost descendant which may be @root */
4472 if (!pos)
4473 return css_leftmost_descendant(root);
4474
4475 /* if we visited @root, we're done */
4476 if (pos == root)
4477 return NULL;
4478
4479 /* if there's an unvisited sibling, visit its leftmost descendant */
4480 next = css_next_child(pos, pos->parent);
4481 if (next)
4482 return css_leftmost_descendant(next);
4483
4484 /* no sibling left, visit parent */
4485 return pos->parent;
4486 }
4487
4488 /**
4489 * css_has_online_children - does a css have online children
4490 * @css: the target css
4491 *
4492 * Returns %true if @css has any online children; otherwise, %false. This
4493 * function can be called from any context but the caller is responsible
4494 * for synchronizing against on/offlining as necessary.
4495 */
css_has_online_children(struct cgroup_subsys_state * css)4496 bool css_has_online_children(struct cgroup_subsys_state *css)
4497 {
4498 struct cgroup_subsys_state *child;
4499 bool ret = false;
4500
4501 rcu_read_lock();
4502 css_for_each_child(child, css) {
4503 if (child->flags & CSS_ONLINE) {
4504 ret = true;
4505 break;
4506 }
4507 }
4508 rcu_read_unlock();
4509 return ret;
4510 }
4511
css_task_iter_next_css_set(struct css_task_iter * it)4512 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4513 {
4514 struct list_head *l;
4515 struct cgrp_cset_link *link;
4516 struct css_set *cset;
4517
4518 lockdep_assert_held(&css_set_lock);
4519
4520 /* find the next threaded cset */
4521 if (it->tcset_pos) {
4522 l = it->tcset_pos->next;
4523
4524 if (l != it->tcset_head) {
4525 it->tcset_pos = l;
4526 return container_of(l, struct css_set,
4527 threaded_csets_node);
4528 }
4529
4530 it->tcset_pos = NULL;
4531 }
4532
4533 /* find the next cset */
4534 l = it->cset_pos;
4535 l = l->next;
4536 if (l == it->cset_head) {
4537 it->cset_pos = NULL;
4538 return NULL;
4539 }
4540
4541 if (it->ss) {
4542 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4543 } else {
4544 link = list_entry(l, struct cgrp_cset_link, cset_link);
4545 cset = link->cset;
4546 }
4547
4548 it->cset_pos = l;
4549
4550 /* initialize threaded css_set walking */
4551 if (it->flags & CSS_TASK_ITER_THREADED) {
4552 if (it->cur_dcset)
4553 put_css_set_locked(it->cur_dcset);
4554 it->cur_dcset = cset;
4555 get_css_set(cset);
4556
4557 it->tcset_head = &cset->threaded_csets;
4558 it->tcset_pos = &cset->threaded_csets;
4559 }
4560
4561 return cset;
4562 }
4563
4564 /**
4565 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4566 * @it: the iterator to advance
4567 *
4568 * Advance @it to the next css_set to walk.
4569 */
css_task_iter_advance_css_set(struct css_task_iter * it)4570 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4571 {
4572 struct css_set *cset;
4573
4574 lockdep_assert_held(&css_set_lock);
4575
4576 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4577 while ((cset = css_task_iter_next_css_set(it))) {
4578 if (!list_empty(&cset->tasks)) {
4579 it->cur_tasks_head = &cset->tasks;
4580 break;
4581 } else if (!list_empty(&cset->mg_tasks)) {
4582 it->cur_tasks_head = &cset->mg_tasks;
4583 break;
4584 } else if (!list_empty(&cset->dying_tasks)) {
4585 it->cur_tasks_head = &cset->dying_tasks;
4586 break;
4587 }
4588 }
4589 if (!cset) {
4590 it->task_pos = NULL;
4591 return;
4592 }
4593 it->task_pos = it->cur_tasks_head->next;
4594
4595 /*
4596 * We don't keep css_sets locked across iteration steps and thus
4597 * need to take steps to ensure that iteration can be resumed after
4598 * the lock is re-acquired. Iteration is performed at two levels -
4599 * css_sets and tasks in them.
4600 *
4601 * Once created, a css_set never leaves its cgroup lists, so a
4602 * pinned css_set is guaranteed to stay put and we can resume
4603 * iteration afterwards.
4604 *
4605 * Tasks may leave @cset across iteration steps. This is resolved
4606 * by registering each iterator with the css_set currently being
4607 * walked and making css_set_move_task() advance iterators whose
4608 * next task is leaving.
4609 */
4610 if (it->cur_cset) {
4611 list_del(&it->iters_node);
4612 put_css_set_locked(it->cur_cset);
4613 }
4614 get_css_set(cset);
4615 it->cur_cset = cset;
4616 list_add(&it->iters_node, &cset->task_iters);
4617 }
4618
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4619 static void css_task_iter_skip(struct css_task_iter *it,
4620 struct task_struct *task)
4621 {
4622 lockdep_assert_held(&css_set_lock);
4623
4624 if (it->task_pos == &task->cg_list) {
4625 it->task_pos = it->task_pos->next;
4626 it->flags |= CSS_TASK_ITER_SKIPPED;
4627 }
4628 }
4629
css_task_iter_advance(struct css_task_iter * it)4630 static void css_task_iter_advance(struct css_task_iter *it)
4631 {
4632 struct task_struct *task;
4633
4634 lockdep_assert_held(&css_set_lock);
4635 repeat:
4636 if (it->task_pos) {
4637 /*
4638 * Advance iterator to find next entry. We go through cset
4639 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4640 * the next cset.
4641 */
4642 if (it->flags & CSS_TASK_ITER_SKIPPED)
4643 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4644 else
4645 it->task_pos = it->task_pos->next;
4646
4647 if (it->task_pos == &it->cur_cset->tasks) {
4648 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4649 it->task_pos = it->cur_tasks_head->next;
4650 }
4651 if (it->task_pos == &it->cur_cset->mg_tasks) {
4652 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4653 it->task_pos = it->cur_tasks_head->next;
4654 }
4655 if (it->task_pos == &it->cur_cset->dying_tasks)
4656 css_task_iter_advance_css_set(it);
4657 } else {
4658 /* called from start, proceed to the first cset */
4659 css_task_iter_advance_css_set(it);
4660 }
4661
4662 if (!it->task_pos)
4663 return;
4664
4665 task = list_entry(it->task_pos, struct task_struct, cg_list);
4666
4667 if (it->flags & CSS_TASK_ITER_PROCS) {
4668 /* if PROCS, skip over tasks which aren't group leaders */
4669 if (!thread_group_leader(task))
4670 goto repeat;
4671
4672 /* and dying leaders w/o live member threads */
4673 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4674 !atomic_read(&task->signal->live))
4675 goto repeat;
4676 } else {
4677 /* skip all dying ones */
4678 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4679 goto repeat;
4680 }
4681 }
4682
4683 /**
4684 * css_task_iter_start - initiate task iteration
4685 * @css: the css to walk tasks of
4686 * @flags: CSS_TASK_ITER_* flags
4687 * @it: the task iterator to use
4688 *
4689 * Initiate iteration through the tasks of @css. The caller can call
4690 * css_task_iter_next() to walk through the tasks until the function
4691 * returns NULL. On completion of iteration, css_task_iter_end() must be
4692 * called.
4693 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4694 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4695 struct css_task_iter *it)
4696 {
4697 memset(it, 0, sizeof(*it));
4698
4699 spin_lock_irq(&css_set_lock);
4700
4701 it->ss = css->ss;
4702 it->flags = flags;
4703
4704 if (it->ss)
4705 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4706 else
4707 it->cset_pos = &css->cgroup->cset_links;
4708
4709 it->cset_head = it->cset_pos;
4710
4711 css_task_iter_advance(it);
4712
4713 spin_unlock_irq(&css_set_lock);
4714 }
4715
4716 /**
4717 * css_task_iter_next - return the next task for the iterator
4718 * @it: the task iterator being iterated
4719 *
4720 * The "next" function for task iteration. @it should have been
4721 * initialized via css_task_iter_start(). Returns NULL when the iteration
4722 * reaches the end.
4723 */
css_task_iter_next(struct css_task_iter * it)4724 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4725 {
4726 if (it->cur_task) {
4727 put_task_struct(it->cur_task);
4728 it->cur_task = NULL;
4729 }
4730
4731 spin_lock_irq(&css_set_lock);
4732
4733 /* @it may be half-advanced by skips, finish advancing */
4734 if (it->flags & CSS_TASK_ITER_SKIPPED)
4735 css_task_iter_advance(it);
4736
4737 if (it->task_pos) {
4738 it->cur_task = list_entry(it->task_pos, struct task_struct,
4739 cg_list);
4740 get_task_struct(it->cur_task);
4741 css_task_iter_advance(it);
4742 }
4743
4744 spin_unlock_irq(&css_set_lock);
4745
4746 return it->cur_task;
4747 }
4748
4749 /**
4750 * css_task_iter_end - finish task iteration
4751 * @it: the task iterator to finish
4752 *
4753 * Finish task iteration started by css_task_iter_start().
4754 */
css_task_iter_end(struct css_task_iter * it)4755 void css_task_iter_end(struct css_task_iter *it)
4756 {
4757 if (it->cur_cset) {
4758 spin_lock_irq(&css_set_lock);
4759 list_del(&it->iters_node);
4760 put_css_set_locked(it->cur_cset);
4761 spin_unlock_irq(&css_set_lock);
4762 }
4763
4764 if (it->cur_dcset)
4765 put_css_set(it->cur_dcset);
4766
4767 if (it->cur_task)
4768 put_task_struct(it->cur_task);
4769 }
4770
cgroup_procs_release(struct kernfs_open_file * of)4771 static void cgroup_procs_release(struct kernfs_open_file *of)
4772 {
4773 struct cgroup_file_ctx *ctx = of->priv;
4774
4775 if (ctx->procs.started)
4776 css_task_iter_end(&ctx->procs.iter);
4777 }
4778
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4779 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4780 {
4781 struct kernfs_open_file *of = s->private;
4782 struct cgroup_file_ctx *ctx = of->priv;
4783
4784 if (pos)
4785 (*pos)++;
4786
4787 return css_task_iter_next(&ctx->procs.iter);
4788 }
4789
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4790 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4791 unsigned int iter_flags)
4792 {
4793 struct kernfs_open_file *of = s->private;
4794 struct cgroup *cgrp = seq_css(s)->cgroup;
4795 struct cgroup_file_ctx *ctx = of->priv;
4796 struct css_task_iter *it = &ctx->procs.iter;
4797
4798 /*
4799 * When a seq_file is seeked, it's always traversed sequentially
4800 * from position 0, so we can simply keep iterating on !0 *pos.
4801 */
4802 if (!ctx->procs.started) {
4803 if (WARN_ON_ONCE((*pos)))
4804 return ERR_PTR(-EINVAL);
4805 css_task_iter_start(&cgrp->self, iter_flags, it);
4806 ctx->procs.started = true;
4807 } else if (!(*pos)) {
4808 css_task_iter_end(it);
4809 css_task_iter_start(&cgrp->self, iter_flags, it);
4810 } else
4811 return it->cur_task;
4812
4813 return cgroup_procs_next(s, NULL, NULL);
4814 }
4815
cgroup_procs_start(struct seq_file * s,loff_t * pos)4816 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4817 {
4818 struct cgroup *cgrp = seq_css(s)->cgroup;
4819
4820 /*
4821 * All processes of a threaded subtree belong to the domain cgroup
4822 * of the subtree. Only threads can be distributed across the
4823 * subtree. Reject reads on cgroup.procs in the subtree proper.
4824 * They're always empty anyway.
4825 */
4826 if (cgroup_is_threaded(cgrp))
4827 return ERR_PTR(-EOPNOTSUPP);
4828
4829 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4830 CSS_TASK_ITER_THREADED);
4831 }
4832
cgroup_procs_show(struct seq_file * s,void * v)4833 static int cgroup_procs_show(struct seq_file *s, void *v)
4834 {
4835 seq_printf(s, "%d\n", task_pid_vnr(v));
4836 return 0;
4837 }
4838
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4839 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4840 {
4841 int ret;
4842 struct inode *inode;
4843
4844 lockdep_assert_held(&cgroup_mutex);
4845
4846 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4847 if (!inode)
4848 return -ENOMEM;
4849
4850 ret = inode_permission(inode, MAY_WRITE);
4851 iput(inode);
4852 return ret;
4853 }
4854
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4855 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4856 struct cgroup *dst_cgrp,
4857 struct super_block *sb,
4858 struct cgroup_namespace *ns)
4859 {
4860 struct cgroup *com_cgrp = src_cgrp;
4861 int ret;
4862
4863 lockdep_assert_held(&cgroup_mutex);
4864
4865 /* find the common ancestor */
4866 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4867 com_cgrp = cgroup_parent(com_cgrp);
4868
4869 /* %current should be authorized to migrate to the common ancestor */
4870 ret = cgroup_may_write(com_cgrp, sb);
4871 if (ret)
4872 return ret;
4873
4874 /*
4875 * If namespaces are delegation boundaries, %current must be able
4876 * to see both source and destination cgroups from its namespace.
4877 */
4878 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4879 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4880 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4881 return -ENOENT;
4882
4883 return 0;
4884 }
4885
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4886 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4887 struct cgroup *dst_cgrp,
4888 struct super_block *sb, bool threadgroup,
4889 struct cgroup_namespace *ns)
4890 {
4891 int ret = 0;
4892
4893 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4894 if (ret)
4895 return ret;
4896
4897 ret = cgroup_migrate_vet_dst(dst_cgrp);
4898 if (ret)
4899 return ret;
4900
4901 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4902 ret = -EOPNOTSUPP;
4903
4904 return ret;
4905 }
4906
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4907 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4908 char *buf, size_t nbytes, loff_t off)
4909 {
4910 struct cgroup_file_ctx *ctx = of->priv;
4911 struct cgroup *src_cgrp, *dst_cgrp;
4912 struct task_struct *task;
4913 const struct cred *saved_cred;
4914 ssize_t ret;
4915 bool threadgroup_locked;
4916
4917 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4918 if (!dst_cgrp)
4919 return -ENODEV;
4920
4921 task = cgroup_procs_write_start(buf, true, &threadgroup_locked, dst_cgrp);
4922 ret = PTR_ERR_OR_ZERO(task);
4923 if (ret)
4924 goto out_unlock;
4925
4926 /* find the source cgroup */
4927 spin_lock_irq(&css_set_lock);
4928 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4929 spin_unlock_irq(&css_set_lock);
4930
4931 /*
4932 * Process and thread migrations follow same delegation rule. Check
4933 * permissions using the credentials from file open to protect against
4934 * inherited fd attacks.
4935 */
4936 saved_cred = override_creds(of->file->f_cred);
4937 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4938 of->file->f_path.dentry->d_sb, true,
4939 ctx->ns);
4940 revert_creds(saved_cred);
4941 if (ret)
4942 goto out_finish;
4943
4944 ret = cgroup_attach_task(dst_cgrp, task, true);
4945
4946 out_finish:
4947 cgroup_procs_write_finish(task, threadgroup_locked);
4948 out_unlock:
4949 cgroup_kn_unlock(of->kn);
4950
4951 return ret ?: nbytes;
4952 }
4953
cgroup_threads_start(struct seq_file * s,loff_t * pos)4954 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4955 {
4956 return __cgroup_procs_start(s, pos, 0);
4957 }
4958
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4959 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4961 {
4962 struct cgroup_file_ctx *ctx = of->priv;
4963 struct cgroup *src_cgrp, *dst_cgrp;
4964 struct task_struct *task;
4965 const struct cred *saved_cred;
4966 ssize_t ret;
4967 bool threadgroup_locked;
4968
4969 buf = strstrip(buf);
4970
4971 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4972 if (!dst_cgrp)
4973 return -ENODEV;
4974
4975 task = cgroup_procs_write_start(buf, false, &threadgroup_locked, dst_cgrp);
4976 ret = PTR_ERR_OR_ZERO(task);
4977 if (ret)
4978 goto out_unlock;
4979
4980 /* find the source cgroup */
4981 spin_lock_irq(&css_set_lock);
4982 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4983 spin_unlock_irq(&css_set_lock);
4984
4985 /*
4986 * Process and thread migrations follow same delegation rule. Check
4987 * permissions using the credentials from file open to protect against
4988 * inherited fd attacks.
4989 */
4990 saved_cred = override_creds(of->file->f_cred);
4991 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4992 of->file->f_path.dentry->d_sb, false,
4993 ctx->ns);
4994 revert_creds(saved_cred);
4995 if (ret)
4996 goto out_finish;
4997
4998 ret = cgroup_attach_task(dst_cgrp, task, false);
4999
5000 out_finish:
5001 cgroup_procs_write_finish(task, threadgroup_locked);
5002 out_unlock:
5003 cgroup_kn_unlock(of->kn);
5004
5005 return ret ?: nbytes;
5006 }
5007
5008 /* cgroup core interface files for the default hierarchy */
5009 static struct cftype cgroup_base_files[] = {
5010 {
5011 .name = "cgroup.type",
5012 .flags = CFTYPE_NOT_ON_ROOT,
5013 .seq_show = cgroup_type_show,
5014 .write = cgroup_type_write,
5015 },
5016 {
5017 .name = "cgroup.procs",
5018 .flags = CFTYPE_NS_DELEGATABLE,
5019 .file_offset = offsetof(struct cgroup, procs_file),
5020 .release = cgroup_procs_release,
5021 .seq_start = cgroup_procs_start,
5022 .seq_next = cgroup_procs_next,
5023 .seq_show = cgroup_procs_show,
5024 .write = cgroup_procs_write,
5025 },
5026 {
5027 .name = "cgroup.threads",
5028 .flags = CFTYPE_NS_DELEGATABLE,
5029 .release = cgroup_procs_release,
5030 .seq_start = cgroup_threads_start,
5031 .seq_next = cgroup_procs_next,
5032 .seq_show = cgroup_procs_show,
5033 .write = cgroup_threads_write,
5034 },
5035 {
5036 .name = "cgroup.controllers",
5037 .seq_show = cgroup_controllers_show,
5038 },
5039 {
5040 .name = "cgroup.subtree_control",
5041 .flags = CFTYPE_NS_DELEGATABLE,
5042 .seq_show = cgroup_subtree_control_show,
5043 .write = cgroup_subtree_control_write,
5044 },
5045 {
5046 .name = "cgroup.events",
5047 .flags = CFTYPE_NOT_ON_ROOT,
5048 .file_offset = offsetof(struct cgroup, events_file),
5049 .seq_show = cgroup_events_show,
5050 },
5051 {
5052 .name = "cgroup.max.descendants",
5053 .seq_show = cgroup_max_descendants_show,
5054 .write = cgroup_max_descendants_write,
5055 },
5056 {
5057 .name = "cgroup.max.depth",
5058 .seq_show = cgroup_max_depth_show,
5059 .write = cgroup_max_depth_write,
5060 },
5061 {
5062 .name = "cgroup.stat",
5063 .seq_show = cgroup_stat_show,
5064 },
5065 {
5066 .name = "cgroup.freeze",
5067 .flags = CFTYPE_NOT_ON_ROOT,
5068 .seq_show = cgroup_freeze_show,
5069 .write = cgroup_freeze_write,
5070 },
5071 {
5072 .name = "cpu.stat",
5073 .seq_show = cpu_stat_show,
5074 },
5075 #ifdef CONFIG_PSI
5076 {
5077 .name = "io.pressure",
5078 .flags = CFTYPE_PRESSURE,
5079 .seq_show = cgroup_io_pressure_show,
5080 .write = cgroup_io_pressure_write,
5081 .poll = cgroup_pressure_poll,
5082 .release = cgroup_pressure_release,
5083 },
5084 {
5085 .name = "memory.pressure",
5086 .flags = CFTYPE_PRESSURE,
5087 .seq_show = cgroup_memory_pressure_show,
5088 .write = cgroup_memory_pressure_write,
5089 .poll = cgroup_pressure_poll,
5090 .release = cgroup_pressure_release,
5091 },
5092 {
5093 .name = "cpu.pressure",
5094 .flags = CFTYPE_PRESSURE,
5095 .seq_show = cgroup_cpu_pressure_show,
5096 .write = cgroup_cpu_pressure_write,
5097 .poll = cgroup_pressure_poll,
5098 .release = cgroup_pressure_release,
5099 },
5100 #endif /* CONFIG_PSI */
5101 { } /* terminate */
5102 };
5103
5104 /*
5105 * css destruction is four-stage process.
5106 *
5107 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5108 * Implemented in kill_css().
5109 *
5110 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5111 * and thus css_tryget_online() is guaranteed to fail, the css can be
5112 * offlined by invoking offline_css(). After offlining, the base ref is
5113 * put. Implemented in css_killed_work_fn().
5114 *
5115 * 3. When the percpu_ref reaches zero, the only possible remaining
5116 * accessors are inside RCU read sections. css_release() schedules the
5117 * RCU callback.
5118 *
5119 * 4. After the grace period, the css can be freed. Implemented in
5120 * css_free_work_fn().
5121 *
5122 * It is actually hairier because both step 2 and 4 require process context
5123 * and thus involve punting to css->destroy_work adding two additional
5124 * steps to the already complex sequence.
5125 */
css_free_rwork_fn(struct work_struct * work)5126 static void css_free_rwork_fn(struct work_struct *work)
5127 {
5128 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5129 struct cgroup_subsys_state, destroy_rwork);
5130 struct cgroup_subsys *ss = css->ss;
5131 struct cgroup *cgrp = css->cgroup;
5132
5133 percpu_ref_exit(&css->refcnt);
5134
5135 if (ss) {
5136 /* css free path */
5137 struct cgroup_subsys_state *parent = css->parent;
5138 int id = css->id;
5139
5140 ss->css_free(css);
5141 cgroup_idr_remove(&ss->css_idr, id);
5142 cgroup_put(cgrp);
5143
5144 if (parent)
5145 css_put(parent);
5146 } else {
5147 /* cgroup free path */
5148 atomic_dec(&cgrp->root->nr_cgrps);
5149 cgroup1_pidlist_destroy_all(cgrp);
5150 cancel_work_sync(&cgrp->release_agent_work);
5151
5152 if (cgroup_parent(cgrp)) {
5153 /*
5154 * We get a ref to the parent, and put the ref when
5155 * this cgroup is being freed, so it's guaranteed
5156 * that the parent won't be destroyed before its
5157 * children.
5158 */
5159 cgroup_put(cgroup_parent(cgrp));
5160 kernfs_put(cgrp->kn);
5161 psi_cgroup_free(cgrp);
5162 if (cgroup_on_dfl(cgrp))
5163 cgroup_rstat_exit(cgrp);
5164 kfree(cgrp);
5165 } else {
5166 /*
5167 * This is root cgroup's refcnt reaching zero,
5168 * which indicates that the root should be
5169 * released.
5170 */
5171 cgroup_destroy_root(cgrp->root);
5172 }
5173 }
5174 }
5175
css_release_work_fn(struct work_struct * work)5176 static void css_release_work_fn(struct work_struct *work)
5177 {
5178 struct cgroup_subsys_state *css =
5179 container_of(work, struct cgroup_subsys_state, destroy_work);
5180 struct cgroup_subsys *ss = css->ss;
5181 struct cgroup *cgrp = css->cgroup;
5182
5183 mutex_lock(&cgroup_mutex);
5184
5185 css->flags |= CSS_RELEASED;
5186 list_del_rcu(&css->sibling);
5187
5188 if (ss) {
5189 /* css release path */
5190 if (!list_empty(&css->rstat_css_node)) {
5191 cgroup_rstat_flush(cgrp);
5192 list_del_rcu(&css->rstat_css_node);
5193 }
5194
5195 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5196 if (ss->css_released)
5197 ss->css_released(css);
5198 } else {
5199 struct cgroup *tcgrp;
5200
5201 /* cgroup release path */
5202 TRACE_CGROUP_PATH(release, cgrp);
5203
5204 if (cgroup_on_dfl(cgrp))
5205 cgroup_rstat_flush(cgrp);
5206
5207 spin_lock_irq(&css_set_lock);
5208 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5209 tcgrp = cgroup_parent(tcgrp))
5210 tcgrp->nr_dying_descendants--;
5211 spin_unlock_irq(&css_set_lock);
5212
5213 /*
5214 * There are two control paths which try to determine
5215 * cgroup from dentry without going through kernfs -
5216 * cgroupstats_build() and css_tryget_online_from_dir().
5217 * Those are supported by RCU protecting clearing of
5218 * cgrp->kn->priv backpointer.
5219 */
5220 if (cgrp->kn)
5221 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5222 NULL);
5223 }
5224
5225 mutex_unlock(&cgroup_mutex);
5226
5227 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5228 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5229 }
5230
css_release(struct percpu_ref * ref)5231 static void css_release(struct percpu_ref *ref)
5232 {
5233 struct cgroup_subsys_state *css =
5234 container_of(ref, struct cgroup_subsys_state, refcnt);
5235
5236 INIT_WORK(&css->destroy_work, css_release_work_fn);
5237 queue_work(cgroup_destroy_wq, &css->destroy_work);
5238 }
5239
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5240 static void init_and_link_css(struct cgroup_subsys_state *css,
5241 struct cgroup_subsys *ss, struct cgroup *cgrp)
5242 {
5243 lockdep_assert_held(&cgroup_mutex);
5244
5245 cgroup_get_live(cgrp);
5246
5247 memset(css, 0, sizeof(*css));
5248 css->cgroup = cgrp;
5249 css->ss = ss;
5250 css->id = -1;
5251 INIT_LIST_HEAD(&css->sibling);
5252 INIT_LIST_HEAD(&css->children);
5253 INIT_LIST_HEAD(&css->rstat_css_node);
5254 css->serial_nr = css_serial_nr_next++;
5255 atomic_set(&css->online_cnt, 0);
5256
5257 if (cgroup_parent(cgrp)) {
5258 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5259 css_get(css->parent);
5260 }
5261
5262 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5263 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5264
5265 BUG_ON(cgroup_css(cgrp, ss));
5266 }
5267
5268 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5269 static int online_css(struct cgroup_subsys_state *css)
5270 {
5271 struct cgroup_subsys *ss = css->ss;
5272 int ret = 0;
5273
5274 lockdep_assert_held(&cgroup_mutex);
5275
5276 if (ss->css_online)
5277 ret = ss->css_online(css);
5278 if (!ret) {
5279 css->flags |= CSS_ONLINE;
5280 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5281
5282 atomic_inc(&css->online_cnt);
5283 if (css->parent)
5284 atomic_inc(&css->parent->online_cnt);
5285 }
5286 return ret;
5287 }
5288
5289 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5290 static void offline_css(struct cgroup_subsys_state *css)
5291 {
5292 struct cgroup_subsys *ss = css->ss;
5293
5294 lockdep_assert_held(&cgroup_mutex);
5295
5296 if (!(css->flags & CSS_ONLINE))
5297 return;
5298
5299 if (ss->css_offline)
5300 ss->css_offline(css);
5301
5302 css->flags &= ~CSS_ONLINE;
5303 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5304
5305 wake_up_all(&css->cgroup->offline_waitq);
5306 }
5307
5308 /**
5309 * css_create - create a cgroup_subsys_state
5310 * @cgrp: the cgroup new css will be associated with
5311 * @ss: the subsys of new css
5312 *
5313 * Create a new css associated with @cgrp - @ss pair. On success, the new
5314 * css is online and installed in @cgrp. This function doesn't create the
5315 * interface files. Returns 0 on success, -errno on failure.
5316 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5317 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5318 struct cgroup_subsys *ss)
5319 {
5320 struct cgroup *parent = cgroup_parent(cgrp);
5321 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5322 struct cgroup_subsys_state *css;
5323 int err;
5324
5325 lockdep_assert_held(&cgroup_mutex);
5326
5327 css = ss->css_alloc(parent_css);
5328 if (!css)
5329 css = ERR_PTR(-ENOMEM);
5330 if (IS_ERR(css))
5331 return css;
5332
5333 init_and_link_css(css, ss, cgrp);
5334
5335 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5336 if (err)
5337 goto err_free_css;
5338
5339 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5340 if (err < 0)
5341 goto err_free_css;
5342 css->id = err;
5343
5344 /* @css is ready to be brought online now, make it visible */
5345 list_add_tail_rcu(&css->sibling, &parent_css->children);
5346 cgroup_idr_replace(&ss->css_idr, css, css->id);
5347
5348 err = online_css(css);
5349 if (err)
5350 goto err_list_del;
5351
5352 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5353 cgroup_parent(parent)) {
5354 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5355 current->comm, current->pid, ss->name);
5356 if (!strcmp(ss->name, "memory"))
5357 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5358 ss->warned_broken_hierarchy = true;
5359 }
5360
5361 return css;
5362
5363 err_list_del:
5364 list_del_rcu(&css->sibling);
5365 err_free_css:
5366 list_del_rcu(&css->rstat_css_node);
5367 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5368 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5369 return ERR_PTR(err);
5370 }
5371
5372 /*
5373 * The returned cgroup is fully initialized including its control mask, but
5374 * it isn't associated with its kernfs_node and doesn't have the control
5375 * mask applied.
5376 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5377 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5378 umode_t mode)
5379 {
5380 struct cgroup_root *root = parent->root;
5381 struct cgroup *cgrp, *tcgrp;
5382 struct kernfs_node *kn;
5383 int level = parent->level + 1;
5384 int ret;
5385
5386 /* allocate the cgroup and its ID, 0 is reserved for the root */
5387 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5388 GFP_KERNEL);
5389 if (!cgrp)
5390 return ERR_PTR(-ENOMEM);
5391
5392 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5393 if (ret)
5394 goto out_free_cgrp;
5395
5396 if (cgroup_on_dfl(parent)) {
5397 ret = cgroup_rstat_init(cgrp);
5398 if (ret)
5399 goto out_cancel_ref;
5400 }
5401
5402 /* create the directory */
5403 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5404 if (IS_ERR(kn)) {
5405 ret = PTR_ERR(kn);
5406 goto out_stat_exit;
5407 }
5408 cgrp->kn = kn;
5409
5410 init_cgroup_housekeeping(cgrp);
5411
5412 cgrp->self.parent = &parent->self;
5413 cgrp->root = root;
5414 cgrp->level = level;
5415
5416 ret = psi_cgroup_alloc(cgrp);
5417 if (ret)
5418 goto out_kernfs_remove;
5419
5420 ret = cgroup_bpf_inherit(cgrp);
5421 if (ret)
5422 goto out_psi_free;
5423
5424 /*
5425 * New cgroup inherits effective freeze counter, and
5426 * if the parent has to be frozen, the child has too.
5427 */
5428 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5429 if (cgrp->freezer.e_freeze) {
5430 /*
5431 * Set the CGRP_FREEZE flag, so when a process will be
5432 * attached to the child cgroup, it will become frozen.
5433 * At this point the new cgroup is unpopulated, so we can
5434 * consider it frozen immediately.
5435 */
5436 set_bit(CGRP_FREEZE, &cgrp->flags);
5437 set_bit(CGRP_FROZEN, &cgrp->flags);
5438 }
5439
5440 spin_lock_irq(&css_set_lock);
5441 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5442 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5443
5444 if (tcgrp != cgrp) {
5445 tcgrp->nr_descendants++;
5446
5447 /*
5448 * If the new cgroup is frozen, all ancestor cgroups
5449 * get a new frozen descendant, but their state can't
5450 * change because of this.
5451 */
5452 if (cgrp->freezer.e_freeze)
5453 tcgrp->freezer.nr_frozen_descendants++;
5454 }
5455 }
5456 spin_unlock_irq(&css_set_lock);
5457
5458 if (notify_on_release(parent))
5459 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5460
5461 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5462 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5463
5464 cgrp->self.serial_nr = css_serial_nr_next++;
5465
5466 /* allocation complete, commit to creation */
5467 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5468 atomic_inc(&root->nr_cgrps);
5469 cgroup_get_live(parent);
5470
5471 /*
5472 * On the default hierarchy, a child doesn't automatically inherit
5473 * subtree_control from the parent. Each is configured manually.
5474 */
5475 if (!cgroup_on_dfl(cgrp))
5476 cgrp->subtree_control = cgroup_control(cgrp);
5477
5478 cgroup_propagate_control(cgrp);
5479
5480 return cgrp;
5481
5482 out_psi_free:
5483 psi_cgroup_free(cgrp);
5484 out_kernfs_remove:
5485 kernfs_remove(cgrp->kn);
5486 out_stat_exit:
5487 if (cgroup_on_dfl(parent))
5488 cgroup_rstat_exit(cgrp);
5489 out_cancel_ref:
5490 percpu_ref_exit(&cgrp->self.refcnt);
5491 out_free_cgrp:
5492 kfree(cgrp);
5493 return ERR_PTR(ret);
5494 }
5495
cgroup_check_hierarchy_limits(struct cgroup * parent)5496 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5497 {
5498 struct cgroup *cgroup;
5499 int ret = false;
5500 int level = 1;
5501
5502 lockdep_assert_held(&cgroup_mutex);
5503
5504 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5505 if (cgroup->nr_descendants >= cgroup->max_descendants)
5506 goto fail;
5507
5508 if (level > cgroup->max_depth)
5509 goto fail;
5510
5511 level++;
5512 }
5513
5514 ret = true;
5515 fail:
5516 return ret;
5517 }
5518
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5519 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5520 {
5521 struct cgroup *parent, *cgrp;
5522 int ret;
5523
5524 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5525 if (strchr(name, '\n'))
5526 return -EINVAL;
5527
5528 parent = cgroup_kn_lock_live(parent_kn, false);
5529 if (!parent)
5530 return -ENODEV;
5531
5532 if (!cgroup_check_hierarchy_limits(parent)) {
5533 ret = -EAGAIN;
5534 goto out_unlock;
5535 }
5536
5537 cgrp = cgroup_create(parent, name, mode);
5538 if (IS_ERR(cgrp)) {
5539 ret = PTR_ERR(cgrp);
5540 goto out_unlock;
5541 }
5542
5543 /*
5544 * This extra ref will be put in cgroup_free_fn() and guarantees
5545 * that @cgrp->kn is always accessible.
5546 */
5547 kernfs_get(cgrp->kn);
5548
5549 ret = cgroup_kn_set_ugid(cgrp->kn);
5550 if (ret)
5551 goto out_destroy;
5552
5553 ret = css_populate_dir(&cgrp->self);
5554 if (ret)
5555 goto out_destroy;
5556
5557 ret = cgroup_apply_control_enable(cgrp);
5558 if (ret)
5559 goto out_destroy;
5560
5561 TRACE_CGROUP_PATH(mkdir, cgrp);
5562
5563 /* let's create and online css's */
5564 kernfs_activate(cgrp->kn);
5565
5566 ret = 0;
5567 goto out_unlock;
5568
5569 out_destroy:
5570 cgroup_destroy_locked(cgrp);
5571 out_unlock:
5572 cgroup_kn_unlock(parent_kn);
5573 return ret;
5574 }
5575
5576 /*
5577 * This is called when the refcnt of a css is confirmed to be killed.
5578 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5579 * initate destruction and put the css ref from kill_css().
5580 */
css_killed_work_fn(struct work_struct * work)5581 static void css_killed_work_fn(struct work_struct *work)
5582 {
5583 struct cgroup_subsys_state *css =
5584 container_of(work, struct cgroup_subsys_state, destroy_work);
5585
5586 mutex_lock(&cgroup_mutex);
5587
5588 do {
5589 offline_css(css);
5590 css_put(css);
5591 /* @css can't go away while we're holding cgroup_mutex */
5592 css = css->parent;
5593 } while (css && atomic_dec_and_test(&css->online_cnt));
5594
5595 mutex_unlock(&cgroup_mutex);
5596 }
5597
5598 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5599 static void css_killed_ref_fn(struct percpu_ref *ref)
5600 {
5601 struct cgroup_subsys_state *css =
5602 container_of(ref, struct cgroup_subsys_state, refcnt);
5603
5604 if (atomic_dec_and_test(&css->online_cnt)) {
5605 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5606 queue_work(cgroup_destroy_wq, &css->destroy_work);
5607 }
5608 }
5609
5610 /**
5611 * kill_css - destroy a css
5612 * @css: css to destroy
5613 *
5614 * This function initiates destruction of @css by removing cgroup interface
5615 * files and putting its base reference. ->css_offline() will be invoked
5616 * asynchronously once css_tryget_online() is guaranteed to fail and when
5617 * the reference count reaches zero, @css will be released.
5618 */
kill_css(struct cgroup_subsys_state * css)5619 static void kill_css(struct cgroup_subsys_state *css)
5620 {
5621 lockdep_assert_held(&cgroup_mutex);
5622
5623 if (css->flags & CSS_DYING)
5624 return;
5625
5626 css->flags |= CSS_DYING;
5627
5628 /*
5629 * This must happen before css is disassociated with its cgroup.
5630 * See seq_css() for details.
5631 */
5632 css_clear_dir(css);
5633
5634 /*
5635 * Killing would put the base ref, but we need to keep it alive
5636 * until after ->css_offline().
5637 */
5638 css_get(css);
5639
5640 /*
5641 * cgroup core guarantees that, by the time ->css_offline() is
5642 * invoked, no new css reference will be given out via
5643 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5644 * proceed to offlining css's because percpu_ref_kill() doesn't
5645 * guarantee that the ref is seen as killed on all CPUs on return.
5646 *
5647 * Use percpu_ref_kill_and_confirm() to get notifications as each
5648 * css is confirmed to be seen as killed on all CPUs.
5649 */
5650 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5651 }
5652
5653 /**
5654 * cgroup_destroy_locked - the first stage of cgroup destruction
5655 * @cgrp: cgroup to be destroyed
5656 *
5657 * css's make use of percpu refcnts whose killing latency shouldn't be
5658 * exposed to userland and are RCU protected. Also, cgroup core needs to
5659 * guarantee that css_tryget_online() won't succeed by the time
5660 * ->css_offline() is invoked. To satisfy all the requirements,
5661 * destruction is implemented in the following two steps.
5662 *
5663 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5664 * userland visible parts and start killing the percpu refcnts of
5665 * css's. Set up so that the next stage will be kicked off once all
5666 * the percpu refcnts are confirmed to be killed.
5667 *
5668 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5669 * rest of destruction. Once all cgroup references are gone, the
5670 * cgroup is RCU-freed.
5671 *
5672 * This function implements s1. After this step, @cgrp is gone as far as
5673 * the userland is concerned and a new cgroup with the same name may be
5674 * created. As cgroup doesn't care about the names internally, this
5675 * doesn't cause any problem.
5676 */
cgroup_destroy_locked(struct cgroup * cgrp)5677 static int cgroup_destroy_locked(struct cgroup *cgrp)
5678 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5679 {
5680 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5681 struct cgroup_subsys_state *css;
5682 struct cgrp_cset_link *link;
5683 int ssid;
5684
5685 lockdep_assert_held(&cgroup_mutex);
5686
5687 /*
5688 * Only migration can raise populated from zero and we're already
5689 * holding cgroup_mutex.
5690 */
5691 if (cgroup_is_populated(cgrp))
5692 return -EBUSY;
5693
5694 /*
5695 * Make sure there's no live children. We can't test emptiness of
5696 * ->self.children as dead children linger on it while being
5697 * drained; otherwise, "rmdir parent/child parent" may fail.
5698 */
5699 if (css_has_online_children(&cgrp->self))
5700 return -EBUSY;
5701
5702 /*
5703 * Mark @cgrp and the associated csets dead. The former prevents
5704 * further task migration and child creation by disabling
5705 * cgroup_lock_live_group(). The latter makes the csets ignored by
5706 * the migration path.
5707 */
5708 cgrp->self.flags &= ~CSS_ONLINE;
5709
5710 spin_lock_irq(&css_set_lock);
5711 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5712 link->cset->dead = true;
5713 spin_unlock_irq(&css_set_lock);
5714
5715 /* initiate massacre of all css's */
5716 for_each_css(css, ssid, cgrp)
5717 kill_css(css);
5718
5719 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5720 css_clear_dir(&cgrp->self);
5721 kernfs_remove(cgrp->kn);
5722
5723 if (parent && cgroup_is_threaded(cgrp))
5724 parent->nr_threaded_children--;
5725
5726 spin_lock_irq(&css_set_lock);
5727 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5728 tcgrp->nr_descendants--;
5729 tcgrp->nr_dying_descendants++;
5730 /*
5731 * If the dying cgroup is frozen, decrease frozen descendants
5732 * counters of ancestor cgroups.
5733 */
5734 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5735 tcgrp->freezer.nr_frozen_descendants--;
5736 }
5737 spin_unlock_irq(&css_set_lock);
5738
5739 cgroup1_check_for_release(parent);
5740
5741 cgroup_bpf_offline(cgrp);
5742
5743 /* put the base reference */
5744 percpu_ref_kill(&cgrp->self.refcnt);
5745
5746 return 0;
5747 };
5748
cgroup_rmdir(struct kernfs_node * kn)5749 int cgroup_rmdir(struct kernfs_node *kn)
5750 {
5751 struct cgroup *cgrp;
5752 int ret = 0;
5753
5754 cgrp = cgroup_kn_lock_live(kn, false);
5755 if (!cgrp)
5756 return 0;
5757
5758 ret = cgroup_destroy_locked(cgrp);
5759 if (!ret)
5760 TRACE_CGROUP_PATH(rmdir, cgrp);
5761
5762 cgroup_kn_unlock(kn);
5763 return ret;
5764 }
5765
5766 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5767 .show_options = cgroup_show_options,
5768 .mkdir = cgroup_mkdir,
5769 .rmdir = cgroup_rmdir,
5770 .show_path = cgroup_show_path,
5771 };
5772
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5773 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5774 {
5775 struct cgroup_subsys_state *css;
5776
5777 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5778
5779 mutex_lock(&cgroup_mutex);
5780
5781 idr_init(&ss->css_idr);
5782 INIT_LIST_HEAD(&ss->cfts);
5783
5784 /* Create the root cgroup state for this subsystem */
5785 ss->root = &cgrp_dfl_root;
5786 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5787 /* We don't handle early failures gracefully */
5788 BUG_ON(IS_ERR(css));
5789 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5790
5791 /*
5792 * Root csses are never destroyed and we can't initialize
5793 * percpu_ref during early init. Disable refcnting.
5794 */
5795 css->flags |= CSS_NO_REF;
5796
5797 if (early) {
5798 /* allocation can't be done safely during early init */
5799 css->id = 1;
5800 } else {
5801 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5802 BUG_ON(css->id < 0);
5803 }
5804
5805 /* Update the init_css_set to contain a subsys
5806 * pointer to this state - since the subsystem is
5807 * newly registered, all tasks and hence the
5808 * init_css_set is in the subsystem's root cgroup. */
5809 init_css_set.subsys[ss->id] = css;
5810
5811 have_fork_callback |= (bool)ss->fork << ss->id;
5812 have_exit_callback |= (bool)ss->exit << ss->id;
5813 have_release_callback |= (bool)ss->release << ss->id;
5814 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5815
5816 /* At system boot, before all subsystems have been
5817 * registered, no tasks have been forked, so we don't
5818 * need to invoke fork callbacks here. */
5819 BUG_ON(!list_empty(&init_task.tasks));
5820
5821 BUG_ON(online_css(css));
5822
5823 mutex_unlock(&cgroup_mutex);
5824 }
5825
5826 /**
5827 * cgroup_init_early - cgroup initialization at system boot
5828 *
5829 * Initialize cgroups at system boot, and initialize any
5830 * subsystems that request early init.
5831 */
cgroup_init_early(void)5832 int __init cgroup_init_early(void)
5833 {
5834 static struct cgroup_fs_context __initdata ctx;
5835 struct cgroup_subsys *ss;
5836 int i;
5837
5838 ctx.root = &cgrp_dfl_root;
5839 init_cgroup_root(&ctx);
5840 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5841
5842 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5843
5844 for_each_subsys(ss, i) {
5845 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5846 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5847 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5848 ss->id, ss->name);
5849 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5850 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5851
5852 ss->id = i;
5853 ss->name = cgroup_subsys_name[i];
5854 if (!ss->legacy_name)
5855 ss->legacy_name = cgroup_subsys_name[i];
5856
5857 if (ss->early_init)
5858 cgroup_init_subsys(ss, true);
5859 }
5860 return 0;
5861 }
5862
5863 /**
5864 * cgroup_init - cgroup initialization
5865 *
5866 * Register cgroup filesystem and /proc file, and initialize
5867 * any subsystems that didn't request early init.
5868 */
cgroup_init(void)5869 int __init cgroup_init(void)
5870 {
5871 struct cgroup_subsys *ss;
5872 int ssid;
5873
5874 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5875 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5876 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5877
5878 cgroup_rstat_boot();
5879
5880 /*
5881 * The latency of the synchronize_rcu() is too high for cgroups,
5882 * avoid it at the cost of forcing all readers into the slow path.
5883 */
5884 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5885
5886 get_user_ns(init_cgroup_ns.user_ns);
5887
5888 mutex_lock(&cgroup_mutex);
5889
5890 /*
5891 * Add init_css_set to the hash table so that dfl_root can link to
5892 * it during init.
5893 */
5894 hash_add(css_set_table, &init_css_set.hlist,
5895 css_set_hash(init_css_set.subsys));
5896
5897 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5898
5899 mutex_unlock(&cgroup_mutex);
5900
5901 for_each_subsys(ss, ssid) {
5902 if (ss->early_init) {
5903 struct cgroup_subsys_state *css =
5904 init_css_set.subsys[ss->id];
5905
5906 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5907 GFP_KERNEL);
5908 BUG_ON(css->id < 0);
5909 } else {
5910 cgroup_init_subsys(ss, false);
5911 }
5912
5913 list_add_tail(&init_css_set.e_cset_node[ssid],
5914 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5915
5916 /*
5917 * Setting dfl_root subsys_mask needs to consider the
5918 * disabled flag and cftype registration needs kmalloc,
5919 * both of which aren't available during early_init.
5920 */
5921 if (!cgroup_ssid_enabled(ssid))
5922 continue;
5923
5924 if (cgroup1_ssid_disabled(ssid))
5925 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5926 ss->name);
5927
5928 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5929
5930 /* implicit controllers must be threaded too */
5931 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5932
5933 if (ss->implicit_on_dfl)
5934 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5935 else if (!ss->dfl_cftypes)
5936 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5937
5938 if (ss->threaded)
5939 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5940
5941 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5942 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5943 } else {
5944 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5945 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5946 }
5947
5948 if (ss->bind)
5949 ss->bind(init_css_set.subsys[ssid]);
5950
5951 mutex_lock(&cgroup_mutex);
5952 css_populate_dir(init_css_set.subsys[ssid]);
5953 mutex_unlock(&cgroup_mutex);
5954 }
5955
5956 /* init_css_set.subsys[] has been updated, re-hash */
5957 hash_del(&init_css_set.hlist);
5958 hash_add(css_set_table, &init_css_set.hlist,
5959 css_set_hash(init_css_set.subsys));
5960
5961 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5962 WARN_ON(register_filesystem(&cgroup_fs_type));
5963 WARN_ON(register_filesystem(&cgroup2_fs_type));
5964 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5965 #ifdef CONFIG_CPUSETS
5966 WARN_ON(register_filesystem(&cpuset_fs_type));
5967 #endif
5968
5969 return 0;
5970 }
5971
cgroup_wq_init(void)5972 static int __init cgroup_wq_init(void)
5973 {
5974 /*
5975 * There isn't much point in executing destruction path in
5976 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5977 * Use 1 for @max_active.
5978 *
5979 * We would prefer to do this in cgroup_init() above, but that
5980 * is called before init_workqueues(): so leave this until after.
5981 */
5982 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5983 BUG_ON(!cgroup_destroy_wq);
5984 return 0;
5985 }
5986 core_initcall(cgroup_wq_init);
5987
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5988 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5989 {
5990 struct kernfs_node *kn;
5991
5992 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5993 if (!kn)
5994 return;
5995 kernfs_path(kn, buf, buflen);
5996 kernfs_put(kn);
5997 }
5998
5999 /*
6000 * proc_cgroup_show()
6001 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6002 * - Used for /proc/<pid>/cgroup.
6003 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6004 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6005 struct pid *pid, struct task_struct *tsk)
6006 {
6007 char *buf;
6008 int retval;
6009 struct cgroup_root *root;
6010
6011 retval = -ENOMEM;
6012 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6013 if (!buf)
6014 goto out;
6015
6016 mutex_lock(&cgroup_mutex);
6017 spin_lock_irq(&css_set_lock);
6018
6019 for_each_root(root) {
6020 struct cgroup_subsys *ss;
6021 struct cgroup *cgrp;
6022 int ssid, count = 0;
6023
6024 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6025 continue;
6026
6027 seq_printf(m, "%d:", root->hierarchy_id);
6028 if (root != &cgrp_dfl_root)
6029 for_each_subsys(ss, ssid)
6030 if (root->subsys_mask & (1 << ssid))
6031 seq_printf(m, "%s%s", count++ ? "," : "",
6032 ss->legacy_name);
6033 if (strlen(root->name))
6034 seq_printf(m, "%sname=%s", count ? "," : "",
6035 root->name);
6036 seq_putc(m, ':');
6037
6038 cgrp = task_cgroup_from_root(tsk, root);
6039
6040 /*
6041 * On traditional hierarchies, all zombie tasks show up as
6042 * belonging to the root cgroup. On the default hierarchy,
6043 * while a zombie doesn't show up in "cgroup.procs" and
6044 * thus can't be migrated, its /proc/PID/cgroup keeps
6045 * reporting the cgroup it belonged to before exiting. If
6046 * the cgroup is removed before the zombie is reaped,
6047 * " (deleted)" is appended to the cgroup path.
6048 */
6049 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6050 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6051 current->nsproxy->cgroup_ns);
6052 if (retval >= PATH_MAX)
6053 retval = -ENAMETOOLONG;
6054 if (retval < 0)
6055 goto out_unlock;
6056
6057 seq_puts(m, buf);
6058 } else {
6059 seq_puts(m, "/");
6060 }
6061
6062 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6063 seq_puts(m, " (deleted)\n");
6064 else
6065 seq_putc(m, '\n');
6066 }
6067
6068 retval = 0;
6069 out_unlock:
6070 spin_unlock_irq(&css_set_lock);
6071 mutex_unlock(&cgroup_mutex);
6072 kfree(buf);
6073 out:
6074 return retval;
6075 }
6076
6077 /**
6078 * cgroup_fork - initialize cgroup related fields during copy_process()
6079 * @child: pointer to task_struct of forking parent process.
6080 *
6081 * A task is associated with the init_css_set until cgroup_post_fork()
6082 * attaches it to the target css_set.
6083 */
cgroup_fork(struct task_struct * child)6084 void cgroup_fork(struct task_struct *child)
6085 {
6086 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6087 INIT_LIST_HEAD(&child->cg_list);
6088 }
6089
cgroup_get_from_file(struct file * f)6090 static struct cgroup *cgroup_get_from_file(struct file *f)
6091 {
6092 struct cgroup_subsys_state *css;
6093 struct cgroup *cgrp;
6094
6095 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6096 if (IS_ERR(css))
6097 return ERR_CAST(css);
6098
6099 cgrp = css->cgroup;
6100 if (!cgroup_on_dfl(cgrp)) {
6101 cgroup_put(cgrp);
6102 return ERR_PTR(-EBADF);
6103 }
6104
6105 return cgrp;
6106 }
6107
6108 /**
6109 * cgroup_css_set_fork - find or create a css_set for a child process
6110 * @kargs: the arguments passed to create the child process
6111 *
6112 * This functions finds or creates a new css_set which the child
6113 * process will be attached to in cgroup_post_fork(). By default,
6114 * the child process will be given the same css_set as its parent.
6115 *
6116 * If CLONE_INTO_CGROUP is specified this function will try to find an
6117 * existing css_set which includes the requested cgroup and if not create
6118 * a new css_set that the child will be attached to later. If this function
6119 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6120 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6121 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6122 * to the target cgroup.
6123 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6124 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6125 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6126 {
6127 int ret;
6128 struct cgroup *dst_cgrp = NULL;
6129 struct css_set *cset;
6130 struct super_block *sb;
6131 struct file *f;
6132
6133 if (kargs->flags & CLONE_INTO_CGROUP)
6134 mutex_lock(&cgroup_mutex);
6135
6136 cgroup_threadgroup_change_begin(current);
6137
6138 spin_lock_irq(&css_set_lock);
6139 cset = task_css_set(current);
6140 get_css_set(cset);
6141 spin_unlock_irq(&css_set_lock);
6142
6143 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6144 kargs->cset = cset;
6145 return 0;
6146 }
6147
6148 f = fget_raw(kargs->cgroup);
6149 if (!f) {
6150 ret = -EBADF;
6151 goto err;
6152 }
6153 sb = f->f_path.dentry->d_sb;
6154
6155 dst_cgrp = cgroup_get_from_file(f);
6156 if (IS_ERR(dst_cgrp)) {
6157 ret = PTR_ERR(dst_cgrp);
6158 dst_cgrp = NULL;
6159 goto err;
6160 }
6161
6162 if (cgroup_is_dead(dst_cgrp)) {
6163 ret = -ENODEV;
6164 goto err;
6165 }
6166
6167 /*
6168 * Verify that we the target cgroup is writable for us. This is
6169 * usually done by the vfs layer but since we're not going through
6170 * the vfs layer here we need to do it "manually".
6171 */
6172 ret = cgroup_may_write(dst_cgrp, sb);
6173 if (ret)
6174 goto err;
6175
6176 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6177 !(kargs->flags & CLONE_THREAD),
6178 current->nsproxy->cgroup_ns);
6179 if (ret)
6180 goto err;
6181
6182 kargs->cset = find_css_set(cset, dst_cgrp);
6183 if (!kargs->cset) {
6184 ret = -ENOMEM;
6185 goto err;
6186 }
6187
6188 put_css_set(cset);
6189 fput(f);
6190 kargs->cgrp = dst_cgrp;
6191 return ret;
6192
6193 err:
6194 cgroup_threadgroup_change_end(current);
6195 mutex_unlock(&cgroup_mutex);
6196 if (f)
6197 fput(f);
6198 if (dst_cgrp)
6199 cgroup_put(dst_cgrp);
6200 put_css_set(cset);
6201 if (kargs->cset)
6202 put_css_set(kargs->cset);
6203 return ret;
6204 }
6205
6206 /**
6207 * cgroup_css_set_put_fork - drop references we took during fork
6208 * @kargs: the arguments passed to create the child process
6209 *
6210 * Drop references to the prepared css_set and target cgroup if
6211 * CLONE_INTO_CGROUP was requested.
6212 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6213 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6214 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6215 {
6216 struct cgroup *cgrp = kargs->cgrp;
6217 struct css_set *cset = kargs->cset;
6218
6219 cgroup_threadgroup_change_end(current);
6220
6221 if (cset) {
6222 put_css_set(cset);
6223 kargs->cset = NULL;
6224 }
6225
6226 if (kargs->flags & CLONE_INTO_CGROUP) {
6227 mutex_unlock(&cgroup_mutex);
6228 if (cgrp) {
6229 cgroup_put(cgrp);
6230 kargs->cgrp = NULL;
6231 }
6232 }
6233 }
6234
6235 /**
6236 * cgroup_can_fork - called on a new task before the process is exposed
6237 * @child: the child process
6238 *
6239 * This prepares a new css_set for the child process which the child will
6240 * be attached to in cgroup_post_fork().
6241 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6242 * callback returns an error, the fork aborts with that error code. This
6243 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6244 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6245 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6246 {
6247 struct cgroup_subsys *ss;
6248 int i, j, ret;
6249
6250 ret = cgroup_css_set_fork(kargs);
6251 if (ret)
6252 return ret;
6253
6254 do_each_subsys_mask(ss, i, have_canfork_callback) {
6255 ret = ss->can_fork(child, kargs->cset);
6256 if (ret)
6257 goto out_revert;
6258 } while_each_subsys_mask();
6259
6260 return 0;
6261
6262 out_revert:
6263 for_each_subsys(ss, j) {
6264 if (j >= i)
6265 break;
6266 if (ss->cancel_fork)
6267 ss->cancel_fork(child, kargs->cset);
6268 }
6269
6270 cgroup_css_set_put_fork(kargs);
6271
6272 return ret;
6273 }
6274
6275 /**
6276 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6277 * @child: the child process
6278 * @kargs: the arguments passed to create the child process
6279 *
6280 * This calls the cancel_fork() callbacks if a fork failed *after*
6281 * cgroup_can_fork() succeded and cleans up references we took to
6282 * prepare a new css_set for the child process in cgroup_can_fork().
6283 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6284 void cgroup_cancel_fork(struct task_struct *child,
6285 struct kernel_clone_args *kargs)
6286 {
6287 struct cgroup_subsys *ss;
6288 int i;
6289
6290 for_each_subsys(ss, i)
6291 if (ss->cancel_fork)
6292 ss->cancel_fork(child, kargs->cset);
6293
6294 cgroup_css_set_put_fork(kargs);
6295 }
6296
6297 /**
6298 * cgroup_post_fork - finalize cgroup setup for the child process
6299 * @child: the child process
6300 *
6301 * Attach the child process to its css_set calling the subsystem fork()
6302 * callbacks.
6303 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6304 void cgroup_post_fork(struct task_struct *child,
6305 struct kernel_clone_args *kargs)
6306 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6307 {
6308 struct cgroup_subsys *ss;
6309 struct css_set *cset;
6310 int i;
6311
6312 cset = kargs->cset;
6313 kargs->cset = NULL;
6314
6315 spin_lock_irq(&css_set_lock);
6316
6317 /* init tasks are special, only link regular threads */
6318 if (likely(child->pid)) {
6319 WARN_ON_ONCE(!list_empty(&child->cg_list));
6320 cset->nr_tasks++;
6321 css_set_move_task(child, NULL, cset, false);
6322 } else {
6323 put_css_set(cset);
6324 cset = NULL;
6325 }
6326
6327 /*
6328 * If the cgroup has to be frozen, the new task has too. Let's set
6329 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6330 * frozen state.
6331 */
6332 if (unlikely(cgroup_task_freeze(child))) {
6333 spin_lock(&child->sighand->siglock);
6334 WARN_ON_ONCE(child->frozen);
6335 child->jobctl |= JOBCTL_TRAP_FREEZE;
6336 spin_unlock(&child->sighand->siglock);
6337
6338 /*
6339 * Calling cgroup_update_frozen() isn't required here,
6340 * because it will be called anyway a bit later from
6341 * do_freezer_trap(). So we avoid cgroup's transient switch
6342 * from the frozen state and back.
6343 */
6344 }
6345
6346 spin_unlock_irq(&css_set_lock);
6347
6348 /*
6349 * Call ss->fork(). This must happen after @child is linked on
6350 * css_set; otherwise, @child might change state between ->fork()
6351 * and addition to css_set.
6352 */
6353 do_each_subsys_mask(ss, i, have_fork_callback) {
6354 ss->fork(child);
6355 } while_each_subsys_mask();
6356
6357 /* Make the new cset the root_cset of the new cgroup namespace. */
6358 if (kargs->flags & CLONE_NEWCGROUP) {
6359 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6360
6361 get_css_set(cset);
6362 child->nsproxy->cgroup_ns->root_cset = cset;
6363 put_css_set(rcset);
6364 }
6365
6366 cgroup_css_set_put_fork(kargs);
6367 }
6368
6369 /**
6370 * cgroup_exit - detach cgroup from exiting task
6371 * @tsk: pointer to task_struct of exiting process
6372 *
6373 * Description: Detach cgroup from @tsk.
6374 *
6375 */
cgroup_exit(struct task_struct * tsk)6376 void cgroup_exit(struct task_struct *tsk)
6377 {
6378 struct cgroup_subsys *ss;
6379 struct css_set *cset;
6380 int i;
6381
6382 spin_lock_irq(&css_set_lock);
6383
6384 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6385 cset = task_css_set(tsk);
6386 css_set_move_task(tsk, cset, NULL, false);
6387 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6388 cset->nr_tasks--;
6389
6390 if (dl_task(tsk))
6391 dec_dl_tasks_cs(tsk);
6392
6393 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6394 if (unlikely(cgroup_task_freeze(tsk)))
6395 cgroup_update_frozen(task_dfl_cgroup(tsk));
6396
6397 spin_unlock_irq(&css_set_lock);
6398
6399 /* see cgroup_post_fork() for details */
6400 do_each_subsys_mask(ss, i, have_exit_callback) {
6401 ss->exit(tsk);
6402 } while_each_subsys_mask();
6403 }
6404
cgroup_release(struct task_struct * task)6405 void cgroup_release(struct task_struct *task)
6406 {
6407 struct cgroup_subsys *ss;
6408 int ssid;
6409
6410 do_each_subsys_mask(ss, ssid, have_release_callback) {
6411 ss->release(task);
6412 } while_each_subsys_mask();
6413
6414 spin_lock_irq(&css_set_lock);
6415 css_set_skip_task_iters(task_css_set(task), task);
6416 list_del_init(&task->cg_list);
6417 spin_unlock_irq(&css_set_lock);
6418 }
6419
cgroup_free(struct task_struct * task)6420 void cgroup_free(struct task_struct *task)
6421 {
6422 struct css_set *cset = task_css_set(task);
6423 put_css_set(cset);
6424 }
6425
cgroup_disable(char * str)6426 static int __init cgroup_disable(char *str)
6427 {
6428 struct cgroup_subsys *ss;
6429 char *token;
6430 int i;
6431
6432 while ((token = strsep(&str, ",")) != NULL) {
6433 if (!*token)
6434 continue;
6435
6436 for_each_subsys(ss, i) {
6437 if (strcmp(token, ss->name) &&
6438 strcmp(token, ss->legacy_name))
6439 continue;
6440
6441 static_branch_disable(cgroup_subsys_enabled_key[i]);
6442 pr_info("Disabling %s control group subsystem\n",
6443 ss->name);
6444 }
6445
6446 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6447 if (strcmp(token, cgroup_opt_feature_names[i]))
6448 continue;
6449 cgroup_feature_disable_mask |= 1 << i;
6450 pr_info("Disabling %s control group feature\n",
6451 cgroup_opt_feature_names[i]);
6452 break;
6453 }
6454 }
6455 return 1;
6456 }
6457 __setup("cgroup_disable=", cgroup_disable);
6458
enable_debug_cgroup(void)6459 void __init __weak enable_debug_cgroup(void) { }
6460
enable_cgroup_debug(char * str)6461 static int __init enable_cgroup_debug(char *str)
6462 {
6463 cgroup_debug = true;
6464 enable_debug_cgroup();
6465 return 1;
6466 }
6467 __setup("cgroup_debug", enable_cgroup_debug);
6468
6469 /**
6470 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6471 * @dentry: directory dentry of interest
6472 * @ss: subsystem of interest
6473 *
6474 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6475 * to get the corresponding css and return it. If such css doesn't exist
6476 * or can't be pinned, an ERR_PTR value is returned.
6477 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6478 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6479 struct cgroup_subsys *ss)
6480 {
6481 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6482 struct file_system_type *s_type = dentry->d_sb->s_type;
6483 struct cgroup_subsys_state *css = NULL;
6484 struct cgroup *cgrp;
6485
6486 /* is @dentry a cgroup dir? */
6487 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6488 !kn || kernfs_type(kn) != KERNFS_DIR)
6489 return ERR_PTR(-EBADF);
6490
6491 rcu_read_lock();
6492
6493 /*
6494 * This path doesn't originate from kernfs and @kn could already
6495 * have been or be removed at any point. @kn->priv is RCU
6496 * protected for this access. See css_release_work_fn() for details.
6497 */
6498 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6499 if (cgrp)
6500 css = cgroup_css(cgrp, ss);
6501
6502 if (!css || !css_tryget_online(css))
6503 css = ERR_PTR(-ENOENT);
6504
6505 rcu_read_unlock();
6506 return css;
6507 }
6508
6509 /**
6510 * css_from_id - lookup css by id
6511 * @id: the cgroup id
6512 * @ss: cgroup subsys to be looked into
6513 *
6514 * Returns the css if there's valid one with @id, otherwise returns NULL.
6515 * Should be called under rcu_read_lock().
6516 */
css_from_id(int id,struct cgroup_subsys * ss)6517 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6518 {
6519 WARN_ON_ONCE(!rcu_read_lock_held());
6520 return idr_find(&ss->css_idr, id);
6521 }
6522
6523 /**
6524 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6525 * @path: path on the default hierarchy
6526 *
6527 * Find the cgroup at @path on the default hierarchy, increment its
6528 * reference count and return it. Returns pointer to the found cgroup on
6529 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6530 * if @path points to a non-directory.
6531 */
cgroup_get_from_path(const char * path)6532 struct cgroup *cgroup_get_from_path(const char *path)
6533 {
6534 struct kernfs_node *kn;
6535 struct cgroup *cgrp;
6536
6537 mutex_lock(&cgroup_mutex);
6538
6539 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6540 if (kn) {
6541 if (kernfs_type(kn) == KERNFS_DIR) {
6542 cgrp = kn->priv;
6543 cgroup_get_live(cgrp);
6544 } else {
6545 cgrp = ERR_PTR(-ENOTDIR);
6546 }
6547 kernfs_put(kn);
6548 } else {
6549 cgrp = ERR_PTR(-ENOENT);
6550 }
6551
6552 mutex_unlock(&cgroup_mutex);
6553 return cgrp;
6554 }
6555 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6556
6557 /**
6558 * cgroup_get_from_fd - get a cgroup pointer from a fd
6559 * @fd: fd obtained by open(cgroup2_dir)
6560 *
6561 * Find the cgroup from a fd which should be obtained
6562 * by opening a cgroup directory. Returns a pointer to the
6563 * cgroup on success. ERR_PTR is returned if the cgroup
6564 * cannot be found.
6565 */
cgroup_get_from_fd(int fd)6566 struct cgroup *cgroup_get_from_fd(int fd)
6567 {
6568 struct cgroup *cgrp;
6569 struct file *f;
6570
6571 f = fget_raw(fd);
6572 if (!f)
6573 return ERR_PTR(-EBADF);
6574
6575 cgrp = cgroup_get_from_file(f);
6576 fput(f);
6577 return cgrp;
6578 }
6579 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6580
power_of_ten(int power)6581 static u64 power_of_ten(int power)
6582 {
6583 u64 v = 1;
6584 while (power--)
6585 v *= 10;
6586 return v;
6587 }
6588
6589 /**
6590 * cgroup_parse_float - parse a floating number
6591 * @input: input string
6592 * @dec_shift: number of decimal digits to shift
6593 * @v: output
6594 *
6595 * Parse a decimal floating point number in @input and store the result in
6596 * @v with decimal point right shifted @dec_shift times. For example, if
6597 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6598 * Returns 0 on success, -errno otherwise.
6599 *
6600 * There's nothing cgroup specific about this function except that it's
6601 * currently the only user.
6602 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6603 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6604 {
6605 s64 whole, frac = 0;
6606 int fstart = 0, fend = 0, flen;
6607
6608 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6609 return -EINVAL;
6610 if (frac < 0)
6611 return -EINVAL;
6612
6613 flen = fend > fstart ? fend - fstart : 0;
6614 if (flen < dec_shift)
6615 frac *= power_of_ten(dec_shift - flen);
6616 else
6617 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6618
6619 *v = whole * power_of_ten(dec_shift) + frac;
6620 return 0;
6621 }
6622
6623 /*
6624 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6625 * definition in cgroup-defs.h.
6626 */
6627 #ifdef CONFIG_SOCK_CGROUP_DATA
6628
6629 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6630
6631 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6632 static bool cgroup_sk_alloc_disabled __read_mostly;
6633
cgroup_sk_alloc_disable(void)6634 void cgroup_sk_alloc_disable(void)
6635 {
6636 if (cgroup_sk_alloc_disabled)
6637 return;
6638 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6639 cgroup_sk_alloc_disabled = true;
6640 }
6641
6642 #else
6643
6644 #define cgroup_sk_alloc_disabled false
6645
6646 #endif
6647
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6648 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6649 {
6650 if (cgroup_sk_alloc_disabled) {
6651 skcd->no_refcnt = 1;
6652 return;
6653 }
6654
6655 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6656 if (in_interrupt())
6657 return;
6658
6659 rcu_read_lock();
6660
6661 while (true) {
6662 struct css_set *cset;
6663
6664 cset = task_css_set(current);
6665 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6666 skcd->val = (unsigned long)cset->dfl_cgrp;
6667 cgroup_bpf_get(cset->dfl_cgrp);
6668 break;
6669 }
6670 cpu_relax();
6671 }
6672
6673 rcu_read_unlock();
6674 }
6675
cgroup_sk_clone(struct sock_cgroup_data * skcd)6676 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6677 {
6678 if (skcd->val) {
6679 if (skcd->no_refcnt)
6680 return;
6681 /*
6682 * We might be cloning a socket which is left in an empty
6683 * cgroup and the cgroup might have already been rmdir'd.
6684 * Don't use cgroup_get_live().
6685 */
6686 cgroup_get(sock_cgroup_ptr(skcd));
6687 cgroup_bpf_get(sock_cgroup_ptr(skcd));
6688 }
6689 }
6690
cgroup_sk_free(struct sock_cgroup_data * skcd)6691 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6692 {
6693 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6694
6695 if (skcd->no_refcnt)
6696 return;
6697 cgroup_bpf_put(cgrp);
6698 cgroup_put(cgrp);
6699 }
6700
6701 #endif /* CONFIG_SOCK_CGROUP_DATA */
6702
6703 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6704 int cgroup_bpf_attach(struct cgroup *cgrp,
6705 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6706 struct bpf_cgroup_link *link,
6707 enum bpf_attach_type type,
6708 u32 flags)
6709 {
6710 int ret;
6711
6712 mutex_lock(&cgroup_mutex);
6713 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6714 mutex_unlock(&cgroup_mutex);
6715 return ret;
6716 }
6717
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6718 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6719 enum bpf_attach_type type)
6720 {
6721 int ret;
6722
6723 mutex_lock(&cgroup_mutex);
6724 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6725 mutex_unlock(&cgroup_mutex);
6726 return ret;
6727 }
6728
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6729 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6730 union bpf_attr __user *uattr)
6731 {
6732 int ret;
6733
6734 mutex_lock(&cgroup_mutex);
6735 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6736 mutex_unlock(&cgroup_mutex);
6737 return ret;
6738 }
6739 #endif /* CONFIG_CGROUP_BPF */
6740
6741 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6742 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6743 ssize_t size, const char *prefix)
6744 {
6745 struct cftype *cft;
6746 ssize_t ret = 0;
6747
6748 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6749 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6750 continue;
6751
6752 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6753 continue;
6754
6755 if (prefix)
6756 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6757
6758 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6759
6760 if (WARN_ON(ret >= size))
6761 break;
6762 }
6763
6764 return ret;
6765 }
6766
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6767 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6768 char *buf)
6769 {
6770 struct cgroup_subsys *ss;
6771 int ssid;
6772 ssize_t ret = 0;
6773
6774 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6775 NULL);
6776
6777 for_each_subsys(ss, ssid)
6778 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6779 PAGE_SIZE - ret,
6780 cgroup_subsys_name[ssid]);
6781
6782 return ret;
6783 }
6784 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6785
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6786 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6787 char *buf)
6788 {
6789 return snprintf(buf, PAGE_SIZE,
6790 "nsdelegate\n"
6791 "memory_localevents\n"
6792 "memory_recursiveprot\n");
6793 }
6794 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6795
6796 static struct attribute *cgroup_sysfs_attrs[] = {
6797 &cgroup_delegate_attr.attr,
6798 &cgroup_features_attr.attr,
6799 NULL,
6800 };
6801
6802 static const struct attribute_group cgroup_sysfs_attr_group = {
6803 .attrs = cgroup_sysfs_attrs,
6804 .name = "cgroup",
6805 };
6806
cgroup_sysfs_init(void)6807 static int __init cgroup_sysfs_init(void)
6808 {
6809 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6810 }
6811 subsys_initcall(cgroup_sysfs_init);
6812
6813 #endif /* CONFIG_SYSFS */
6814